
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1-1-2012

Relativistic Causal Ordering A Memory Model for Relativistic Causal Ordering A Memory Model for

Scalable Concurrent Data Structures Scalable Concurrent Data Structures

Josh Triplett
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Triplett, Josh, "Relativistic Causal Ordering A Memory Model for Scalable Concurrent Data Structures"
(2012). Dissertations and Theses. Paper 497.
https://doi.org/10.15760/etd.497

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/497
https://doi.org/10.15760/etd.497
mailto:pdxscholar@pdx.edu

Relativistic Causal Ordering

A Memory Model for Scalable Concurrent Data Structures

by

Josh Triplett

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Jonathan Walpole, Chair

Barton Massey
James Hook

James McNames
Mark Jones

Paul E. McKenney

Portland State University
2012

Abstract

High-performance programs and systems require concurrency to take full ad-

vantage of available hardware. However, the available concurrent program-

ming models force a difficult choice, between simple models such as mutual

exclusion that produce little to no concurrency, or complex models such as

Read-Copy Update that can scale to all available resources.

Simple concurrent programming models enforce atomicity and causality,

and this enforcement limits concurrency. Scalable concurrent programming

models expose the weakly ordered hardware memory model, requiring careful

and explicit enforcement of causality to preserve correctness, as demonstrated

in this dissertation through the manual construction of a scalable hash-table

item-move algorithm. Recent research on relativistic programming aims to

standardize the programming model of Read-Copy Update, but thus far these

efforts have lacked a generalized memory ordering model, requiring data-

structure-specific reasoning to preserve causality.

I propose a new memory ordering model, relativistic causal ordering,

which combines the scalabilty of relativistic programming and Read-Copy

Update with the simplicty of reader atomicity and automatic enforcement of

i

causality. Programs written for the relativistic model translate to scalable

concurrent programs for weakly-ordered hardware via a mechanical process

of inserting barrier operations according to well-defined rules.

To demonstrate the relativistic causal ordering model, I walk through

the straightforward construction of a novel concurrent hash-table resize algo-

rithm, including the translation of this algorithm from the relativistic model

to a hardware memory model, and show through benchmarks that the re-

sulting algorithm scales far better than those based on mutual exclusion.

ii

Acknowledgments

Thanks to my parents for a lifetime of unwavering support.

Thanks to Paul McKenney for the original invention of Read-Copy Up-

date, for taking the time to talk with a new IBM intern, and for an endless

supply of interesting challenges and thought-provoking discussion.

The work presented in this dissertation includes refined versions of work

previously published in the Linux Plumbers Conference [76], the ACM Op-

erating Systems Review [77], and the USENIX Annual Technical Confer-

ence [78]. Thanks to the reviewers and audiences of those conferences for

their feedback. Particular thanks to Eddie Kohler for his extensive review

and shepherding of the hash-table resize paper.

Thanks to Nick Piggin, Linux kernel hacker and inventor of the DDDS

algorithm, for reviewing my implementation of DDDS (used in chapter 6) to

ensure that it fairly represents his work. Thanks to memcached developer

“dormando” for providing technical help with memcached, as well as the

benchmarking framework. Thanks to Salvatore Sanfilippo for mc-benchmark.

Thanks to IBM and Intel for access to highly parallel systems used for

benchmarking.

iii

The term “relativistic programming”, and the goal of generalizing and

standardizing the Read-Copy Update programming model, originated with

Jonathan Walpole, founder of the Relativistic Programming research group.

The Relativistic Programming research group also includes Paul McKenney,

James Hook, Mathieu Desnoyers, Phil Howard, Eric Wheeler, Jim Cotillier,

and myself. Thanks to all the members of this research group.

Particular thanks to my advisor, Jonathan Walpole, and my dissertation

committee, Bart Massey, James Hook, James McNames, Mark Jones, and

Paul McKenney, for their help, support, guidance, and feedback.

During the course of this research, I received financial support from two

Maseeh Graduate Fellowships, and from the National Science Foundation

under Grant No. CNS-0719851. Thanks to Dr. Fariborz Maseeh and the

National Science Foundation for their support.

iv

Table of Contents

Abstract i

Acknowledgments iii

List of Figures vii

1 Introduction 1
1.1 Summary of Key Background 11
1.2 Summary of Contributions . 11

2 Background on Scalable Concurrent Programming 13
2.1 Mutual Exclusion . 13
2.2 Non-Blocking Synchronization 20
2.3 Transactional Memory . 24
2.4 Partitioning . 29
2.5 Hazard Pointers . 29
2.6 Read-Copy Update . 30

3 Manual Construction of Scalable Concurrent Data Structures 43
3.1 Semantics . 44
3.2 Algorithm . 47
3.3 Performance Analysis Methodology 54
3.4 Performance Analysis . 57
3.5 Summary . 62

4 The Relativistic Causal Ordering Model 65
4.1 Design Constraints and Assumptions 66
4.2 Terminology . 68
4.3 The Relativistic Causal Ordering Property 70

v

4.4 Abstract Barrier Operations . 72
4.5 Constructing Relativistic Algorithms 73
4.6 Reconstructing a Scalable Linked List 79
4.7 Summary . 82

5 Translating to Hardware Ordering Models 83
5.1 Translating Load Barriers . 85
5.2 Translating Store Barriers . 86
5.3 Translating Wait-For-Readers 87

6 Relativistic Concurrent Hash-Table Resize 88
6.1 Relativistic Hash Tables . 89
6.2 Comparisons with Other Algorithms 103
6.3 Benchmark Methodology . 107
6.4 Benchmark Results . 116
6.5 Summary . 127

7 Conclusions 128
7.1 Future Work . 131

Bibliography 134

vi

List of Figures

2.1 Insertion into a relativistic linked list 36
2.2 Removal from a relativistic linked list 37

3.1 Initial hash table configuration used to illustrate move algorithm 51
3.2 State of the hash table after cross-linking hash chains 53
3.3 State of the hash table after un-cross-linking hash chains . . . 53
3.4 Lookups by number of CPUs with 999999:1 read:write ratio . 58
3.5 Lookups by number of CPUs with 999:1 read:write ratio . . . 58
3.6 Lookups by number of CPUs with 1:1 read:write ratio 59
3.7 Moves by number of CPUs with 999999:1 read:write ratio . . . 61
3.8 Moves by number of CPUs with 999:1 read:write ratio 61
3.9 Moves by number of CPUs with 1:1 read:write ratio 62

6.1 Shrinking a relativistic hash table 95
6.2 Example of a hash table with imprecise “zipped” buckets . . . 96
6.3 Growing a relativistic hash table 101
6.4 Lookups/s by number of reader threads with fixed-size table . 118
6.5 Lookups/s by number of reader threads with continuous resizing119
6.6 Impact of resizing on relativistic hash-table performance . . . 120
6.7 Impact of resizing on DDDS hash-table performance 121
6.8 Impact of resizing on rwlock-based hash-table performance . . 122
6.9 Scalability of default and relativistic memcached engines . . . 123

vii

Chapter 1

Introduction

Moore’s Law predicts that the density of transistors in an integrated circuit

will double every two years [61], and this prediction has consistently held

true [62]. The performance of individual processors matched this trend for

much of the lifetime of the microprocessor, leading to the expectation that

such exponential growth would continue. However, individual processors

have long since reached physical limitations that seem to make exponential

growth unsustainable [73].

Instead, the foreseeable future of faster computation now involves paral-

lelism [73]. Given the rapid growth of clock frequency when it represented

the primary focus of the processor industry, it seems probable that we will

one day find systems with merely hundreds of processor cores as quaint as

we currently find systems with merely hundreds of Hz.

Thus, a program that requires increasing amounts of processing power

cannot simply run faster on a single processor core, but must now spread

itself across multiple cores. This requires structuring the program as threads

that can run in parallel; each thread can then run on a separate core.

1

Some programs divide perfectly into threads without any shared data

required; we refer to such programs as embarrassingly parallel. However, most

parallel programs require some concurrent access to shared data structures,

typically including both reads and writes to those data structures. This

introduces the additional problem of synchronization: mediating access to

those shared data structures to preserve the expected semantics.

Any engineer who has worked in a professional setting knows intuitively

that “meetings are toxic” to productivity [17]. Likewise, synchronization

represents pure overhead: it forces useful work to stop in favor of serialized

coordination, negating the benefits of parallelism for the duration of the

synchronization event.

Ideally, CPU-bound programs should scale linearly with the addition of

cores, just as they did with increases in single-core performance. However,

most parallel programs do not achieve that goal, instead producing dimin-

ishing returns and eventually performance degradation. In this suboptimal

state, parallel programs spend most of their time synchronizing between pro-

cessors, rather than performing useful work. These scalability limits arise

from a mismatch between parallel programs and the architecture of modern

parallel systems.

The same phenomena leading to the memory wall of slow communication

between processors and memory [82, 46] now arise in the communication be-

tween processors. Communication between processors takes far longer than

execution of code on a single processor. Furthermore, the same caches used

2

to mitigate the memory wall on single-processor systems can become a lia-

bility in shared-memory architectures with multiple processors, as the caches

may take longer to keep coherent than to bypass entirely [12]. As processors

become both faster and more numerous, the latency of communication be-

tween processors will grow far larger relative to the speed of those processors,

exacerbating this problem.

Similarly, processor performance features such as pipelining and out-of-

order execution, designed to keep a single core saturated for maximum per-

formance, can interfere with the correct execution of concurrent programs.

Thus, concurrent synchronization suppresses these processor features to pre-

serve correctness, further limiting performance.

Mutual exclusion represents the most commonly applied technique for

concurrent programming in both research and production use. Implemen-

tations of mutual exclusion provide a lock that many threads may simulta-

neously attempt to acquire; only one of those threads will succeed, and the

rest will wait. The term critical section refers to the section of code between

lock acquisition and lock release; only one critical section for a given lock

may run at the same time. The fundamental properties of mutual exclusion

have remained unchanged since its original introduction by Dijkstra [14] and

Hoare [32]: atomic execution and serialization of critical sections.

These properties ensure that mutual exclusion enforces a strict ordering

of all operations on shared data, simply by wrapping each such operation

with the appropriate lock for that data. The implementations of the lock

3

and unlock primitives in a mutual exclusion system ensure that no operation

within a critical section can become visible to other threads without all other

operations from that critical section becoming visible as well. Together with

the serialization of critical sections, this effectively allows multithreaded pro-

grams to ignore concurrency, using the same algorithms and data structures

designed for single-threaded programs, just wrapped in locks. Ordering mod-

els such as sequential consistency [39] and linearizability [31] formalize this

extension of single-threaded reasoning to multithreaded programs.

However, this strict ordering incurs a high cost [30]. Mutual exclusion lim-

its concurrency to at most one thread accessing any particular piece of shared

data at a time, with other threads blocked. Fine-grained locking allows con-

current access to disjoint components of shared data structures, but does not

permit concurrent access to the same data. Furthermore, the requirement to

enforce ordering forces the locking primitives to perform expensive commu-

nication across threads and CPUs, and to disable the previously mentioned

processor performance features that could otherwise affect synchronization

correctness. Even when uncontended, acquiring a lock has a high cost, and

does not scale linearly; threads acquiring uncontended locks will nonetheless

contend for memory, cache, bus bandwidth, and other resources.

Thus, data structures that scale need to minimize or eliminate synchro-

nization. However, “Laws of Order” [4] proved that correct implementations

of concurrent algorithms necessarily require expensive synchronization in-

structions to preserve correctness. This result shows that scalable concurrent

4

algorithms cannot eliminate synchronization entirely. Despite this, an algo-

rithm need not require synchronization in all cases or on all threads; some

parts of the algorithm can eliminate synchronization and become scalable,

at the expense of other parts of the same algorithm. By making the most

performance-critical portions of algorithms scalable, the system as a whole

can scale for the expected class of target workloads.

Read-Copy Update (RCU) provides one such class of scalable concurrent

algorithms [47, 23, 56], which has seen extensive testing, correctness analysis,

and proofs [48, 52, 10]. RCU chooses to eliminate synchronization from read-

ers, making those readers scalable, and moving all necessary synchronization

to writers. In particular, RCU-based data structures provide scalable readers

that can always proceed, even in the presence of concurrent writers; writers

must ensure that readers always see a consistent view of the data structure at

all times. RCU-based readers can thus scale linearly to the limits of available

resources.

RCU’s scalable readers make RCU-based algorithms and data structures

ideally suited for read-mostly workloads, and such workloads appear quite

frequently in many applications. In practice, RCU remains quite scalable

for all but the most heavily write-biased data structures, with performance

degrading gracefully for write-mostly data.

The original formulation of RCU and the RCU primitives by McKen-

ney [47] provided algorithms for scalable linked lists, including insertion,

deletion, and concurrent lookup. The correctness of this linked list followed

5

trivially from the definitions and properties of the RCU primitives, and each

linked-list operation required no non-trivial steps beyond the standard ap-

plication of the RCU primitives. In particular, each linked-list insertion or

deletion consisted of a single semantically significant change, implemented

via a single critical pointer manipulation, with no visible intermediate states.

Chapter 2 explains the RCU primitives and RCU-based algorithms in detail,

using linked lists as an example.

This formulation extends naturally to other simple data structure oper-

ations. Hash tables using chaining already have a linked list in each hash

bucket, and thus RCU-based hash tables simply use RCU linked-list opera-

tions within each bucket [47]. RCU-based radix trees [63] effectively increase

the number of “next” pointers per node, but similar reasoning applies, and

each tree operation still consists of a single semantic change to the tree,

reducing to a single critical pointer manipulation.

However, extending RCU to more complex data structure operations re-

quires significantly more complex reasoning for correctness. RCU hash tables

support insertion and deletion, but moving an entry from one bucket to an-

other using those operations would expose an invalid intermediate state to

readers, containing either zero or two copies of the entry. A dedicated hash-

table move operation [76, 77] makes the move appear atomic, but requires

multiple critical pointer manipulations that must appear to the readers in

order. Similarly, the application of RCU to red-black trees requires ordered

groups of multiple pointer manipulations for rotation operations [34], and

6

resizing a hash table with concurrent readers requires an ordered group of

pointer manipulations to ensure that readers see all elements in the table at

all times [78].

None of these data structure operations fit the simple models derived

from the original linked-list algorithms. The requirements to order multiple

pointer manipulations require novel applications of the RCU primitives be-

yond their original intended purposes. As a result, each new data structure

requires careful one-off reasoning for correctness, focusing on the specific cor-

rectness properties desired for each data structure, without a general-purpose

programming model. Because RCU readers do not provide atomicity, and be-

cause the writers wish to minimize the number of synchronization operations

required, the correctness arguments must consider many possible orderings

of individual load and store operations—in fact, the number of possible or-

derings grows exponentially with the number of operations. These orderings

require unintuitive reasoning, because they contradict program order and

causality.

Each new scalable data structure based on RCU requires similarly careful

construction and analysis, limiting the development of such data structures

to experts. Chapter 3 gives an example of the manual construction of such

data structures, demonstrated via the previously mentioned hash-table move

operation; this algorithm represents a novel contribution of this dissertation.

Many more algorithms exist that require multiple pointer manipulations

in a single write operation, and these algorithms prove quite complex to im-

7

plement in a scalable way using techniques such as RCU. Similar problems

exist with non-blocking synchronization techniques, whose readers likewise

lack any inherent order in which store operations become visible. Many at-

tempts at scalable transactional memory implementations introduce the idea

of “invisible readers” that avoid the overhead of making their transactions

visible to writers; to the extent these invisible readers can avoid the costs of

heavyweight synchronization and ordering, they incur the same issues with

unenforced ordering. One of the most scalable implementations of transac-

tional readers uses RCU [33], and inherits the same ordering issues.

All of these cases suggest the need for a general-purpose construction

technique for scalable algorithms. Recent research on relativistic program-

ming aims to standardize such a programming model by generalizing from

the common patterns of RCU-based algorithms. However, thus far these

efforts have lacked a generalized memory ordering model for the store op-

erations performed by writers, requiring data-structure-specific reasoning to

preserve causality. Such an ordering model would allow the construction of

new concurrent algorithms with the same well-explored ease allowed by mu-

tual exclusion, but with the scalability that mutual exclusion cannot provide.

To avoid the expensive synchronization required by mutual exclusion, this

ordering model must not enforce complete atomicity of all store operations

in a writer, only the order those stores become visible to readers.

I propose a new ordering model for scalable algorithms, relativistic causal

ordering. This model ensures that readers observe a writer’s store opera-

8

tions in an order consistent with the causal ordering specified by that writer.

Relativistic causal ordering avoids enforcing an expensive total global order-

ing of memory operations. Instead, it enforces a causal ordering of stores:

any two stores whose ordering matters for the correctness of a write oper-

ation will become visible in the writer’s program order. This provides an

intuitive ordering that allows straightforward construction of scalable con-

current algorithms without complex reasoning about weak memory models

and reordering. Chapter 4 documents the relativistic causal ordering model.

The term “relativistic” in “relativistic programming” draws a parallel to

the theory of relativity in physics, avoiding an absolute reference frame with

a total ordering of events in favor of observer-relative reference frames that

may observe events in different orders. Relativistic causal ordering improves

on this parallel by preserving the order of causally related events, allowing

two events to appear in different orders to different observers only if the two

events have no causal relationship.

The relativistic causal ordering model does not directly correspond to the

semantics of any particular multiprocessor architecture or memory model.

Thus, defining the relativistic model as the ideal memory model for scalable

data structures does not by itself allow the construction of such data struc-

tures, merely the construction of algorithms that rely on the properties and

assumptions of the relativistic model. Running such algorithms on real hard-

ware requires a means of translating them to the native memory model of

that hardware, including the insertion of memory barriers or other appropri-

9

ate forms of synchronization where required to preserve relativistic ordering.

The selection of appropriate barriers requires platform-specific knowledge [6],

but a relativistic programming framework can provide a portable interface

to those barriers suitable for use on many different target platforms.

Chapter 5 shows how to translate programs written for the relativistic

causal ordering model to programs suitable for execution on weakly ordered

hardware, with minimal requirements on the underlying hardware. Taken to-

gether, the relativistic causal ordering model and its translation to hardware

ordering model constitute the primary contributions of this dissertation, en-

abling the construction of scalable concurrent algorithms for arbitrary acyclic

data structures.

Section 4.6 provides a worked example of applying the relativistic causal

ordering model to recreate the classic RCU-based linked list. Chapter 6 walks

through the significantly more complex example of a relativistic resizable

hash table, producing novel algorithms for resizing a hash table while allow-

ing concurrent readers. In both cases, the ordering model and the required

data structure properties make the generation of the necessary algorithms

straightforward, without any need for complex one-off reasoning. These gen-

erated algorithms avoid the need for expensive communication or synchro-

nization instructions in readers, allowing those readers to scale. Benchmarks

of the relativistic resizable hash table in sections 6.3 and 6.4 show that algo-

rithms based on this methodology can achieve the high scalability expected

of RCU-based algorithms.

10

1.1 Summary of Key Background

Chapter 2 provides a detailed background of concurrent programming tech-

niques and research. However, this dissertation builds most closely on two

foundational components of background:

• The Read-Copy Update (RCU) synchronization technique, methodol-

ogy, and primitives, as originally invented by Paul McKenney [47].

• Relativistic programming (RP), the concept of generalizing and stan-

dardizing the Read-Copy Update programming model to ease the cre-

ation of new scalable data structures. This term and concept originated

with Jonathan Walpole, founder of the Relativistic Programming re-

search group at Portland State University [65].

1.2 Summary of Contributions

This dissertation presents four novel contributions:

1. A node-move algorithm for scalable concurrent hash tables. Chapter 3

documents this algorithm, both as a novel contribution itself and as a

demonstration of the complex reasoning required to manually construct

relativistic data structures without using the relativistic causal ordering

model.

2. The relativistic causal ordering model, a memory model supporting

11

straightforward causal reasoning about scalable concurrent data struc-

tures. Chapter 4 documents the relativistic causal ordering model.

3. A translation from algorithms designed for the relativistic causal or-

dering model to algorithm implementations targeted at real hardware

memory models, providing concrete implementations of the abstract

barriers used in relativistic causal ordering. Chapter 5 documents this

translation.

4. An algorithm for resizing a concurrent hash table while supporting

concurrent, scalable readers. Chapter 6 documents this algorithm, both

as a novel contribution itself and as a demonstration of constructing

scalable concurrent data structures using the relativistic causal ordering

model.

12

Chapter 2

Background on Scalable Concurrent Programming

2.1 Mutual Exclusion

Mutual exclusion, or locking, represents the most commonly applied technique

for concurrent programming in both research and production use. Several

approaches exist for mutual exclusion, many of them dependent on features

of the underlying hardware and instruction set, but all achieve the same

effect: they provide a lock that many threads may simultaneously attempt

to acquire, only one of which will succeed while the rest wait. The term

critical section refers to the section of code between lock acquisition and lock

release, during which no other code using the same lock can run. Dijkstra’s

semaphore [14] and Hoare’s monitor [32] provide the archetypal examples of

the locking form of mutual exclusion, and its basic structure and fundamental

properties have remained unchanged since its introduction.

