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Abstract
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high-resolution data-logging capabilities and utilize this data to generate performance measures. These
measures allow practitioners to improve operations as well as to maintain and operate their systems in a safe
and efficient manner. Although these measures have changed the way that operators manage their systems,
several shortcomings of the tool, identified by talking with signal operators, are a lack of data quality control
and the extent of resources required to properly use the tool for system-wide management. To address these
shortcomings, intelligent traffic signal performance measurements (ITSPMs) are presented in this paper,
using the concepts of machine learning, traffic flow theory, and data visualization to reduce the operator
resources needed for overseeing data-driven traffic signal management systems. In applying these concepts,

Ms provide graphical tools to identify and remove logging errors and data from bad sensors, intelligently
determine trends in demand, and address the question of whether or not coordination may be needed at an
intersection. The focus of ATSPMs and ITSPMs on performance measures for multimodal users is identified
as a pressing need for future research.
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ABSTRACT 1 

Automated traffic signal performance measures (ATSPMs) are an effort to equip traffic signal 2 
controllers with high-resolution data-logging capabilities and utilize this data to generate 3 
performance measures. These measures allow practitioners to improve operations as well as to 4 
maintain and operate their systems in a safe and efficient manner. Although these measures have 5 
changed the way that operators manage their systems, several shortcomings of the tool, identified 6 
by talking with signal operators, are a lack of data quality control and the extent of resources 7 
required to properly use the tool for system-wide management. To address these shortcomings, 8 
in this paper intelligent traffic signal performance measurements (ITSPMs) are presented, using 9 
the concepts of machine learning, traffic flow theory, and data visualization to reduce the 10 
operator resources needed for overseeing data-driven traffic signal management systems. In 11 
applying these concepts, ITSPMs provide graphical tools to identify and remove logging errors 12 
and data from bad sensors, intelligently determine trends in demand, and address the question of 13 
whether or not coordination may be needed at an intersection. The focus of ATSPMs and 14 
ITSPMs on performance measures for multimodal users is identified as a pressing need for future 15 
research.  16 
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INTRODUCTION 1 

In the United States, more than 300,000 traffic signals are currently in operation. According to 2 
the Federal Highway Administration, the operation and performance of most of these signals is 3 
assessed through citizen complaints (1). In these settings, agencies are forced to rely on software 4 
and simulation models to develop timings, with the presumption that if there are no complaints, 5 
everything is working acceptably, often compromising on performance and efficiency. 6 
 Automated traffic signal performance measures (ATSPMs) are an effort to equip traffic 7 
signal controllers with high-resolution data-logging capabilities and to utilize these to generate 8 
performance measures. These measures allow practitioners to improve operations and to 9 
maintain and operate their systems in a safe and efficient manner (1). State-of-the-art ATSPM 10 
systems primarily present raw data in graphic representations with the goal of providing tools for 11 
visual queries to traffic signal experts. The tool has been very useful for data-driven management 12 
of traffic signal systems and has been adopted and modified by several agencies. From 13 
conversations with several practitioners who use them, the three main shortcomings of the tool 14 
are: (i) The tool currently uses raw data feeds but has very little data quality control or quality 15 
checks in place, (ii) using the tool for system-wide management is resource intensive, and (iii) 16 
the tool’s primary focus is automobile traffic, and it fails to address multi-modal aspects of signal 17 
operation. 18 

In this study, the current state of the art is extended by the creation of a new tool called 19 
the Intelligent Traffic Signal Performance Measurement System (ITSPM). Instead of primarily 20 
automating the signal performance calculation from a raw data stream, this tool uses machine 21 
learning techniques, traffic flow theory, and data-driven intelligence to provide additional 22 
insights to decision makers. In this paper, three primary enhancements are provided to address 23 
the above-reported shortcomings of the existing state-of-the-art tool, namely: 24 

a. Additional measures for data quality control are provided; 25 
b. Machine learning-based intelligence is provided to deliver initial insights into the data, 26 

thus reducing the visual querying time, which results in more efficient utilization of 27 
personnel resources; 28 

c. Some of the current graphics in ATSPM are improved to better represent operations at 29 
different spatial and temporal resolutions. 30 
Although noted as a shortcoming, multi-modal aspects are not addressed in this paper and 31 

will be the focus of future research. The remainder of the paper is presented in the following 32 
manner. A literature review and the state of practice are presented next, followed by 33 
methodology, data used, and results. The paper then wraps up with conclusions and 34 
recommendations.  35 

