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Investigating Evidence in Support of Validity and Reliability for Data Collected with the 

Meaningful Learning in the Laboratory Instrument (MLLI) 

Elizabeth B. Vaughan, Amanda Cochran, and Jack Barbera 

 

Abstract 

 The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure 

students’ expectations before and after their laboratory courses and experiences. Although the 

MLLI has been used in various studies and laboratory environments to investigate students’ 

cognitive and affective laboratory expectations, the authors of the instrument reported a 

discrepancy between the intended factor structure of the MLLI and the factor structure suggested 

by the data collected in preliminary studies. Therefore, the aim of this study was to investigate 

the validity and reliability evidence related to data collected with the MLLI, especially that 

related to structural validity. Evidence to support structural validity would provide greater 

meaning for the reporting and interpretation of MLLI scores. In this study, two possible a priori 

models for the factor structure of data collected from multiple institutions with the MLLI were 

investigated using confirmatory factory analysis (CFA). This initial investigation found poor 

data-model fit for each of the two tested models. Cognitive interviews and free response items 

were then used to inform modifications to the two a priori structures, and a third alternative 

structure, which included a negative method factor, was also investigated. Once a best fitting 

model was identified, further model revisions were informed by a combination of modification 

indices and qualitative data. Evidence of adequate-to-good data model fit was found for the final 

revised version of the MLLI, deemed the MLLIv2. Additionally, evidence of both internal 

structure validity and single administration reliability were found for each of the MLLIv2 

factors. The structure of the data from these items leads to scale scores that likely represent 

student expectations that contribute to meaningful learning and student expectations that detract 

from meaningful learning. As the results of this study provide the first psychometrically 

supported scales for MLLI data, they have implications on the future reporting and analyses of 

MLLI scores. 

 

 

 



Introduction 

In recent years, there has been a great deal of interest in investigating and improving 

chemistry laboratory courses (Bretz, 2019). As a part of this trend, many chemistry education 

researchers and practitioners have begun moving away from confirmatory “cookbook” style 

laboratory activities toward inquiry-based and/or research-based laboratory activities (Weaver et 

al., 2008; Grushow et al., 2021). As laboratory courses are being transformed, it is important for 

researchers and practitioners alike to investigate the impact that these changes have on student 

learning experiences. 

It has been noted in the chemistry education literature that students’ laboratory 

expectations (i.e., students’ perceptions about what they will learn, think, do, or feel in a 

laboratory course) likely have an impact on their laboratory learning experiences and behaviors 

(DeKorver & Towns, 2015; Galloway and Bretz, 2015a; Wang et al., 2021). More specifically, 

researchers suggest that increasing the alignment between student expectations and laboratory 

learning goals could improve student buy-in and engagement in these courses (DeKorver & 

Towns, 2015; Galloway & Bretz, 2015a; Rovers et al., 2018), potentially improving other 

student outcomes, such as course grades and persistence (Lester, 2013). One of the lenses 

through which students’ laboratory expectations and experiences can be assessed is meaningful 

learning. 

 

Meaningful Learning 

Joseph Novak’s Theory of Education states that “Meaningful learning underlies the 

constructive integration of thinking, feeling, and acting leading to empowerment for commitment 

and responsibility” (Novak, 2010). In the context of an undergraduate teaching laboratory, “how 

a student chooses to act (psychomotor) in the lab depends on how they think about (cognitive) 

and feel toward (affective) their laboratory experiences” (Galloway and Bretz, 2015a). Novak’s 

Theory of Education was highly influenced by the work of David Ausubel, whose theories 

highlighted the distinction between rote and meaningful learning (Ausubel, 1962, 1963, 1968; 

Novak, 2003). Ausubel theorized that meaningful learning occurs when an effort is made by the 

learner to connect newly acquired information to knowledge that the learner already possesses. 

Rote learning, on the other hand, occurs when little to no effort is made by the learner to relate 

new information to existing knowledge (Ausubel, 1962, 1963, 1968; Novak, 2003). Furthermore, 



Ausubel and Novak theorized that learning exists on a continuum “from extreme rote to highly 

meaningful, with key factors being the strength of the learner's commitment to learn 

meaningfully and the quantity and quality of organization of her/his relevant knowledge.” 

(Novak, 2003).  

 

Measuring Meaningful Learning 

In the context of undergraduate chemistry laboratory courses, Novak’s Theory of 

Meaningful Learning has been operationalized as the Meaningful Learning in the Laboratory 

Instrument (MLLI) (Galloway and Bretz, 2015a). This tool was designed to measure students’ 

cognitive and affective learning expectations (pre-course) and experiences (post-course) in their 

undergraduate chemistry laboratory courses. Due to the inherent psychomotor nature of 

chemistry laboratory courses, the MLLI authors chose not to include any solely psychomotor 

items. Instead, they wanted to capture the extent to which “students integrate their thinking and 

feeling with the doing” (Galloway and Bretz, 2015a). The MLLI contains 30 items, each author-

assigned into one of three categories: cognitive (16 items), affective (8 items), and 

cognitive/affective (6 items). The authors also identified that 16 of the items are positively 

worded, while the other 14 are negatively worded. Each of the MLLI items share a common item 

stem, which focuses the items on in class laboratory experiences directly related to performing 

experiments. For example, the pre-course item stem states: ‘When performing experiments in my 

chemistry laboratory course this semester, I expect…’. Students are then asked to respond to a 

variety of statements, for example, ‘… to learn chemistry that will be useful in my life’ on a 0 to 

100 response scale, where students indicate their agreement (100%, completely agree) or 

disagreement (0%, completely disagree) to each item statement by moving a slider bar in 1% 

increments. (Galloway and Bretz, 2015a).  

The MLLI authors investigated the factor structure of the data collected with their 

instrument through exploratory factor analysis (EFA). Their analysis suggested that the most 

appropriate structure of the data, for both the pre- and post-assessment data, was a two-factor 

structure in which one factor contained 13 negatively worded items, while the other factor 

contained 15 positively worded items. Additionally, one item did not strongly load on either 

factor and one item cross-loaded strongly on both factors. The authors suggested that the two 

factors accounted for “items contributing to meaningful learning” (positively worded items) and 



“items inhibiting meaningful learning” (negatively worded items). (Galloway and Bretz, 2015a). 

This statistically supported two-factor structure did not match the three domains of item 

categorization intended by the MLLI authors. To date, there has been no published quantitative 

support for the proposed three domain categories of the MLLI. 