The simplest application of locking to a concurrent program wraps shared

data structures with a single global lock. Portions of the program accessing

the shared data structure must hold this lock. Correctness of this approach

13

proves trivial to verify, but it allows no concurrency between critical sections

on the same structure; such an approach will not scale unless the critical

sections represent a minimal fraction of the total work.

Using the example of a simple hash table, a reader performing a lookup

operation using global locking would involve the following steps:

1. Hash the desired key to determine the bucket containing the target

entry.

2. Acquire the lock for the entire hash table.

3. Traverse the bucket containing the target entry, comparing each entry

to the desired key; stop after finding the entry or reaching the end of

the list.

4. Drop the lock for the entire hash table.

A writer based on global locking could insert a new entry via the following

steps:

1. Hash the new key to determine the bucket that will contain the new

entry.

2. Allocate and initialize the new hash-table entry.

3. Acquire the lock for the entire hash table.

4. Insert the new entry at the head of the target bucket.

14

5. Drop the lock for the entire hash table.

Notice that only one read or write operation can occur at any given time.

This serialization prevents readers or writers from seeing a partially com-

pleted write operation, but it does not permit any concurrency or scalability.

Even this simple application of mutual exclusion introduces several po-

tential problems with both correctness and performance, including dead-

lock [40, 84, 53], priority inversion [40, 53], convoying [19], and minimal fault-

tolerance [19, 53]. Nonetheless, a large body of research exists addressing or

discussing these various problems, and providing standard implementation

techniques for lock-based data structures. Global locking also provides a

straightforward approach for adding concurrency to complex data structures

and systems not readily amenable to more concurrent forms of synchroniza-

tion. For example, the original introduction of multiprocessor support into

the Linux kernel used a single global “Big Kernel Lock” which allowed only

one processor to execute in the kernel at a time; this allowed the existing

sequential code in the Linux kernel to function on concurrent systems, and

still permitted concurrent execution of userspace processes.

Reader-writer locks (rwlocks) attempt to increase concurrency by permit-

ting read-only algorithms to run in parallel with each other, on the assump-

tion that they cannot interfere with each other. Readers and writers use

separate operations to acquire a reader-writer lock for reading or for writ-

ing. Acquiring the lock for readers excludes writers, but not other readers;

acquiring the lock for writers excludes both readers and writers.

15

For the simple hash-table example, a lookup algorithm based on reader-

writer locking proceeds as follows:

1. Hash the desired key to determine the bucket containing the target

entry.

2. Acquire the whole-hash-table reader-writer lock for reading.

3. Traverse the bucket containing the target entry, comparing each entry

to the desired key; stop after finding the entry or reaching the end of

the list.

4. Drop the whole-hash-table reader-writer lock for reading.

The corresponding insert algorithm becomes:

1. Hash the new key to determine the bucket that will contain the new

entry.

2. Acquire the whole-hash-table reader-writer lock for writing.

3. Insert the new entry at the head of the target bucket.

4. Drop the whole-hash-table reader-writer lock for writing.

Unlike the implementation based on global locking, this implementation

potentially allows readers to run concurrently.

However, reader-writer locks still force read-only algorithms to perform

writes (to the locks themselves), leading to additional overhead from cache

16

coherence algorithms and false sharing. More advanced reader-writer locks

avoid this overhead by not caching lock values [12], but this limits the speed

of lock operations to that of the uncached memory location shared by all

processors. Hseih and Weihl [35] constructed a more scalable reader-writer

lock by assigning a separate lock to each CPU, with readers acquiring their

local lock and writers acquiring all locks; this approach potentially allows

readers to scale when writers remain rare, but it degrades badly in all but

the most read-biased workloads. Reader-writer locks may also require addi-

tional logic to avoid writer starvation. All these forms of additional overhead

make reader-writer locking potentially slower than standard mutual exclu-

sion, since the time required for a lock operation may outweigh the critical

section it guards; the lock-protected operation can become effectively serial-

ized due to lock overhead. Even with this additional overhead, reader-writer

locking only permits concurrency between readers; readers must still block

concurrent writers, and writers must still block concurrent readers.

To allow more concurrency, most lock-based algorithms use fine-grained

locking : different portions of a shared data structure will have different as-

sociated locks, and code accessing shared data need only hold the locks for

the portions it accesses. This allows a degree of disjoint-access parallelism:

access to disjoint portions of shared data can occur concurrently.

A hash table provides obvious boundaries for fine-grained locks: each

bucket has a separate lock. With fine-grained locking, the simple hash-table

lookup operation becomes:

17

1. Hash the desired key to determine the bucket containing the target

entry.

2. Acquire the lock for that bucket.

3. Traverse the bucket containing the target entry, comparing each entry

to the desired key; stop after finding the entry or reaching the end of

the list.

4. Drop the lock for that bucket.

The corresponding insert algorithm becomes:

1. Hash the new key to determine the bucket that will contain the new

entry.

2. Acquire the lock for that bucket.

3. Insert the new entry at the head of the target bucket.

4. Drop the lock for that bucket.

This implementation allows readers and writers to run concurrently as

long as they access separate buckets. Readers and writers will only block

each other when attempting to access the same bucket; the per-bucket locks

will serialize the reads and writes of each bucket, allowing one to proceed at

a time.

Implementing a data structure using fine-grained locking rather than

global locking exacerbates the correctness and performance problems of global

18

locking, including deadlock [40, 84, 53], priority inversion [40, 53], convoy-

ing [19], and minimal fault-tolerance [19, 53]. However, existing research on

fine-grained locking has provided well-known implementation techniques for

fine-grained locking that solve or avert many of these problems. As a result,

fine-grained locking enjoys considerable success as the primary concurrency

methodology for practical concurrent systems.

However, the complexity of fine-grained locking often leads to imple-

mentations using coarser locking than they might otherwise need. Many

data structures do not prove amenable to the partitioning necessary for fine-

grained locking. Coarse-grained locking simplifies the mental model of a data

structure by reducing difficult-to-verify bits of potential concurrency in a set

of algorithms, but this loss of concurrency further reduces the scalability of

those algorithms.

Conversely, programs that use highly fine-grained locking risk a differ-

ent scalability problem: if performing an operation requires acquiring many

locks, the lock overhead becomes a larger part of the overall cost of the op-

eration. For example, in the simple hash table presented above, a writer

moving a node between buckets must acquire the locks for both buckets; a

writer resizing the table must acquire the locks for all buckets. So while

the fine-grained locking might theoretically allow more concurrency when

executing the body of a critical section, the multiple locks protecting the

critical section may take significantly longer to execute, during which time

the critical section generates more contention for system resources such as

19

bus bandwidth and cache lines. If this overhead significantly outweighs the

critical section itself, operations may become effectively serialized.

Furthermore, fine-grained locking still allows only one form of concur-

rency: disjoint-access parallelism. Accesses to the same location, protected

by the same lock, will always proceed in series with no concurrency. This

leads to high contention for frequently accessed locations. In particular, no

form of mutual exclusion allows concurrency between readers and writers

accessing the same location.

Fundamentally, both standard mutual exclusion and reader-writer locking

still require global agreement between processors regarding the ownership of

locks, which mandates communication between processors. The latency of

this communication represents the primary limit on the performance and

scalability of lock-based algorithms.

2.2 Non-Blocking Synchronization

Non-blocking synchronization (NBS) provides a solution for some of the com-

plexity of locking [19]. NBS uses primitives such as compare-and-swap (CAS)

or load-linked/store-conditional (LL/SC) to copy data before modifying it,

optimistically assume that the modification will succeed, and then roll back

the operation if a concurrent modification to the same location occurred.

Massalin and Pu [45] presented a lock-free stack using non-blocking syn-

chronization via CAS. For that stack, the pop operation follows these steps:

20

1. Save the current (old) value of the stack pointer.

2. Compute the new value of the stack pointer.

3. Dereference the old stack pointer to obtain the element currently at

the top of the stack.

4. Use Compare and Swap (CAS) to atomically replace the stack pointer

with the new value computed in step 2 if the stack pointer still matches

the old value saved in step 1. If the CAS fails due to the stack pointer

having changed, retry from step 1.

5. Return the element obtained in step 3.

In this example, if two or more attempts to pop a value from the stack

occur concurrently, they will conflict, and all but one of them will fail in

step 4 and retry. Thus, the stack in this example does not actually provide

any concurrency.

However, non-blocking synchronization improves fault-tolerance and mit-

igates priority inversion and deadlock by forcing slow or hung tasks to roll

back (if they ever resume) rather than waiting on them. With mutual exclu-

sion, the first thread to acquire the lock can hold that lock indefinitely, and

can thus indefinitely delay all other threads that need to acquire the lock. By

contrast, with NBS, the first thread to attempt to complete the operation will

win, forcing all other threads to roll back even if they started earlier; thus,

a thread which fails to complete its operations will not block other threads

21

from proceeding. This fault-tolerance makes it potentially reasonable to use

non-blocking synchronization even when it does not provide a performance

advantage over mutual exclusion.

Furthermore, though this stack pop example does not provide concur-

rency, in general NBS provides disjoint-access parallelism: accesses to dis-

joint locations can always proceed without rolling each other back, without

introducing the problems of fine-grained locking. (The stack in this example

has only a single stack pointer, and thus no disjoint accesses could occur.)

However, non-blocking synchronization introduces several new forms of

complexity not present in locking. Most prominently, it allows concurrent

execution of conflicting critical sections, even if all but one would roll back.

Furthermore, any changes made to a data structure may become visible im-

mediately, which readers may not expect. Thus, critical sections must avoid

unrecoverable errors such as accessing invalid pointers, even in the face of

concurrent modifications. This makes the reasoning model of NBS signifi-

cantly more complex than that of locking.

Specific implementations of NBS may also introduce new issues. With

implementations such as CAS based on comparison of values, writers may

need to take extra steps to avoid the A-B-A problem, in which a value (such

as a pointer) does not appear changed because it changes twice and returns

to the original value. Conversely, with implementations such as LL/SC based

on cache coherence protocols or other mechanisms to observe changes, the

watched region of memory may have a granularity larger than a single mem-

22

ory location, which can lead to another form of false sharing: a critical

section may roll back due to an unrelated memory operation that invalidates

the value saved for comparison.

As a result of these additional forms of complexity, non-blocking algo-

rithms prove significantly less common than those based on mutual exclusion.

Various implementations of individual data structures exist, such as linked

lists [22], queues [59, 69], and stacks [24, 75, 69]. However, as with fine-

grained locking, these implementations lack a general methodology: they do

not provide tools to support implementation of other data structures without

additional ingenuity. As Michael and Scott [60] put it, “Good data-structure-

specific multilock and nonblocking algorithms are sufficiently tricky to devise

that each has tended to constitute an individual publishable result.”

Herlihy proposed a generalized construction for a non-blocking version of

any arbitrary data structure [25]. However, this construction entails making a

full copy of the data structure and atomically replacing the old version. While

this result provides theoretical generality, the severe performance penalty it

imposes on write operations typically proves impractical. Thus, the general

result does not scale, and the scalable results do not generalize.

Finally, while non-blocking synchronization inherently provides fine-grained

disjoint-access parallelism, it does nothing to address the joint-access case.

Concurrent accesses to the same location will effectively devolve to mutual

exclusion, with the added problem that all but one concurrent operation will

proceed optimistically and then roll back, introducing additional computa-

23

tion and contention rather than just waiting.

2.3 Transactional Memory

Transactional memory (TM) proposes a solution to the complexity of non-

blocking synchronization [27, 26, 15]. In a TM system, readers and writers

denote critical sections explicitly by beginning and ending transactions. A

transaction behaves as if all memory operations within it occur as an atomic

unit with respect to other transactions.

For the simple hash-table example introduced in section 2.1, a transac-

tional lookup proceeds as follows:

1. Hash the desired key to determine the bucket containing the target

entry.

2. Begin a transaction.

3. Using transactional load operations, traverse the bucket containing the

target entry, comparing each entry to the desired key; stop after finding

the entry or reaching the end of the list.

4. End the transaction.

The corresponding transactional insert algorithm becomes:

1. Hash the new key to determine the bucket that will contain the new

entry.

24

2. Begin a transaction.

3. Using transactional load and store operations, insert the new entry at

the head of the target bucket.

4. End the transaction.

In this implementation, two concurrent transactions will conflict if one

performs a transactional store to a given location and the other performs a

transactional load or store on that location. When such a conflict occurs, one

of the transactions will succeed, and the other will roll back and retry. Thus,

this transactional implementation allows lookup operations to run concur-

rently with each other on the same or different buckets, and allows insert

operations to run concurrently with insert or lookup operations on different

buckets. An insert operation will conflict with another concurrent insert or

lookup on the same bucket.

Transactional memory provides the same automatic disjoint-access par-

allelism that NBS does, as well as the fault-tolerant behavior associated with

optimistic concurrency. However, unlike non-blocking synchronization, trans-

actional memory offers a more general methodology: wrap all sets of accesses

to shared data in transactions. Unlike the general methodology for NBS, the

general transactional methodology achieves the same theoretical performance

behavior without needing specialized code for each data structure.

It remains unclear, however, just how much performance transactional

memory can provide. Software transactional memory (STM) implementa-

25

tions suffer from severe performance and scalability limitations, particularly

in low-contention or contention-free cases [7, 66, 80, 11, 44]. Furthermore,

contention for the same memory location will lead to serialized transactions

and no concurrency, just as with mutual exclusion. Only when many trans-

actions access disjoint locations can STM begin to achieve any concurrency.

STM also suffers from the performance problems of both fine-grained

locking and NBS. As with excessively fine-grained locking, the overhead of

the transaction itself may eliminate the possibility of concurrent transactions.

Furthermore, as with NBS, transactions that optimistically proceed and then

roll back introduce additional computation and contention, adding further

to critical section overhead.

Higher-performance implementations of software transactional memory

have begun to abandon the high-overhead optimistic approach that adds

fault-tolerance in favor of lock-based implementations with lower overhead [12,

16].

Much other research has sought out techniques to accelerate STM. For

instance, hash-based STM implementations [68, 43, 21] hash the set of loca-

tions accessed by a transaction, providing fast but imprecise conflict detec-

tion. This approach reduces overhead, but introduces another form of false

sharing, as otherwise unrelated transactions may conflict and roll back due

to hash collisions. Other implementations [15] achieve better performance

via explicit annotations on private and shared memory operations, but this

eliminates much of the promised simplicity and transparency of STM.

26

Many proposals exist for hardware-assisted transactional memory (HTM),

aiming to solve the performance problems of software implementations. Thus

far the necessary support has failed to materialize on general-purpose hard-

ware, with the death of Sun’s planned “Rock” processor, but Intel’s “Trans-

actional Synchronization Extensions” (TSX) on Haswell and newer proces-

sors may change that. However, even with the necessary hardware support,

few software projects could afford to tie themselves to the availability of

HTM on the target platform, necessitating STM as a fallback mechanism

for portability. STM would also remain critical to support complex transac-

tions that exceed the fixed limits supported by a hardware implementation.

Even if transaction-based software carefully remained within the limits of the

hardware’s capabilities, any composition of transactions could create a single

transaction that requires software fallbacks to handle. Thus, even with a

hypothetical HTM system, STM’s performance problems would still severely

hamper the adoption of transactional memory.

Many HTM implementations also introduce new forms of spurious fail-

ures, analogous to the false sharing of hash-based software transactions.

Hardware transactions based on cache coherence can fail due to cache line

conflicts in a non-fully-associative cache. Furthermore, checking for conflicts

at a cache line granularity results in the classic false sharing problem when

accessing different fields in the same cache line.

The apparent generality and simplicity of applying transactional mem-

ory remains its strongest attribute. However, that generality and simplicity

27

may simply reflect a lack of application to many real-world systems, and

indeed transactional memory systems applied to real systems do grow in

complexity due to special cases and unanticipated needs [53]. Even such

simple additions as performing I/O or similar irreversible operations can

lead to problems when rolling back transactions; attempted solutions such

as “inevitable transactions” [72] or “irrevocable transactions” [81] introduce

additional complexity, overhead, and scalability problems. Preserving gener-

ality will continue to require further extensions, with corresponding erosion

of simplicity and scalability.

Even the disjoint-access parallelism that provides TM’s primary perfor-

mance benefits itself incurs a severe cost. Attiya, Hillel, and Milani [5] proved

that any transactional memory system providing disjoint-access parallelism

cannot avoid having readers perform store operations to shared memory. In

fact, they showed that a transaction loading t items has a strict lower bound

of Ω(t) required store operations in its implementation. Eliminating these

store operations requires giving up disjoint-access parallelism, the primary

motivation for TM over simple coarse-grained locking.

With or without its automatic fine-grained disjoint-access parallelism,

transactional memory fails to offer any solution for concurrent, non-disjoint

accesses. Some implementations of transactional memory may offer concur-

rent readers, but no implementations allow readers to run concurrently with

writers; either the readers will force the writer to roll back or vice versa.

Thus, like mutual exclusion and NBS, transactional memory devolves to mu-

28

tual exclusion in the face of non-disjoint accesses.

2.4 Partitioning

As communication costs grow between CPUs, the lessons of distributed sys-

tems become more relevant. Modern shared-memory multiprocessor systems

internally look like distributed systems with explicit communication, but

provide the illusion of a coherent shared memory through cache coherence

protocols.

In an effort to embrace this model, some shared-memory algorithms des-

ignate a single thread as the owner of certain resources, and force all other

threads to access those resources by sending a message to the owning thread.

If these resources prove amenable to strict partitioning, and threads mostly

access their own resources, this results in an embarrassingly parallel algo-

rithm with excellent scalability. However, in the common case where re-

sources do not partition well, this merely replaces the negative scalability

caused by contention with zero scalability caused by running all operations

on a single processor.

2.5 Hazard Pointers

Hazard pointers [58, 3] provide one means of surpassing disjoint-access par-

allelism. To maintain reader safety with concurrent writers, readers must

store pointers they wish to dereference in their local hazard pointers, and

29

writers must check all hazard pointers before performing an operation that

might cause such a dereference to fail. This approach does allow readers to

run concurrently with writers, but it forces readers to perform writes, and

furthermore forces readers to perform expensive memory barrier operations

to preserve the ordering between the hazard pointer manipulations and the

code they protect.1

2.6 Read-Copy Update

An ideal technique for concurrent algorithm design should go beyond disjoint-

access parallelism. Scalable readers should run concurrently with writers,

and in particular, neither should block the other from proceeding. This

concurrency should apply even for concurrent accesses to the same location.

Deferred destruction techniques such as Read-Copy Update (RCU) [47,

23, 56] allow algorithms to surpass the limited concurrency of disjoint-access

parallelism. These techniques provide a lightweight means for readers to de-

limit their critical regions, using only inexpensive, non-synchronizing, CPU-

local operations. RCU-based writers then have an operation to wait for all

current readers to finish.

Section 2.6.1 discusses the RCU primitives in detail. Section 2.6.2 demon-

strates how to construct RCU-based data structures using these primitives.

Section 2.6.3 compares RCU to other concurrent programming techniques,

1Some hazard pointer implementations exist that avoid expensive operations in readers;
these implementations incorporate techniques from deferred destruction methods such as
RCU.

30

and discusses the key problems hampering widespread adoption of RCU. Sec-

tion 2.6.4 discusses implementation considerations for the RCU primitives.

2.6.1 RCU Primitives

RCU readers execute concurrently, both with each other and with writers,

and thus readers can potentially observe writers in progress [47]. (Other

concurrent programming models prevent readers from viewing intermediate

memory states via locking or conflict detection.) The methodologies of RCU-

based concurrent programming, as originally presented by McKenney [47],

primarily address the safe management of reader/writer concurrency. Since

writers may not impede readers in any way, programmers must reason about

the memory states readers can observe, and must avoid exposing inconsistent

intermediate states from writers.

RCU writers typically preserve data-structure invariants by atomically

transitioning data structures between consistent states. On all existing CPU

architectures, aligned writes to machine-word-sized memory regions (such

as pointers) have atomic semantics: a reader sees either the old or the new

state, with no intermediate value. Thus, structures linked together via point-

ers support many structural manipulations via direct updates. For more

complex manipulations, such as insertion of a new item into a data struc-

ture, RCU writers typically allocate memory initially unreachable by readers,

initialize it, and then atomically publish it by updating a pointer in reach-

able memory. Current implementations of RCU provide a publish function

31

named rcu_assign_pointer; this function executes a hardware store barrier

before assigning the pointer, which ensures that readers that see the pub-

lished pointer will see the preceding initialization of the memory accessed

through that pointer. Readers may also require compiler directives to pre-

vent certain aggressive optimizations across the pointer dereference; RCU

wraps those directives into a read primitive, commonly provided as a func-

tion rcu_dereference.2

These primitives allow RCU writers to update data structures and main-

tain invariants for readers. However, RCU writers must also manage object

lifetimes, which requires knowing when readers might hold references to an

item in memory [47]. Unlinking an item from a data structure makes it un-

reachable to new readers, but does not stop accesses from unfinished readers;

writers may not reclaim the unlinked item’s memory until all such readers

have completed. This resembles a garbage collection problem, but RCU must

support runtime environments without automatic garbage collection.

