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ABSTRACT 

Methods for identifying and prioritizing high-crash locations for safety improvements are 

generally crash-based. There are fewer reported crashes involving non-motorized users and, in 
most states, reported crashes must involve a motor vehicle. This means that minor, non-injury 

events are not reported and those crashes that are reported tend to be more severe. Selecting 
projects based only on crash performance is sometimes limiting for these crash types and 
predicting where these crashes will occur next is also a challenging task. An alternative to crash-

based selection is to develop risk-based criteria and methods. This paper presents the results of a 
research effort to develop a risk-scoring method with weights derived from data for use in 

project screening and selection in Oregon. To develop the risk model, data were collected from 
188 segments and 184 intersections randomly selected on both state and non-state roadways. 
Geometric, land use, volume, and crash data were collected from Google Earth, EPA’s Smart 

Location Database and the ODOT crash database from 2009-2013. The sample included 213 
bicycle and pedestrian crashes on the segments and 238 at intersections. Logistic regression 

models were developed and the outputs used to create pedestrian and bicycle risk-scoring tools 
for segments and intersections. The risk-scoring tool was applied to safety projects identified in 
the 2015 All Roads Transportation Safety (ARTS) project lists from Oregon. The risk scores for 

the case study applications aligned reasonably well with the project’s benefits-costs estimates. 
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INTRODUCTION 

Methods for identifying and prioritizing high-crash locations for safety improvements are 

generally crash-based (1). There are fewer reported crashes involving non-motorized users and, 
in most states, reported crashes must involve a motor vehicle. This means that minor, non-injury 

events are not reported and those crashes that are reported tend to be more severe. This results in 
fewer crashes for network screening techniques to identify locations. Further, since there is clear 
evidence that the decision to make non-motorized trips by bicycling or walking are influenced by 

the perception of safety (2), locations that have deficient geometric or operational features may 
not be identified by crash-based screening methods. Exposure data for non-motorized users is 

also challenging to obtain at the network level (3). Selecting projects based only on crash 
performance is sometimes limiting for these crash types and predicting where these crashes will 
occur next is also a challenging task. An alternative to crash-based selection is to develop risk-

based criteria and methods. 

The Oregon Department of Transportation (ODOT) has identified pedestrian and bicycle 

crashes as a primary focus area for investing in infrastructure funding. In 2015, 17.7% of the 445 
traffic fatalities in Oregon were non-motorized (4). ODOT has appropriated approximately $4 
million annually in the All Roads Transportation Safety Program (ARTS) to address this issue. 

Prior to this research project, ODOT conducted a systemic safety analysis of pedestrian and 
bicycle safety (5). As part of the work, a crash frequency-based and risk-based prioritization 

methodology were developed. The quantification of risk factors and the magnitude of their 
influence was constrained by the additional data that the project was able to collect, and many of 
the risk scores were based on engineering judgment. 

The objective of the research described in this paper was to develop a risk-scoring 
method with weights derived from data. The intent is for the risk method to be used in project 

screening and selection in Oregon. Following a brief background and literature summary, the 
data collection methodology on segments and at intersections is described. In the methodology, 
the logistic modeling approach and conversion of the outputs to a risk-scoring tool is described. 

The model results and final tool are then described. Finally, the application of the risk-scoring 
tool to several projects recommended for funding in the All Roads Transportation Safety (ARTS) 

project list is presented. 

BACKGROUND 

In the transportation context, risk is defined as a probability or threat of damage, injury, liability, 

loss, or any other negative occurrence that is caused by external or internal vulnerabilities, and 
that may be avoided through preemptive action. The amount of risk can be interpreted by the 

probability of the outcome and potential severity of the outcome if the event occurs (6). For 
transportation and vulnerable road users, the probability is a function of exposure and 
consequence is a function of operating conditions (e.g., vehicle speeds and size). Risk 

assessment and scoring methods should include elements of exposure and expectations of the 
severity of the outcome.  

In the general sense, the systemic safety approach has some of the elements of a risk-
based assessment. After first identifying a focus crash type, a more detailed analysis can identify, 
diagnose and treat locations that are at high risk for crashes on a system-wide basis (7). More 

directly related are the road assessment programs such as the United States Road Assessment 
Program (usRAP) (8). The program categorizes roadways in a number of traditional ways 



4 
Wang Monsere Chen Wang 

(frequency and rate of fatal crashes, the difference from average rate performance), but also 
includes a method to develop a road protection score. The road protection score is calculated 

based on the potential for severe outcomes for head-on, run-off-the-road, and intersection 
crashes. In this way, the assessment is not entirely crash-based and includes factors that explain 

the probability of a severe crash. 

For non-motorized project selection and prioritization, the Pedestrian and Bicycle Safety 
Indices (ISI) developed for the Federal Highway Administration (FHWA) are similar in intent to 

a risk-scoring model. The indices allow engineers and planners to proactively identify 
intersection crossings and approach legs which should be the greatest priority for undergoing 

pedestrian and bicycle safety improvements (9). In the methodology, the ISI score is an 
evaluation of each approach leg of an intersection rather than evaluating the intersection as a 
whole. Safety ratings (opinion) from experts and bicycle/pedestrian-motorist interactions from a 

video analysis of each site were used to generate a multivariate linear regression model to 
explain the safety indices. More recently, the ActiveTrans Priority Tool (10), produced as part of 

National Cooperative Highway Research Program Report 803, allows users to select scoring 
criteria and input the weights of stakeholder input, constraints and opportunities and to prioritize 
the locations. While not derived from crash analysis, level of service measures such as the 

Highway Capacity Manual’s  multimodal level of service  for pedestrian and bicycle facilities 
generally measure user comfort and convenience. These geometric and operational features have 

some relationship to safety as demonstrated in the literature. For bicycles, the level of traffic 
stress (11) is a tool only for bicycle networks. This method estimates the stress level by the 
criteria based on Dutch standards for bicycle facilities. Preliminary studies show that more than 

half of the bicycle crashes happened on streets with a higher level of stress (12).  