 

MLLI Uses and Score Reporting 

Since its publication, the Meaningful Learning in the Laboratory Instrument has been 

used to examine students’ expectations and experiences in a variety of research studies and 

teaching laboratory environments. Throughout their work, the MLLI authors used the averages 

of the items assigned to the proposed categories (i.e., cognitive, affective, and 

cognitive/affective) to investigate the expectations and experiences of both general and organic 

chemistry students (Galloway and Bretz, 2015a, b, c). Various other researchers have also used 

the MLLI to investigate students’ expectations and experiences when implementing changes in 

their laboratory courses. For example, a study published in 2017 used the MLLI to investigate 

the perspectives of students taking upper-division laboratory courses focused on “analytical 

measurements and physical measurements.” In this study, the MLLI was one piece of a mixed 

methods approach investigating the utility of pre-laboratory video resources in rotational style 

courses (Schmidt-McCormack et al., 2017). To do so, MLLI data were calculated as the median 

scores for each student's responses to the cognitive, affective, and cognitive/affective item 

categories (Schmidt-McCormack et al., 2017). Additionally, studies published as recently as 

2022 have used the MLLI and its three proposed categories in their investigations. For example, 

one study reported the average scores of the cognitive, affective, and cognitive/affective 

categories to assist in the investigation of the differences between traditional chemistry courses 

and integrated lecture-lab block courses (Lau et al., 2023).  

Not all studies utilizing the MLLI report scores from the three proposed categories. In 

2019, George-Williams and colleagues published a study investigating student expectations and 

experiences, along with staff perceptions of students' experiences in teaching laboratories, 

through the lens of meaningful learning. To facilitate pen-and-paper data collection, and to 

collect data from instructors as well as students, slightly modified versions of the MLLI items 

and response scales were used. In their publication, the researchers reported that “a factor 

analysis did not show factors that aligned with original ones raised by Galloway and Bretz 



(2015a) (affective, cognitive and affective/cognitive).” For this reason, George-Williams and 

colleagues decided not to report scores for the affective, cognitive, and affective/cognitive item 

categories and instead compared participants’ responses at the item level (2019). This 

methodological decision highlights an important aspect of instrument development and 

utilization: Before data can be meaningfully scored and interpreted by researchers, it is important 

to collect evidence supporting the validity and reliability of the data produced by a measure. 

 

Validity and Reliability  

 Self-report surveys, like the MLLI, generally consist of a set of items that participants 

directly respond to. These items are theoretically related to an unobserved (latent) variable or 

variables (i.e., students’ expectations related to meaningful learning). Before the data produced 

by the MLLI, or any other measure intended to investigate latent variables, can be scored and 

interpreted, evidence supporting the validity and reliability of the data must be gathered (Lewis, 

2022; Stains, 2022). Evidence of validity provides support that an instrument measures what it is 

intended to measure, while evidence of reliability provides information about the consistency of 

the data (American Educational Research Association, 2014; Arjoon et al., 2013). There are 

various types of validity and reliability evidence that can be assessed during the development 

and/or usage of a given measure, including response process validity, internal structure validity, 

and single administration reliability.  

Response Process Validity 

Response process validity focuses on how participants interpret and respond to the items 

included in a measure (Arjoon et al., 2013; Deng et al., 2021, Collins, 2003). Typically collected 

through cognitive interviews and/or short-answer survey items, response process data can 

provide insight into respondents’ thought processes when responding to items. Collecting this 

type of data allows researchers to explore the respondents’ understanding of the nuances of each 

item. Evidence of response process validity is especially important when a measure is being 

developed, but it is also necessary when a measure is adapted or modified to a new environment, 

as participants in a new environment may not interpret items in the same way as respondents 

from the environment in which the measure was originally developed. 

Internal Structure Validity 



Validity evidence based on internal structure is concerned with the relations between 

items and latent constructs and how these relations match to the hypothetical structure of the 

construct (Arjoon et al., 2013, Worthington & Whittaker, 2006).  This evidence can be supported 

through factor analysis, either exploratory factor analysis (EFA), where the relations are 

analyzed without a preconceived structure, or confirmatory factor analysis (CFA), where an 

estimate of how well the data fit an a priori model is obtained (Arjoon et al., 2013).  Evidence of 

structural validity is important, both when a measure is developed, and when a measure is 

adapted or modified to a new environment. Before a participant’s ‘score’ for a set of items 

representing a latent construct can be interpreted, evidence supporting the item grouping (i.e., 

factor structure) must be collected (Lewis, 2022; Stains, 2022). 

Single Administration Reliability 

Single-administration reliability is concerned with how consistent participants’ responses 

are to items measuring the same construct. Currently in STEM education literature, one of the 

most commonly reported coefficients of reliability is Cronbach’s alpha (Barbera et. al., 2020; 

Taber, 2017). However, as noted by Komperda, Pentecost, and Barbera in 2018, alpha should 

only be used for data models that have equal item loadings. Since most measures used in 

education research are not designed to meet this requirement, single-administration reliability 

can instead be estimated using McDonald’s omega, which allows for unequal factor loadings and 

describes the amount of the observed variance explained by the construct divided by the total 

variance (Komperda et al., 2018). Collecting evidence of single-administration reliability 

provides researchers with information about the relations between individual items and a 

participant’s ‘score’ for a set of items representing a latent construct. 

 

Goals of This Study 

Without appropriate evidence to support the validity and reliability of the data collected 

with the MLLI, the student responses gathered using the instrument cannot be meaningfully 

scored or interpreted. As part of a larger project to explore the relations among students’ 

expectations, buy-in, and engagement in lower-division undergraduate chemistry laboratory 

courses, this study aims to investigate the validity and reliability evidence for the data collected 

with the MLLI in the populations under investigation. Therefore, the research questions guiding 

this study are as follows:  



1. What evidence of validity and reliability supports interpreting data collected with the 

MLLI as measures of student expectations in lower division undergraduate laboratory 

courses? 

2. If insufficient evidence is found, what modifications are supported by the data collected 

from this population? 

3. If modifications are necessary, what evidence of validity and reliability supports 

interpreting data collected with the modified instrument? 

 

Methods 

All data collected within this study was approved by the Institutional Review Board 

(IRB) at Portland State University, and appropriate consent was obtained from students as 

required by the IRB. 

 

Participants and Data Collection 

Data collection for this study included the collection of qualitative response process 

validity data and the collection of quantitative data to assess evidence of structural validity and 

single administration reliability. Before any data were collected using the MLLI, the item stems 

were edited to remove the word ‘semester’. This generalization was made so that data collection 

at institutions with different types of calendars (i.e., semesters vs. quarters) was identical. 

Therefore, the item stems used in this study were ‘When performing experiments in my 

chemistry laboratory course, I expect…’ and in the post-course assessment, ‘When I performed 

experiments in my chemistry laboratory course, I…’. 

Qualitative Data Collection 

In this study, response process data were collected through both interviews and free 

response items. The sample for response process interviews consisted of Portland State 

University students taking a first-term general or organic chemistry laboratory course in the fall 

of 2020. Students’ interest in participating in an interview and consent were collected via 

Qualtrics. Based on each student’s availability, interviews were scheduled and conducted via 

Zoom. Each interview was approximately 45 minutes long. During each interview, a copy of the 

MLLI was provided to the participant and they were first directed to complete the items. 

Interviewees were then asked to read each MLLI item aloud, state which response (from 0 to 



100) they selected, and explain why they selected that response value. Follow-up questions were 

asked, as needed, to gain more details about their understanding of the items and/or response 

reasoning. All interviews were audio-video recorded over Zoom and transcribed before analysis. 