To this end, RCU provides a barrier-like synchronization operation called

wait-for-readers (typically invoked via a function named synchronize_rcu),

which blocks until all readers that started before the barrier have com-

pleted [47]. Thus, once a writer makes memory unreachable from the pub-

lished data structure, a wait-for-readers operation ensures that no readers

still hold references to that memory. Wait-for-readers does not prevent new

2On certain obsolete architectures, such as the DEC Alpha, readers must also use a
memory barrier to prevent reordering by the CPU [13].

32

readers from starting; it simply waits for existing unfinished readers to com-

plete. This barrier operates conservatively: the currently unfinished readers

might not hold references to the memory a waiting writer wants to reclaim,

and the barrier itself may wait longer than strictly necessary in order to run

efficiently or batch several reclamations into a single wait operation. This

conservative approach allows readers to avoid the synchronization overhead of

tracking individual references to shared data, making those readers more effi-

cient and scalable; instead, readers delimit themselves with lightweight CPU-

local operations, typically called rcu_read_lock and rcu_read_unlock [47].

Writers often use wait-for-readers solely for safe memory reclamation.

Because memory reclamation operations can safely occur concurrently and

need not occur immediately (given sufficient memory), RCU implementations

also provide an asynchronous wait-for-readers callback, call_rcu [47].

Chapter 5 documents the translation from the relativistic causal order-

ing model to hardware ordering models, which uses the wait-for-readers

(synchronize_rcu) barrier, and hardware load and store barriers based

on those used in rcu_dereference and rcu_assign_pointer. The use

of load and store barriers in relativistic causal ordering differs from the

RCU primitives in two key ways. First, a load barrier only translates to

rcu_dereference in the case of a dependent load. Independent loads require

hardware load barriers, which RCU does not provide a primitive for; RCU al-

gorithms rely on existing portable memory-barrier interfaces in the occasional

cases where they need hardware load barriers, and relativistic causal ordering

33

uses these same portable interfaces. Second, RCU’s rcu_assign_pointer

primitive incorporates both a store barrier and a subsequent store operation;

the definition and translation of relativistic causal ordering uses explicit store

barrier steps between store operations, to allow for the possibility of partially

ordered store operations in which the store barrier does not naturally attach

to any particular store operation. Nonetheless, the concrete implementation

of a relativistic causal algorithm can choose to use rcu_assign_pointer to

group a store operation with its preceding store barrier, rather than invoking

a portable store-barrier abstraction directly.

2.6.2 RCU Data Structures

The simplest RCU data structures follow the basic pattern introduced in

RCU-based linked lists [47]. RCU linked-list traversal uses the standard

linked-list traversal algorithm, but adds reader delineation and rcu_dereference:

1. Call rcu_read_lock to start an RCU read-side critical section.

2. Walk the nodes from the head pointer to the terminating null, calling

rcu_dereference to dereference each pointer.

3. Call rcu_read_unlock to end the RCU read-side critical section.

To insert a node, first create and initialize it, including its pointers into

the data structure, and then modify an existing link from the data structure

to point to it:

34

1. Allocate memory for a new list node.

2. Initialize the contents of the new node.

3. Acquire a lock, or otherwise synchronize with other writers. (This does

not exclude readers, nor do readers exclude writers, as the readers do

not acquire any lock.)

4. Traverse the list to find the insertion point.

5. Initialize the next pointer of the new node to point to the node which

will follow it in the list.

6. Use rcu_assign_pointer to publish the new node by pointing the

previous node’s next pointer (or the head pointer if inserting at the

beginning) to that node. The rcu_assign_pointer primitive ensures

that readers cannot observe the publication of the node in this step

without observing the initialization of the node.

7. Release the lock, or otherwise synchronize with other writers.

See figure 2.1 for an example of the RCU linked-list insert operation.

To remove a node, modify the link from the data structure to that node to

route around it, then wait for all current readers to finish, and then reclaim

the memory of the node:

1. Acquire a lock, or otherwise synchronize with other writers. (Again,

this does not exclude readers, nor do readers exclude writers.)

35

1

2

3

(a)

1

2

3

(b)

1

2

3

(c)

Figure 2.1: Insertion into a relativistic linked list. 2.1a shows the initial state
of the list. Dashed nodes exist only in writer-private memory, unreachable
by readers. The writer wants to insert node 2. The writer first initializes
node 2’s next pointer to point to node 3, resulting in 2.1b. The writer can
then publish point node 1’s next pointer to 2 using rcu_assign_pointer,
and readers can then immediately begin observing the new node, as shown
in 2.1c.

2. Set the next pointer of the previous node (or the head pointer if re-

moving the first node) to point to the same place as the next pointer

of the node to remove. Note that this store operation does not use

rcu_assign_pointer, because it has no prior store operation to order

with.

3. Release the lock, or otherwise synchronize with other writers.

4. Use synchronize_rcu to wait for all current readers to finish.

5. Reclaim the memory associated with the node.

See figure 2.2 for an example of the RCU linked-list remove operation.

2.6.3 RCU Discussion

In a data structure based on mutual exclusion, writers and readers must both

wait for each other when accessing the same data; disjoint-access parallelism

36

1 2 3

(a)

1 2 3

(b)

1 2 3

(c)

1 3

(d)

Figure 2.2: Removal from a relativistic linked list. 2.2a shows the initial
state of the list. The writer wants to remove node 2. The writer first sets
node 1’s next pointer to node 3, removing node 2 from the list for all future
readers; this results in the state shown in figure 2.2b. The writer then uses
synchronize_rcu to wait for existing readers to finish, as shown in figure
2.2c. Dashed nodes exist only in writer-private memory, unreachable by
readers. Once no readers can hold references to node 2, the writer can safely
reclaim it.

permits concurrent access to disjoint parts of the structure, but access to

the same data requires serialization. In a data structure based on RCU,

readers can always proceed without waiting; readers run concurrently with

writers, and vice versa. All waiting occurs in writers; writers wait not for an

absence of readers, but for the completion of readers that would otherwise

observe store operations in an unsafe order. A writer need not wait for

readers unless it needs to complete a disruptive operation such as reclaiming

memory. Furthermore, the writer can often defer such disruptive operations

until readers have finished, while still proceeding with the non-disruptive

operations it intended.

In sharp contrast to locking, non-blocking synchronization, and trans-

actional memory, RCU readers perform no expensive synchronization oper-

ations whatsoever: no locks, no atomic operations, and no compare-and-

swap. RCU readers typically incur little to no overhead even compared to

concurrency-unsafe single-threaded implementations; furthermore, by avoid-

37

ing expensive synchronization, RCU readers avoid the need for communica-

tion between threads, allowing wait-free operation and excellent scalability.

Implementations of RCU-based algorithms exist for various data structures,

including linked lists [47], hash tables [77, 76, 78], radix trees [63], and bal-

anced trees [34]. Each of these implementations demonstrates large scalabil-

ity improvements over alternative implementations based on locking.

However, each new data structure implemented using RCU has required

significant engineering effort to invent. Worse, even with the existing body

of implemented data structures, algorithms for new data structures prove no

easier to implement. No general construction techniques have arisen to make

the process more mechanical. Furthermore, no strong mental model exists

for reasoning about the correctness of such algorithms beyond intuition and

individual argumentation, both notoriously prone to error or omission.

In the past, RCU adoption has also suffered greatly from the lack of a

generally available implementation outside those in the Linux kernel. This

gave RCU the appearance of a specialized technique without more general

application. Furthermore, the first implementations of RCU relied on op-

timizations specific to the internals of an operating system kernel, such as

the ability of kernel code to mark itself temporarily non-preemptible; this

allowed the RCU implementation to work in terms of CPUs rather than

threads. While this helped minimize RCU’s read-side overhead, it also lent

further credence to the impression of non-portability.

However, recent developments have lifted these technical limitations. Math-

38

ieu Desnoyers provided several scalable implementations of RCU for user

processes, as part of the Userspace RCU (liburcu) project [10]. While some

of these implementations take advantage of Linux-specific features for per-

formance, the most straightforward implementations provide portability to

other software platforms. This positions RCU as a broadly applicable tech-

nique for scalable algorithm design, limited primarily by two remaining issues,

both related: no general technique to construct algorithms for arbitrary data

structures, and no ordering model to allow straightforward reasoning about

the correctness of those algorithms.

2.6.4 RCU Implementation Considerations

This section summarizes the practical implementations of the RCU wait-for-

readers primitive (synchronize_rcu) and the corresponding read-side de-

lineation (rcu_read_lock and rcu_read_unlock). While the semantics of

these fundamental primitives of RCU have remained consistent throughout

its lifetime, the implementations of RCU in current use remain under active

development, with frequent optimizations and algorithmic improvements.

Thus, this section serves primarily as an overview of practical implemen-

tations, rather than a full account of the details required to implement them.

For those details, see published papers on RCU [47, 56, 54, 23, 10, 20, 49],

as well as the RCU implementations in Linux and liburcu.

All RCU implementations operate by noting quiescent states : points in

time during which no readers currently run on a particular CPU or thread [47,

39

23, 20, 49].3 The implementation of synchronize_rcu waits for a quiescent

state to occur on all CPUs or threads (depending on implementation); be-

cause a quiescent state indicates the absence of a reader, once a quiescent

state has occurred on all CPUs or threads, any previously running readers

must have completed.

An implementation of RCU without regard for reader synchronization

costs could simply track the quiescence of readers individually. For example,

rcu_read_lock and rcu_read_unlock could set a flag in shared memory

which indicates the presence of a reader on the reader’s current CPU or

thread, and synchronize_rcu could wait for all flags to clear [20]. To prevent

writer starvation, synchronize_rcu could swap between two sets of reader

flags, and readers would always clear the flag they originally set [20]; this

allows synchronize_rcu to wait on existing readers but not new readers.

However, maintaining these shared flags consistently would require global

synchronization between readers and writers, imposing large synchronization

costs on readers.

To avoid these synchronization costs, RCU implementations typically

amortize any costs associated with tracking a quiescent state over all the

readers which have run since the last quiescent state. In particular, the to-

tal cost of tracking quiescent states does not increase with the addition of

readers. Thus, individual RCU readers can avoid synchronization overhead

3Kernel implementations of RCU can use optimized implementations based on CPUs,
making use of the kernel’s control over the scheduling of threads on CPUs; userspace
implementations typically operate on threads.

40

and the corresponding scalability limitations, increasing read throughput by

increasing the latency of synchronize_rcu. In the case of RCU-based mem-

ory reclamation, amortization causes writers to retain memory longer before

reclaiming it, increasing read throughput at the expense of higher memory

usage.

The earliest and simplest implementations of RCU in Linux, “Classic

RCU”, take advantage of the ability of kernel code to temporarily disable

preemptive scheduling on the current CPU. Thus, a CPU running in the

scheduler cannot have a reader active, making the scheduler a quiescent state.

In these implementations, synchronize_rcu simply blocks until all CPUs

have passed through the scheduler.

The classic RCU implementation does not work well on low-latency or

real-time systems, due to its implementation via disabled preemption [20].

Such systems use preemptible RCU implementations, which track quiescent

states by having rcu_read_lock and rcu_read_unlock manipulate private,

CPU-local counters [20]. Preemptible RCU amortizes the synchronization

cost of communicating those CPU-local counters to writers, rather than do-

ing so immediately after each reader completes. Preemptible RCU imple-

mentations also track RCU readers which get preempted separately from

their tracking of quiescent states, as these preempted readers must complete

before synchronize_rcu can return. The addition of preemption also intro-

duces the possibility of priority inversion between readers and writers; thus,

preemptible RCU implementations include priority boosting for preempted

41

RCU readers.

As the number of CPUs in a system grows, synchronize_rcu has to do

more work to track quiescent states on every CPU, introducing scalability

limitations in writers and quiescent states on highly parallel systems (in the

hundreds of CPUs). To overcome these scalability limitations, hierarchical

RCU implementations [49] organize CPUs into trees, with a word-sized bit-

mask at each level of the tree tracking the quiescence of all the nodes below.

This tree structure decreases contention between CPUs communicating their

quiescence, limiting the synchronization required for such communication to

small groups of CPUs rather than all CPUs on the system.

To support scaling in the other direction, tiny RCU [50] optimizes for

single-CPU systems. Because RCU readers cannot block, and synchronize_rcu

blocks until readers have finished, a call to synchronize_rcu itself indicates

a quiescent state on the sole CPU, and thus synchronize_rcu can return

immediately, with only a compiler barrier to preserve ordering.

42

Chapter 3

Manual Construction of Scalable Concurrent Data Structures

Hash tables enjoy widespread use in many applications and operating sys-

tems, due to their O(1) average time for many operations [9, 36]. These

users of hash tables have increasingly become concurrent, to adapt to con-

current hardware. Thus, hash table implementations should support con-

current operation, and should ideally scale linearly with additional CPUs.

In particular, many hash table applications involve far more lookups than

modifications [28]; such applications require fast, scalable lookups.

Existing hash table implementations, whether based on fine-grained lock-

ing or lock-free algorithms, still require expensive synchronization operations

for lookups. Fine-grained locking implementations require some form of lock

surrounding a lookup operation, while lock-free algorithms require either

atomic operations or memory ordering primitives such as barriers.

In some applications, a hash table must support not only insertion and

removal, but also moving entries due to changing hash keys. For instance,

if a filesystem cache uses filenames as keys, renaming will require a move

operation. A change to the key may require moving an entry between buckets.

43

This chapter presents a novel hash-table node move operation that sup-

ports concurrent, linearly scalable, wait-free lookups. The crucial step in this

algorithm entails cross-linking hash chains to make a single entry appear in

two hash buckets simultaneously. From this state, a single operation can both

change the hash key and move the entry to the appropriate bucket for that

key. The remainder of the algorithm consists of preparation for cross-linking

and cleanup after cross-linking.

This hash-table move operation serves not only as a novel contribution

in itself, but also as an example of the manual process for constructing scal-

able algorithms and reasoning about their correctness. While this algorithm

works correctly, and serves the intended purpose, it required complex rea-

soning both to generate and to verify. This complex reasoning motivates the

relativistic causal ordering model presented in chapter 4.

Section 3.1 documents the semantics the move operation must satisfy, and

the semantics of hash-table lookups that make the move operation possible.

Section 3.2 provides the full algorithm for the new move operation, including

step-by-step diagrams of the hash table structure. Section 3.3 outlines the

methodology for performance analysis, and section 3.4 presents the results

of this analysis. Section 3.5 summarizes the conclusions.

3.1 Semantics

Section 3.1.1 lists required properties of the move operation. Section 3.1.2

documents some standard properties of hash-table lookups that support the

44

new move operation.

3.1.1 Properties of Hash-Table Moves

The move operation changes the key associated with an entry, and moves the

entry to the hash bucket corresponding to the new key. A move operation

must allow concurrent lookups, and must maintain the consistency properties

expected by those lookups:

• If a lookup finds the entry under the new key, a subsequent lookup

ordered after the first cannot find the entry under the old key.

• If a lookup does not find the entry under the old key, a subsequent

lookup ordered after the first must find the entry under the new key.

• A move operation must not cause unrelated lookups to fail when they

otherwise would have succeeded.

“Subsequent lookup ordered after the first” means either a lookup running

in the same thread as the first but later in program order, or a lookup equiv-

alently ordered after the first via some appropriate synchronization.

The first two properties originally arose through reasoning about the use

of concurrent hash tables for directory entry lookups in an operating system

kernel, and the observable effects this could have for userspace programs.

The first property guarantees that, during a move operation, once a program

has observed the file in its new location, it cannot subsequently observe the

file still present in its old location. The second property guarantees that once

45

a program has observed the absence of the file in the old location, the file

must appear in its new location.

Note that an implementation of the move operation composed of a linked-

list insert and remove operation (as specified in section 2.6.2) cannot satisfy

these consistency properties. Performing an insert followed by a remove

would violate the first property by allowing the node to temporarily appear

under both the old and the new keys. Performing a remove followed by an

insert would violate the second property by allowing the node to temporarily

appear under neither key.

3.1.2 Properties of Hash-Table Lookups

The new hash table move operation relies on two fundamental properties of

a hash table lookup.

First, after using the hash of the search key to find the appropriate bucket,

a reader must compare the individual keys of the nodes in the list for that

bucket to the actual search key. Thus, if a node shows up in a bucket to

which its key does not hash, no harm befalls any reader who comes across

that node while searching that bucket, apart from a marginal amount of extra

time spent traversing the hash chain for that bucket.

Second, when traversing the list for a given hash bucket, a reader will

stop when it encounters the first node matching the search key. If a node

occurs twice in the same bucket, the search algorithm will simply return the

first such node when searching for its key, or ignore both nodes if searching

46

for a different key. Thus, multiple nodes with the same key can safely appear

in a given hash bucket. Note that this requirement means that the hash table

cannot safely hold multiple distinct entries with the same key, such as in the

implementation of a multimap.

The first two possible semantics violations from section 3.1.1 (entries ap-

pearing in neither bucket or appearing in both buckets) occur when the writer

does not simultaneously remove the node from the old bucket and add it to

the new bucket with the new key. Most modern architectures do not feature

memory-to-memory swaps, simultaneous store operations to multiple loca-

tions, or hardware transactional memory, so the writer cannot simultaneously

and atomically change more than one pointer or key. Those architectures that

do, or software systems such as software transactional memory that simulate

such capabilities, incur a high cost for such an operation [7, 66, 80, 11].

Furthermore, even an atomic memory-to-memory swap operation or similar

multi-store operation would not by itself prevent readers from seeing zero or

two copies of the moved entry, without also involving the readers in some

form of transactional system or otherwise handling the interleaving of load

and store operations.

3.2 Algorithm

Section 3.2.1 describes the fundamental step in the new move algorithm.

Section 3.2.2 outlines the hash-table lookup operation. Section 3.2.3 walks

through the new move algorithm step-by-step. Section 3.2.4 discusses the

47

correctness of this algorithm in terms of the required semantics from sec-

tion 3.1.1.

3.2.1 Atomic Rename via Cross-Linking

The new hash-table node move operation builds on a single fundamental

insight: if the writer can make the moving node appear in both buckets

simultaneously, it can in one operation remove the node from the old bucket

and add it to the new bucket, by atomically changing the key. Before the

change, searches in the old bucket using the old key will find the node, and

searches in the new bucket using the new key will always skip over it; after

the change, searches in the old bucket with the old key will always skip over

the node, and searches in the new bucket with the new key will find it. This

approach satisfies the key semantics for the move operation.

Because nodes can safely appear in buckets to which their keys do not

hash, the writer can make the node appear in both buckets by cross-linking

one hash chain to the other. The writer can then change the node’s key to

the new value, which simultaneously moves the node. The remainder of the

algorithm consists of safely resolving the cross-linking. When removing the

cross-link, the writer must not disturb any reader currently traversing the old

hash bucket, even if that reader currently references the node getting moved.

To safely resolve the cross-link, the algorithm makes use of a deferred

destruction technique such as Read-Copy Update (RCU); specifically, the

algorithm requires the synchronize_rcu or call_rcu primitives documented

48

in section 2.6.1. Deferred destruction removes one source of conflicts between

readers and writers, by separating memory reclamation from writers and

deferring that reclamation until readers have finished. Writers can thus focus

on maintaining higher-level semantics such as those in section 3.1.1, rather

than on preventing readers from crashing.

3.2.2 Hash-Table Lookup

The lookup operation consists of a standard uniprocessor hash-table lookup,

except that it makes use of the appropriate RCU primitives to support de-

ferred destruction and enforce correct memory ordering:

1. Hash the given key to determine the corresponding hash bucket.

2. Call rcu_read_lock to start an RCU read-side critical section.

3. Traverse the linked list in that hash bucket, comparing the given key to

the key in each node. Each pointer dereference in this traversal must

use rcu_dereference.1

1On architectures such as DEC Alpha that do not automatically guarantee memory
ordering for dependent reads [13], rcu_dereference includes an appropriate barrier to
order such reads, such as smp_read_barrier_depends on Linux. However, almost all
current multiprocessor architectures provide dependent read ordering by default, and thus
on these modern architectures rcu_dereference does not include a hardware memory
barrier.
Aggressive compiler optimizations, particularly those regarding local caches of global

data, can also lead to problems in this step [6]. This may necessitate compile-time barriers
to locally prevent such optimizations, and rcu_dereference includes any such compile-
time barriers.

49

3.1 If a node has the given key, proceed with the computation that

required the node.

3.2 If the traversal reaches the end of the list without finding a node

with the given key, the node does not exist in the table.

4. Call rcu_read_unlock to end the RCU read-side critical section.

Note that all of these steps allow implementations of this lookup algo-

rithm to avoid expensive synchronization operations such as locks or atomic

operations. As discussed earlier in section 3.2.1, the uses of RCU primi-

tives do not require expensive synhronization operations. The list traversal

in step 3 relies on the property that reads and writes to word-sized word-

aligned locations such as pointers will occur atomically, retrieving either the

old or the new value but not a mix of the two; this property holds on all

current architectures.

Furthermore, this algorithm involves no helping, rollback, or retry code,

making it deterministic.