 36 

LITERATURE REVIEW 37 

The development of ATSPMs began with the collection of event-based data by researchers at 38 
Purdue University in the mid-2000s (2) and the identification of tactical methods to control 39 
traffic within NCHRP 3-66 (3). Since these original works, researchers have emphasized the 40 
development of event-based data acquisition systems that have the capability of generating high-41 
level performance measures as well as enough data resolution capable of being used for fault 42 
recreation and signal fine tuning (4). Researchers at Purdue University as well as practitioners at 43 
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the Indiana and Utah Departments of Transportation spearheaded the effort to move Highway 1 
Capacity Manual operational parameters from the post-processed environment to real-time 2 
performance measures in a mainstream operational environment (5). Whereas historical 3 
performance measure data were limited to hourly volumes, peak hour factors, and v/c values 4 
over long analysis periods, these measures use event-based data to empower an agency with the 5 
ability to make data-driven decisions regarding detector and communication health, traffic signal 6 
coordination, and split efficiency (6–9). Although this work has been a game changer in the 7 
operation and management of traffic signal systems, thus far it has focused mostly on vehicular 8 
performance measures with limited investigation into multimodal performance. The natural 9 
platform for this would be an extension of ATSPMs from a multimodal perspective, perhaps 10 
incorporating visualization techniques by the nationally renowned author Edward Tufte (10). 11 
Existing vehicular ATSPMs may also benefit from improved visualization techniques, although 12 
the Purdue researchers responsible for much of the ATSPM development work have already 13 
spent much effort on visualization (11, 12).  14 
 The state-of-practice with respect to ATSPMs involves the use of open source software 15 
and continued improvements to visualizations and metrics using advances in data analytics. 16 
From conversations with several practitioners who use them, ATSPMs are most often used for 17 
troubleshooting, operations, and planning. The AASHTO innovation initiative led by the Utah 18 
DOT has led to the adoption of ATSPMs by 26 transportation agencies across the country (1). 19 
The open source software used by the Utah DOT produces chart usage reports to track which 20 
performance measures and visualizations are most used by agency personnel. A usage report for 21 
from Jan 1 – July 23, 2017 in Utah showed that the Purdue phase termination (18000 queries), 22 
split monitor (8000 queries), and Purdue Coordination Diagram (PCD; ~ 6000 queries) are the 23 
most used metrics. Conversations with engineers at the Utah DOT and Georgia DOT 24 
corroborated this report. Turning movement counts and approach volumes are additional metrics 25 
that are used frequently by planners for simulation and modeling purposes. 26 
  According to agency personnel at the Utah DOT, the Purdue phase termination metric is 27 
used from an operations standpoint to address complaints. The split monitor is used for 28 
troubleshooting, retiming, and general operations, whereas the PCD is used for assessing if cycle 29 
lengths are optimal as well as the need for general retiming. Currently, with the open source 30 
software pioneered by Utah DOT, presentation of the PCD is not optimized. However, planned 31 
improvements in the near future involve linking the PCD with the link-pivot diagram to study 32 
progression quality and improve operations. The link-pivot algorithm was developed by 33 
researchers at Purdue University to optimize offsets along signalized arterials (13). Additional 34 
improvements involve the addition of transit signal priority (TSP) metrics to evaluate transit 35 
delays and to study the transition status of the controller when TSP is implemented. According to 36 
agency personnel, least useful measures currently are approach delay, arrivals on red, and 37 
pedestrian delay. With respect to improvements, engineers expressed interest in improving ways 38 
to measure delays, which could then be used in decision making. They also wanted the ability to 39 
examine the operational performance at the corridor and network levels, when currently they can 40 
only do so at the intersection level. 41 

