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Abstract—Phasor measurement units provide real-time power
system monitoring. We present a data analysis method that lever-
ages statistical correlation and analysis methods to identify power
system events. This research uses archived phasor measurement
unit data to show that the method is useful for detecting power
system events. Results from a lighting strike case study are
presented. A monitoring stratagem based on PMU clustering is
discussed, and the viability of monitoring pertinent statistical
parameters over various clustering schemes is demonstrated.

Keywords—phasor measurement unit, PMU, correlation, elec-
trical distance, correlation, event detection

I. INTRODUCTION

Phasor measurement units (PMUs) provide time-
synchronized, high-fidelity phasor measurements of electric
power systems [1]. PMUs are time-synchronized via
the Global Positioning System, thereby enabling phasor
measurements to be timestamped. With measurement rates of
30, 60, or 120 readings per second, precise comparisons can
be made between measurements from disparate points within
a power system. These measurements are part of a hierarchical
network that stream data from PMUs to higher-order systems,
such as state estimators, that form a “big picture” overview of
an entire system. This enables new insight into grid dynamics
and allows for development of new applications [2].

In this paper, a monitoring stratagem based on a PMU site-
clustering scheme is introduced, whereby data streams from
a subset of PMUs within a balancing area are aggregated
and then analyzed. This subset consists of both electrically
near and electrically far PMUs. From this subset, a pairwise
comparison between each PMU site’s positive sequence phase
angle is made using a linear statistical method to create a vector
of correlation values. When making this comparison, only a
subset of PMUs are needed to provide beneficial information,
avoiding redundant and/or unnecessary computation, thereby
lowering computation costs.

In our previous work, the capability of this method was
validated when used in analyzing pairwise positive sequence
phase angles for event detection and its robustness was demon-
strated when adjusting the window size (i.e., window of corre-
lation) [3]. The correlation vectors are then used to instantiate
a Rayleigh distribution in which statistical parameters can
be quantified. We hypothesize that monitoring the statistical
parameters that arise from correlation within small clusters of
PMU sites may be used for identifying disturbances within the
monitored transmission region.

Notable examples of methods for monitoring PMU data
streams for system events have been developed. Researchers
have developed algorithms for detecting periodic power sys-
tem oscillations originating from large generation units. Zhou
developed an algorithm that compares PMU measurements
to an established, frequency-independent threshold, whereas
Fullon and Pierre use a frequency-dependent threshold [4],
[5]. Kumar, et al., build upon work by Zhou and Dagle, and
demonstrate their technique using real-time PMU data from
the North American Synchrophasor Initiative [6], [7].

These algorithms demonstrate the value of using PMU data
to provide wide-area monitoring. They differ from the method
presented within this paper in that our algorithm concurrently
monitors multiple PMU data streams and uses correlation
between these streams as a means for identifying system
events. Other researchers are also investigating the value of
PMU data stream correlation. Chakhchoukh, et al., enhance
state estimation by supplementing some PMU data streams into
the estimator, whereby the state estimation takes into account
the time and spacial correlation known to exist between PMUs
at adjacent substations [8].

II. BACKGROUND

This section provides discussions on the characteristics of
our dataset and the concept of electrical distance. The PMU-
generated dataset consists of a single year’s worth of data from
twenty 500 kV substations within the Pacific Northwest of
the United States. These are a subset of Bonneville Power
Administration’s PMU network. The dataset size is 950 GB
and includes positive sequence voltage magnitude (V+) and
positive sequence voltage phase angle (φ+), among other
parameters. Each measurement is given in phasor representa-
tion with its associated timestamp. The discretization interval
between measurements is 16.7 milliseconds (60 Hz). φ+ is a
time-varying real number within the range of ±180◦ and V+
is a non-negative real number.

The concept of electrical distance is applied to decide
which PMUs to include in the clustering scheme [9], [10].
Electrical distance, which is substantially different than topo-
logical distance, quantifies the electrical proximity between
substations [11]–[13]. Two electrically-near substations will
experience similar responses to a nearby system event, whereas
two substations that are electrically far from each other will
not exhibit similar responses to an event. For any power system
network, an electrical distance matrix E may be derived from
the JPθ quadrant of the network’s Jacobian. Elements of E



Fig. 1: One-line diagram of a subset of PMUs subject to the case study
in Section IV. Numbers rank the buses according to their electrical
distance to the event (1=near,..., 5=far).

quantify the incremental change in phase angle between two
nodes given an incremental change in active power between
those nodes. Electrical distance has been applied to different
scenarios, such as multi-objective power network partitioning,
identifying structural vulnerabilities, and evaluating marginal
loss factors [14], [15].