3.2.3 Hash-Table Move

Figure 3.1 shows a sample configuration of a hash table, used to illustrate the

move algorithm. The move algorithm operates by moving the node to the

end of its bucket, cross-linking the two buckets to both contain that node,

changing the key, and safely resolving the cross-link. The following steps

walk through the move algorithm on the hash table shown in figure 3.1:

50

1. Perform the appropriate synchronization to modify hash buckets a and

b. For instance, obtain the locks for hash buckets a and b, in hash

bucket order to avoid deadlocks. Note that this step only exists to

synchronize with other concurrent writes, not with lookups.

2. Make a copy of the target node n2; call the copy n′
2.

3. Set n′
2.next to NULL.

4. Set n3.next to n′
2 using rcu_assign_pointer; rcu_assign_pointer

ensures that the new value of n′
2.next will become visible to other pro-

cessors before n′
2 does.

5. Remove n2 from a by pointing n1.next to n3 using rcu_assign_pointer.

a now has the target node n′
2 at the end. rcu_assign_pointer ensures

that n′
2 will become visible to other processors before n2 disappears.

6. Point the tail of bucket b (n5.next) to the new target node (n′
2). Both

hash bucket chains now include n′
2. Figure 3.2 shows the state of the

a

...

b

n1 n2 n3

n4 n5

ke
y

“old”

Figure 3.1: Initial hash table configuration used to illustrate move algorithm.
n1.key, n2.key, and n3.key hash to a. n4.key and n5.key hash to b. The move
operation will change n2.key from “old” to “new”. “new” hashes to b.

51

hash table after this step.

7. Atomically change n′
2.key to “new” using rcu_assign_pointer.

rcu_assign_pointer ensures that the removal of n2 and the cross-

linking will become visible before n′
2.key changes.

8. Point n3.next to null using rcu_assign_pointer, un-cross-linking the

chains. rcu_assign_pointer ensures that the change to n′
2.key will

become visible before n′
2 disappears from bucket a. Figure 3.3 shows

the state of the hash table after this step.

9. Release the write-side synchronization for hash buckets a and b.

10. Using call_rcu, asynchronously remove the original n2 and the old

key “old” after all current readers have finished. (Alternatively, this

step may occur synchronously using synchronize_rcu.)

While the last step defers some memory reclamation until after readers

have finished, the remainder of the algorithm should have little to no perfor-

mance degradation from concurrent readers. Furthermore, because writers

need not wait for concurrent readers, writers publish new data immediately,

and new readers may immediately observe this new data.

3.2.4 Discussion

These operations meet the required semantics described in section 3.1.1.

First, “If a lookup finds the item under the new key, a subsequent lookup

52

a

...

b

n1 n2 n3 n′
2

n4 n5

ke
y

“old”

ke
y

“old”

Figure 3.2: State of the hash table after cross-linking hash chains in step 6
of the relativistic hash table move algorithm.

a

...

b

n1 n2 n3 n′
2

n4 n5

ke
y

“old”

ke
y

“new”

Figure 3.3: State of the hash table after un-cross-linking hash chains in step 8
of the relativistic hash table move algorithm.

ordered after the first cannot find the item under the old key.” Suppose a

reader finds the item under the new key. It must find n′
2, because n2.key

never changes. The writer writes the new key in step 7, so the reader must

observe the result of this step. To subsequently find an item under the old

key, the reader must find n2, because n′
2 no longer has the old key. To find

n2, the reader must not see the change to n1.next in step 5 removing it.

However, the use of rcu_assign_pointer in step 7 ensures that a reader

cannot see the result of step 7 and not step 5.

Second, “If a concurrent lookup does not find the item under the old key,

a subsequent lookup ordered after the first must find the item under the new

key.” Suppose a reader does not find the item under the old key. It must not

53

see n2, and it must not see n′
2 before its key changes. Because it does not see

n2, it must see the result of step 5. Because it does not see n′
2, it must either

see the result of step 7 or not see the result of step 4. Because the reader

saw the result of step 5, the use of rcu_assign_pointer in step 5 ensures

that the reader must see the result of step 4, and therefore the reader must

see the result of step 7. However, if the reader sees the result of step 7, it

will find n′
2 with the new key on a subsequent lookup.

Finally, “A move operation must not cause unrelated lookups to fail when

they otherwise would have succeeded.” For a lookup to fail, a reader must

fail to see an item that it otherwise would have seen. Placing n′
2 at the end

of buckets a and b, and removing it from bucket a, cannot cause a reader to

miss an item, which leaves only the removal of n2. This removal can only

affect a reader traversing bucket a. The removal of n2 does not free n2 until

existing readers complete their lookup, so a reader can only notice the change

of n1.next to n3. This change does not prevent a reader traversing bucket a

from seeing the other items, n1 and n3. Thus, a reader will never fail to see

an item it would otherwise have seen, so unrelated lookups will not fail.

3.3 Performance Analysis Methodology

The lookup algorithm requires no synchronization instructions, and runs

wait-free, even when running concurrently with a move operation. Thus, it

should allow significantly more lookup throughput than a lock-based lookup

operation. The move algorithm performs four rcu_assign_pointer oper-

54

ations, a memory allocation, and either a call_rcu or synchronize_rcu

operation, as well as various additional non-synchronizing operations. This

should result in lower move throughput than a lock-based move operation.

Testing these hypotheses required a new benchmark framework for concur-

rent hash tables.

The new lookup and move operations make extensive use of RCU. The

Linux kernel contains several mature and widely used implementations of

RCU, as well as implementations of the standard forms of mutual exclu-

sion, and a fast concurrent memory allocator. Thus, a Linux kernel module

provided the most practical and straightforward target for a benchmark.

The rcuhashbash benchmark module implemented for this chapter con-

sists of two components: a set of concurrent hash table implementations with

a common interface, and a test harness that invokes the hash table opera-

tions and tracks statistics. rcuhashbash includes the following hash table

implementations:

• The move and lookup algorithms presented in this chapter, as described

in sections 3.2.2 and 3.2.3. This implementation uses per-bucket spin-

locks to synchronize with other writers. The lookup operation con-

tained no synchronization operations of any kind.

• Multiple variants of mutual exclusion: whole-table spinlocks, whole-

table reader-writer locks, per-bucket spinlocks, and per-bucket reader-

writer locks.

55

• The RCU-based algorithm currently used for the Linux directory entry

cache (dcache) [55, 41]. This algorithm uses an RCU-based linked list

to allow concurrent insertions and deletions without disrupting readers.

However, the lookup operation uses an optimistic sequence lock [37] to

detect concurrent moves, and retries a lookup if it raced with a move;

this sequence lock entails some expensive synchronization operations.

rcuhashbash begins by constructing a hash table of a specified size, and

loading it with integers from 0 to a specified maximum. (These integers

effectively serve as both keys and values.) The experiments in this chapter

used a hash table with 1024 buckets and 4096 entries. rcuhashbash then

spawns a specified number of threads at startup. Each thread goes into a

continuous loop, randomly choosing to lookup or move based on a specified

reader/writer ratio. The move operation randomly chooses an old key and a

new key from the range of 0 to twice the maximum initial value ([0, 8191] for

this experiment); it then attempts to move the item with the old key to the

item with the new key. The lookup operation randomly chooses a key from

the same range and performs a lookup. The lookup and the move operation

each increment a thread-local count of the number of operations completed.

The machine used for testing had 16 IBM POWER6 processors at 4.7GHz,

each with two cores of two logical threads each, for a total of 64 hardware-

supported threads (henceforth referred to simply as “CPUs”). This machine

ran the Linux 2.6.28 kernel, compiled for the 64-bit powerpc architecture,

using the “classic” RCU implementation [54] and no preemption. To observe

56

scalability, the benchmark ran each hash table implementation on 1, 2, 4, 8,

16, 32, and 64 CPUs. To obtain enough samples for statistical analysis, the

benchmark ran each implementation 10 times, for 30 seconds each time. To

observe the effect of a varying read to write ratio, each implementation ran

with the read to write ratio set to 999999:1, 999:1, and 1:1.

3.4 Performance Analysis

Section 3.4.1 gives the performance results for the hash-table lookup opera-

tion, and section 3.4.2 gives the results for the move operation. Section 3.4.3

summarizes these results.

3.4.1 Hash Lookup Performance

Figures 3.4, 3.5, and 3.6 show the average number of lookups in 30 seconds

for each hash table implementation as the number of CPUs used increases;

the three figures depict the three decreasing read to write ratios.

The results show clear separation into groups. For the two read-biased

workloads, the proposed hash table algorithm (labeled “rcu”) proves the clear

winner, scaling better than the Linux kernel’s current approach based on

sequence locks (“rcu seq”) by a significant margin. The algorithms based on

per-bucket mutual exclusion (“spinlock” and “rwlock”) follow at a distance

with barely positive scalability, and the algorithms based on whole-table

mutual exclusion (“table spinlock” and “table rwlock”) scale so badly that

they remain barely distinguishable from the x-axis.

57

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 1 2 4 8 16 32 64

R
ea

ds

CPUs

rcu
rcu_seq

rwlock
spinlock

table_rwlock
table_spinlock

Figure 3.4: Average lookups in 30 seconds by number of CPUs with 999999:1
read:write ratio

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 1 2 4 8 16 32 64

R
ea

ds

CPUs

rcu
rcu_seq

rwlock
spinlock

table_rwlock
table_spinlock

Figure 3.5: Average lookups in 30 seconds by number of CPUs with 999:1
read:write ratio

58

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 1 2 4 8 16 32 64

R
ea

ds

CPUs

rcu
rcu_seq

rwlock
spinlock

table_rwlock
table_spinlock

Figure 3.6: Average lookups in 30 seconds by number of CPUs with 1:1
read:write ratio

At the lower 999:1 read to write ratio, the rcu seq algorithm scales much

worse for larger numbers of CPUs, likely due to retries or contention for

the sequence lock; the proposed algorithm suffers only a minor scalability

degradation with the decreased read to write ratio. With the balanced 1:1

read to write ratio, per-bucket mutual exclusion outperforms the deferred

destruction approaches as expected; however, the proposed algorithm still

scales far better than the sequence-lock-based algorithm used in the Linux

kernel when used with the non-read-biased workload.

At all three read to write ratios, per-bucket spinlocks outperform per-

bucket reader-writer locks, even on the full 64 CPUs. Reader-writer locks

have a higher critical section overhead than ordinary spinlocks, and for small

critical sections this overhead nullifies the benefits of concurrent readers.

59

3.4.2 Hash Move Performance

Figures 3.7, 3.8, and 3.9 show the average number of moves in 30 seconds for

each hash table implementation as the number of CPUs used increases; the

three figures again depict the three decreasing read to write ratios: 999999:1,

999:1, and 1:1.

Unexpectedly, for read-biased workloads, the deferred destruction ap-

proaches actually outperform per-bucket mutual exclusion for writes, despite

their higher overhead. I speculate that the write side of these algorithms may

benefit from decreased contention with readers. Again, the proposed algo-

rithm significantly outperforms the sequence-lock-based algorithm, with the

performance difference increasing at the less read-biased 999:1 read to write

ratio, likely due to retries or contention for the sequence lock. Per-bucket

mutual exclusion follows at a distance, with spinlocks still outperforming

reader-writer locks; whole-table mutual exclusion remains at the bottom.

For the balanced 1:1 read to write ratio, per-bucket mutual exclusion

takes a healthy lead, with spinlocks still winning over reader-writer locks.

However, even for this workload, the proposed algorithm scales far better

than the sequence-lock-based algorithm used in the Linux kernel.

3.4.3 Performance Summary

The proposed hash table move algorithm provides marked performance and

scalability advantages compared to the current state of the art used in the

60

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16 32 64

W
rit

es

CPUs

rcu
rcu_seq

rwlock
spinlock

table_rwlock
table_spinlock

Figure 3.7: Average moves in 30 seconds by number of CPUs with 999999:1
read:write ratio

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 1 2 4 8 16 32 64

W
rit

es

CPUs

rcu
rcu_seq

rwlock
spinlock

table_rwlock
table_spinlock

Figure 3.8: Average moves in 30 seconds by number of CPUs with 999:1
read:write ratio

61

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1 2 4 8 16 32 64

W
rit

es

CPUs

rcu
rcu_seq

rwlock
spinlock

table_rwlock
table_spinlock

Figure 3.9: Average moves in 30 seconds by number of CPUs with 1:1
read:write ratio

Linux kernel. It proves the clear winner for read-biased workloads, and de-

grades gracefully for balanced workloads.

3.5 Summary

I have presented novel algorithms for a concurrent hash table, supporting

a semantically atomic move operation based on cross-linking hash chains.

Benchmarks of the proposed concurrent hash table implementation demon-

strated a 6x scalability improvement for lookups versus fine-grained locking,

and a 1.5x improvement versus the current state of the art in Linux. Read-

biased workloads provided the highest scalability and performance, but the

algorithm remained competitive even for balanced workloads.

The hash table move operation allows fast scalable lookups by making it

possible for those lookups to avoid all expensive synchronization operations.

62

This operation removes conflicts between readers and writers by making up-

dates appear semantically consistent after every visible step, and by deferring

destruction to maintain referential integrity.

Furthermore, the lookup algorithm involves no helping, rollback, or retry

code. In addition to improving performance, this gives lookups a determin-

istic response time, making them more suitable for use in code requiring

real-time response. This deterministic behavior assumes an appropriate real-

time implementation of deferred destruction, such as a real-time RCU imple-

mentation [20]. Similarly, the move algorithm does not wait on concurrent

readers; memory reclamation must wait until readers have completed, but

this can occur asynchronously as long as the system has sufficient memory.

This approach provided an example of the broader class of concurrent

programming techniques and data structures based on relativistic program-

ming, which share the common theme of allowing additional parallelism by

permitting concurrent access to shared data without a critical section. These

techniques use a copy-based update strategy to allow readers and writers to

run concurrently without conflicts, avoiding many of the non-scalable costs

of inter-processor communication, cache coherence, and synchronization.

However, allowing one version of a structure to be read concurrently

with updates to a different version of the same structure may permit weaker

memory-ordering behavior than normally expected by readers. For example,

a thread may walk a linked list concurrently with a sequence of insertions,

and observe a set of items that does not correspond to any state the list

63

passed through as a result of those insertions: it may see items inserted

later in time (from the perspective of the thread performing the insertions)

without seeing items inserted earlier.

Algorithms designed to work with relativistic programming must either

tolerate this weakened memory ordering, or take steps to ensure that the

data structure appears to change directly from one semantically consistent

state to another without inconsistent intermediate states. The hash-table

move operation described in this chapter implements the latter approach to

preserve the semantics described in section 3.1.1.

However, the algorithm documented in this chapter required complex

data-structure-specific reasoning to argue for its correctness. The develop-

ment of relativistic algorithms for other use cases currently requires the same

level of complex data-structure-specific reasoning. To ease the adoption of

relativistic programming techniques, chapter 4 presents the relativistic causal

ordering model, a generalized memory model supporting the construction of

algorithms for a broad class of data structures without the need for data-

structure-specific reasoning.

64

Chapter 4

The Relativistic Causal Ordering Model

Section 4.1 outlines the design constraints and assumptions supporting the

relativistic causal ordering model, including the minimal functionality ex-

pected from the underlying shared-memory system. Section 4.2 provides

terminology supporting the definition of the relativistic causal ordering prop-

erty. Section 4.3 defines the relativistic causal ordering property itself. Sec-

tion 4.4 defines abstract versions of the barrier operations used to enforce

the relativistic causal ordering property on weakly ordered hardware models.

Section 4.5 shows how to construct algorithms based on relativistic causal

ordering, and provides specific rules for placing the abstract barrier opera-

tions to enforce this ordering. Section 4.6 demonstrates the relativistic causal

ordering property by using it to reconstruct the RCU linked-list algorithms

from section 2.6.2.

65

4.1 Design Constraints and Assumptions

Memory consistency models play a central role in reasoning about any concur-

rent program or programming methodology based on shared memory. Adve

and Boehm [1] showed that the choice of memory model determines funda-

mental properties of a concurrent programming environment, and makes a

fundamental tradeoff between scalability and ease of programming. Concur-

rent hardware and software can scale most effectively with less enforcement

of memory ordering, while the simplest implementation techniques rely on

stricter ordering models [1, 4, 30].

The relativistic causal ordering model acknowledges that real hardware

systems do not necessarily provide strict memory ordering models by default.

While such systems typically provide all the necessary primitives (such as

memory barriers) to enforce strict ordering models, those primitives require

explicit use in concurrent algorithms to enforce the desired ordering model.

As previously discussed, those primitives also result in many of the scalabil-

ity limitations that plague concurrent algorithms; thus, the relativistic model

minimizes their use. Furthermore, since the manual placement of those prim-

itives makes the construction of scalable algorithms complex, the relativistic

model systematizes the placement of these barriers, allowing the construction

of scalable concurrent algorithms without regard for the underlying hardware

model.

The design of the relativistic causal ordering model applies the end-to-end

66

principle [67], by specifying the minimal behavior expected from the under-

lying system, and then specifying consistency properties as features provided

by the relativistic causal ordering model rather than as demands placed on

the underlying system. The barrier insertion rules defined in section 4.5, to-

gether with the translation to hardware memory models defined in chapter 5,

separate the mechanical process of enforcing relativistic causal ordering from

the task of designing algorithms relying on relativistic causal ordering. This

allows relativistic algorithms to assume the consistency properties guaran-

teed by the relativistic ordering model without requiring that the underlying

system provide those properties for all programs.

The relativistic ordering model assumes a shared memory, with common

addressing of that memory among threads. This memory need not consist of a

single central resource accessed by all threads; it may consist of arbitrary local

caches or memories, with various caching policies, coherence mechanisms, and

consistency properties.

The underlying shared memory must provide a form of eventual consis-

tency : eventually all stored values should propagate to become accessible

for all potentially interested load operations [74, 79]. Furthermore, while

eventual consistency only requires that stores propagate once writers stop

performing new stores, real hardware propagates stores continuously even

while writers continue to perform new stores, and the relativistic model (like

most synchronization techniques) assumes this stronger form of eventual con-

sistency. Multiple stores to the same address must still result in a single value

67

eventually propagating to all readers, though determining the winning store

requires synchronization between writers. Limiting the duration of “eventu-

ally”, or controlling the order of load and store operations, requires explicit

constraints; the ordering model will provide the necessary constraints and

their semantics.

4.2 Terminology

Given an address in memory, a thread may load a value from that address,

or store a value to that address. The value returned by a load must precisely

match a value stored by a previous store to the same address, and not an

arbitrary value or a bitwise combination of previously stored values. While

synchronization algorithms without this requirement do exist, notably Lam-

port’s bakery algorithm for mutual exclusion [38], supporting joint-access

parallelism without this property would prove far more difficult, and existing

shared-memory systems all guarantee this property, at least for word-sized,

word-aligned memory operations.

At the data-structure level, high-level read and write operations consist

of delineated sequences of underlying memory loads and stores, respectively.

Each read or write operation has a well-defined beginning and end, and cor-

responds to a high-level semantic operation provided by the data structure.

For instance, linked lists provide lookups (a read operation), insertion (a

write), and removal (a write). The hash table defined in chapter 3 addition-

ally provides a node-move operation (a write). At any given time, a thread

68

will either act as a reader, performing a read operation, or a writer, perform-

ing a write operation; a thread can perform a series of both read or write

operations, but will only take on one or the other role at any given time.

Note that while a write operation frequently includes both loads and

stores, readers cannot observe the load operations performed by writers; thus,

the analysis of concurrent reads and writes can treat writes as consisting

entirely of store operations. Similarly, a read may perform store operations

to private memory, but does not perform store operations on the shared data

structure; thus, from a writer’s perspective a read consists entirely of load

operations.

Readers run concurrently with each other and with writers; they require

no synchronization other than that provided by the implementation of the

relativistic causal ordering model. Writers run concurrently with readers,

but must synchronize with each other using some other mechanism, such as

mutual exclusion.

Readers have a natural ordering of load operations, as defined by their

program order. That program order arises from the traversal order of the

shared data structure accessed by the reader; for instance, walking a list

from head to tail, or a tree from the root to a leaf. Similarly, writers imply

a natural ordering of store operations as well, based on their own program

order; writers may choose to relax the ordering requirements between two

stores, defining a partial order. Without further constraints, however, those

orderings remain entirely local to the individual readers and writers.

69

4.3 The Relativistic Causal Ordering Property

The relativistic causal ordering model enforces a causality property: a reader

that loads two different addresses will observe results consistent with the

order of stores to those addresses. This causality property allows readers to

rely on the natural local orderings of memory operations within writers, and

vice versa.

Given a writer performing two store operations ordered by its desired

local partial order, and a reader performing load operations on the locations

of both of those writes, the relativistic causal ordering property guarantees

that if the reader loads the value stored by the later store, it will load the

value stored by the earlier store. Note that this property holds regardless of

the order of the load operations within the reader.

The proscribed case would allow the reader to observe a result inconsistent

with the writer’s desired order. By avoiding this case, the relativistic ordering

model ensures that the reader observes a state of memory consistent with a

single point in the writer’s order.