The sample for open-ended response process survey items consisted of Portland State 

University students taking a second-term general or organic chemistry laboratory course in the 

winter term of 2021. These data were collected through open-ended survey items distributed via 

Qualtrics in the first two weeks of each laboratory course. Survey recruitment consisted of a 

video announcement that was pre-recoded by the first-author (E.B.V.) and presented by the 

graduate teaching assistants in each laboratory section near the beginning of the first course 

meeting. Additionally, the announcement was posted in both video and text form on each lab 

course’s learning management site, along with a link to the Qualtrics survey. Students were 

offered a nominal amount of extra credit for accessing each survey. In the pre-term surveys, 

students were randomly presented with ten MLLI items and asked to respond using the 0-100 

scale. To provide additional response process data, students were also asked to describe why they 

selected each response value. For each of the 30 MLLI items, 6 interview responses and 

approximately 100 open ended written responses were collected. 

Quantitative Data Collection 

Quantitative data were collected from Portland State University (PSU) students taking a 

first term general chemistry laboratory course in the fall of 2021 or a first term organic 

laboratory course in the winter of 2022. Additionally, students taking a first semester general or 

organic chemistry laboratory course at East Carolina University (ECU) and students taking a first 

semester general chemistry laboratory course at San Diego State University (SDSU) in the fall of 

2021 were also included in this portion of the study. All quantitative MLLI data were collected 

through the distribution of both a pre- and post-course survey via Qualtrics. For survey 

recruitment, a video announcement was pre-recoded by the first-author (E.B.V.) and presented 

by the graduate teaching assistants in each laboratory section. Additionally, the announcement 

was posted in both video and text form on each courses’ learning management site, along with a 

link to the Qualtrics survey. PSU students were required to complete both the pre- and post-

course surveys as graded course assignments, although allowing their data to be used for the 

proposes of this research project remained voluntary. Students at the other two institutions were 

offered a nominal amount of extra credit for accessing each survey. The pre-course survey was 



distributed during the first two weeks of each laboratory course, while the post-course survey 

was distributed in the final two weeks of each laboratory course. To prevent item-order effects in 

the data, the MLLI items were randomized for each student. As suggested by the MLLI authors 

(Galloway and Bretz, 2015a), a check item was included in each survey to allow for the removal 

of student responses who were not reading the items. Before analyzing any quantitative data, 

responses were cleaned by removing any duplicate participant responses or responses from 

participants who incorrectly responded to the check item. A table of cleaned response totals for 

the quantitative data collection can be found in Table 1. Additionally, self-reported 

demographics data for the cleaned student responses are provided in Table S1 in the Supporting 

Information. 

 

Table 1. Cleaned student response totals for data collected with the MLLI 
Course Pre-Term 

Responses 
(n) 

Post-Term 
Responses 

(n) 
Portland State University (PSU) 
General Chemistry 192 169 
Organic Chemistry 109 96 
East Carolina University (ECU) 
General Chemistry 285 167 
Organic Chemistry 97 95 
San Diego State University (SDSU) 
General Chemistry  186 95 

Totals 869 622 
 

Analysis Methods 

Qualitative Data Analysis 

The interview transcripts and written item responses were analyzed to determine if 

participants were interpreting and responding to MLLI items as intended. To do this, two 

researchers individually read through each participant’s interview transcript or free responses 

and flagged items that did not appear to be functioning properly. Items were flagged if: 1) the 

participant’s explanation did not match the selected numerical response, (i.e., if a participant 

selected a numerical value on the “Agree” side of the scale, then their explanation of why they 

chose that response should also indicate that they agree with the item), 2) the participant 

expressed confusion about the meaning of the item (e.g., if they asked for clarification or 



indicated that they were unsure how to respond), 3) their explanation indicated that they 

interpreted the item differently from its intended meaning, 4) they responded that the item was 

not relevant to them personally or to the environment in which the question was posed, and/or 5) 

they interpreted items as being redundant. The two researchers then came together and discussed 

the clarity and relevance of any flagged items, in order to come to a consensus. Results from this 

analysis were used to provide qualitative support for the removal of poorly functioning items. 

Quantitative Data Analysis 

After cleaning, the remaining student responses from each of the three institutions were 

combined into an aggregated data set, which was then randomized and split into two 

approximately equal halves. The first of set of data (termed the ‘training’ data set) was analyzed 

through item descriptive statistics (Supporting Information, Table S2) and initial factor analysis, 

while the second set (termed the ‘testing’ data set) was used for cross-validation with the final 

model. All negatively worded items were reverse coded before analysis. 

Confirmatory Factor Analysis 

To provide evidence in support of the structural validity and single-administration 

reliability for the data collected with the MLLI, a variety of CFA models were evaluated. All 

CFAs were completed using the statistical program R (version 4.2.0 (2022-04-22)) with the 

package lavaan (version 0.6-11). Maximum likelihood with Satorra-Bentler adjustment and 

robust standard errors were used to account for any non-normality of the data (Satorra & Bentler, 

1994). Fit statistics were calculated and interpreted for goodness of the data-model fit, where the 

guidelines for good fit are CFI & TLI ≥ 0.95, RMSEA ≤ 0.06, SRMR ≤ 0.08; and adequate fit 

are CFI & TLI ≥ 0.90, RMSEA ≤ 0.08, SRMR ≤ 0.10 (Hair et al., 2010; Hu & Bentler, 1999; 

Marsh et al., 2004; Schweizer, 2010; Brown and Cudeck, 1993; Kline, 2005).  

Model Modification 

Poor data-model fit, modification indices, and low item loadings were used to flag items 

that may have been functioning poorly in the training data set. These data were used in parallel 

with qualitative response process data to support the removal of items when necessary. Once 

items were removed, data from the reduced set of MLLI items was then reanalyzed via CFA to 

assess data-model fit. To provide evidence of cross validation for the final model and reduced set 

of items, the data-model fit of the testing data set was evaluated. Cross-validation is one way to 



provide support for the data-model fit of modified models using ‘unique’ data (i.e., data that was 

not directly used in making the modifications) (Koul et. al., 2018). 

McDonalds Omega 

Using the testing data set, the single-administration reliability of each unidimensional 

factor (evaluated via CFA) was assessed using McDonald’s Omega. Values for omega range 

from 0 to 1, with 1 indicating that all of the observed variance is from the latent construct. 

Therefore, a high omega value (> 0.7) provides evidence to support of the internal consistency of 

the items (McDonald, 1999). 

 

Results and Discussion 

Before the data collected in this study was used to investigate evidence in support of 

validity and reliability, the 869 cleaned student responses to the pre-course survey were 

aggregated, randomized, and split into two approximately equal halves. The first set of data 

(termed the ‘training’ data set) included 434 responses and was analyzed through item 

descriptive statistics and factor analysis, while the second set (termed the ‘testing’ data set) 

included the remaining 435 responses and was used for cross-validation. Additionally, because 

data collected with MLLI is theorized to have the same internal structure for both the pre-course 

and post-course administrations (Galloway and Bretz, 2015a), the post data set was used as an 

additional source of cross-validation.  