Within the spatial and temporal extent of our data set, the
power system network experienced several lightning strikes
near the PMU site ‘Monrovia’ sufficient to trigger power sys-
tem protection responses. Figure 1 focuses on this subregion.
All substations that have PMUs in this region are labeled and
enumerated in ascending order in terms of electrical distance
with respect to site Monrovia. These sites represent a PMU
cluster for a case study in Section IV.

III. METHODOLOGY

This section presents a statistically-based framework for
detecting power-system contingencies. This entails the ma-
nipulation of correlation vectors obtained through Pearson’s
coefficients to conform to a Rayleigh distribution. Statistical
parameters are quantified and used to derive an event-detection
metric. Using this metric, a clustering scheme is devised to
provide sufficient monitoring capabilities while minimizing
computation costs.

A. Pearson Correlation

Correlation is a common statistical method used to de-
termine whether relationships exist between two continuous
variables. The approach presented here uses a linear statistical
method known as Pearson correlation. To assess the linear rela-
tionship between variables, the Pearson correlation coefficient
r is determined based on the following equation:

r =
cov(X,Y )

σXσY
(1)

where cov(X,Y ) is the covariance between X and Y , σX is
the standard deviation of X , σY is the standard deviation of
Y , and X and Y are two independent continuous variables of
size N . The output of r is such that r ∈ [−1, 1] where r =
−1 represents a perfectly negative linear relationship, r = 1

represents a perfectly positive linear relationship, and r = 0
represents an inconclusive relationship.

The independent continuous variables X and Y represent
vectors of data from two PMU sites. These vectors can be
either positive sequence voltage magnitude, V+, or positive
sequence phase angle, φ+. Since X and Y may be of any size
N, we vary N over a range of sizes. We use N to represent
the ‘window size’ of correlation and will refer to it as such
from this point forward. Varying the window size increases
robustness at detecting different types of dynamics that may
occur within power systems.

B. Rayleigh Distribution

The distribution of Pearson correlation coefficient values
between PMUs can be characterized using a Rayleigh distri-
bution, though not directly. The probability density function
of the Rayleigh distribution is given by

f (x;σ) =
x

σ2
e

(
− x2

2σ2

)
(2)

where x ≥ 0 is the Rayleigh distribution parameter and σ > 0
is the scale parameter, with:

σ =

√√√√ 1

2n

n∑
i=1

x2i (3)

This distribution requires a two-dimensional random vector
whose coordinates are independent, identically distributed ran-
dom variables. This distribution was selected for our analysis
because r meets these criteria when analyzing φ+ data. The
mean and variance of Rayleigh-distributed φ+ correlation coef-
ficients change during power system events, thereby providing
metrics for event detection.

During nominal operations, φ+ varies slowly in contrast to
V+, which can experience more rapid changes. Furthermore,
variations in φ+ correlate strongly between adjacent PMU
sites, whereas V+ between sites tends to be less correlated. For
these reasons, the methods presented are shown to be highly
sensitive to sudden changes in φ+, making it the desirable
parameter for use in detecting power-system events.

Table I shows, for the case study PMU cluster, the amount
of negative r entries as a percentage of total φ+ entries
over a single minute, 1-hour, and 24-hours of nominal data
(void of any data/event-related issues) with 15, 30, and 60
cycle window sizes. One can observe that there are very few
occurrences of negative r values of φ+, less than 0.33% at
worst (in bold). Since the amount of negative r entries of
φ+ is disproportionately low, these entries are discarded when
analyzing r of φ+ and fitting them to a Rayleigh distribution.

A Rayleigh distribution requires x ∈ [0,∞). However, the
range of the Pearson correlation coefficient, r, is r ∈ [−1, 1].
Noting that very few of the PMU r values are negatively cor-
related, we consider only the positive values of r, r+ ∈ [0, 1].
We then take its inverse, y = 1/r+, for which y ∈ [1,∞).
Noting that y = x+ 1, we use x = y − 1 = 1/r+ − 1 as the
Rayleigh distribution variable, for which x ∈ [0,∞).