This property avoids the need to analyze complex interactions between

multiple load and store operations. Instead, a reader appears to execute

atomically between two ordered store operations of the writer: the reader

can observe some prefix of the stores performed by the writer, and cannot

observe the remaining stores. While writers do not run atomically, and read-

ers can observe intermediate states, writers can safely assume that their store

70

operations become visible to readers in order, and need not consider out-of-

order stores. The writer thus need only consider the state of memory (and

the corresponding semantics of data structures in memory) after each store

operation it performs, rather than every possible interleaving of load and

store operations.

In the case where the writer enforces program order rather than some

looser partial order, this makes the number of states to consider linear in the

number of store operations, rather than exponential as in the case without

this ordering property.

The relativistic ordering model provides a stronger consistency model

than PRAM consistency [42], as it enforces the ordering of stores from a sin-

gle writer. If causally-related writers enforce ordering between their causally-

related stores just as they do between stores within the same writer, then

relativistic causal ordering also provides a stronger consistency model than

causal consistency [2]. Both PRAM consistency and causal consistency only

require that a series of loads performed by a reader observe an ordered series

of stores in a manner that does not regress: each load can observe strictly

more writes than the previous load. The relativistic ordering model elimi-

nates the interleaving entirely, requiring all loads within a reader to observe

the same prefix of stores performed by a writer. This creates a form of trans-

action for the reader, making its entire series of loads appear atomic with

respect to individual store operations.

71

4.4 Abstract Barrier Operations

Enforcing the relativistic causal ordering property on systems with weaker or-

dering properties requires explicit ordering constraints in readers and writers,

expressed in the form of barrier operations. These barrier operations pro-

mote certain local ordering properties within a thread into global ordering

properties across threads. Because barrier operations vary between hardware

architectures, this section provides a set of abstract barriers with well-defined

ordering properties. Section 4.5 shows how to insert these abstract barriers

in readers and writers to enforce relativistic causal ordering; chapter 5 then

shows how to translate these abstract barriers to concrete implementations

suitable for running on hardware.

Relativistic causal ordering assumes three types of barriers: load barriers,

store barriers, and wait-for-readers barriers.

A load barrier enforces a causal property between preceding loads and

subsequent loads. Given a reader performing two loads separated by a load

barrier, if the first load observes the result of a given store, the second load

will not fail to observe any store ordered before the given store. (See sec-

tion 5.1 and the definition of load barriers on real hardware for why this

constraint need not imply an expensive hardware barrier.)

A store barrier enforces a causal property between preceding stores and

subsequent stores. Given a writer performing two stores separated by a store

barrier, if a reader performs loads on the locations of both of those stores,

72

and the earlier load observes the later store, the later load will observe the

earlier store.

Notice that the definitions of load and store barriers interact. A load

barrier creates a causal chain between loads and the partial order of stores

as defined by writers; a store barrier creates a causal chain between stores

and the order of loads as defined by readers.

A wait-for-readers barrier enforces ordering between store operations and

an entire reader. Given a writer performing two stores separated by a wait-

for-readers barrier, if a reader performs a load at the same address as the

earlier store and fails to observe the result of that store, a later load in the

same reader will fail to observe the results of any later store in the same

writer.

The definitions of the abstract load and store barriers derive from the

portable barrier abstractions used in Linux and their use in RCU-based algo-

rithms. The definition of wait-for-readers comes directly from RCU itself [47].

4.5 Constructing Relativistic Algorithms

Building on the definitions of the underlying shared-memory model (sec-

tion 4.1), the relativistic causal ordering property (section 4.3), and the bar-

rier operations used to enforce this ordering property (section 4.4), this sec-

tion presents the generalized construction technique for scalable concurrent

data structure algorithms.

The relativistic ordering model allows separating the construction of con-

73

current algorithms into three components: the construction of reader and

writer algorithms based on the desired memory model, the placement of

barriers to properly enforce that memory model on real hardware, and the

synchronization between writers.

Relativistic data-structure write algorithms require some adaptation from

the normal assumptions of sequential algorithms. While a relativistic writer

need not cope with arbitrarily interleaved readers, it must not block readers

at any time, and thus it must assume that readers may run to completion be-

tween any pair of ordered writes. Therefore, each store operation performed

by a relativistic writer must leave the data structure in a consistent state

for readers (though not necessarily for other writers, depending on writer

synchronization).

Since the underlying shared-memory model allows a writer to assume that

a single store operation will appear atomic to readers, a relativistic writer

may manipulate pointers within a data structure and assume that readers

will see either the old or new pointer value. If a writer needs to modify a

larger value atomically, it may do so by constructing a new value (including

any outbound pointers), and then atomically changing the pointer to that

node.

Since the relativistic causal ordering model makes readers appear to run to

completion between two ordered store operations, without interleaving with

concurrent writers, relativistic data-structure read algorithms need not differ

from the sequential algorithms usable with mutual exclusion or transactions.

74

Because relativistic readers define a total order on their loads, rather

than a partial order, translating relativistic read algorithms to real systems

requires inserting a load barrier between every pair of load operations in a

reader. (Again, see section 5.1 for why this requirement need not imply an

expensive hardware load barrier.)

To determine where to insert barriers in a relativistic writer, consider

any pair of store operations in a writer, which may potentially require the

insertion of some form of barrier separating them. Per the relativistic causal

ordering property (section 4.3), the translation must prevent the case where

a reader loads from the locations of both stores, observes the later store, but

fails to observe the earlier store. This leads to three independent cases:

1. If no reader exists that loads from the locations of both stores, then no

reader may violate the relativistic causal ordering property. Thus, the

writer need not execute any barrier operation between the two store

operations.

2. If readers exist that load from the locations of both stores, but all such

readers load from those locations in the opposite order that the writer

stores to them, the writer need only execute a store barrier between the

two store operations. Per the definition of a store barrier (section 4.4),

if the earlier load observes the later store, the later load will observe

the earlier store. Thus, a store barrier ensures that the reader cannot

observe the later store without observing the earlier store, preserving

75

the relativistic causal ordering property.

3. If any reader exists that loads from the locations of both stores in

the same order that the writer stores to them, a store barrier does

not suffice. However, a wait-for-readers barrier will ensure the desired

ordering. Per the definition of a wait-for-readers barrier (section 4.4),

if the earlier load fails to observe the earlier store, no load operation in

the same reader, including the later load, can observe the later store.

Thus, a wait-for-readers barrier ensures that the reader cannot observe

the later store but not the earlier store, perserving the relativistic causal

ordering property.

These cases cover the most general scenario of loads and stores to arbi-

trary shared-memory addresses. In the case of a data structure stored in

shared memory, the three cases have natural interpretations based on the

reader traversal order in the data structure. If a writer performs store oper-

ations in independent parts of the data structure, not reachable in the same

reader traversal, the writer need not execute any barrier between those store

operations. If a writer performs store operations in the reverse of the order

that readers traverse the data structure, the writer need only execute a store

barrier between those store operations. If a writer performs store operations

in the same order that a reader traverses the data structure, the writer must

wait for readers between those store operations.

The traversal order of a reader need not define a total order on the el-

76

ements of a data structure. A relativistic data structure may have readers

traversing any individual pair of memory locations in both directions. In

such cases, one reader necessitates a store barrier between stores to those

two locations, while the other reader necessitates a wait-for-readers barrier.

However, a wait-for-readers barrier supersedes the need for a store barrier;

thus, writers simply need to wait for readers between any pair of stores to

those two locations, regardless of the order of those stores.

Note that if a single reader loads from the same location multiple times,

none of the ordering barriers can prevent that reader from potentially see-

ing different values for each such load. That limits the applicability of this

construction technique to data structures with acyclic read traversals. In

practice, this does not significantly restrict the set of data structures usable

with relativistic causal ordering; note in particular that it does not prohibit

cyclic accesses used by writers only, such as previous pointers in a doubly-

linked list or parent pointers in a tree. Shared cyclic data structures prove

difficult to handle via fine-grained locking as well. Section 7.1 suggests some

approaches for handling cyclic data structures and traversals.

Relativistic causal ordering does not define a specific method of synchro-

nization between writers. In the simplest case, writers may synchronize via

coarse-grained locking; if writes occur sufficiently infrequently compared to

reads, this may suffice. To improve concurrency, writers may opt for fine-

grained locking instead, partitioning the data structure into independent

pieces and applying a lock to each. Typically, these pieces will remain inde-

77

pendent for readers as well, making any ordering concerns between writers

moot; however, if a single reader may potentially load from locations stored

to simultaneously by multiple writers, and the ordering of those store opera-

tions matters, the writers must arrange an appropriate barrier between their

store operations.

As an alternative to fine-grained locking, writers may use a software trans-

actional memory (STM) system to provide write concurrency. Howard [33]

demonstrated a system combining relativistic readers with STM writers, such

that relativistic readers can exist outside the transactional system while still

preserving the isolation guarantees of the transactional system for writers.

This preserves the low-overhead scalable performance of the readers while

also allowing for scalable writers within the limitations of the STM system.

As previously suggested in the definition of the relativistic causal ordering

property, writers may specify a partial order for their store operations rather

than a total order, when the relative order of some store operations does

not actually matter to readers. For instance, a writer initializing a structure

before publishing it need not order individual store operations in the initial-

ization, as long as all such store operations become visible before the store

operation publishing the structure. The rules for the placement of barriers

still hold, but requirements to place barriers between an ordered pair of store

operations no longer specify an exact location in program order. Instead, the

writer need only place barriers to satisfy all the ordering constraints between

store operations. Note again that a wait-for-readers barrier between two

78

store operations supersedes the need for a store barrier between those same

two store operations. Finding a correct barrier placement will always prove

trivial; future work will present an algorithm for the optimization of finding

a minimal barrier placement for partially ordered writes.

4.6 Reconstructing a Scalable Linked List

As a simple demonstration of the relativistic causal ordering model, this sec-

tion reconstructs the algorithms for a scalable linked list. Previous work has

extensively explored the construction of scalable linked lists using RCU [47,

56], and section 2.6.2 documents the known algorithms for RCU linked lists.

The construction technique documented in section 4.5 should result in the

same algorithms.

Linked lists most commonly provide three operations: a read operation to

traverse the list (reconstructed in section 4.6.1), a write operation to insert

a new node (reconstructed in section 4.6.2), and a write operation to remove

an existing node (reconstructed in section 4.6.3).

4.6.1 Linked-List Lookup

Linked-list reads traverse the list from the head to the end via the next

pointers of each node; reads may stop after encountering a node meeting some

criteria. Per the construction technique, the read algorithm requires a load

barrier between each pair of load operations. (As shown in section 5.1, these

load barriers do not actually translate to expensive hardware load barriers.)

79

This barrier placement matches the established algorithm for RCU linked-list

reads.

4.6.2 Linked-List Insert

Inserting a new node involves the following store operations:

1. Initialize the contents of the new node.

2. Initialize the next pointer of the new node.

3. Publish the new node by pointing some existing node’s next pointer

(or the head pointer) to that node.

The first two steps need not occur in any particular order with respect to

readers; however, both of those steps must occur before the third, to ensure

that readers cannot read uninitialized memory. Thus, the writer’s partial

order puts steps 1 and 2 before step 3. Since readers necessarily load the

pointer stored to in step 3 before loading the node stored to in steps 1 and 2,

the causally related store operations occur in reverse traversal order. Thus,

this algorithm requires a store barrier between steps 1 and 3, and between

steps 2 and 3. Since the order of steps 1 and 2 doesn’t matter, the same

barrier can serve both purposes. The following algorithm implements the

required barrier placement:

1. Initialize the contents of the new node.

2. Initialize the next pointer of the new node.

80

• Execute a store barrier.

3. Publish the new node by pointing some existing node’s next pointer

(or the head pointer) to that node.

This implementation agrees with the established algorithm for RCU linked-

list insertion.

4.6.3 Linked-List Remove

Removing an existing node involves the following store operations:

1. Set the next pointer of the previous node (or the head pointer if re-

moving the first node) to point to the same place as the next pointer

of the node to remove.

2. Reclaim the memory associated with the node. (This effectively repre-

sents a store operation to the contents of the node, after which readers

must not access the contents of the node at all.)

These store operations occur in traversal order; thus, writers must exe-

cute a wait-for-readers barrier after making the node inaccessible but before

reclaiming the memory, resulting in the following implementation:

1. Set the next pointer of the previous node (or the head pointer if re-

moving the first node) to point to the same place as the next pointer

of the node to remove.

81

• Wait for readers.

2. Reclaim the memory associated with the node.

This implementation agrees with the established algorithm for RCU linked-

list removal.

4.7 Summary

Chapter 3 provided an example of the manual construction of a scalable

concurrent data structure, and the complex reasoning required to construct

and verify that data structure demonstrated the need for a memory ordering

model. This chapter presented the relativistic causal ordering model, in-

cluding the relativistic causal ordering property itself (section 4.3), and the

algorithm construction and barrier placement rules that enforce this ordering

property (section 4.5). Section 4.6 demonstrated that applying relativistic

causal ordering to a linked list recreates the same algorithms established in

previous publications on RCU linked lists. The next chapter provides con-

crete implementations of the abstract barrier operations to enforce relativistic

causal ordering on real hardware. Chapter 6 uses relativistic causal ordering

to construct a more complex data structure: a resizable hash table.

82

Chapter 5

Translating to Hardware Ordering Models

Chapter 4 defined the relativistic causal ordering property, and defined an

abstract set of barriers usable to enforce those properties on top of the un-

derlying shared-addressing system. Implementing the relativistic causal or-

dering model and algorithms using it on real hardware requires implementing

the abstract barrier operations in terms of those available on that hardware.

This chapter presents an implementation of relativistic causal ordering on

real shared-memory hardware.

A typical shared-memory multiprocessor system includes multiple lay-

ers of caching between memory and each processor in an effort to mitigate

the memory wall [29]. Such systems implement differing coherence proto-

cols to maintain some consistency property between processors, though none

implement the relativistic causal ordering property specified in chapter 4.

Caching layers, as well as other properties of an architecture, potentially

allow reordering of memory accesses in violation of the relativistic causal

ordering property. In particular, store operations may remain in a writer’s

store buffer or cache before reaching memory, and load operations may return

83

data from a reader’s cache without refreshing that cache from memory. All

such caching may have different durations for different memory addresses,

leading to potential reordering of store operations as observed by readers.

In this model, a load or store barrier effectively forces preceding opera-

tions to interact with memory before subsequent operations. (In practice, a

barrier may instead force an operation to become visible to other processors

by way of a cache coherence protocol without necessarily forcing it to reach

memory.)

In addition to the reordering possible in hardware, compilers and lan-

guage runtimes may also reorder operations, either directly or by providing

another layer of caching behavior [6, 29]. For instance, a compiler may load

a value from memory into a processor register, and reuse that register for a

subsequent load from the same address without reloading it from memory,

unless explicitly instructed to do otherwise.

Addressing any reordering provided by the compiler or language runtime

requires the use of the built-in ordering primitives in that compiler or run-

time. For example, the C language provides the volatile keyword, which

prohibits the compiler from caching the value of a variable. The GCC com-

piler additionally provides a “memory clobber” constraint that forces the

compiler to invalidate all cached references it holds and re-fetch values from

memory. The implementations of all types of barriers must additionally make

use of such primitives to ensure that the compiler or language runtime does

no more reordering than the underlying hardware.

84

5.1 Translating Load Barriers

A load barrier forces any load operations following the barrier to obtain

values from memory at least as up to date as those returned by load op-

erations prior to the barrier, with respect to each writer. A load barrier

does not, however, interact with the caching layers of processors other than

the one executing the barrier. This matches the semantics of various com-

mon load barrier instructions provided by current processors, as well as

portable abstractions such as the smp_rmb function in the Linux kernel,

the cmm_smp_rmb function provided by the userspace RCU implementation,

or atomic_thread_fence(memory_order_acquire) in the C11 and C++11

standards.

In the most general case, a reader performing a series of unrelated inde-

pendent reads would need to execute a load barrier operation between each

pair of reads. However, in practice, readers typically perform a series of re-

lated loads to traverse some data structure in shared memory. In particular,

readers often perform dependent load operations1, in which subsequent loads

depend on the results of previous loads. For instance, loading a pointer and

subsequently dereferencing that pointer constitutes a dependent load. All

current processors used in shared-memory multiprocessor systems automat-

ically preserve the ordering of dependent loads without any explicit barrier.

Thus, a reader performing a data structure traversal that consists entirely of

1Also commonly referred to as dependent read operations when not making a distinction
between the terms “load” and “read”.

85

dependent loads need not execute any expensive hardware memory barrier

instructions.

As a notable exception, the DEC Alpha processor did not order dependent

loads; concurrent algorithms that require portability to Alpha must use an

explicit barrier between dependent reads [13]. The Linux kernel provides an

smp_read_barrier_depends operation with precisely these semantics, which

uses an appropriate barrier on Alpha and compiles to nothing on all other

architectures. The Linux implementation of RCU also provides a function

(rcu_dereference) for the common case of dereferencing a pointer as a

dependent load, and this function includes the necessary barrier implicitly.

5.2 Translating Store Barriers

For writers, a store barrier follows the same model of bypassing caching

layers between the writer and memory. Executing a store barrier does not

necessarily guarantee that preceding store operations have reached memory;

however, it does guarantee that subsequent store operations will not reach

memory any sooner than preceding store operations. This matches the se-

mantics of common store barrier instructions provided by current processors,

as well as portable abstractions such as the smp_wmb function in the Linux

kernel, the cmm_smp_wmb function in the userspace RCU implementation,

or atomic_thread_fence(memory_order_release) in the C11 and C++11

standards.

86

5.3 Translating Wait-For-Readers

Implementing the wait-for-readers barrier requires a mechanism that allows

writers to wait for current readers to complete, ideally without incurring

synchronization costs in readers. Read-Copy Update (RCU) [47, 23, 56]

provides an implementation of this barrier.

As documented in section 2.6.1, RCU provides a synchronize_rcu oper-

ation which waits for all currently running readers to finish. Using this oper-

ation requires delimiting the start and end of each read operation using the

lightweight, CPU-local operations rcu_read_lock and rcu_read_unlock.

synchronize_rcu provides the necessary semantics for the wait-for-readers

barrier: if a writer executes a synchronize_rcu between two store opera-

tions, any reader that fails to observe the earlier store must complete before

synchronize_rcu completes, and therefore cannot observe the store opera-

tions after the synchronize_rcu. RCU preserves the scalability of readers by

not adding any expensive synchronization primitives to those readers; RCU’s

read-side delineation incurs little to no cost.

RCU additionally provides an asynchronous mechanism, call_rcu, to

wait for current readers and execute a callback when they have all com-

pleted. Implementations of relativistic algorithms could choose to use this

primitive as an alternative to synchronize_rcu, splitting the write opera-

tions that must occur after the wait-for-readers barrier into a callback invoked

by call_rcu.

87

Chapter 6

Relativistic Concurrent Hash-Table Resize

Section 4.6 provided a simple example of applying the relativistic causal or-

dering model to the construction of a relativistic linked list. This chapter

presents a more complex example: constructing a concurrent hash-table re-

size algorithm based on relativistic causal ordering.

The performance of a hash table depends heavily on the number of hash

buckets. Making a hash table too small will lead to excessively long hash

chains and poor performance. Making a hash table too large will consume

too much memory, increasing hardware requirements or reducing the mem-

ory available for other applications or performance-improving caches. Many

users of hash tables cannot know the proper size of a hash table in advance,

since no fixed size suits all system configurations and workloads, and the

system’s needs may change at runtime. Such systems require a hash table

that supports dynamic resizing.

Resizing a concurrent hash table based on mutual exclusion requires min-

imal complexity: simply acquire the appropriate locks to exclude concurrent

reads and writes, then move items to a new table. However, relativistic

88

algorithms cannot exclude readers ; doing so would require expensive read-

side synchronization, severely limiting scalability and performance. Thus,

any relativistic hash-table resize algorithm must cope with concurrent reads

while resizing.

The algorithms presented in this chapter support resizing an RCU-based

hash table without blocking or slowing concurrent lookups. Because lookups

can occur at any time, the relativistic hash table must remain in a consistent

state at all times, and must never allow a lookup to spuriously miss an

entry due to a concurrent resize operation. Furthermore, the resize algorithm

avoids copying the individual hash-table nodes, allowing readers to maintain

persistent references to table entries.

6.1 Relativistic Hash Tables

Any hash table requires a hash function, which maps entries to hash buckets

based on their key. The same key will always hash to the same bucket;

different keys will ideally hash to different buckets, but may map to the same

bucket, requiring some kind of conflict resolution. The algorithms described

here work with hash tables using open chaining, where each hash bucket has

a linked list of entries whose keys hash to that bucket. As the number of

entries in the hash table grows, the average depth of a bucket’s list grows

and lookups become less efficient, necessitating a resize.

Resizing the table requires allocating a new region of memory for the new

number of hash buckets, then linking all the nodes into the new buckets. To

89

allow resizes to atomically substitute the new hash table for the old, readers

access the hash-table structure through a pointer; this structure includes the

array of buckets and the size of the table.

For simplicity, relativistic hash tables constrain resizing to change the

number of buckets by integral factors—for instance, doubling or halving the

number of buckets. This guarantees two constraints: first, when shrinking

the table, each bucket of the new table will contain all entries from multiple

buckets of the old table; and second, when growing the table, each bucket of

the new table will contain entries from at most one bucket of the old table.