METHODOLOGY 42 

The objective of this study was to improve the current state-of-the-art ATSPMs by providing 43 
enhancements in diagnosing sensor errors and assessing demands. The paper also emphasizes the 44 
need to associate each graphic with a given spatial and temporal resolution as described below:  45 
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1. Stream analytic measures – These performance measures are used to quickly detect any 1 
anomalous behavior at any intersection during the course of a day.  2 

2. Batch analytic measures – This historical chart serves to provide trends over time, and 3 
individual day’s information can be retrieved for anomaly detection. 4 

3. Spatial resolution – Spatial resolution can be either at the phase/approach level for a 5 
given intersection or at a network level, depending on the desired objective. The decision 6 
makers might want to use ITSPMs to compare different corridors or to focus on a given 7 
intersection.  8 
The graphic used for each resolution should be carefully planned to avoid any visual 9 

overload of information and to provide the users with the ability to identify the information that 10 
needs to be conveyed. In this paper, an attempt is made to use appropriate graphics to convey 11 
information suitable to a given resolution. The designed graphics and alerts in ITSPM are tied to 12 
decision support queries, as shown in Table 1. A comparison of how these decision support 13 
queries are answered by Utah ATSPM 4.0.1 is also shown in the table (14). Decision support for 14 
traffic signals can be divided into four broad categories, namely: (a) data quality, (b) demand 15 
assessment, (c) traffic control, and (d) level of service. The focus of this paper is on major 16 
improvement in assessing the first three categories.  17 

DATA USED 18 

The data used for this study were obtained from the City of Portland, which recently started the 19 
implementation of ATSPMs at five intersections. For the visualizations in this paper, data were 20 
obtained from two specific intersections: NE Sandy Blvd. @ 57th Ave. and SE Division St. @ 21 
122nd Ave. Data were available for February, May, and June of 2017. In this paper, the results 22 
are demonstrated based on data from different time frames. The Sensor and Communication 23 
Health section and the Control Support section used data from June 18 to June 24 (one week of 24 
data), whereas the Demand Assessment section used data from May 1 to June 24 for a better 25 
demand pattern extraction. The database contains the high resolution logs from each 26 
intersection’s controller. The high resolution logs record events, such as phase changes, detector 27 
calls, power failures, etc. at a 10th of a second resolution.  28 

RESULTS 29 

The enhancements proposed in this paper are divided into three sections: Sensor and 30 
Communication Health, Demand Assessment, and Control Support. In the Sensor and 31 
Communication Health section, data logging and sensor errors are discussed. Next, demand is 32 
analyzed to find the typical patterns that can be used to identify variation in demand and need for 33 
coordination. In the last section, enhancement of the PCD for adaptation to a multi-day display is 34 
discussed. The improved version is called the Aggregate Platoon Coordination Diagram 35 
(APCD). It should be noted that existing ATSPMs are very strong in the visualizing control and 36 
level-of-service parameters, and the measures proposed here are not intended to substitute all the 37 
graphics in the ATSPM system but, rather, to further augment the existing set of tools.  38 
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Table 1: Traffic signal decision support queries that could be better addressed by ITSPM 1 

Operator Queries  Utah Automated Traffic Signal Performance 
Monitoring (ATSPM 4.0.1)  

Proposed Intelligent Traffic Signal 
Performance Monitoring (ITSPM)  

Sensor and Communication Health  

Are there any failures in 
logging?  

Utah DOT uses email alerts (not a generated 
report) for the following items: 

1. No data 
2. Too many ped calls 
3. Too many max outs 
4. Too many force-offs 
5. Low detector count 
6. High detector count 

Georgia DOT is working on an extension that 
will allow users to query the database to see how 
long these errors have been occurring 

New performance measure proposed 
(shown in Figure 1 and Figure 2) 

Are there any sensor 
failures?  