 

A Priori Model Evaluation 

In order to support the calculation of scores for each latent construct measured by the 

MLLI, the first step was to investigate the structure of the MLLI data from the sample of 

students in this study. Using the training dataset, the two structures previously suggested by the 

authors of the MLLI (Galloway and Bretz, 2015a) were tested via CFA to determine which 

structure was the most appropriate for use with our data. The first model tested (Model A) was 

the three-factor structure (Figure 1), where each of the 30 MLLI items was qualitatively sorted 

into cognitive, affective, and cognitive/affective groups using meaningful learning as a 

theoretical framework. As shown in Table 2, Model A showed evidence of poor data-model fit, 

as each of the fit indices fell outside of their recommended ranges. Additionally, the correlation 

between the affective and cognitive/affective factors in Model A was 0.949. Factor correlations 



close to 1 indicate that these items may be measuring the same construct (Brown, 2015). The 

next model tested (Model B) was the two-factor structure identified by the MLLI authors via 

EFA (Figure 1), in which each factor contained only positively or negatively worded items. The 

two-factor model only included 28 items, as the items reported by Galloway and Bretz that did 

not cleanly load on a single factor were removed before analysis. The removal of these items is 

necessary, as items that are cross loading on multiple factors, or do not load on either factor, do 

not provide support for determining a ‘unique’ score for each latent variable (Li, et al., 2020). 

Data-model fit statistics (Table 2) for Model B were much closer to the acceptable ranges than 

for Model A, but all still fell outside the suggested cutoffs for acceptable data-model fit. Factor 

loadings for all items in Model A and Model B can be found in the Supporting Information 

(Tables S3 and S4). As neither Model A nor Model B resulted in acceptable data-model fit, the 

next step was to identify poorly functioning items and possible modifications to the MLLI 

models which may better represent the data.  

 
Figure 1. A priori structures of the MLLI data. Model A - three-factor structure suggested by Galloway and Bretz 
(2015a), where each of items was qualitatively grouped into cognitive, affective, and cognitive/affective categories 
using meaningful learning as a theoretical framework. Model B – two-factor structure of positively and negatively 
worded items suggested by Galloway and Bretz (2015a) based on EFA results. 
 
Table 2. Data-model fit statistics for a priori structures for the MLLI (n = 434). Italic values indicate the results met 
the suggested cutoff criteria for adequate fit (CFI & TLI ≥ 0.90, RMSEA ≤ 0.08, SRMR ≤ 0.10). Bold values 
indicate that the results met the suggested cutoff criteria for good fit (CFI & TLI ≥ 0.95, RMSEA ≤ 0.06, SRMR ≤ 
0.08) (Hair et al., 2010; Hu & Bentler, 1999; Marsh et al., 2004; Schweizer, 2010; Brown and Cudeck, 1993; Kline, 
2005). 

Model 𝝌𝝌𝟐𝟐 (df) p-value CFI TLI RMSEA [90% CI] SRMR 
Model A 2557.692 (402) <0.001 0.534 0.496 0.120 [0.116-0.125] 0.188 
Model B 958.900 (349) <0.001 0.860 0.848 0.069 [0.064-0.075] 0.081 

 

Model Modification and Analysis Process 

Data analysis investigating the structure of the MLLI began by using confirmatory factor 

analysis to evaluate each of the two a priori models (e.g., Model A and Model B, Figure 1). 

Because evidence of poor data-model fit was found for each of the models, further analysis steps 

(outlined in Figure 2 and detailed in the subsequent sections) were deemed necessary. The next 



step in this analysis was to identify poorly functioning items and possible improvements to the a 

priori models. To do so, qualitative response process validity data in the form of cognitive 

interviews and free response items were analyzed and used to support decisions and further 

analyses. Items identified to not be functioning properly through qualitative analysis were then 

removed, and the data-model fit for each of the reduced factor structures was investigated via 

CFA. Additionally, a third possible factor structure was also tested. Once the best fitting model 

among these three possible factor structures was identified, further improvements to the MLLI 

data structure were then assessed through the investigation of modification indices. Suggested 

modifications were further investigated using the qualitative response process evidence. The 

factor structure of the final reduced set of MLLI items was then investigated through CFA and 

cross-validated using the testing-set and post-course data.     

 

 
Figure 2. Flow chart of analysis steps to taken to evaluate and modify the MLLI data structure for the population of 

interest in this study.  
 

Initial Item Removal  

Because evidence of poor data-model fit was found for each of the a priori models (i.e., 

Model A and Model B, Figure 1), response process data were used to explore which items may 

have been functioning poorly. In total, ten items were removed based on response process 

validity evidence. All removed items, as well as their reason for removal and a representative 

student response can be found in Table 3. The reasons for item removal included students not 

understanding the intent/context of the item, students finding items to be ambiguous and/or 



double barreled, students believing the negatively worded items represented positive aspects of 

participating in a laboratory course, and inconsistent response scale usage. For example, the item 

“…to be nervous when handling chemicals” was removed because many students believed that 

the item represented a positive aspect of their laboratory experience, while the authors of the 

item had categorized it as negative. One student wrote, “It's good to be nervous in my 

perspective, provides a sense of respect for the chemicals, and safety for yourself and people 

around you in a laboratory setting.” Alternatively, the item “…to focus on procedures, not 

concepts” was removed because students demonstrated inconsistent use of the response scale, 

which may have been due to the double-barreled nature of the item. For example, one student 

responded to the item with a numerical value of 0 and stated that “Both [procedures and 

concepts] are equally important,” while their classmate responded with a numerical value of 50, 

but provided a similar explanation: “I want to fully understand both. 50/50.” While some 

variation in student responses is expected, students selecting numerical values on drastically 

different parts of the 0-100 response scale, while reporting nearly identical reasoning, indicates 

that this item is not functioning properly. Of the ten items removed at this stage, six were 

designated as cognitive, two were designated as affective, and two were designated as 

cognitive/affective. Four of the items were positively worded and six of the items were 

negatively worded. 

 
Table 3. MLLI items removed using response process validity and reasons for item removal. 
Assigned categories for items include Cognitive (C), Affective (A), and Cognitive/Affective 
(C/A). Item wording includes positively worded items (+) and negatively worded items (-). 

Reason for 
Removal 

Item 
(C, A, C/A) 

(+, -) 

Response 
Value 

Representative 
Quote(s) Discussion 

Written as 
negative, 

considered 
positive by 

students 

to worry 
about getting 

good data. 
(C/A) (-) 

100 

I don't know if worry is 
the right term, but I will 

be focused on getting 
good as well as correct 

data for the experiments. 

Students discussed that they did 
not worry about getting good 

data in a negative sense, but that 
they did believe that collecting 

good or correct data was an 
important part of being 

successful in their laboratory 
course. 

to be nervous 
when 

handling 
chemicals. 

(A) (-)  

100 

It's good to be nervous in 
my perspective, provides 
a sense of respect for the 
chemicals, and safety for 

yourself and people 
around you in a 

laboratory setting. 

Student found this item similar 
to “to worry about getting good 
data.” In the case of this item, 

students once again reported that  
collecting good or correct data 
was an important part of being 



successful in their laboratory 
course. 

to worry 
about the 

quality of my 
data. 