Section 6.1.1 provides the hash-table lookup operation. Section 6.1.2

provides the hash-table shrink operation. Section 6.1.3 provides the hash-

table expand operation. Section 6.1.4 provides variations of the shrink and

expand operations that can resize a hash-table in-place rather than creating

a new table and later reclaiming the old.

6.1.1 Hash-Table Lookup

The relativistic hash lookup reader follows the standard algorithm for open-

chain hash table lookups:

1. Load the hash-table pointer.

2. Load the number of buckets and the pointer to the array of buckets.

3. Hash the desired key, modulo the number of buckets.

4. Load the head pointer of the corresponding hash bucket in the array.

90

5. Traverse the linked list, comparing each entry’s key to the desired key.

6. If the current entry’s key matches the desired key, the desired value

appears in the same entry; use or return that value.1

Making this algorithm work as a relativistic reader requires wrapping the

algorithm in RCU read-side delineation (rcu_read_lock and rcu_read_unlock)

and adding load barriers between each pair of loads. Since this algorithm per-

forms entirely dependent loads, those load barriers do not require expensive

hardware barriers on modern architectures.

Lookups will traverse the hash table concurrently with other operations,

including resizes. A resize must not disrupt concurrent lookups, such as

by causing a lookup to fail to find a node. Thus, each hash chain must

always contain all those items that hash to the corresponding bucket. Most

prior hash table resize algorithms ensure that a hash chain contains exactly

those items. This relativistic resize algorithm loosens this constraint, by

also allowing hash chains to ephemerally contain items that hash to different

buckets. Let the term imprecise refer to such hash chains, since they include

all items that hash to that bucket but may include others as well. Readers

must tolerate imprecise hash chains, but this does not require any changes

to the standard lookup algorithm, which already ignores any element whose

key does not match.

1If the lookup algorithm needs to hold a reference to the entry after the reader ends,
it must take any additional steps to protect that entry before ending the reader.

91

6.1.2 Hash-Table Shrink

Because resizing occurs by integral factors, when shrinking the table, each

bucket of the new table will contain all entries from multiple buckets of the

old table; together with the notion of imprecise hash chains, this allows the

straightforward construction of a relativistic algorithm to shrink a hash table:

1. Allocate the new, smaller table.

2. Link each bucket in the new table to the first bucket in the old table

containing entries that hash to the new bucket.

3. Link the end of each such bucket to the beginning of the next such

bucket; each new bucket will thus chain through as many old buckets

as the resize factor.

4. Set the table size.

5. Publish the new, valid hash table.

6. Reclaim the old hash table.

All of the store operations in steps 1 through 4 must occur to make the

hash table valid before the publication of the table in step 5. Because readers

load the table reference before loading anything else, these store operations

occur in reverse traversal order, so the writer must execute a store barrier

between steps 4 and 5.

92

The publication of the new hash table in step 5 must occur before the

reclamation of the old hash table in step 6. Because readers load the table

reference before loading the contents of the table, this pair of stores occurs

in traversal order, so the writer must wait for readers between steps 5 and 6.

Finally, the shrink algorithm must include appropriate write-side synchro-

nization to prevent conflicts between concurrent resize attempts, or between

a resize and any other write to the hash table.

With barriers and write-side synchronization included, the complete al-

gorithm for the relativistic hash shrink writer becomes:

1. Synchronize with other writers, such as by acquiring a lock. (This does

not exclude readers, nor do readers exclude writers.)

2. Allocate the new, smaller table.

3. Link each bucket in the new table to the first bucket in the old table

containing entries that hash to the new bucket.

4. Link the end of each such bucket to the beginning of the next such

bucket; each new bucket will thus chain through as many old buckets

as the resize factor.

5. Set the table size.

• Execute a store barrier.

6. Publish the new, valid hash table.

93

7. Release any locks or other write-side synchronization acquired in step 1.

• Wait for readers.

8. Reclaim the old hash table.

Figure 6.1 provides an example of the relativistic hash shrink algorithm.

6.1.3 Hash-Table Expand

Because resizing occurs by integral factors, when growing the table, each

bucket of the new table will contain entries from at most one bucket of the

old table. This constraint allows the construction of a relativistic algorithm

to expand a hash table, albeit not quite as straightforwardly. The relativistic

causal ordering property guarantees that store operations will become visible

in order, but the hash table must remain semantically valid after every store

operation. The concept of imprecise hash chains broadens the definition of

“semantically valid” enough to allow for an incremental resize operation.

All of these constraints together provide enough guidance to construct the

expand algorithm.

As before, the algorithm will begin by allocating the new table, and will

conclude by reclaiming the old table. However, in the shrink case, the new

table did not become valid until the rest of the algorithm had completed, and

thus publication occurred at the end. The reverse holds true for expansion:

the expanded table will need to break many links present in the old table, to

partition nodes into buckets, which will quickly make the old table invalid.

94

(a) Initial state:

odd

even

1 3

2 4

(b) Initialize new buckets:

odd

even

all

1 3

2 4

(c) Link old chains:

odd

even

all

1 3

2 4

(d) Publish new buckets:

all

odd

even

1 3 2 4

(e) Wait for readers:

all

odd

even

1 3 2 4

(f) Reclaim:

all 1 3 2 4

Figure 6.1: Shrinking a relativistic hash table. White nodes indicate reach-
ability by odd readers, black nodes by even readers, and gray nodes by both
odd and even readers. (a) The initial state has two buckets, one for odd num-
bers and one for even numbers. (b) The resizer allocates a new one-bucket
table and links it to the appropriate old bucket. Dashed nodes exist only in
writer-private memory, unreachable by readers. (c) The resizer links the odd
bucket’s chain to the even bucket, making the odd bucket’s chain imprecise.
(d) The resizer publishes the new table. (e) After waiting for readers, (f) the
resizer can free the old table.

95

all

odd

even

1 2 3 4

Figure 6.2: Example of a hash table with imprecise “zipped” buckets. The
“all” bucket represents a smaller hash table, with all nodes in a single bucket.
The “odd” and “even” buckets represent an expanded hash table. Each
bucket contains all the nodes a reader expects to find, as well as some the
reader will safely ignore.

Thus, before invalidating the old table, readers must begin using the new

table, which must therefore start out in a semantically valid state. Imprecise

hash chains allow the construction of a semantically valid hash table with

an expanded set of hash buckets, but whose hash chains remain those of the

smaller table, with multiple hash buckets referencing each chain; figure 6.2

gives an example of an expanded hash table with imprecise “zipped” buckets.

The remainder of the algorithm must therefore “unzip” the buckets, parti-

tioning the nodes into the desired target buckets, all while keeping the entire

hash table semantically valid.

Finally, note that unzipping a hash chain requires a series of ordered

store operations in that chain, starting at the beginning and proceeding to-

wards the end. Readers will access the locations of multiple such stores while

traversing a hash bucket, in the same order that they occur, necessitating

wait-for-readers barriers between each pair of stores. However, no one reader

will access the nodes from multiple zipped buckets, so the order of stores in

different buckets does not matter. Thus, the writer’s partial order contains

96

an independent ordered series of stores for each bucket. Executing the unzip

operations for each bucket in parallel allows them to share the same wait-

for-readers barriers, minimizing the number of these barriers and making the

expansion algorithm more efficient.

The following relativistic hash-table expansion algorithm implements all

of the aforementioned constraints:

1. Allocate the new, larger table.

2. For each new bucket, search the corresponding old bucket for the first

entry that hashes to the new bucket, and link the new bucket to that

entry, constructing a valid “zipped” hash table.

3. Set the table size.

4. Publish the new table pointer.

5. For each non-empty bucket in the old table (each of which contains

items from multiple buckets of the new table):

5.1 Advance the old bucket pointer one or more times until it reaches

a node that doesn’t hash to the same bucket as the previous node.

Call the previous node p.

5.2 Find the subsequent node that does hash to the same bucket as

node p, or NULL if no such node exists.

5.3 Set p’s next pointer to that subsequent node pointer, bypassing

the nodes that do not hash to p’s bucket.

97

6. If any changes occurred in this pass, repeat from step 5.

7. Reclaim the old hash table.

Steps 1 through 3 initialize the new table, which must occur before pub-

lishing the new table in step 4; because readers load the table pointer before

any contents of the table, these stores occur in reverse traversal order, neces-

sitating a store barrier between steps 3 and 4.

The publication of the new table in step 4 must occur before the loop

unzipping the hash chains starting in step 5, because unzipping makes the

old table invalid. These store operations occur in traversal order, so the

writer must wait for readers between steps 4 and 5.

Each iteration of the unzipping loop in steps 5 through 6 must complete

before the subsequent iteration. The unzipping process modifies hash chains

in traversal order, so the writer must wait for readers after each iteration of

the loop.

Finally, the expansion algorithm must include appropriate write-side syn-

chronization to prevent conflicts between concurrent resize attempts, or be-

tween a resize and any other write to the hash table.

With the barriers and write-side synchronization in place, the finished

relativistic hash-table expansion algorithm looks as follows:

1. Synchronize with other writers, such as by acquiring a lock. (This does

not exclude readers, nor do readers exclude writers.)

2. Allocate the new, larger table.

98

3. For each new bucket, search the corresponding old bucket for the first

entry that hashes to the new bucket, and link the new bucket to that

entry, constructing a valid “zipped” hash table.

4. Set the table size.

• Execute a store barrier.

5. Publish the new table pointer.

• Wait for readers.

6. For each non-empty bucket in the old table (each of which contains

items from multiple buckets of the new table):

6.1 Advance the old bucket pointer one or more times until it reaches

a node that doesn’t hash to the same bucket as the previous node.

Call the previous node p.

6.2 Find the subsequent node that does hash to the same bucket as

node p, or NULL if no such node exists.

6.3 Set p’s next pointer to that subsequent node pointer, bypassing

the nodes that do not hash to p’s bucket.

• Wait for readers.

7. If any changes occurred in this pass, repeat from step 6.

8. Release any locks or other write-side synchronization acquired in step 1.

99

9. Reclaim the old hash table.

For an example of the expansion algorithm, see figure 6.3.

Note that the expansion algorithm executes several wait-for-readers bar-

riers while holding write-side locks or other synchronization. Assuming the

use of mutual exclusion, this will exclude all write operations for a prolonged

period while waiting on readers. However, unlike many hash-table resize al-

gorithms, this algorithm permits readers to run concurrently with a resize

operation, and does not impact the throughput of concurrent readers.

6.1.4 Variation: Resizing in Place

The preceding descriptions of the resize algorithms assumed an out-of-place

resize: allocate a new table, move all the nodes, reclaim the old table. How-

ever, some adaptation to the resize algorithms would allow them to perform

resizes in place instead, given a memory allocator that can resize existing

allocations without moving them. This has two primary side effects: the

resizer cannot count on the new table remaining private until published, and

the buckets shared with the old table will remain initialized to the same

values.

Shrinking a hash table in place requires adapting the previous shrink

algorithm to avoid disrupting unfinished readers. The smaller table will

consist of a prefix of the current table, and the buckets in that prefix already

point to the first of the lists that will appear in those buckets. Thus, the

shrink algorithm need not take a separate step to publish the new table;

100

(a) Initial state:

all 1 2 3 4

(b) Initialize new buckets:

all

odd

even

1 2 3 4

(c) Publish new buckets:

all

odd

even

1 2 3 4

(d) Wait for readers:

aux

odd

even

1 2 3 4

(e) Unzip one step:

aux

odd

even

1 2 3 4

(f) Wait for readers:

aux

odd

even

1 2 3 4

(g) Unzip again:

aux

odd

even

1 2 3 4

(h) Final state:

odd

even

1 3

2 4

Figure 6.3: Growing a relativistic hash table. Colors as in figure 6.1. (a) The
initial state contains one bucket. (b) The resizer allocates a new two-bucket
table and points each bucket to the first item with a matching hash; this
produces valid imprecise hash chains. (c) The resizer can now publish the
new hash table. However, an even reader might have read the old hash chain
just before publication, making item 1 gray—reachable by both odd and
even readers—and preventing safe modification of its next pointer. (d) The
resizer waits for readers; new even readers cannot reach item 1. (e) The
resizer updates item 1’s next pointer to point to the next odd item. (f) After
another wait for readers, (g) the unzipping process can continue. (h) The
final state.

101

instead, setting the size of the table effectively publishes the new table. Since

readers load the table size before loading the buckets, the shrink algorithm

must wait for readers after concatenating the buckets and before setting the

table size:

1. Synchronize with other writers, such as by acquiring a lock. (This does

not exclude readers, nor do readers exclude writers.)

2. As before, concatenate all the buckets containing entries that hash to

the same bucket in the smaller table.

• Wait for readers.

3. Set the table size to the new, smaller size.

• Wait for readers.

4. Shrink the table’s memory allocation.

5. Release any locks or other write-side synchronization acquired in step 1.

Expanding a hash table in place requires a similar adaptation to the

expansion algorithm, adding a single wait-for-readers before setting the new

size. However, the expansion algorithm still requires auxiliary storage equal

to the size of the old table. Together with the newly expanded allocation, this

makes in-place expansion require the same amount of memory as out-of-place

expansion.

102

6.2 Comparisons with Other Algorithms

Existing RCU-based concurrent hash tables in the Linux kernel, such as the

directory-entry cache (dcache) [55, 41], do not support resizing; they allocate

a fixed-size table at boot time based on system heuristics such as available

memory. Prior attempts to build resizable RCU hash tables have arisen from

the limitations of these fixed-size RCU hash tables in the Linux kernel.

Nick Piggin’s “Dynamic Dynamic Data Structures” (DDDS) [64] supports

hash-table resizes, but DDDS slows down all lookups by requiring checks

for concurrent resizes, and furthermore requires that lookups during resizes

examine both the old and the new hash tables; relativistic hash tables do

neither. Section 6.3.1 discusses DDDS further.

Herbert Xu implemented a resizable multi-hash-table structure based on

RCU, in which every hash-table entry contains two sets of linked-list point-

ers so it can appear in the old and new hash tables simultaneously [83].

Together with a global version number for the structure, this allows readers

to effectively snapshot all links in the hash table simultaneously. However,

this approach drastically increases memory usage and cache footprint.

Various authors [28, 18, 57, 8] have proposed resizable concurrent hash

tables. Unlike relativistic hash tables, these algorithms require expensive

synchronization operations in readers, such as locks, atomic instructions,

or memory barriers. Furthermore, like DDDS, several of these algorithms

require retries on failure.

103

Maurice Herlihy and Nir Shavit documented numerous concurrent hash

tables, including both open-chained and closed tables [28]; all of these re-

quire expensive synchronization, and some require retries. Gao, Groote, and

Hesselink proposed a lock-free hash table using closed hashing [18]; their

approach relies on atomic operations and on helping concurrent operations

complete, both of which introduce synchronization overhead.

Maged Michael implemented a lock-free hash table based on compare and

swap (CAS) [57], though he did not propose a resize algorithm. Michael’s ta-

ble lookups avoid most expensive synchronization operations in the common

case (with the exception of load barriers), but must retry on any concurrent

modification. To support safe memory reclamation, Michael uses hazard

pointers [58], which provide a wait-for-readers operation similar to that of

RCU; hazard pointers can reduce wait-for-readers latency, but impose higher

reader cost [23].

The relativistic hash table presented here uses open hashing with per-

bucket chaining. Closed hash tables, which store entries inline in the array,

can offer smaller lookup cost and better cache behavior, but force copies

on resize. To decrease the cost of these copies, closed hash table buckets

can store pointers to large nodes rather than the nodes themselves, but this

introduces an additional indirection, eliminating the primary benefit of using

a closed table. Closed tables also require more frequent resizing, as they do

not gracefully degrade in performance when overloaded, but rather become

pathologically more expensive and then stop working entirely. Depending

104

on the implementation, removals from the table may not make the table

any emptier, as the entries must remain as “tombstones” to preserve reader

probing behavior.

Cliff Click presented a scalable lock-free resizable hash for Java based

on closed hashing [8]; this hash avoids most synchronization operations for

readers and writers by leaving the ordering of memory operations entirely un-

specified and reasoning about all possible resulting memory states and transi-

tions. (Readers require a load barrier but no other synchronization. Writers

require a CAS but not a store barrier.) Click’s use of state-based reasoning

to avoid ordering provides an interesting and potentially higher-performance

alternative to the causal-order enforcement in relativistic writers; such rea-

soning reduces the number of ordering relationships to enforce between store

operations. However, this state-based reasoning remains entirely specific to

the hash table design presented, with no generalizations offered to apply to

other data structures. Like DDDS, Click’s hash-table readers must probe

alternate hash tables during resizing.

Other approaches to resizable hash tables include that of Ori Shalev and

Nir Shavit, who proposed a “split-ordered list” structure consisting of a single

linked list with hash buckets pointing to intermediate list nodes [71, 28].

This structure allows resizing by adding or removing buckets, splitting or

joining the existing buckets respectively. This approach keeps the underlying

linked list in a novel sort order based on the hash key to allow splitting or

joining buckets without reordering. Split-ordered lists seem highly amenable

105

to a simple relativistic implementation, making the lookups scalable and

synchronization-free while preserving the lock-free modifications and simple

resizes.

As documented in chapter 3, I previously developed a relativistic al-

gorithm for moving a hash-table entry from one bucket to another atomi-

cally [76, 77]. This algorithm introduced the notion of cross-linking hash

buckets to make entries appear in multiple buckets simultaneously. How-

ever, this move algorithm required changing the hash key and potentially

copying the entry. This prevents readers from maintaining persistent ref-

erences to entries, which breaks real-world applications such as the Linux

dcache; dcache readers frequently maintain persistent references to dcache

entries via reference count.

The synthetic rcuhashbash-resize benchmarking framework documented

in section 6.3.2 consists of a Linux kernel module, using the implementation

of RCU in Linux. However, several portable RCU implementations exist out-

side the Linux kernel. Mathieu Desnoyers reimplemented RCU as a POSIX

userspace library, liburcu, for use with pthreads, with no Linux-specific code

outside of optional optimizations [10]. The real-world benchmarks based on

the memcached key-value storage engine (documented in section 6.3.3), use

liburcu to implement a modified memcached storage engine.

106

6.3 Benchmark Methodology

This section presents the methods and implementation details used in bench-

marking the hash-table resize algorithm. Section 6.3.1 outlines the other

resizable hash-table algorithms included in the benchmarks for comparison.

Section 6.3.2 documents the rcuhashbash-resize microbenchmark, and sec-

tion 6.3.3 documents the real-world benchmarks on memcached.

Section 6.3.4 provides a collected summary of the hypotheses from sec-

tions 6.3.1 through 6.3.3; the corresponding section 6.4.3, after the bench-

mark results, reviews all of these hypotheses and details how the benchmark

results confirm these hypotheses.

6.3.1 Other Benchmarked Algorithms

I evaluated relativistic hash tables both through microbenchmarks on the

data structure operations themselves, and through real-world benchmarks

on an adapted version of the memcached key-value storage engine. The

microbenchmarks directly compare the hash-table resize algorithm with two

other resize algorithms: reader-writer locking and DDDS. The real-world

benchmarks compare memcached’s default storage engine with a modified

memcached storage engine based on relativistic hash tables.

First, as a baseline, I implemented a simple resizable hash table based

on reader-writer locking. In this implementation, lookups acquired a reader-

writer lock for reading to lock out concurrent resizes. Resizes acquired the

107

reader-writer lock for writing to lock out concurrent lookups. With lookups

excluded, the resizer could simply allocate the new table, move all entries

from the old table to the new, publish the new table, and reclaim the old

table. This implementation will not scale well, but it represents the best-

known method based on mutual exclusion, and I included it to provide a

baseline for comparison.

For a more competitive comparison, I turned to Nick Piggin’s “Dynamic

Dynamic Data Structures” (DDDS) [64]. DDDS provides a generic algo-

rithm to safely move nodes between any two data structures, given only the

standard insertion, removal, and lookup operations for those structures. In

particular, DDDS provides another method for resizing an RCU-protected

hash table without blocking concurrent lookups (though it can delay them).

The DDDS algorithm uses two technologies to synchronize between re-

sizes and lookups: RCU to detect when readers have finished with the old

data structure, and a Linux construct called a sequence counter or seqcount

to detect if a lookup races with a resize. A seqcount employs a counter incre-

mented before and after moving each entry; the reader can use that counter,

together with an appropriate load barrier, to check for a resize step running

concurrently with any part of the read.

The DDDS lookup reader first checks for the presence of an old hash

table, which indicates a concurrent resize. If present, the lookup proceeds via

the concurrent-resize slow path; otherwise, the lookup uses a fast path that

simply performs a lookup within the current hash table. The slow path uses

108

a sequence counter to check for a race with a resize, then performs a lookup

first in the current hash table and then in the old table. It returns the result

of the first successful lookup, or loops if both lookups fail and the sequence

counter indicates a race with a resize. Note that the potentially unbounded

number of retries makes DDDS lookups non-wait-free, and could theoretically

lead to a livelock, though in practice resizes do not occur frequently enough

for a livelock to arise.

DDDS should perform fairly competitively with relativistic hash tables.