TABLE I: Negative r entries (in percent) of φ+ for case study PMU
cluster over a single minute, 1-hour, and 24-hours of nominal data
with 15, 30, and 60 cycle window sizes.

15 cycles Echart Saul Washington Cully
1 minute 0.00 0.08 0.14 0.08
1 hour 0.02 0.16 0.19 0.17
24 hours 0.01 0.16 0.17 0.1
30 cycles
1 minute 0.00 0.00 0.33 0.17
1 hour 0.00 0.08 0.15 0.12
24 hours 0.01 0.10 0.14 0.08
60 cycles
1 minute 0.00 0.00 0.00 0.00
1 hour 0.00 0.04 0.07 0.05
24 hours 0.00 0.04 0.06 0.03

The mean and variance of a Rayleigh variable x are
expressed as:

µ (x) = σ

√
π

2
var (x) =

4− π
2

σ2 (4)

For electrically-near PMUs in steady-state, the expected value
of r is very close to 1, since under steady-state conditions
the voltage magnitude and phase-angle profiles trend approx-
imately the same. Therefore, deviations from r = 1, are very
rare. As such, the expected value for x is near zero. This is, in
fact, what we observe. Observing µ (x) and var (x) for PMU
pairs included in the case study, it can be seen that there is
little variation from steady-state values. Tables II and III show
the calculated µ (x) and var (x) over a single minute, 1-hour,
and 24 hour-periods of time with 15, 30, and 60 cycle window
sizes.

A disproportionate number of x =∞ (r = 0) values from
our PMU dataset do not conform within a Rayleigh distribu-
tion. These are related to data drops, data drifts and other data-
related decorrelation events. As such, these values are ignored
when fitting the Rayleigh σ to the Rayleigh distribution. In our
previous work, we identified and characterized these types of
data-related events. The focus of this work is on events related
to power system abnormalities.

C. Event Detection Metric

x values that conform to the distribution may be used as
metrics for power-system event detection. Specifically, moni-
toring x for deviations outside a multiple, K, of the variance
can be used as a metric for detecting events, defined as

x

µ (x)
> 1 +K

var (x)

µ (x)
(5)

TABLE II: µ (x) of φ+ for case study PMU cluster over 15, and 60
cycle window size.

15 cycles Echart Saul Washington Cully
1 minute 1.2 × 10−2 9.4 × 10−3 1.3 × 10−2 6.7 × 10−3

1 hour 4.0 × 10−3 5.0 × 10−3 6.2 × 10−3 4.7 × 10−3

24 hours 3.1 × 10−3 4.3 × 10−3 5.60 × 10−3 4.1 × 10−3

60 cycles
1 minute 6.1 × 10−3 8.3 × 10−3 9.0 × 10−3 1.3 × 10−2

1 hour 1.2 × 10−3 3.1 × 10−3 5.7 × 10−3 3.9 × 10−3

24 hours 1.1 × 10−3 3.2 × 10−3 6.1 × 10−3 2.9 × 10−3

TABLE III: var (x) of φ+ for case study PMU cluster over 15 and
60 cycle window size.

15 cycles Echart Saul Washington Cully
1 minute 1.5 × 10−3 2.7 × 10−3 2.3 × 10−3 1.9 × 10−3

1 hour 5.9 × 10−4 1.3 × 10−3 2.3 × 10−3 1.3 × 10−3

24 hours 5.4 × 10−4 1.4 × 10−3 2.1 × 10−3 1.1 × 10−3

60 cycles
1 minute 2.6 × 10−4 9.5 × 10−3 1.6 × 10−3 1.2 × 10−3

1 hour 3.2 × 10−5 6.4 × 10−4 2.1 × 10−3 5.2 × 10−4

24 hours 8.9 × 10−5 5.4 × 10−4 2.6 × 10−3 5.2 × 10−4

where K is an integer multiple. Equation 5 is normalized
by the mean, µ (x). From Table III, µ (x) and var (x) are
on the order of 1× 10−3 and 1× 10−4, respectively. Dur-
ing steady-state, x/µ (x) will be approximately equal to 1,
and var (x) /µ (x) will be approximately 0.1 (from Table II
and III). When normalized, 1 +K var(x)

µ(x) is used as the event
detection threshold value and Equation 5 is the event detection
threshold inequality.