(C/A) (-) 

100 

Quality of data is just as 
important as any other 

variable in an 
experiment so I will be 
sure to make sure it is 

good. 

Students believed that being 
somewhat nervous when 

working with chemical was a 
positive thing, as it meant that 
they were being appropriately 

cautious and safe around 
potentially harmful materials. 

Ambiguous 

the 
procedures to 
be simple to 

do. 
(C) (-) 

100 

100% because while the 
procedure may be 

difficult there should be 
some form of teaching to 

make it seem simple. 

Students had a difficult time 
interpreting the word simple in 

this item. Most students believed 
that procedures should be 

doable/ completable, but it was 
unclear whether students 

appropriately understood the 
language of this item. 

53 

Yes and no. Sometimes 
things are a bit confusing 
but I get through them. 

Not all projects are going 
to be simple. 

to think about 
chemistry I 

already know. 
(C) (+) 

50 
Not very often, as I don't 
always feel what we do 
in lab pertains to class. 

Many students had a difficult 
time interpreting this item, 

which was intended to probe if 
students were using their 

existing knowledge of chemistry 
in their laboratory course. 

Instead, students focused on the 
fact that they hoped to learn new 
chemistry content, and that the 
lecture course content may not 

always align with the laboratory 
course content. 

11 No, I expect to learn 
chemistry I don't know. 

to worry 
about 

finishing on 
time. 

(A) (-) 

0 

I do not expect that at 
all. We usually have the 
full week to submit the 

report. 

Students stated that they were 
not concerned about laboratory 

timelines or due dates. This item 
was also ambiguous for students; 
some participants referred to in 

laboratory activities, while 
others discussed the time allotted 

outside of the laboratory to 
complete lab reports. 

7 
I feel like 3 hours is 

enough time to finish a 
lab. 

Double 
Barreled/ 

Inconsistent 
Use of 

Response 
Scale 

to "get stuck" 
but keep 
trying. 
(C) (+) 

39 

If I do get stuck I know 
I’ll keep going, but I 

hope to not actually get 
stuck. 

Students struggled with the two-
part nature of this item, often 
considering them separately 

when describing their response 
reasoning. Additionally, students 
with similar reasonings selected 

numerical values in very 
different parts of the scale, 

highlighting students’ 
inconsistent scale usage for this 

item. 

5 

I don't anticipate getting 
stuck but if I do 

obviously I will keep at 
it until I have a firm 
understanding of the 

experiment. 

to focus on 
procedures, 

not concepts. 
0 

Both [procedures and 
concepts] are equally 

important. 

Many students described that it 
was important to focus on both 

procedures and concepts in their 



(C) (-)  laboratory courses. That said, 
scale use was inconsistent, 

where some students with this 
reasoning chose to disagree with 
the item (0), while others chose 
neither agree nor disagree (50). 

50 I want to fully 
understand both. 50/50 

to make 
mistakes and 

try again. 
(C) (+) 

22 

I hope I will not make 
too many mistakes but if 

I do I will work to 
correct them. Students found this item similar 

to ‘to "get stuck" but keep 
trying.’ They once again 

struggled with the two-part 
nature of this item. As seen in 

the student quotes, students with 
similar reasonings selected 
numerical values in very 

different parts of the scale, 
highlighting students’ 

inconsistent scale usage for this 
item. 

49 

I expect to make some 
mistakes so I can learn 
from them, but I don't 
want to make so many 

that I end up frustrated in 
the end. 

100 

I always make mistakes 
but I always try to 

mediate them. I do not 
like getting things 

wrong, so I like to try to 
prevent mistakes in the 

future. 

Incorrect 
Interpretation 

of Item 

to consider if 
my data 

makes sense. 
(C) (+) 

42 I will always ask to 
make sure I’m doing 

things correctly. 

While this item was intended to 
probe if students thought 

critically about their data in 
order to consider if it was 

reasonable, students frequently 
interpreted the ‘makes sense’ 

wording in this item as ‘correct’. 
Students highlighted a drive for 

‘accurate’ data without an 
understanding of the concepts 

behind it. 

70 It's important to double-
check everything to 

make sure everything is 
correct. 

100 I always double-check to 
see if my data makes any 
sense even when I don't 
understand what I am 

doing.  
 

Evaluation of A Priori Structures with Reduced Itemset 

After removing items using response process validity evidence, two reduced models 

(Figure 3) were reassessed using CFA. The first reduced model investigated was the 20-item 

cognitive, affective, and cognitive/affective three-factor model (Model A2). Although the data-

model fit statistics were nominally improved from the 30-item Model A, they still fell far below 

acceptable data-model fit (Table 4). Of additional concern, the correlation between each of the 

three factors ranged between 0.900 and 1.171, once again indicating that these items may be 

measuring the same construct. The correlations of 1.171 between the affective and 

cognitive/affective factors and 1.015 between the cognitive and cognitive/affective factors are 

especially concerning, as they are over 1.0. Often, correlations between latent factors that are 

greater than 1.0 indicate a misspecification in the model (Dillon, et al., 1987). The 20-item two-



factor, positive/negative, reduced model (Model B2) was then assessed. The data-model fit 

statistics showed evidence of improved fit over Model B, and all of the fit statistics fell within 

the ranges for adequate data-model fit. (Table 4). Factor loadings for all items in Model A2 and 

Model B2 can be found in the Supporting Information (Tables S3 and S4). 
 

 
Figure 3. Twenty item reduced structures for the MLLI data, item removal based on analysis of response process 
validity data. Model A2 - three-factor structure with items grouped into cognitive, affective, and cognitive/affective 
categories. Model B2 - two-factor structure with items grouped by positively-worded and negatively-worded items. 
  

In addition to the three- and two-factor correlated structures published by the original 

authors (i.e., Models A and B), there is a possible alternative structure which may represent the 

intended cognitive, affective, and cognitive/affective groupings, while also accounting for item 

polarity. Including positively and negatively worded items in a survey, as Galloway and Bretz 

have done in the MLLI, can encourage participants to read items more carefully and think about 

their responses, instead of simply responding agree to all items (Zeng, et al., 2020). While 

Galloway and Bretz interpreted the two-factor structure as “items contributing to meaningful 

learning” (positively worded items) and “items inhibiting meaningful learning” (negatively 

worded items) (Galloway and Bretz, 2015a), it is possible that the difference in how students 

respond to positively versus negatively worded items is not due to meaningful learning 

differences, but to differences in how students utilized the response scale for these types of 

items. (Zeng, et al., 2020). For example, a participant may be more likely to select “strongly 

agree” when responding to a positively worded item, but be less likely to “strongly disagree” 

with a similarly worded negative item, even if the items are related to the same latent construct. 