However, the DDDS lookup incurs more overhead than relativistic hash ta-

bles, due to the additional conditionals, the secondary table lookup, the

expensive load barrier in the sequence counter, and the potential retries with

a concurrent resize. Thus, relativistic hash tables should outperform DDDS

significantly when running a concurrent resize, and slightly even without a

concurrent resize.

For a real-world benchmark, I chose memcached, a key-value storage en-

gine widely used on servers as a high-performance cache. Memcached stores

key-value associations in a hash table, and supports a network protocol for

setting and getting key-value pairs. Memcached also supports timed expiry

of values, and eviction of values to limit maximum memory usage.

The default memcached storage engine makes extensive use of global

locks. In particular, a single global lock guards all accesses to the hash

table. As a result, memcached’s default engine should hit a hard scalability

limit, beyond which it will not scale to more requests regardless of available

109

resources.

Memcached requires the ability to scale to various workload sizes at run-

time; as a result, it requires a resizable hash table. Previous non-resizable

RCU hash tables could not provide the flexibility necessary for memcached.

I implemented a new relativistic storage engine in memcached, and mod-

ified memcached to support a new fast path for the GET request. mem-

cached’s default implementation goes to great lengths to avoid copying data

when servicing a GET request; memcached also services multiple concurrent

client connections per thread in an event-driven manner. As a result of these

two constraints, memcached maintains reference counts on each key-value

pair in the hash table, and holds a reference to the found item for a GET

from the time of the hash lookup to the time the response gets written back

to the client. In implementing the relativistic storage engine, I chose instead

to copy the value out of a key-value pair while still within a relativistic reader;

this allows the GET fast path to avoid interaction with the reference-counting

mechanism entirely. The GET fast path checks the retrieved item for poten-

tial expiry or other conditions that would require mutating the store, and

falls back to the slow path in those cases.

With the new relativistic storage engine, memcached should no longer hit

the hard scalability limit observed with the default engine, and GET requests

should continue to scale up to the limits of the test machine. Because I added

wait-for-readers barriers to the SET handling, SET will become marginally

slower, but the scalability of SET requests should not change; I believe this

110

tradeoff will prove acceptable in exchange for making GET requests scalable.

6.3.2 Microbenchmark: rcuhashbash-resize

To compare the performance and scalability of our algorithms to the alter-

natives, I created a test harness and benchmarking framework for resizable

hash-table implementations. I chose to implement this framework as a Linux

kernel module, rcuhashbash-resize. The Linux kernel already includes a

scalable implementation of RCU, locking primitives, and linked list primi-

tives. Furthermore, I created the hash-table resize algorithms with specific

use cases of the Linux kernel in mind, such as the directory entry cache. This

made the Linux kernel an ideal development and benchmarking environment.

The rcuhashbash-resize framework provides a common structure for

hash tables based on Linux’s hlist abstraction, a doubly-linked list with a

single head pointer. On top of this common base, rcuhashbash-resize

includes the lookup and resize functions for the three resizable hash-table

implementations: the relativistic resizable hash table, DDDS, and the simple

rwlock-based implementation.

The current Linux memory allocator supports shrinking memory alloca-

tions in place, but does not support growing in place. Thus, I implemented

the in-place variation of the shrink algorithm and the copying implementa-

tion of the expansion algorithm.

rcuhashbash-resize accepts the following configuration parameters:

• The name of the hash-table implementation to test.

111

• An initial and alternate hash table size, specified as a power of two.

• The number of entries to appear in the table.

• The number of reader threads to run.

• Whether to run a resize thread.

rcuhashbash-resize starts by creating a hash table with the speci-

fied number of buckets, and adds entries to it containing integer values

from 0 to the specified upper bound. It then starts the reader threads and

optional resize thread, which record statistics in thread-local variables to

avoid the need for additional synchronization. When the test completes,

rcuhashbash-resize stops all threads, sums their recorded statistics, and

presents the results via the kernel message buffer.

The reader threads choose a random value from the range of values present

in the table, look up that value, and record a hit or miss. Since the readers

only look up entries that should exist in the table, any miss would indicate

a test failure.

The resize thread continuously resizes the hash table from the initial size

to the alternate size and back. While continuous resizes do not necessarily

reflect a common usage pattern for a hash table, they will most noticeably

demonstrate the impact of resizes on concurrent lookups. In practice, most

hash tables will choose growth factors and hysteresis to avoid frequent resizes,

but such a workload would not allow accurate measurement of the impact of

112

resizing on lookups. I consider continuous resizing a harsh benchmark, but

one which a scalable concurrent implementation should handle reasonably.

Furthermore, I can perform separate benchmark runs to evaluate the cost of

the lookup in the absence of resizes.

The microbenchmark runs in this chapter all used a hash table with 216

entries. For each of the three implementations, I benchmarked three cases: no

resizing and 213 buckets, no resizing and 214 buckets, and continuous resizing

between 213 and 214 buckets. Lookups should take less time in a table with

more buckets. For the relativistic resize algorithm, with its minimal impact

on lookup performance, the number of lookups with a concurrent resizer

should fall between the no-resize cases with the smaller and larger tables.

The other two resize algorithms should have significantly more impact on

concurrent lookups, causing the lookups performance to decrease relative to

lookups with fixed-size tables.

For each set of test parameters, I performed 10 benchmark runs of 10

seconds each, and averaged the results.

The test system had two Intel “Westmere” Xeon DP processors at 2.4GHz,

each of which had 6 hardware cores of two logical threads each, for a total

of 24 hardware-supported threads (henceforth referred to as “CPUs”). To

observe scalability, I ran each benchmark with 1, 2, 4, 8, and 16 concurrent

reader threads, with and without an additional resize thread. In all cases, I

ran fewer threads than the hardware supported, thus minimizing the need to

pass through the scheduler and allowing free CPUs to soak up any unremov-

113

able OS background noise. (However, performance may behave somewhat

less than linearly when passing 12 threads, as that matches the number of

hardware cores.)

All benchmark runs occurred on a Linux 2.6.37 kernel, targeting the x86-

64 architecture. I used the default configuration (make defconfig), with the

hierarchical RCU implementation, and no involuntary preemption.

6.3.3 Real-World Benchmarks: Memcached

As a client-server program, memcached required a separate benchmarking

program. At the recommendation of memcached developers, I used mc-

benchmark, developed by Salvatore Sanfilippo. To minimize the impact of

network overhead, I ran the client and server on the same system, communi-

cating via the loopback interface. To generate enough load to reach the limits

of memcached, the benchmarking program requires resources comparable to

those supplied to memcached. Thus, on the same 24-CPU system, I chose to

run 12 memcached threads and up to 12 benchmark processes.

mc-benchmark runs a single thread per process, but simulates multiple

clients per process using the same kind of event-driven socket handling that

memcached does. Experimentation showed that, on the test system, one

mc-benchmark process could run up to 4 simulated clients with increasing

throughput, but at 4 clients it reached the limit of available CPU power, and

adding additional clients would result in the same total request throughput.

Thus, I ran from 1 to 12 mc-benchmark processes, each of which simulated

114

4 clients.

To run the memcached server and mc-benchmark client, and to collect

statistics on the request rate, I used a benchmark script supplied by mem-

cached developers. For each test run, the benchmark would start mem-

cached and wait for it to initialize, start the desired number of concurrent

mc-benchmark processes, wait 20 seconds for the processing to ramp up

(mc-benchmark has to first run SET commands to insert test data, then

either SET or GET requests depending on the benchmark), and then col-

lect samples of the rate of processed requests directly from memcached; the

benchmark collected three rate samples at 2 second intervals, and took the

highest observed rate among those three samples.

6.3.4 Summary of Hypotheses

This section provides a summary of the hypotheses from the previous sec-

tions 6.3.1, 6.3.2, and 6.3.3; section 6.4.3 provides a corresponding summary

of how the benchmark results confirm these hypotheses.

1. The resize implementation using reader-writer locking will not scale

well, if at all.

2. Relativistic hash-table lookups should outperform DDDS significantly

when running concurrent resizes, and slightly even without a concurrent

resize.

3. Memcached’s default engine should hit a hard scalability limit, beyond

115

which it will not scale to more requests regardless of available resources.

4. With the new relativistic storage engine, memcached should no longer

hit the hard scalability limit observed with the default engine, and GET

requests should continue to scale up to the limits of the test machine.

5. With the new relativistic storage engine, memcached SET requests will

become marginally slower, but the scalability of SET requests should

not change.

6. For the relativistic resize algorithm, with its minimal impact on lookup

performance, the number of lookups with a concurrent resizer should

fall between the no-resize cases with the smaller and larger tables.

7. The other two resize algorithms should have significantly more impact

on concurrent lookups, causing the lookups performance to decrease

relative to lookups with fixed-size tables.

8. Performance may behave somewhat less than linearly when passing 12

threads, as that matches the number of hardware cores.

6.4 Benchmark Results

6.4.1 Microbenchmark Results

To evaluate baseline reader performance in the absence of resizes, I first com-

pare lookups per second for all the implementations with a fixed table size of

116

213 buckets; figure 6.4 shows this comparison. As predicted, the relativistic

hash table and DDDS remain very competitive when not concurrently resiz-

ing, though as the number of concurrent readers increases, the relativistic

implementation’s performance pulls ahead of DDDS slightly. Reader-writer

locking does not scale at all. In this test case, the reader-writer lock never

gets acquired for writing, yet the overhead of the read lock acquisition pre-

vents any reader parallelism.

I observe the expected deviation from linear growth for 16 readers, likely

due to passing the limit of 12 hardware cores. In particular, notice that the

performance for 16 threads appears approximately 50% more than that for 8,

which agrees with the expected linear increase for fully utilizing 12 hardware

cores rather than 8.

Figure 6.5 compares the lookups per second for the relativistic imple-

mentation and DDDS in the face of concurrent resizes. (I omit rwlock from

this figure, because it would vanish against the horizontal axis; with 16

CPUs, relativistic hash tables provide 125 times the lookup rate of rwlock.)

With a resizer running, the relativistic table’s lookup rate scales better than

DDDS, with its lead growing as the number of reader threads increases;

with 16 threads, relativistic hashing provides 56% more lookups per second

than DDDS. The relativistic lookup rate scales linearly with reader threads,

demonstrating a clear scalability advantage over DDDS.

To more precisely evaluate the impact of resizing on lookup performance

for each implementation, I compare the lookups per second when resizing

117

1 2 4 8 16
0

20

40

60

80

100

120

140
Relativistic

DDDS

rwlock

Reader threads

L
o
ok

u
p
s/

se
co

n
d

(m
il
li
on

s)

Figure 6.4: Lookups/second by number of reader threads for each of the
three implementations, with a fixed hash-table size of 213 buckets, and no
concurrent resizes.

118

1 2 4 8 16
0

20

40

60

80

100

120

140

160

180

200

Relativistic

DDDS

Reader threads

L
o
ok

u
p
s/

se
co

n
d

(m
il
li
on

s)

Figure 6.5: Lookups/second by number of reader threads for the relativistic
hash table implementation versus DDDS, with a concurrent resize thread
continuously resizing the hash-table between 213 (8k) and 214 (16k) buckets.
rwlock omitted as it vanishes against the horizontal axis.

119

1 2 4 8 16
0

20

40

60

80

100

120

140

160

180

200

8k

16k

resize

Reader threads

L
o
ok

u
p
s/

se
co

n
d

(m
il
li
on

s)

Figure 6.6: Lookups/second by number of reader threads for the relativistic
hash-table resize algorithms, showing the impact of resizing on relativistic
hash-table performance. “8k” and “16k” indicate fixed hash-table sizes in
buckets; “resize” indicates continuous resize between the two sizes.

to the no-resize cases for the larger and smaller table size. Figure 6.6 shows

the results of this comparison for the relativistic implementation. The lookup

rate with a concurrent resize falls between the no-resize runs for the two table

sizes that the resizer toggles between. This suggests that the relativistic resize

algorithms add little to no overhead to concurrent lookups.

Figure 6.7 shows the same comparison for the DDDS resize algorithm.

In this case, the lookup rate with a resizer running falls below the lower

120

1 2 4 8 16
0

20

40

60

80

100

120

140

160

180

200

8k

16k

resize

Reader threads

L
o
ok

u
p
s/

se
co

n
d

(m
il
li
on

s)

Figure 6.7: Lookups/second by number of reader threads for the DDDS resize
algorithm, showing the impact of resizing on DDDS hash-table performance.
“8k” and “16k” indicate fixed hash-table sizes in buckets; “resize” indicates
continuous resize between the two sizes.

bound of the smaller hash table. This suggests that the DDDS resizer adds

significant overhead to concurrent lookups, as predicted.

Finally, figure 6.8 shows the same comparison for the rwlock-based imple-

mentation. With a resizer running, the rwlock-based lookups suffer greatly,

falling initially by two orders of magnitude with a single reader, and strug-

gling back up to only one order of magnitude down at the 16-reader mark.

121

1 2 4 8 16
0

2

4

6

8

10

12

8k

16k

resize

Reader threads

L
o
ok

u
p
s/

se
co

n
d

(m
il
li
on

s)

Figure 6.8: Lookups/second by number of reader threads for the rwlock-
based implementation, showing the impact of resizing on rwlock-based hash-
table performance. “8k” and “16k” indicate fixed hash-table sizes in buckets;
“resize” indicates continuous resize between the two sizes.

122

1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

600

700
Relativistic GET

Default GET

Default SET

Relativistic SET

mc-benchmark processes

R
eq

u
es

ts
/s

ec
on

d
(t

h
ou

sa
n
d
s)

Figure 6.9: GET and SET operations per second by number of mc-benchmark
processes for the default memcached storage engine and the new relativistic
storage engine. Each mc-benchmark process simulated 4 clients to saturate
the CPU.

6.4.2 Memcached Results

Figure 6.9 shows the results of my benchmarks on memcached. Note that the

default engine hits the expected hard limit on GET scalability, and fails to

improve its request processing rate beyond that limit. The relativistic engine

encounters no such scalability limit, and the GET rate grows steadily up to

123

the limits of the system. With a full 12 client processes and 12 server threads,

memcached with the relativistic engine services 46% more GET requests per

second than the default engine.

As expected, SET requests do not scale in either engine. In the relativistic

engine, SET requests incur the expected marginal performance hit due to

wait-for-readers operations; however, this tradeoff will prove acceptable for

many workloads, particularly when a successful GET request corresponds to

a cache hit that can avoid a database query or other heavyweight processing.

I hypothesize that memcached’s default engine only managed to scale to

as many clients as it did because it spends the vast majority of its time

in the kernel rather than in the memcached userspace code, and the kernel

code supported more concurrency than the serialized engine code. Profiling

confirmed that memcached spends several times as much time in the kernel

as in userspace, regardless of storage engine.

I also performed separate runs of the benchmark using the mutex profiler

mutrace. By doing so I observed that the default engine spent long periods

of time contending for the global lock, whereas with the relativistic engine,

GET requests no longer incurred any contention for the global lock.

6.4.3 Benchmark Summary

The relativistic resizable hash table provides linearly scalable lookup perfor-

mance in both microbenchmarks and real-world benchmarks. In microbench-

marks, the relativistic implementation surpassed DDDS by a widening mar-

124

gin of up to 56% with 16 reader threads; both implementations vastly dwarfed

reader-writer locks, with the relativistic implementation providing a 125x im-

provement with 16 readers. Furthermore, the relativistic resize algorithms

minimized the impact of concurrent resizing on lookup performance, as demon-

strated through the comparison with fixed-size hash tables. In the real-world

benchmarks using memcached, the relativistic storage engine eliminated the

hard scalability limit of the default storage engine, and consistently serviced

more GET requests per second than the default engine—up to 46% more re-

quests per second when saturating the machine with a full 12 client processes

and 12 server threads.

Reviewing the hypotheses from section 6.3.4:

1. The resize implementation using reader-writer locking will not scale

well, if at all. Confirmed by experiment: figure 6.4 shows that reader-

writer locking did not scale at all even in a read-only workload.

2. Relativistic hash-table lookups should outperform DDDS significantly

when running concurrent resizes, and slightly even without a concur-

rent resize. Confirmed by experiment: figure 6.4 shows that relativistic

hash-table lookups slightly outperformed DDDS in the absence of con-

current resizes, and figure 6.5 shows that relativistic hash-table lookups

significantly outperformed DDDS when running concurrent resizes.

3. Memcached’s default engine should hit a hard scalability limit, beyond

which it will not scale to more requests regardless of available resources.

125

Confirmed by experiment: the data in figure 6.9 shows a clear ceiling

on GET request throughput with the default engine.

4. With the new relativistic storage engine, memcached should no longer

hit the hard scalability limit observed with the default engine, and

GET requests should continue to scale up to the limits of the test

machine. Confirmed by experiment: the data in figure 6.9 shows that

GET request throughput with the relativistic storage engine continued

to scale up to the limits of the machine.

5. With the new relativistic storage engine, memcached SET requests will

become marginally slower, but the scalability of SET requests should

not change. Confirmed via experiment: the data in figure 6.9 shows

SET request throughput for the relativistic engine slightly lower than

that of the default engine, but this difference did not grow as concur-

rency increased.

6. For the relativistic resize algorithm, with its minimal impact on lookup

performance, the number of lookups with a concurrent resizer should

fall between the no-resize cases with the smaller and larger tables.

Confirmed via experiment: figure 6.6 shows that with continuous con-

current resizing, relativistic lookup performance exceeded that of the

smaller fixed-size hash table, while not reaching the performance of the

larger fixed-size table.

7. The other two resize algorithms should have significantly more impact

126

on concurrent lookups, causing the lookups performance to decrease

relative to lookups with fixed-size tables. Confirmed via experiment:

figure 6.6 shows that continuous resizes caused DDDS lookup perfor-

mance to drop below that of the smaller fixed-size hash table, and

figure 6.6 shows that continous resizes caused rwlock-based lookups to

drop far below that of the smaller fixed-size hash table.

8. Performance may behave somewhat less than linearly when passing 12

threads, as that matches the number of hardware cores. Confirmed

via experiment: figures 6.4 and 6.5 shows lookup performance roughly

doubling as the number of threads doubles up to 8 threads, but then

only increasing by about 50% from 8 to 16 threads.

6.5 Summary

This chapter presented an algorithm for resizing a hash table while sup-

porting concurrent, scalable readers. This algorithm serves as both a novel

contribution of this dissertation and as a demonstration of constructing scal-

able concurrent data structures using the relativistic causal ordering model

presented in chapter 4. Unlike the node-move algorithm given in chapter 3,

this resize algorithm did not require complex, data-structure specific reason-

ing to construct or verify. The rules given in section 4.5 made the placement

of barriers a highly mechanical process. Nonetheless, this resize algorithm

provided the linear read scalability expected from an RCU-based algorithm.

127

Chapter 7

Conclusions

The performance of applications on modern hardware depends most critically

on the ability to scale to as many processors as the hardware can make avail-

able. However, the most widely used techniques for concurrent programming,

namely mutual exclusion and transactional memory, do not provide the nec-

essary scalability; in particular, they do not allow concurrent access to the

same data (joint-access parallelism), only concurrent access to separate data

(disjoint-access parallelism). Techniques such as Read-Copy Update allow

the construction of data structures with highly scalable read algorithms that

can run concurrently with writers, which prove ideal for the common case

of read-mostly workloads. However, such techniques necessitate complex,

data-structure-specific reasoning to produce correct concurrent data struc-

tures (as demonstrated in chapter 3), and in particular, these techniques

force programmers to contend directly with arbitrary reordering of memory

operations. Mutual exclusion, by contrast, provides a well-known set of rules

supporting the general construction of arbitrary data structures, which has

contributed to its widespread adoption despite severe scalability limitations.

128

I have presented the relativistic causal ordering model (chapter 4), which

supports the straightforward construction of a wide variety of scalable con-

current data structures. This model allows write algorithms to assume that

readers will observe causally ordered store operations in order, rather than

reasoning about arbitrary interleavings or reorderings of load and store op-

erations. Writers need only ensure that they preserve the semantic validity

of the data structure after each store operation.

To support the relativistic causal ordering model on weakly ordered shared-

memory systems, I defined an abstract set of barrier operations that readers

and writers could insert between pairs of memory operations to enforce the

ordering of those operations, along with the precise rules for the application

of these barriers. Summarizing the rules for barrier usage:

• Between a pair of loads in a reader, use a load barrier.

• Between a pair of stores in a writer:

– If no single reader reads both stores, use no barrier.

– If readers read both stores but only in the reverse order of the

stores, use a store barrier.

– If any reader reads both stores in the same order as the stores,

use a wait-for-readers barrier.

Chapter 5 provides translations of the abstract barriers to implementa-

tions on real hardware. A load barrier between a dependent load and the load

129

it depends on (such as between the load of a pointer and a load through that

pointer) requires no hardware barrier instruction on any modern hardware.

Any other load barrier requires a hardware load barrier instruction. A store

barrier requires a hardware store barrier instruction. Read-Copy Update

provides a scalable implementation of a wait-for-readers barrier in the form

of synchronize_rcu, which requires the use of the lightweight CPU-local

operations rcu_read_lock and rcu_read_unlock to delineate the start and

end of readers. Finally, note that all of the abstract barriers must include

any necessary directives for compilers or language runtimes to ensure that

they perform no more reordering than the underlying hardware.