To show the viability of this detection metric over a window
of data containing an event, the normalized x is plotted and the
threshold value imposed for a particular K value and site pair.
Prior-event and post-event data are indicated with a dotted blue
marker. A dotted red marker indicates the event occurrence
(starting at cycle 1100 with a duration of approximately 10
seconds), and the established threshold value is indicated with
a solid black horizontal line. Figure 3 shows an example.
Normalized x that exceed the threshold value are noted with a
red ‘o’ marker. Normalized x that exceed the threshold value
prior and post event lightning strike are classified as false-
positives, differentiated with a blue ‘+’ marker.

In order to eliminate the event detection threshold inequal-
ity from evaluating true due to false-positives, the threshold
must be set higher than the maximum normalized x value pre-
event or post-event. This value, referred to as the maximum
false-positive threshold value (MFPTV), is determined over
data void of any data-related events, for all PMU pairs over a
60-cycle window size. For each PMU pair, taking the ceiling of
the MFPTV signifies the lowest allowable value the threshold
should be set to in order avoid erroneously flagging normalized
x values as indicative of a power-system event occurrence.

In a similar fashion, in order to preserve event detection, the
event detection threshold inequality must evaluate true at least
once during the event. This value, referred to as the maximum
true-negative threshold value (MTNTV), is determined for all
PMUs paired with Monrovia over a 60 cycle window size. For
each PMU pair, the MTNTV signifies the largest value the
threshold can be set to in order to detect normalized x values
during the event occurrence. The MFPTV and MTNTV are
used to justify which PMUs to cluster.

D. Cluster Size

To choose which PMUs are ideal for monitoring, the
MFPTV and MTNTV are used to eliminate unnecessary PMUs
and select those that are least likely to flag false-positives. It
can be observed that there are some MFPTV > MTNTV. This
implies that this PMU pair will always report an event due to
a false-positive. As such, these PMU pairs should be excluded
from being clustered. These tend to be electrically-near PMUs
that are highly correlated with the monitored site.
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Fig. 2: Rayleigh distribution of φ+ over 15 cycle window size with x-
axis held constant for comparative purposes, prior to lightning strike
(top) and 13 cycles into the event (bottom). Note the large change of
scales of the x and y axes between the top four plots of normal data
and the bottom four plots of event-related data.

Certain PMU pairs exhibit small MFPTV. These are most
suitable for monitoring as they decrease the probability of
flagging for false-positives and better preserve event detection.
Since large window sizes will be used to detect events and
small window sizes to confirm they are not data-related,
this approach to determining which PMUs to cluster is only
performed for a large window size. It should be noted that
these PMUs represent the case-study cluster and, due to the
reasons above, justify their inclusion into the cluster.

E. Cluster Content

A cluster consists of four or five electrically-near and far
PMU sites. Clusters containing only ‘near’ PMU sites are not
sufficient for properly detecting an event, since r will remain
highly correlated given the similar responses that adjacent sites
will experience. Conversely, clusters possessing all ‘far’ PMU
sites lead to inadequate event detection as correlation will vary,
having some strongly and weakly correlated r, thereby leading

to more false positives. Cluster composition of near and far
sites is discussed in more detail in Section IV-B.

IV. RESULTS

Facilitating development of our event detection algorithm,
our dataset includes an event log summarizing locations, times,
and causes of all known events that occurred during the
covered time frame. Five events were captured during this time,
and of these five events, three were lightning-strike occurrences
at or near site Monrovia. The other two events, one due to
technical difficulty and the other, a lightning-strike occurrence,
occur at PMUs that were not included in the dataset. This
section presents one of the three lightning-strike occurrences
near PMU site Monrovia.

A. Rayleigh Characteristics

When observing the Rayleigh distribution of φ+ over nom-
inal data, the distribution (Figure 2, top) resembles a Rayleigh
probability density function. When observing 13 cycles into an
occurrence of a lightning strike, x deviates from its previous
distribution profile, Figure 2 (bottom, red ’x’ markers).