Therefore, given the potential for response bias, adding a negative method factor to the originally 

proposed three-factor structure could simultaneously account for the negative item grouping, 

while maintaining the three originally intended groupings for the MLLI. When the alternative 

model (Model C, Figure 4), with a negative method factor added to the original item groupings, 

was evaluated, the data-model fit (Table 4) was found to improve from that of the reduced three-



factor model (Model A2). Factor loadings for all items in Model C can be found in the 

Supporting Information (Table S5). While improved, the data-model fit statistics for Model C 

still fell outside the suggested acceptable range, leaving the reduced two-factor model (Model 

B2) as the best option for exploring further model modification.  

 
Figure 4. Twenty item alternative structure for the MLLI data. Model C - three-factor structure with items grouped 
into cognitive, affective, and cognitive/affective categories, with an added negative method factor. 
 
Table 4. Data-model fit statistics for the reduced 20 item MLLI (n = 434). Italic values indicate the results met the 
suggested cutoff criteria for adequate fit (CFI & TLI ≥ 0.90, RMSEA ≤ 0.08, SRMR ≤ 0.10). Bold values indicate 
that the results met the suggested cutoff criteria for good fit (CFI & TLI ≥ 0.95, RMSEA ≤ 0.06, SRMR ≤ 0.08) 
(Hair et al., 2010; Hu & Bentler, 1999; Marsh et al., 2004; Schweizer, 2010; Brown and Cudeck, 1993; Kline, 
2005). 

Model 𝝌𝝌𝟐𝟐 (dof) p-value CFI TLI RMSEA [90% CI] SRMR 
Model A2 1499.936 (167) <0.001 0.585 0.527 0.150 [0.143-0.157] 0.159 
Model B2 403.867 (169) <0.001 0.924 0.915 0.064 [0.056-0.072] 0.063 
Model C 909.618 (162) <0.001 0.760 0.719 0.116 [0.108 -0.123] 0.215 

 

Further Model Modifications 

Once the best fitting model was identified (i.e., Model B2), its modification indices were 

investigated. Modification indices can be examined to determine if there are suggested model 

alterations that may be appropriate, such as the correlation of error terms or the association of an 

item with a different factor (Knekta et al., 2019). When supportive qualitative evidence exists, 

these suggested modifications can be made to the model to improve the data-model fit. Analysis 

of Model B2 revealed five pairs of items with large modification indices for the correlation of 

error terms. Correlated errors frequently exist between items with similar wording or content 

(Knekta et al., 2019). Upon further investigation of the response process validity data for these 

items, it was found that students were interpreting four of these pairs of items similarly (Table 5). 

In each of these cases, qualitative response process data were used to determine which of the two 

items should be removed. If it was not obvious which item should be removed, the item with the 



higher factor loading was retained. For example, analysis of modification indices revealed that 

the items, “…to learn critical thinking skills” and “…to learn problem solving skills” had large 

modification indices suggesting the correlation of error variances. Returning to the response 

process validity data for these items, it was found that students could not easily distinguish the 

difference between ‘critical thinking’ and ‘problem solving’. For instance, one student stated that 

“I strongly believe that one of the most important skills you can learn [is] to critically think, and 

problem solving goes hand in hand with that.” Additional discussion of the reasons for removal 

for the remaining items can be found in Table 5. 

 

Table 5. MLLI items flagged using modification indices and discussion of the similarities 
between items. Assigned categories for items include Cognitive (C), Affective (A), and 
Cognitive/Affective (C/A). Item wording includes positively worded items (+) and negatively 
worded items (-). 

Item Pairs in Which One Item Was Removed 
Removed Item 
(C, A, C/A) (+, -) 

Retained Item 
(C, A, C/A) (+, -) 

Discussion of Items/ Reason for Removal 

to learn critical 
thinking skills. 

(C) (+) 

to learn problem 
solving skills. 

(C) (+) 

Students could not easily distinguish the difference 
between ‘critical thinking’ and ‘problem solving’.  

to be nervous 
about making 

mistakes. 
(A) (-) 

to feel 
intimidated. 

(A) (-) 

Students who agreed with these items typically 
discussed feeling overwhelmed by new chemistry 

content/material. Students who disagreed with these 
items discussed difficulties in lab such as making 

mistakes being a part of the learning process. 
to think about 

what the 
molecules are 

doing. 
(C) (+) 

to use my 
observations to 
understand the 

behavior of atoms 
and molecules. 

(C) (+) 

Students identified that these two items are similarly 
worded. For each of these items, students discussed 

that understanding what the molecules are doing is an 
important part of laboratory activities. 

to be confident 
when using 
equipment. 

(A) (+) 

to develop 
confidence in the 

laboratory. 
(A) (+) 

Students identified that these two items are similarly 
worded. For each of these items, students discussed a 
desire to become more confident in their laboratory 

courses. 
Item Pairs in Which Both Items Were Retained 

Retained Item 
(C, A, C/A) (+, -) 

Retained Item 
(C, A, C/A) (+, -) 

Discussion of Items/ Reason for Retention 

to learn 
chemistry that 

will be useful in 
my life. 

(C/A) (+) 

to be excited to 
do chemistry. 

(A) (+) 

While each of these items have an affective 
component, students’ qualitative responses to these 

items did not did not reveal substantial overlap in their 
interpretation of the items. 



 

 After removing 4 items using a combination of modification indices and response process 

validity evidence, the final 16-item two-factor model, which included seven items on the 

negative factor and nine items on the positive factor (Model B3, Figure 5), was reanalyzed using 

CFA. Factor loadings for all items in Model B3 can be found in the Supporting Information 

(Table S6). Fit statistics for this model fell within the acceptable to good data-model fit ranges 

(Table 6) and provided structural validity support for this two-factor model. Furthermore, this 

evidence provides support for the reporting of positive and negative scale scores using the 16 

remaining MLLI items. 

 
Figure 5. Two-factor structure for the final 16 item MLLI with positive and negative factors. 

 
Table 6. Data-model fit statistics and for the final 16 item MLLI (Model B3) (n = 434). Italic values indicate the 
results met the suggested cutoff criteria for adequate fit (CFI & TLI ≥ 0.90, RMSEA ≤ 0.08, SRMR ≤ 0.10). Bold 
values indicate that the results met the suggested cutoff criteria for good fit (CFI & TLI ≥ 0.95, RMSEA ≤ 0.06, 
SRMR ≤ 0.08) (Hair et al., 2010; Hu & Bentler, 1999; Marsh et al., 2004; Schweizer, 2010; Brown and Cudeck, 
1993; Kline, 2005). 

𝝌𝝌𝟐𝟐(df) p-value CFI TLI RMSEA [90% CI] SRMR 
229.454 (103) <0.001 0.946 0.938 0.059 [0.049-0.069] 0.056 

 

Reliability Evaluation 

To provide single-administration reliability support for the individual MLLI factors from 

Model B3 (Figure 5), single factor CFAs were conducted to evaluate the unidimensionality of 

each factor. Factor loadings for the individual positive and negative factors can be found in the 

Supporting Information (Tables S7). Evidence of good data-model fit was found for each factor 

(Table 7). As each factor was found to be unidimensional, an investigation of internal reliability 

using McDonalds omega was conducted and acceptable values of single administration 

reliability (>0.7) were found.  