I have demonstrated the effectiveness of the relativistic causal ordering

model by using it to derive a resize algorithm for scalable concurrent hash

tables (chapter 6). In place of the complex, one-off reasoning typically found

in RCU-based data structure implementations, this derivation followed only

the obvious series of steps necessitated by the requirements of the ordering

model and the data structure semantics. The resulting resizable hash table

demonstrated the same degree of scalability expected of RCU-based data

structures.

The relativistic causal ordering model, together with the translations to

real hardware, enables the construction of scalable concurrent algorithms for

arbitrary acyclic data structures. This model provides a viable competitor to

the generic construction rules of lock-based concurrent programming, allow-

ing the implementers of scalable concurrent data structures to move beyond

130

the painful choice between the simplicity of locking and the scalability of

techniques such as RCU.

7.1 Future Work

The relativistic causal ordering model focuses exclusively on read-side con-

currency, requiring writers to synchronize with each other via other means,

such as mutual exclusion or transactional memory. This allows readers to

scale linearly, but does not help writers do the same. Existing work on

scalable writers using RCU has focused primarily on partitioning, both via

disjoint-access parallelism (such as fine-grained locking) and via CPU-local

storage; however, this does not eliminate all sources of synchronization over-

head except in special cases. General-purpose techniques for scalable writers

remain the highest priority for future work.

Many writers begin by traversing the data structure to locate the con-

text for their write. Making those initial loads relativistic would significantly

reduce writer conflicts, increasing concurrency for partitionable data struc-

tures. However, since writers rely on that context to make their modifica-

tions, notably by attaching new items to existing parts of a data structure,

the writers may need stronger consistency guarantees for their loads.

Structures such as queues and stacks primarily provide write operations,

and their layout in memory implies a strict ordering. However, semantically

such structures need not always require strict ordering. For instance, a pro-

cess scheduling queue or UDP packet queue may receive new insertions in

131

any order, yet those queues enforce a serialized order after each insertion.

A more scalable queue implementation might choose to preserve only causal

ordering relationships, and otherwise leave item ordering non-deterministic

until dequeued.

Chapter 4 presents the relativistic causal ordering property and barrier

placement rules via informal supporting arguments, not formal proofs. The

application of formal verification methods would allow the construction of

a formal proof. This would add further precision to the barrier placement

rules and data-structure semantics, and potentially aid in future expansion

of this methodology.

The barrier translations specified in chapter 5 would also benefit from

formal verification via hardware architectures with formal memory model

specifications, such as x86-TSO [70].

The relativistic causal ordering model assumes that no readers perform

cyclic traversals. Such traversals would allow readers to see changes in

progress, breaking the illusion of reader atomicity. This requirement pro-

hibits a small but significant set of algorithms, most notably those involving

general graph traversal; such algorithms also prove exceedingly difficult for

fine-grained locking. Some research exists suggesting approaches for the use

of Read-Copy Update on cyclic data structures, including graphs, with addi-

tional reader overhead required to maintain consistency [51]. Adaptation of

this research could extend the relativistic causal ordering property to cyclic

data structures.

132

Alternatively, many cyclic read algorithms could cope with the semantics

of non-repeatable loads, which would allow those readers to achieve scala-

bility. Future work should explore cyclic traversals further, defining precise

semantics for the ordering of loads and stores in such traversals, and propos-

ing rules for the construction of readers that can cope with the non-atomic

ordering semantics.

133

Bibliography

[1] Sarita V. Adve and Hans-J. Boehm. Memory models: a case for re-

thinking parallel languages and hardware. Communications of the ACM,

53:90–101, August 2010.

[2] Mustaque Ahamad, Gil Neiger, James Burns, Prince Kohli, and Phillip

Hutto. Causal memory: definitions, implementation, and programming.

Distributed Computing, 9:37–49, 1995.

[3] Andrei Alexandrescu and Maged Michael. Lock-free data structures

with hazard pointers. C/C++ Users Journal, November 2004. Available

from: http://ddj.com/184401890.

[4] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov,

Maged M. Michael, and Martin Vechev. Laws of Order: Expensive

Synchronization in Concurrent Algorithms Cannot be Eliminated. In

Proceedings of the ACM POPL’11, 2011.

[5] Hagit Attiya, Eshcar Hillel, and Alessia Milani. Inherent limitations

on disjoint-access parallel implementations of transactional memory. In

134

http://ddj.com/184401890

SPAA ’09: Proceedings of the twenty-first annual symposium on Paral-

lelism in algorithms and architectures, pages 69–78, 2009.

[6] Hans-J. Boehm. Threads cannot be implemented as a library. In PLDI

’05: Proceedings of the 2005 ACM SIGPLAN conference on Program-

ming language design and implementation, pages 261–268, 2005.

[7] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng

Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software transactional

memory: Why is it only a research toy? Queue, 6(5):46–58, 2008.

[8] Cliff Click. A Lock-Free Hash Table. In JavaOne Conference, 2007.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, chapter 11: Hash Tables. MIT Press,

second edition, 2001.

[10] Mathieu Desnoyers. Low-Impact Operating System Trac-

ing. PhD thesis, École Polytechnique de Montréal, December

2009. Available from: http://www.lttng.org/pub/thesis/

desnoyers-dissertation-2009-12.pdf.

[11] Dave Dice, Yossi Lev, Mark Moir, and Dan Nussbaum. Early experience

with a commericial hardware transactional memory implementation. In

Fourteenth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS ’09), Washing-

135

http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf

ton, DC, USA, March 2009. Available from: http://research.sun.

com/scalable/pubs/ASPLOS2009-RockHTM.pdf.

[12] Dave Dice and Nir Shavit. TLRW: return of the read-write lock. In Pro-

ceedings of the 4th ACM SIGPLAN Workshop on Transactional Com-

puting, 2009.

[13] Digital Equipment Corporation. Shared Memory, Threads, Interprocess

Communication, August 2001. Available from: http://h71000.www7.

hp.com/wizard/wiz_2637.html.

[14] Edsger W. Dijkstra. The structure of the “THE”-multiprogramming

system. Communications of the ACM, 11(5):341–346, 1968.

[15] Aleksandar Dragojević, Pascal Felber, Vincent Gramoli, and Rachid

Guerraoui. Why stm can be more than a research toy. Communications

of the ACM, 54:70–77, April 2011.

[16] Robert Ennals. Software transactional memory should not be

obstruction-free. Technical report, Intel Research, 2006. Avail-

able from: http://berkeley.intel-research.net/rennals/pubs/

052RobEnnals.pdf.

[17] Jason Fried and David Heinemeier Hansson. Rework. Crown Business,

2010.

[18] H. Gao, J. F. Groote, and W. H. Hesselink. Lock-free dynamic hash

tables with open addressing. Distributed Computing, 18(1), July 2005.

136

http://research.sun.com/scalable/pubs/ASPLOS2009-RockHTM.pdf
http://research.sun.com/scalable/pubs/ASPLOS2009-RockHTM.pdf
http://h71000.www7.hp.com/wizard/wiz_2637.html
http://h71000.www7.hp.com/wizard/wiz_2637.html
http://berkeley.intel-research.net/rennals/pubs/052RobEnnals.pdf
http://berkeley.intel-research.net/rennals/pubs/052RobEnnals.pdf

[19] Michael Greenwald and David Cheriton. The synergy between non-

blocking synchronization and operating system structure. In Proceedings

of the second USENIX symposium on Operating Systems Design and

Implementation, pages 123–136, 1996.

[20] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole. The

read-copy-update mechanism for supporting real-time applications on

shared-memory multiprocessor systems with Linux. IBM Systems Jour-

nal, 47(2), April 2008.

[21] Tim Harris and Keir Fraser. Language support for lightweight transac-

tions. SIGPLAN Notices, 38(11):388–402, 2003.

[22] Timothy L Harris. A pragmatic implementation of non-blocking linked-

lists. In Lecture Notes in Computer Science, pages 300–314. Springer-

Verlag, 2001.

[23] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and

Jonathan Walpole. Performance of memory reclamation for lock-

less synchronization. Journal of Parallel and Distributed Computing,

67(12):1270–1285, 2007.

[24] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free

stack algorithm. In SPAA04: Symposium on Parallelism in Algorithms

and Architectures, pages 206–215, 2004.

137

[25] Maurice Herlihy. A methodology for implementing highly concurrent

data objects. ACM Transactions on Programming Languages and Sys-

tems, 15(5):745–770, November 1993.

[26] Maurice Herlihy. The transactional manifesto: Software engineering

and non-blocking synchronization. In PLDI ’05: Proceedings of the

2005 ACM SIGPLAN conference on Programming language design and

implementation, pages 280–280, 2005.

[27] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Archi-

tectural support for lock-free data structures. In Proceedings of the

Twentieth Annual International Symposium on Computer Architecture,

1993.

[28] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Program-

ming, chapter 11: Concurrent Hashing. Morgan Kaufmann Publishers,

2008.

[29] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Program-

ming. Morgan Kaufmann, 2008.

[30] Maurice Herlihy, Nir Shavit, and Orli Waarts. Linearizable counting

networks. Distributed Computing, 9:193–203, 1996.

[31] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness

condition for concurrent objects. ACM Transactions on Programming

Languages and Systems, 12(3):463–492, July 1990.

138

[32] C. A. R. Hoare. Monitors: an operating system structuring concept.

Communications of the ACM, 17(10):549–557, 1974.

[33] Philip W. Howard and Jonathan Walpole. A relativistic enhancement

to software transactional memory. In 3rd USENIX Workshop on Hot

Topics in Parallelism (HotPar 2011), 2011.

[34] Philip W. Howard and Jonathan Walpole. Relativistic red-black trees.

Technical Report 1006, Portland State University, 2011. http://www.

cs.pdx.edu/pdfs/tr1006.pdf.

[35] Wilson C. Hsieh and William E. Weihl. Scalable reader-writer locks

for parallel systems. In Proceedings of the 6th International Parallel

Processing Symposium, pages 216–230, March 1992.

[36] Donald Knuth. The Art of Computer Programming, chapter 6.4: Hash-

ing. Addison-Wesley, second edition, 1998.

[37] Christoph Lameter. Effective synchronization on Linux/NUMA systems.

In Gelato Conference, May 2005.

[38] Leslie Lamport. A new solution of dijkstra’s concurrent programming

problem. Communications of the ACM, 17:453–455, August 1974.

[39] Leslie Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Transactions on Computers,

28(9):690–691, 1979.

139

http://www.cs.pdx.edu/pdfs/tr1006.pdf
http://www.cs.pdx.edu/pdfs/tr1006.pdf

[40] Butler W. Lampson and David D. Redell. Experience with processes and

monitors in mesa. Communications of the ACM, 23:105–117, February

1980.

[41] Hanna Linder, Dipankar Sarma, and Maneesh Soni. Scalability of the

directory entry cache. In Ottawa Linux Symposium, pages 289–300, June

2002.

[42] Richard J. Lipton and Jonathan S. Sandberg. PRAM: A scalable shared

memory. Technical Report 180-88, Princeton University, 1988.

[43] Virendra J. Marathe and Michael L. Scott. A qualitative survey of

modern software transactional memory systems. Technical report, De-

partment of Computer Science, University of Rochester, June 2004.

[44] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul

Acharya, David Eisenstat, William N. Scherer III, and Michael L. Scott.

Lowering the overhead of nonblocking software transactional memory.

In TRANSACT: the First ACM SIGPLAN Workshop on Languages,

Compilers, and Hardware Support for Transactional Computing, June

2006.

[45] Henry Massalin and Calton Pu. A lock-free multiprocessor os kernel.

ACM Operating Systems Review, 26, April 1992.

[46] Sally A. McKee. Reflections on the memory wall. In CF ’04: Proceedings

of the 1st conference on Computing frontiers, 2004.

140

[47] Paul E. McKenney. Exploiting Deferred Destruction: An Analysis of

Read-Copy-Update Techniques in Operating System Kernels. PhD the-

sis, OGI School of Science and Engineering at Oregon Health and Sci-

ences University, 2004. Available from: http://www.rdrop.com/users/

paulmck/RCU/RCUdissertation.2004.07.14e1.pdf.

[48] Paul E. McKenney. Using promela and spin to verify parallel algorithms.

Linux Weekly News, August 2007. Available from: https://lwn.net/

Articles/243851/.

[49] Paul E. McKenney. Hierarchical RCU. Linux Weekly News, November

2008. Available from: https://lwn.net/Articles/305782/.

[50] Paul E. McKenney. RCU: The Bloatwatch Edition. Linux Weekly News,

March 2009. Available from: https://lwn.net/Articles/323929/.

[51] Paul E. McKenney. Efficient support of consistent cyclic search with

read-copy-update. US Patent 7814082, October 2010.

[52] Paul E. McKenney. Lockdep-RCU. Linux Weekly News, February 2010.

Available from: https://lwn.net/Articles/371986/.

[53] Paul E. McKenney, Maged M. Michael, Josh Triplett, and Jonathan

Walpole. Why the grass may not be greener on the other side: A com-

parison of locking vs. transactional memory. ACM Operating Systems

Review, 44(3), July 2010.

141

http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
https://lwn.net/Articles/243851/
https://lwn.net/Articles/243851/
https://lwn.net/Articles/305782/
https://lwn.net/Articles/323929/
https://lwn.net/Articles/371986/

[54] Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, Andi Kleen,

Orran Krieger, and Rusty Russell. Read-copy update. In Ottawa Linux

Symposium, pages 338–367, June 2002. Available from: http://www.

linux.org.uk/~ajh/ols2002_proceedings.pdf.gz.

[55] Paul E. McKenney, Dipankar Sarma, and Maneesh Soni. Scaling dcache

with RCU. Linux Journal, 2004(117), 2004.

[56] Paul E. McKenney and John D. Slingwine. Read-Copy Update: Us-

ing Execution History to Solve Concurrency Problems. In Parallel and

Distributed Computing and Systems, pages 509–518, October 1998.

[57] Maged M. Michael. High performance dynamic lock-free hash tables

and list-based sets. In Proceedings of the Fourteenth ACM Symposium

on Parallel Algorithms and Architectures, SPAA ’02, pages 73–82, 2002.

[58] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-

free objects. IEEE Transactions on Parallel and Distributed Systems,

15(6):491–504, 2004.

[59] Maged M. Michael and Michael L. Scott. Simple, fast, and practical

non-blocking and blocking concurrent queue algorithms. In Proceedings

of the 15th ACM Symposium on Principles of Distributed Computing

(PODC), pages 267–275, 1996.

142

http://www.linux.org.uk/~ajh/ols2002_proceedings.pdf.gz
http://www.linux.org.uk/~ajh/ols2002_proceedings.pdf.gz

[60] Maged M. Michael and Michael L. Scott. Nonblocking algorithms and

preemption-safe locking on multiprogrammed shared memory multipro-

cessors. Journal of Parallel and Distributed Computing, 51:1–26, 1998.

[61] Gordon E. Moore. Cramming more components onto integrated circuits.

Electronics, 38(8), April 1965.

[62] Gordon E. Moore. Moore’s law at 40. Understanding Moore’s law: four

decades of innovation, 2006.

[63] Nick Piggin. Lockless radix-tree, March 2006. Available from:

http://kernel.org/pub/linux/kernel/people/npiggin/patches/

lockless/2.6.16-rc5/radix-intro.pdf.

[64] Nick Piggin. ddds: “dynamic dynamic data structure” algorithm, for

adaptive dcache hash table sizing. Linux kernel mailing list. http:

//mid.gmane.org/20081007064834.GA5959@wotan.suse.de, October

2008.

[65] Relativistic programming wiki. Available from: http://wiki.cs.pdx.

edu/rp/.

[66] Chistopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E.

Ramadan, Aditya Bhandari, and Emmett Witchel. TxLinux: Using

and managing hardware transactional memory in an operating sys-

tem. In SOSP’07: Twenty-First ACM Symposium on Operating Systems

143

http://kernel.org/pub/linux/kernel/people/npiggin/patches/lockless/2.6.16-rc5/radix-intro.pdf
http://kernel.org/pub/linux/kernel/people/npiggin/patches/lockless/2.6.16-rc5/radix-intro.pdf
http://mid.gmane.org/20081007064834.GA5959@wotan.suse.de
http://mid.gmane.org/20081007064834.GA5959@wotan.suse.de
http://wiki.cs.pdx.edu/rp/
http://wiki.cs.pdx.edu/rp/

Principles, October 2007. Available from: http://www.sosp2007.org/

papers/sosp056-rossbach.pdf.

[67] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in

system design. ACM Transactions on Computer Systems, 2:277–288,

November 1984.

[68] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikeyan Sankar-

alingam. Implementing signatures for transactional memory. In MICRO

40: Proceedings of the 40th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, pages 123–133, 2007.

[69] William N. Scherer III and Michael L. Scott. Nonblocking concurrent

data structures with condition synchronization. In Proceedings of the

International Symposium on Distributed Computing (DISC, pages 174–

187, 2004.

[70] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,

and Magnus O. Myreen. x86-TSO: a rigorous and usable programmer’s

model for x86 multiprocessors. Communications of the ACM, 53:89–97,

July 2010.

[71] Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash

tables. Journal of the ACM, 53:379–405, May 2006.

144

http://www.sosp2007.org/papers/sosp056-rossbach.pdf
http://www.sosp2007.org/papers/sosp056-rossbach.pdf

[72] Michael F. Spear, Maged M. Michael, and Michael L. Scott. Inevitability

mechanisms for software transactional memory. In Proceedings of the 3rd

ACM SIGPLAN Workshop on Transactional Computing, 2008.

[73] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward

Concurrency in Software. Dr. Dobb’s Journal, 30(3), March 2005.

[74] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers,

Mike J. Spreitzer, and Carl H. Hauser. Managing update conflicts in

Bayou, a weakly connected replicated storage system. In Proceedings of

the fifteenth ACM Symposium on Operating Systems Principles, SOSP

1995, pages 172–182, 1995.

[75] R. K. Treiber. Systems programming: Coping with parallelism. Tech-

nical Report RJ 5118, IBM Almaden Research Center, April 1986.

[76] Josh Triplett. Scalable Concurrent Hash Tables via Relativistic Pro-

gramming. In Linux Plumbers Conference 2009, Portland, OR, Septem-

ber 2009.

[77] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Scalable Con-

current Hash Tables via Relativistic Programming. ACM Operating Sys-

tems Review, 44(3), July 2010.

[78] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resizable,

Scalable, Concurrent Hash Tables via Relativistic Programming. In Pro-

145

ceedings of the 2011 USENIX Annual Technical Conference, USENIX

ATC ’11, 2011.

[79] Werner Vogels. Eventually consistent. Communications of the ACM,

52:40–44, January 2009.

[80] Haris Volos, Neelam Goyal, and Michael M. Swift. Pathological in-

teraction of locks with transactional memory. In 3rd ACM SIGPLAN

Workshop on Transactional Computing, New York, NY, USA, February

2008. Available from: http://www.cs.wisc.edu/multifacet/papers/

transact08_txlock.pdf.

[81] Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatabai. Irrevocable

transactions and their applications. In SPAA ’08: Proceedings of the

twentieth annual symposium on Parallelism in algorithms and architec-

tures, 2008.

[82] William A. Wulf and Sally A. McKee. Hitting the memory wall: Impli-

cations of the obvious. Computer Architecture News, 23(1):20–24, March

1995.

[83] Herbert Xu. bridge: Add core IGMP snooping support. Linux netdev

mailing list. http://mid.gmane.org/E1NlbuT-00021C-0b@gondolin.

me.apana.org.au, February 2010.

[84] Dieter Zöbel. The deadlock problem: a classifying bibliography. ACM

Operating Systems Review, 17:6–15, October 1983.

146

http://www.cs.wisc.edu/multifacet/papers/transact08_txlock.pdf
http://www.cs.wisc.edu/multifacet/papers/transact08_txlock.pdf
http://mid.gmane.org/E1NlbuT-00021C-0b@gondolin.me.apana.org.au
http://mid.gmane.org/E1NlbuT-00021C-0b@gondolin.me.apana.org.au

	Relativistic Causal Ordering A Memory Model for Scalable Concurrent Data Structures
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Summary of Key Background
	Summary of Contributions

	Background on Scalable Concurrent Programming
	Mutual Exclusion
	Non-Blocking Synchronization
	Transactional Memory
	Partitioning
	Hazard Pointers
	Read-Copy Update

	Manual Construction of Scalable Concurrent Data Structures
	Semantics
	Algorithm
	Performance Analysis Methodology
	Performance Analysis
	Summary

	The Relativistic Causal Ordering Model
	Design Constraints and Assumptions
	Terminology
	The Relativistic Causal Ordering Property
	Abstract Barrier Operations
	Constructing Relativistic Algorithms
	Reconstructing a Scalable Linked List
	Summary

	Translating to Hardware Ordering Models
	Translating Load Barriers
	Translating Store Barriers
	Translating Wait-For-Readers

	Relativistic Concurrent Hash-Table Resize
	Relativistic Hash Tables
	Comparisons with Other Algorithms
	Benchmark Methodology
	Benchmark Results
	Summary

	Conclusions
	Future Work

	Bibliography

