
Portland State University Portland State University

PDXScholar PDXScholar

Student Research Symposium Student Research Symposium 2024

May 8th, 11:00 AM - 1:00 PM

Story of Your Lazy Function’s Life: A Bidirectional Story of Your Lazy Function’s Life: A Bidirectional

Demand Semantics for Mechanized Cost Analysis of Demand Semantics for Mechanized Cost Analysis of

Lazy Programs Lazy Programs

Laura Israel
Portland State University

Nicholas Coltharp
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/studentsymposium

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Israel, Laura and Coltharp, Nicholas, "Story of Your Lazy Function’s Life: A Bidirectional Demand
Semantics for Mechanized Cost Analysis of Lazy Programs" (2024). Student Research Symposium. 6.
https://pdxscholar.library.pdx.edu/studentsymposium/2024/posters/6

This Poster is brought to you for free and open access. It has been accepted for inclusion in Student Research
Symposium by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/studentsymposium
https://pdxscholar.library.pdx.edu/studentsymposium/2024
https://pdxscholar.library.pdx.edu/studentsymposium?utm_source=pdxscholar.library.pdx.edu%2Fstudentsymposium%2F2024%2Fposters%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fstudentsymposium%2F2024%2Fposters%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/studentsymposium/2024/posters/6
https://pdxscholar.library.pdx.edu/studentsymposium/2024/posters/6?utm_source=pdxscholar.library.pdx.edu%2Fstudentsymposium%2F2024%2Fposters%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

~
Portland

State

Story of Your Lazy Function's Life: A Bidirectional Demand Semantics
for Mechanized Cost Analysis of Lazy Programs

~
Portland

State
UNIVERSITY Li-yao Xia, Laura Israel\ Maite Kramarz 8 , Nicholas ColtharpA, Koen Claessenc, Stephanie Weirich0 , Yao LiA UNIVERSITY

What is Lazy Evaluation?
A: Portland State University, B: McGill University, C: Chalmers University of Technology, D: University of Pennsylvania

- Normally, we compute values "strictly;'
- If I write "x = 1 + 2," then my computer

calculates "1 + 2" immediately and records
"x = 3!'

- In lazy evaluation, we get to put off work until
later!
- If I write "x = 1 + 2," my computer

records the fact that "x = 1 + 2." It doesn't

Pure
Function

Systematic
Translation

Rocq Cost
Proof

actually add "1 + 2" until it needs the value -----------------------,
of "x" for something. Insertion Sort Cost

Theorem take_insertion_sortD_cost (n :
Why is Lazy Evaluation good? nat) (xs : list nat) (outD : listA nat)
- Lazy evaluation can save us time. : Tick . cost (take_insertion_sortD n xs
- Lazy evaluation lets us compose functions outD) <= (n + 1) * (length xs + 2) + 1 .

more easily.
- Lazy evaluation lets us use infinite data with

less risk of an infinite loop.

Why is Lazy Evaluation hard?
- The order of operations gets confusing.

- When does the 4 get popped?
queue= [1, 2, 3]
push 4 queue
//Pop 4 elements from the queue
newQueue = pop4 queue
print(newQueue)

- How do we know what will be evaluated?
- When we write "x = 1 + 2", we usually

think of that as meaning that x will definitely
be set to "1 + 2". But if we never use x, this
won't happen.

- Does this code run forever?
// " [1 ..] • is an infinite list
XS = [1 ..]
foo = reverse xs

- Function costs depend on future demand.

--------~ ~------------------.
~ Y. ____ Y1j 1, __ 1,p,toemaod !

ysD

insertion_ sort

insert

,--------- I ·-----------· 1 tD Output :
I OU I : ________________ Demand:

~ +-I m L.-----------------'
Read our pre-print!

I evaluation

I demand

Our Contributions
- A novel semantics for reasoning about the

computational cost of laziness
- Used Coq to prove time bounds, with

amortization and persistence for some of
Okasaki's data structures.
- Banker's Queue
- Implicit Queue (partial)

- Developed the reverse physicist's method for
reasoning about amortization

Example: Insertion Sort
- Insertion sort is a common sorting algorithm.

It is typically O(n2) time, but with laziness, it
can take O(n) time for certain operations.

- Insertion sort definition (Gallina):
Fixpoint insertion_sort (xs: list
nat) : list nat :=

match xs with
I nil => nil
I y :: ys =>

let zs := insertion_sort ys in
insert y zs

end.

- Insertion sort's demand semantics version
(Gallina):

Fixpoint insertion_sortD (xs: list
nat) (outD : listA nat)
Tick (T (listA nat)) :=

tick>> match xs with
I [] => ret (Thunk NilA)
I y : : ys => let zs :=

insertion_sort ys in
let+ zsD := insertD y zs outD
in

let+ ysD := thunkD
(insertion_sortD ys) zsD in

ret (Thunk (ConsA (Thunk
y) ysD))

	Story of Your Lazy Function’s Life: A Bidirectional Demand Semantics for Mechanized Cost Analysis of Lazy Programs
	Let us know how access to this document benefits you.
	

	Lazy Poster.pdf