 
Table 7. Data-model fit statistics for the two individual positive and negative factors that make up the final 16 item 
MLLI (Model B3) (n = 434). Italic values indicate the results met the suggested cutoff criteria for adequate fit (CFI 
& TLI ≥ 0.90, RMSEA ≤ 0.08, SRMR ≤ 0.10). Bold values indicate that the results met the suggested cutoff criteria 



for good fit (CFI & TLI ≥ 0.95, RMSEA ≤ 0.06, SRMR ≤ 0.08) (Hair et al., 2010; Hu & Bentler, 1999; Marsh et al., 
2004; Schweizer, 2010; Brown and Cudeck, 1993; Kline, 2005). 

Single 
Factor 

𝝌𝝌𝟐𝟐(df) p-value CFI TLI RMSEA [90% CI] SRMR Omega 

Positive 63.816 (36) <0.001 0.959 0.946 0.066 [0.045-0.087] 0.039 0.86 
Negative 37.808 (14) 0.001 0.979 0.969 0.072 [0.045-0.100] 0.030 0.90 

 

Cross-validation of Two-Factor Model 

Any time a model is modified, cross-validation is suggested in order to provide further 

supporting evidence for the structural validity of the modified measure (Kline, 2011). In this 

study, evidence of cross-validation was provided by assessing the data-model fit of both the 

testing data set and the data collected with the post-course assessment (Table 8). The testing data 

set maintained evidence of acceptable to good data-model fit and the post-term data provided 

evidence of acceptable data-model fit. Further evidence of cross-validation was provided through 

an additional data collection using the 16-item MLLIv2 in the 2022/2023 academic year (Table 

8). This data collection took place in general and organic chemistry laboratory courses at 

Portland State University and utilized the same data collection process described in the Methods: 

Participants and Data Collection portion of this manuscript. The data collected with the 16-item 

MLLIv2 once again exhibited evidence of acceptable to good data-model fit. 

 
Table 8. Data-model fit statistics for the final 16 item MLLI (Model B3, two factor model). Italic values indicate the 
results met the suggested cutoff criteria for adequate fit (CFI & TLI ≥ 0.90, RMSEA ≤ 0.08, SRMR ≤ 0.10). Bold 
values indicate that the results met the suggested cutoff criteria for good fit (CFI & TLI ≥ 0.95, RMSEA ≤ 0.06, 
SRMR ≤ 0.08) (Hair et al., 2010; Hu & Bentler, 1999; Marsh et al., 2004; Schweizer, 2010; Brown and Cudeck, 
1993; Kline, 2005). 

Data Set n 𝝌𝝌𝟐𝟐 (df) p-
value 

CFI TLI RMSEA [90% CI] SRMR 

aTraining  434 229.454 (103) <0.001 0.946 0.938 0.059 [0.049-0.069] 0.056 
Testing  435 248.979 (103) <0.001 0.941 0.932 0.062 [0.052-0.072] 0.062 

Post  622 412.073 (103) <0.001 0.899 0.883 0.069 [0.063-0.076] 0.063 
Pre-MLLIv2 395 311.725 (103) <0.001 0.906 0.891 0.079 [0.069-0.089] 0.068 
Post-MLLIv2 340 242.218 (103) <0.001 0.931 0.920 0.069 [0.058-0.081] 0.060 

aTraining set data were initially reported in Table 4 and are displayed here for comparison purposes. 
  

Conceptualization of Constructs Measured by the MLLIv2 

The data collected with the MLLIv2 provides evidence for a two-factor model. The 

authors hypothesize that these factors likely represent student expectations that contribute to 

meaningful learning and student expectations that detract from meaningful learning. While these 



two opposing item categories were originally described by the authors of the MLLI after 

conducting an exploratory factor analysis (Galloway and Bretz, 2015a), the factor structure of 

the MLLIv2 can be contextualized through Ausubel and Novak’s theories of education.  

Ausubel’s assimilation theory suggests that cognitive learning exists on a continuum 

from rote learning to meaningful learning, where rote learning is described as “arbitrary, 

verbatim incorporation of new information into cognitive structure” and meaningful learning is 

described as when “new knowledge is consciously linked to existing specifically relevant 

concepts and propositions in cognitive structure and incorporated into these concepts” (Novak, 

1980; Ausubel et al., 1978). Novak’s theory of education builds on Ausubel’s by suggesting that 

meaningful learning is dependent not only on the cognitive domain, but instead “underlies the 

constructive integration of thinking (cognitive domain), feeling (affective domain), and acting 

(psychomotor domain) leading to empowerment for commitment and responsibility” (Novak, 

2010). Ausubel and Novak agree that in order for meaningful learning to occur (as opposed to 

rote learning), the learner “must actively try to link new knowledge with existing, relevant 

knowledge” (Novak, 1980; Ausubel et al., 1978). When examining the items retained in the 

MLLIv2, it is possible that the positively worded items represent student expectations that 

support the occurrence of meaningful learning. For example, items such as “…[I expect] to learn 

chemistry that will be useful in my life”, “…[I expect] to experience moments of insight”, and 

“…[I expect] to interpret my data beyond only doing calculations” all directly prompt students to 

consider the relationship between their existing life experience/knowledge and their learning 

experiences within the chemistry laboratory course. While the negatively worded items included 

in the MLLIv2 may not directly reflect rote learning, they may represent student expectations 

that detract from the occurrence of meaningful learning. For example, items such as “…[I 

expect] to feel unsure about the purpose of the procedures”, “…[I expect] to be confused about 

the underlying concepts”, and “…[I expect] to feel frustrated” may prompt students to reflect on 

possible difficulties (e.g., uncertainty, confusion, frustration) that could inhibit the integration of 

new knowledge into existing knowledge structures. 

 

Conclusions 

The aim of this study was to investigate the validity and reliability evidence related to 

data collected with the Meaningful Learning in the Laboratory Instrument (MLLI) prior to the 



use of its data as part of a larger study. Supportive evidence for the structure of data provides 

greater meaning for the reporting and interpretation of scores from the latent constructs measured 

by the instrument. To address research question one, What evidence of validity and reliability 

supports interpreting data collected with the MLLI as measures of student expectations in lower 

division undergraduate laboratory courses?, data collected with the instrument was investigated 

for evidence in support of structural validity using two a priori models for the factor structure of 

the instrument (Galloway and Bretz, 2015a). This analysis found evidence of poor data-model fit 

for each of the two tested models (Model A and Model B). Because supportive evidence of 

structural validity and was not found for the data collected with the MLLI, research questions 

two and three were also addressed.  

Research question two, If insufficient evidence is found, what modifications could 

potentially improve the MLLI data with this population?, was addressed next. Cognitive 

interviews and free response items, in addition to data from the initial CFAs, were used to 

investigate and modify the two a priori models through the removal of 10 poorly-functioning 

items. Additionally, a third alternative factor structure, which included a negative method factor, 

was investigated. Results from these analyses indicated that the 20 item two-factor model with 

positively and negatively worded item groupings (Model B2) showed evidence of adequate to 

good data-model fit, while the other two modified models (Model A2 and C) showed poor data-

model fit. Therefore, Model B2 was further explored through evaluating modification indices. 