Figure 2 shows how instances of x outliers in the Rayleigh
distribution emerge. When analyzing φ+ between Monrovia
and its clustered sites prior to the event, correlation is quan-
tified as very high (r = 1) since the system is operating in
steady-state. At the instant the lightning strike occurs, a line-
to-ground fault takes place near Monrovia, causing a sudden
change in real power. Note the large change of scales for both
the x and y axes between the steady-state data (top four plots)
and the event-related data (bottom four plot). φ+ is selected
for analysis because it varies slowly (in contrast to V+) and
trends similarly between adjacent PMU sites, causing r(φ+)
to be highly sensitive to impulse events that alter real power.
From Equation 5, x should remain approximately zero during
steady-state. With the sensitive nature of r(φ+) in mind, a
lightning event causes an abrupt change in real power, and
therefore r(φ+), which is captured and signified by x outliers
of the Rayleigh distribution, as shown in the bottom plots of
Figure 2.

B. Clustering Scheme

To optimize event detection while preventing unnecessary
computation, the algorithm need only monitor a subset of
PMUs, so long as that cluster contains both electrically-near
and -far PMUs. A near-far cluster offers advantages over all-
near or all-far clustering schemes. Using an all-near cluster
provides no reference to what constitutes an event, while an
all-far cluster produces too many false positives. By clustering
a combination of both near and far PMUs, and observing at
the correlation layer, an event occurrence can be detected via
far sites since correlation becomes decoupled with electrical
distance. Furthermore, the event can be confirmed via near
sites since adjacent sites experience events in a similar fashion
and so their φ+ will trend similarly.

To show the viability of this clustering scheme, the case
study cluster was analyzed using one small and one large win-
dow size. Figure 3 shows the normalized Rayleigh distribution
variable, x/µ(x), with blue ‘.’ markers. Each PMU pair has its
own predetermined threshold value. Observing 13 cycles into
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Fig. 3: Normalized x values, 13 cycles into the lightning strike
occurrence, for a 60 cycle window size. Several cycles into the event,
normalized x values begin to exceed the threshold.

the event, Figure 3 shows the threshold values as a solid black
horizontal line. The Figure shows event-related data that do not
exceed the threshold value as red ‘.’ markers, and normalized
x values that exceed the threshold as red ‘x’ markers.

From Figure 3, observing the 15-cycle window size sce-
nario, normalized x values will begin to exceed the threshold
value a few cycles into the event. About five cycles in, however,
a majority of the normalized x values go below the threshold
value. Some sites, namely Cully, will experience normalized
x values oscillating about the threshold value. Declaring an
event based solely on this window size would be inadequate
given the limited amount of time to declare the event and the
uncertainty caused by the oscillation at Cully. As such, only a
small number of PMUs need to be clustered. A simple voting
scheme may be used in which a majority of the cluster can
vote to declare an event. For instance, for an individual PMU
in the cluster, a certain amount of cycles need to consecutively
exceed the threshold before declaring an event occurrence.
Once an event has been declared, a flag is set and held for
a certain amount of cycles in order to wait for other clustered
sites to declare an event. If a majority of clusters declare an
event during this period, higher-level applications can then be
informed of its occurrence.

V. CONCLUSION

This work demonstrates a monitoring framework that aims
to facilitate the use of real-time PMU data streams for decision-
making and improved control over modern power systems.
Given the granularity offered by PMUs, the positive sequence
voltage phase angles between PMUs can be analyzed to build
a correlation layer. By mathematically manipulating the corre-
lation vectors to conform to a Rayleigh distribution, pertinent
statistical parameters can be quantified and used for detecting
both power system and data events. The monitoring scheme
uses small cluster sizes, thereby minimizing computation costs.

The monitoring scheme considers data streams from a
PMU cluster consisting of four or five electrically-near and
electrically-far PMUs. The technique may be used to analyze

archived PMU data, or to monitor for events in real-time.
However, we must emphasize the methods presented here are
too slow to actuate protection equipment; PMU sampling and
reporting latency alone preclude such application.

The method has potential to detect slowly-devolving power
system events, which could instantiate remedial action schemes
to prevent actuation of protection systems. A slow decay in
system frequency preceding a generator drop is one such
example. Such detection is possible because of the high data
reporting rate of PMUs, as opposed to SCADA where data
reporting is too infrequent to reliably detect such events and
where data are not time-stamped, which precludes correlation.
Due to the ease of computing both correlation and Rayleigh
parameters, and coupled with the computational savings gained
by monitoring only select PMUs rather than the entire network,
results suggest this framework to be highly viable for so-called
slow-fast cascading events detection.
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