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What is Lazy Evaluation? 
A: Portland State University, B: McGill University, C: Chalmers University of Technology, D: University of Pennsylvania 

- Normally, we compute values "strictly;' 
- If I write "x = 1 + 2," then my computer 

calculates "1 + 2" immediately and records 
"x = 3!' 

- In lazy evaluation, we get to put off work until 
later! 
- If I write "x = 1 + 2," my computer 

records the fact that "x = 1 + 2." It doesn't 
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actually add "1 + 2" until it needs the value -----------------------, 
of "x" for something. Insertion Sort Cost 

Theorem take_insertion_sortD_cost (n : 
Why is Lazy Evaluation good? nat) ( xs : list nat) ( outD : listA nat) 
- Lazy evaluation can save us time. : Tick . cost (take_insertion_sortD n xs 
- Lazy evaluation lets us compose functions outD) <= ( n + 1 ) * ( length xs + 2) + 1 . 

more easily. 
- Lazy evaluation lets us use infinite data with 

less risk of an infinite loop. 

Why is Lazy Evaluation hard? 
- The order of operations gets confusing. 

- When does the 4 get popped? 
queue= [1, 2, 3] 
push 4 queue 
//Pop 4 elements from the queue 
newQueue = pop4 queue 
print(newQueue) 

- How do we know what will be evaluated? 
- When we write "x = 1 + 2", we usually 

think of that as meaning that x will definitely 
be set to "1 + 2". But if we never use x, this 
won't happen. 

- Does this code run forever? 
// " [1 .. ] • is an infinite list 
XS = [ 1 .. ] 
foo = reverse xs 

- Function costs depend on future demand. 
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Our Contributions 
- A novel semantics for reasoning about the 

computational cost of laziness 
- Used Coq to prove time bounds, with 

amortization and persistence for some of 
Okasaki's data structures. 
- Banker's Queue 
- Implicit Queue (partial) 

- Developed the reverse physicist's method for 
reasoning about amortization 

Example: Insertion Sort 
- Insertion sort is a common sorting algorithm. 

It is typically O(n2) time, but with laziness, it 
can take O(n) time for certain operations. 

- Insertion sort definition (Gallina): 
Fixpoint insertion_sort (xs: list 
nat) : list nat := 

match xs with 
I nil => nil 
I y :: ys => 

let zs := insertion_sort ys in 
insert y zs 

end. 

- Insertion sort's demand semantics version 
(Gallina): 

Fixpoint insertion_sortD (xs: list 
nat) (outD : listA nat) 
Tick (T (listA nat)) := 

tick>> match xs with 
I [] => ret (Thunk NilA) 
I y : : ys => let zs := 

insertion_sort ys in 
let+ zsD := insertD y zs outD 
in 

let+ ysD := thunkD 
(insertion_sortD ys) zsD in 

ret (Thunk (ConsA (Thunk 
y) ysD)) 
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