Utah DOT uses the Purdue phase termination 
plot to determine if sensor failures exist. The 
phase termination plot is used to identify data 
gaps, too many max-outs (which can occur due 
to constant calls), too many force-offs and too 
many ped calls (which can occur due to constant 
calls due to a malfunctioning detector). 

New performance measure proposed 
(shown in Figure 3) 

Demand Assessment 

What days have similar 
demand patterns?  

Manually observed from approach volume 
graphic that has plot for each day with the x axis 
as time of day and the y axis as volume in vph     

Machine learning (ML)-based 
algorithms designed (described in 
Figure 4 and Figure 5) 

  

How many days were 
abnormal in a specified 
historical range?  

Not available  

What was the potential 
cause of an anomaly?  Not available  

Is today a typical day?  
Manually observed by comparing today’s 
approach volume graphic with the historical 
volumes  

What are the temporal 
variations for timing plan 
settings  

Not available  Not addressed in this paper  

Is the demand randomly 
distributed or is there a 
need for coordination  

Not available  
New performance measure proposed 
based on ML-based algorithm 
(described in Figure 6) 

Control Support  
Are the coordination 
parameters ideal?  

Can be manually identified by visually exploring 
the Purdue Coordination Diagram 

 Aggregate Platoon Coordination 
Diagram (APCD) proposed (Figure 7) 

  2 
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Sensor and Communication Health 1 

Data quality is important to assure that decisions are being made using accurate information. 2 
ITSPMs are intended to monitor two sources of problem: (a) problems occurring due to incorrect 3 
logging of the data and (b) sensor errors involving false and stuck calls. It should be noted that 4 
issues of missed calls are not observable using high-resolution logs unless a redundant sensor is 5 
present to validate the missed calls. 6 

Logging Failures 7 

In high resolution logging, it is recommended that a logging flag that triggers a log entry at a 8 
known interval (every 10–15 sec) be added. This will ensure that any logging failures can be 9 
directly measured by counting the number of missing logging flags. In the absence of such a 10 
feature, ITSPMs propose to use surrogate measures to monitor logging failures.  11 

a. Spurious Inactivity Period – This is defined as a period during which the controller 12 
records no entries for any of the event codes. A tick mark appears for each time one of the event 13 
codes is logged during a 30-minute period, as illustrated in Figure 1a. The periods of inactivity, 14 
annotated by “A” and “B,” could be due to an absence of any activity at the intersection or some 15 
spurious behavior of the logging program. To use a data-driven technique to find a threshold that 16 
separates spurious inactivity from normal inactivity, we explored logging gap distributions, 17 
which show the duration of time interval between two events observed over a week on the x axis 18 
and the number of times they were observed on the y axis, as displayed in Figure 1b. It can be 19 
seen that for the distributions observed at both Sandy @ 57th and Division @ 122nd, most of the 20 
entries are shorter than 300 seconds and then there is a sudden burst of activity after a long gap, 21 
at around 450 seconds (annotated by “C”) and near 660 seconds (annotated by “D”). For this 22 
work, we used 300 sec as the threshold for detecting spurious vs. normal inactivity.  23 

For the study intersections, a spurious inactivity period was defined as any period of time 24 
greater than 300 seconds during which no event was recorded in the database. The average 25 
spurious inactivity period versus time-of-day plot is presented in Figure 1c. The y axis represents 26 
the percentage of time during an hour when there was missing data, classified to be spurious 27 
activity, and the x axis represents the hour of the day. It can be observed that the performance of 28 
Division @ 122nd was poor over the entire day with approximately 70% of the data not being 29 
recorded in any given hour. If a dataset with 70% missing values were to be used for 30 
performance evaluation, the results would be misguided. The volume distribution reported for a 31 
Friday (6-23-2017) by the Portland ATSPM and the volume observed for a Friday (10-23-2015) 32 
using another data collection program (15) are presented in Figure 1d. The stark contrast 33 
between 2015 and 2017 volumes highlight the importance of using data quality checks prior to 34 
making decisions using automated performance measures. 35 