This analysis revealed four pairs of items with modification indices that suggested the correlation 

of error variances. In each case, qualitative response process data were used to provide evidence 

for the removal of one of the two paired items, resulting in a final set of 16 items. 

Because modifications were made to the MLLI data structure, research question three 

was also addressed: If modifications are necessary, what evidence of validity and reliability 

supports interpreting data collected with the modified instrument? Results from CFA using the 

final 16 item two-factor model (Model B3) showed evidence of adequate to good data-model fit. 

Additionally, evidence of both internal structure validity and single administration reliability was 

found for each of the final two individual factors. Lastly, cross-validation in the form of results 

from CFA using the testing-set data and post-course data showed evidence of adequate to good 

data-model fit. The 16 items, deemed the MLLIv2, can be found in Table 9.  The structure of the 

data from these items leads to scale scores that represent student expectations which may 



contribute to (positive) and detract from (negative) meaningful learning. These two opposing 

item categories were originally described by the authors of the MLLI after conducting an 

exploratory factor analysis (Galloway and Bretz, 2015a). Additionally, this factor structure can 

be contextualized through Ausubel and Novak’s theories of education (Novak, 1980; Ausubel et 

al., 1978).  

While the theoretical work provided by Ausubel and Novak may support users of the 

MLLIv2 in the interpretation of these constructs, additional studies related to test content would 

be useful to provide more substantial evidence for the identities of the constructs measured by 

the MLLIv2. Ongoing studies from the larger project which this study is part of, are investigating 

the relations between MLLIv2 scores and other theoretically related variables. Therefore, future 

manuscripts from this project will provide additional validity evidence, in the form of relations to 

other variables, to support the interpretation of MLLIv2 scores. 

 
Table 9. MLLIv2 factors and items 

Meaningful Learning in the Laboratory Instrument – Version 2 (MLLIv2) 
Pre-Course 
Item Stem When performing experiments in my chemistry laboratory, I expect… 

Positive Items  
to learn chemistry that will be useful in my life.  
to make decisions about what data to collect.  
to experience moments of insight. 
to be excited to do chemistry. 
to develop confidence in the laboratory.  
to interpret my data beyond only doing calculations. 
to use my observations to understand the behavior of atoms and molecules. 
to be intrigued by the instruments.  
to learn problem solving skills. 
Negative Items 
to feel unsure about the purpose of the procedures.  
to be confused about how the instruments work.  
to feel disorganized.  
to be confused about the underlying concepts. 
to be frustrated. 
to feel intimidated. 
to be confused about what my data mean. 

 

Limitations 



 The response process validity data included in this study was collected at a single 

institution. Thus, the qualitative results may not be generalizable to other student populations. 

Additionally, the qualitative portion of the study was completed in virtual laboratory courses 

(during the Covid-19 shutdown), while the quantitative data collection was conducted during in-

person courses. The authors acknowledge that students’ responses to open ended items and 

interview questions related the MLLI may have been influenced by the virtual learning format. 

For this reason, extra care was taken in the cognitive interviews (in the form of follow-up 

questions) to ensure that students were appropriately interpreting and responding to the MLLI 

items. 

 

Implications for Research  

 The goal of this project was to investigate evidence of validity and reliability for data 

collected with the MLLI, a widely used instrument in the field of chemistry education. This 

study found validity and reliability evidence that supported a 16 item two-factor structure, with 

positively and negatively worded item groupings, deemed the MLLIv2. This evidence provides 

psychometric support for the reporting of positive and negative factor scores from the MLLIv2 

for data collected with our population. As many prior studies with the MLLI have reported 

scores for the three proposed item categories (i.e., cognitive, affective and cognitive/affective), 

this study evaluated several three-factor models but did not find sufficient evidence to support 

the intended theoretical structure. While evidence of the proposed three item category structure 

was not found for data collected in the environment in which this study was conducted, that does 

not mean that evidence for this structure did not exist in previous studies. That said, caution 

should be used when interpreting the results of studies where the data structure is not supported. 

The results of this study highlight an important aspect of education research. Before a 

scale score can be calculated and meaningfully interpreted, evidence to support the structural 

validity and reliability should first be assessed. This need exists, both when an instrument is 

being developed and when it is being used in a new environment. As described in the Journal of 

Chemical Education, “Chemical Education Research (CER) has come a long way as a research 

discipline over the past century, moving away from personal empiricism (i.e., sole reliance on 

one’s personal experience to provide advice and recommendations) to empirical investigations 

(i.e., systematic collection of valid and reliable evidence informed by theoretical 



perspectives). Reviewers systematically requested evidence for the validity and reliability of the 

data collected, whether the data were collected with a new or already existing and published 

instrument” (Stains, 2022). More specific to validity, a recent editorial published in Chemistry 

Education Research and Practice, asserted that “Ultimately, the quality and transparency of 

evidence for validity plays a central role in evaluating the appropriate uses of the data collected. 

Researchers that analyze quantitative data are therefore encouraged to incorporate an explicit 

account on the evidence for validity of the data collected” (Lewis, 2022). Together, these 

assertations by two of the leading publications in the field of chemistry education research 

highlight the necessity of assessing evidence of validity and reliability when developing or using 

an instrument in a new environment. 

The MLLIv2 described in this article could be used by future researchers in a variety of 

ways. If sufficient evidence of measurement invariance is found (Rocabado et al., 2020), group 

comparisons of students’ expectations which contribute to and/or detract from meaningful 

learning in their laboratory courses could be made. Comparisons between different course types 

(e.g., general vs. organic chemistry), course delivery methods (e.g., cookbook vs. inquiry style 

labs), and institutions could be of interest to education researchers and practitioners alike. For 

example, existing literature using the original 30 item version of the MLLI has suggested that 

organic chemistry students tend to have lower expectations scores (as measured by the MLLI) 

than general chemistry students, a trend that may be due to unmet laboratory expectations in 

previous STEM laboratory courses (Galloway & Bretz, 2015b). Revisiting this claim using the 

MLLIv2 could be an interesting avenue of investigation for chemistry education researchers. 

 

Implications for Teaching  

As students’ expectations are theorized to impact their learning experience (DeKorver & 

Towns, 2015; Galloway and Bretz, 2015a; Wang et al., 2021), collecting feedback related to 

students’ expectations, especially those related to meaningful learning, could provide instructors 

better insight into the perspectives of their students. Because the two factors of the MLLIv2 are 

proposed to represent student expectations that may encourage and detract from meaningful 

learning, data collected with the MLLIv2 may be used by practitioners to make informed 

adjustments to their laboratory activities, which may increase the likelihood of students’ learning 

meaningfully in their chemistry laboratory courses.  



The results of this study also highlight the importance of collaborations among 

researchers and practitioners. Practitioners who want to use the MLLIv2 to inform their teaching 

may want to work with a researcher who is interested in investigating the validity and reliability 

of the data collected with the instrument. Additionally, as used by George-Williams (2019), 

either the MLLI or the MLLIv2 may be useful for practitioners at the item level, by looking at 

how students’ perspectives on a single item may change over time. 
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