b. Missing Event Error – A second form of logging error can occur if only a single 36 
event code is spuriously missed for some period of time. In general, the phase status of “green-37 
start” should be followed by “green-end,” and these events should repeat in pairs. After 38 
removing the spurious logging failures, if there are still instances when such pairings are 39 
violated, a missing event status error will then be recorded. A missing event status can be 40 
recorded for phases or detector calls or for any event that is bound to have occurrences in pairs. 41 
Tick marks for each time green and a detector turned on and off is shown in Figure 2a. An 42 
example with phase 2 of Sandy @ 57th, for which the green indication started twice   43 
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 1 

 
(a) Spurious Inactivity in logging example 

 
(b) Logging gap distribution 

 
(c) Summary of spurious inactivity for Sandy @ 57 and Division @ 122nd   

 
(d) Impact on volume distribution (Friday 6-23-2017) vs. Friday (10-23-2015) 

Figure 1: Spurious inactivity assessment 
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(a) Missing phase status example 

 
(b) Summary of missing phase 6 status for Sandy @ 57 

Figure 2: Missing event assessment 
 1 
 2 
consecutively with no green termination was recorded in between, is annotated with “A.” In 3 
Figure 2b, this data is shown aggregated into a histogram of missing phase 6 status over time of 4 
day. Also displayed are the long cycles (greater than 5 minutes) observed for phase 6. 5 

The red bars indicate the percentage of time that phase logging was unmatched, and the 6 
blue bars indicate the percentage of time that the cycle length was greater than 5 minutes in 7 
through movements. The long cycles are shown because it is possible that the whole phase pair 8 
could be missed because of this logging error. Plotting of very long cycles along with unmatched 9 
pairs over time of day can give an indication of how often this might be occurring. Typically, 10 
very long cycles are acceptable during night times, but a red flag should be raised if a lot of them 11 
are observed during the daytime for movement on a main street. This type of aggregation could 12 
also be compiled for detector statuses, as there is an expectation of a certain level of volume by 13 
time of day. 14 

Sensor Errors 15 

Stuck call errors can be calculated using Equation 1 with the threshold set as a user-defined 16 
parameter. Six minutes implies that a detector was occupied for two or more consecutive cycles 17 
(with 180 seconds chosen as a conservatively high cycle length for most jurisdictions), which is 18 
highly improbable, especially during non-peak hours. 19 
 20 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = � 1,         ∑ 𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑇𝑇𝑂𝑂𝑇𝑇𝑂𝑂1𝑚𝑚𝑚𝑚𝑚𝑚 > 6 𝑇𝑇𝑂𝑂𝑚𝑚
 0,                    𝑜𝑜𝑆𝑆ℎ𝑂𝑂𝑒𝑒𝑒𝑒𝑂𝑂𝑒𝑒𝑂𝑂                              Equation 1 21 

 22 
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A false call error refers to the count that one detector per lane during 1 minute should not 1 
exceed, which would be the saturation flow rate. Although the exact saturation flow rate of that 2 
approach is not known, a threshold determined from experience can be used. Here we used 45 3 
counts per minute (2700 vphpln) as a threshold, and any records exceeding that were coded as 4 
false call errors. 5 

To identify sensor errors, a scatter plot of the vehicle count per lane per minute is plotted 6 
against time occupancy in 1-minute bins. A detector example with 1 month of data is shown in 7 
Figure 3a. The two shaded regions represent different potential sources of errors: false call errors 8 
(annotated by “A”) and stuck call errors (annotated by “B”). If the logging error is not removed 9 
from the data, the number of stuck call errors will drastically change the data distribution, as in 10 
the case of Figure 3a. A case of a sensor performing reasonably well is shown in Figure 3b. Only 11 
one stuck call, annotated by “C,” is observed in a period spanning one week. It should be noted 12 
that sensor health statistics should be calculated after eliminating the time periods with 13 
significantly high logging errors. 14 

 15 

  
(a) Detector count vs. total occupied time in 

1-min aggregations (diagnostic figure) 
(b) Detector errors after removing spurious 

inactivity errors 
Figure 3: Sensor quality performance  

Demand Assessment 16 

Traffic Pattern Estimation 17 

Identifying traffic patterns is critical in designing optimal traffic signal control strategies. Some 18 
of the questions that need to be answered by a traffic signal manager include: 19 

a. What does a typical day look like? This is needed to ascertain the base set of timing 20 
plans that are designed to meet these conditions 21 

b. On which days of the week do similar traffic patterns exist? This helps in assigning a 22 
given time-of-day plan to certain days of week. The traffic manager can use ATSPMs to 23 
look at the volume distribution of different days of the week and make an engineering 24 
judgment. 25 
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c. How many days deviate from the traffic pattern of a typical day? An intersection with a 1 
significant number of non-typical days and greater deviation among a typical day may 2 
show a greater need for an adaptive control or other unique timing solutions. 3 

d. Are there any intersections today exhibiting an atypical demand? This might help the 4 
traffic managers detect an issue and respond to it in a timely fashion.  5 

Here, an intelligent method of detecting demand patterns to answer the four above 6 
questions is presented. As shown in Figure 4, the process uses cumulative demand (the sum of 7 
advance detector volume on all the approaches) to determine the days of the week that have 8 
similar demand patterns, separates out anomalous demand patterns days, and then aggregates the 9 
days of the week having similar demand patterns into groups. This process involves four steps. 10 

• Step A involves creating cumulative arrival plots for the total approach volume at the 11 
intersection.  12 

• Step B entails identifying days with missing data, determined by instances for which the 13 
cumulative volume shows no change over any 1-hour period. One such example is shown 14 
by annotation “A” in Figure 4. The horizontal bar indicates this missing data, with the 15 
volume remaining fixed at 6,000 after 7 AM in the morning. After such missing data days 16 
are identified, they are removed from further analysis. These horizontal lines can also be 17 
used to identify detector issues. 18 

• In Step C, after removing the missing data days, typical and atypical days for each day of 19 
the week are found. This is done by computing a representative base curve for that day 20 
and then computing the deviation of the other curves from the base curve. The base curve 21 
is obtained by averaging the demand data points for every hour of the day. These 22 
deviation values (means and standard deviations) are clustered by a mean-shift clustering 23 
algorithm, and the largest group is identified to be the typical pattern for that day of the 24 
week. The mean-shift algorithm works on the following principle: 25 

o First, assume each feature point is a cluster center. 26 
o Then, take all the points within the bandwidth or radius of the feature center and 27 

recalculate the mean of these feature points as the new center. 28 
o Repeat this for all the points until convergence is achieved; that is, the center 29 

points remain unchanged. Further details about mean-shift clustering algorithms 30 
can be found elsewhere (16–19).  31 

The curve marked by annotation “B” in Figure 4 was selected by the algorithm as an 32 
atypical day. It can be seen that the daily arrivals on that day were much lower than for 33 
the rest of the cluster.  34 

• After removing the anomalous days obtained in Step C, Step D is to group the days of the 35 
week with similar demand patterns into one cluster. First, the base day for each day of the 36 
week is determined. For example, curves for all the Sundays are combined to form one 37 
curve for a Sunday and so on. This grouping is similar to that of Step C. After this, the 38 
representative curves are clustered to obtain the groups of similar days. For example, as 39 
shown by annotation “C” in Figure 4, weekdays show as one cluster and weekends make 40 
up another. 41 

 42 
 43 
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 1 
Figure 4: Demand trend analysis 2 

 3 
It is important to identify anomalous data in real time as well as to present an overview at 4 

the network level. After estimating the group of typical days, a 90% confidence bound is 5 
generated, and a curve departing from the confidence bound can trigger alarms in real time. An 6 
example of such a day is shown in Figure 5a, as annotated by the “A.” In addition to identifying 7 
an anomalous day in real time, other such days can also be identified at a network level over a 8 
period of time, as shown in Figure 5b, with the shading of each cell indicating the level of 9 
anomalous days.  10 
 11 
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a. Real-time or daily representation of an anomaly 

 
b. Weekly number of anomalies seen on the network 

Figure 5: Anomalous day overview 

Need for Coordination 1 

Whether or not to provide signal coordination for a given time-period is a challenging question 2 
for traffic operators to answer. This section provides a data-driven methodology to address the 3 
following problems: 4 

a. Are there bunches/platoons arriving at an intersection? This provides evidence that the 5 
arrivals are not completely random and that the upstream intersection is impacting the 6 
arrival pattern at the subject intersection. This in turn points toward exploring the impact 7 
of providing coordination. 8 

b. What is the time period for which coordination should be explored? The proximity of an 9 
upstream intersection shows only the possibility of creating tightly packed platoons. For 10 
coordination to be beneficial, there needs to be enough platoons for enough cycles. The 11 
percentage of cycles showing platoons during a given time period and the average 12 
platoon length can be good measures for answering the question of the appropriate time 13 
period to be explored. 14 

 15 
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Steps used to identify the presence of platoons and calculate surrogate measures to 1 
identify a good time period to explore coordination options are presented in Figure 6.  2 

• In Step A, the arrivals that will be classified as a platoon of vehicles are identified. To 3 
cluster those arrivals, a machine learning technique was applied. Density-based Spatial 4 
Clustering of Applications with Noise (DBSCAN), a data-clustering algorithm (20), was 5 
used to identify the group of vehicles in a single cycle. To categorize vehicles into 6 
platoons, the following rule was used: A platoon should contain a minimum of 5 vehicles 7 
and not be separated by average headway greater than 1.6 seconds. It results in a 8 
parameter setting of 5 as minimum samples and 4 seconds as epsilon in DBSCAN 9 
algorithm. These parameters were user-defined and can be chosen as deemed appropriate 10 
by the operator. In Figure 6, an example using data from Sandy @ 57th St. and Division 11 
@ 122nd St. for a given day is shown in Step A. The black dots are random arrivals that 12 
are not clustered into any potential platoons, and the red dots show vehicles classified as 13 
platoons. 14 

• In Step B, the percentage of cycles in a given hour that have platoons is identified. An 15 
example distribution of percentage of cycles containing platoons is shown in Step B of 16 
Figure 6. The blue line indicates the median cycle percentages by time of day; the gray 17 
shading implies the range from the 25th and 75th percentiles of the data by time of day. 18 

• In Step C, the distribution of average platoon lengths by number of vehicles is calculated. 19 
The average platoon length distributed by time of day is shown in Figure 6, Step C. The 20 
blue line and gray shading represent the median and the range from the 25th to the 75th 21 
percentile of each distribution, respectively. 22 

 23 
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 1 
Figure 6: Procedures for determining the need of coordination 2 

The percentage of cycles with a platoon and average platoon length by time of day are 3 
needed to identify the time period for which the impact of providing coordination should be 4 
explored. A predefined threshold can be used to identify the time periods to explore. As an 5 
example, if a threshold of 60% was chosen for percentage of cycles exhibiting platoons with 6 
platoon length greater than 8 vehicles then, as annotated by “A” and “B” in Figure 6, the PM 7 
peak for Sandy @ 57th might be explored for impacts of coordination.   8 
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Control Support 1 

Aggregate Platoon Coordination Diagram (APCD) 2 

The PCD is currently used by a number of agencies to identify if most arrivals occur during the 3 
green band, among other items. It is an effective tool to identify if there are any occurrences of 4 
platoon incursions happening during the start or end of green times. Despite being a very useful 5 
tool at a single-day resolution level, the PCD in its current form is not extendable to longer time 6 
durations. When given a month as a time range, UTAH ATSPM 4.01 generates one PCD per 7 
intersection per day. Here, a new tool named Aggregate Platoon Coordination Diagram (APCD) 8 
is proposed. Please note that the term “Platoon” instead of “Purdue” is used to avoid any claims 9 
that this measure has been supported or recommended by Purdue University personnel.  10 

  Vehicle distributions using one day and one week of data, respectively, are shown in 11 
Figure 7a and 7b. In Figure 7b, the green and red lines show average red time and average cycle 12 
time, respectively. The color map indicates the density of arrivals, which is the average number 13 
vehicle arrivals for each 5-sec period per cycle. The darker color indicates higher density and, 14 
thus, shorter headways. The color threshold was chosen to populate only densities that can be 15 
considered as platoons. 16 

How to use the APCD to find the potential platoon bandwidth is demonstrated in Figure 17 
7c, annotated by “A.” For each time slot (along the y axis), if over 10% of vehicles arrive within 18 
a 2-second headway, this slot would be considered as part of the platoon band. Taking the lowest 19 
and highest values from all the time slots, which are the band boundaries, the platoon bandwidth 20 
can be determined. Here, the intersection of Division @ 122nd St. (2015) shows a 29.5 second 21 
platoon bandwidth. 22 

 23 

 24 
(a) Single day PCD example 25 
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 1 
(b) APCD over one week  2 

 3 
(c) APCD with bandwidth detected 4 

Figure 7: Proposed APCD features. 5 
This example of an APCD is presented with an average of one week of data. It should be 6 

noted that the APCD can aggregate similar days, as identified in the Demand Trend Analysis 7 
section.  8 

CONCLUSION 9 

The ITSPM presented in this paper builds on the concepts of machine learning, traffic flow 10 
theory, and data visualization to minimize the human time needed for data-driven traffic signal 11 
management systems. From talking with practitioners intimately familiar with ATSPMs, the 12 
existing state-of-the-art systems were reported to have three primary limitations: (a) limited data 13 
quality control, b) intensive resource requirements, and (c) falling short in addressing the multi-14 
modal aspect of the operations. This paper addressed the first two of these shortcomings. 15 

In this paper, a methodology to identify and remove data-logging errors as well as to 16 
identify bad sensors was presented. Eliminating these errors improves the quality of data, which 17 
leads to more precise decision making and also results in more efficient human asset 18 
management. After providing the methodology for data quality control, machine learning 19 
principles, which include intelligence in demand trend identification, were used. The use of 20 
machine intelligence will reduce the time taken by human operators, who would otherwise have 21 
to detect the same patterns manually, and will allow them to allocate their time more efficiently 22 
making decisions rather than identifying patterns. In addition, ITSPM also includes an intelligent 23 

Platoon BandA
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method for identifying whether or not coordination may be needed at an intersection. This can be 1 
achieved using two surrogate measures defined in this paper, namely, percentage of cycles 2 
exhibiting platoons per hour and average platoon sizes. Finally, in this paper the Aggregate 3 
Platoon Coordination Diagram (APCD), which is an advancement over the current PCD, was 4 
proposed. The APCD can be used to minimize visual clutter by removing any vehicle that is not 5 
in a platoon and can be scaled to include multiple days of data, thus eliminating the need for the 6 
traffic signal managers to browse through multiple individual PCDs when looking to improve 7 
coordination.  8 

Future work could emphasize on two aspects. In regards to sensor and communication 9 
health, besides the proposed methods in this paper, future research direction would be integrating 10 
more data sources like crash and weather data to conduct a causation analysis. In addition, 11 
shortcomings in the ATSPM outputs in addressing the multi-modal aspect of traffic signal 12 
operations were identified, and the authors recommend that efforts be focused on designing these 13 
performance measures in future research. The availability of multi-modal information through 14 
high resolution logs is also limited. At a minimum, there is a need to integrate more multi-modal 15 
sensors on the roadways to provide approach volumes and delays for all modes. New surrogate 16 
measures can be calculated to investigate if phase allocations are equitable.  17 
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