Finally, there is a large body of literature where the severity and frequency of pedestrian 

and bicycle crashes have been explored. With respect to severity and crash probabilities, many 
studies (13-20) have used a logit model to identify the significant variables, including geometric 
design characteristics, driver characteristics and build environment variables, in pedestrian and 

bicycle crashes at both road segment and intersections.  

DATA 

The previous literature was used to identify key variables that should be considered in a risk 
model. Tables 1 and 2 summarize the list of variables that were collected and their descriptive 
statistics. A random sampling approach was used to select segments and intersections for data 

collection. Segments were selected if they were in an urban area and had arterial (minor or 
principal) functional classification. Both state- and non-state-owned roadways were included but 

ramps were excluded. A selected segment was split to be homogenous in the data elements (but 
only one segment was kept to minimize spatial correlations). Intersections were collected 
concurrently with the segment sampling process if the selected segment contained traffic control 

on the major road (stop or signal). 

A total of 188 arterial roadway segments and 184 intersections with traffic control (traffic 

signal, four-way stop or roundabout) within urban areas were randomly selected. The average 
length of segments is roughly 706 feet. The elements of geometric design were primarily 
collected manually from inspection and measurement of Google Earth aerial photos, and the built 

environment characteristics were gathered from the U.S. Protection Agency’s Smart Location 
Database. Traffic volume data were assembled for all segments and intersections, and all of the 
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annual average daily traffic (AADT) data were calibrated to the year of 2014 using growth 
factors obtained from the ODOT ATR station growth factors. STRAVA Metro data was used to 

represent bicycle average daily traffic in this study. The dataset was purchased by ODOT for 
research and project purposes (OSU and PSU researchers were allowed to obtain the data under 

this agreement). Unpublished work by ODOT suggests that the STRAVA count can represent 
1% of total bike volume without considering the difference between commuter and cyclist. 

Crash data for five years, from 2009 to 2013 in Oregon, was used in this study. Crashes 

within a 125-foot radius buffer zone at the middle point of intersections were considered as 
intersection-related crashes. In total, there were 113 pedestrian crashes and 100 bicycle crashes 

on the segments, and 108 pedestrian crashes and 130 bicycle crashes at the intersections. As 
designed, the sample produced segments and intersections where there have been no crashes. As 
shown in Figure 1, around 20% of the segments have only one bicycle or pedestrian crash. Fewer 

segments, around 10%, have two crashes in five years and only a few have more than two 
crashes. Intersections have similar patterns for pedestrian and crash frequency. Most of the 

intersections selected do not have crashes, and few intersections had more than two crashes from 
2009 to 2013. Others have one or two pedestrian or bicycle crashes.  

 

METHODOLOGY 

Logistic regression was initially proposed by Cox in 1958 (21) to measure the categorical 

dependent variable (Y) and multiple independent variables (X) by using the logistic function. It 
was developed based on the idea of odds which describes likelihoods of events. Specifically, the 
odds indicate how often something (e.g. y =1) happens relative to how often it does not happen 

(e.g. y = 0) (23). When developing the logistic regression equation, the 𝑙𝑛 of an odds represents a 
logit transformation, where the logit is a function of covariates (22):  

𝑙𝑜𝑔𝑖𝑡[𝑃𝑛] = ln [
𝑃𝑛

1−𝑃𝑛
] = 𝛽0 +  𝛽1𝑥1,𝑛 + ⋯ + 𝛽𝑖𝑥𝑖,𝑛                                                                             (2) 

those parameters, after estimated by maximum likelihood methods, can be used to estimate the 

probability that the outcome takes the value one as a function of covariates using the equation 
below (21,25): 

𝑃𝑛 =
𝑒(𝛽̂)

1+𝑒(𝛽̂)
 𝑤ℎ𝑒𝑟𝑒 𝛽̂ =  𝛽0 +  𝛽1𝑥1,𝑛 + ⋯ + 𝛽𝑖𝑥𝑖,𝑛                                                                               (3)  

where  𝑃𝑛 is the probability that an event (crash) happens for observation 𝑛 (indicates a segment 

or an intersection in this paper). 𝛽0 is the model constant and 𝛽1 ⋯ 𝛽𝑖 are the unknown 
parameters corresponding with the independent variables (total 𝑖).  𝑒 is the exponential constant 

approximately equal to 2.71828; 𝑥 is a vector of independent variables and 𝛽̂ is a vector of 

estimated parameters; 𝑖 is the total number of independent variables. This study uses the binary 
variable that whether bicycle crashes occurred or not on a site as the response variable and is 

called “crash occurrence model” thereafter. Crash frequency is transferred into crash occurrence 
(crash occurrence = 1 when there was more than one crash happened; and = 0 the otherwise) and 

served as a binary response variable.  

 However, the model coefficient cannot be used directly to interpret the slope or rate of 
change of the dependent variable per unit change in the independent variable in logit model due 

to its nonlinear feature. The logit model is developed based on odds that describe likelihoods of 
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events. Odds, in equation (4), are related to probability but are conceptually and numerically 
different (21).  

𝑂𝑑𝑑𝑠 =
𝑃𝑛

1−𝑃𝑛
= 𝑒𝛽0+ 𝛽1𝑥1,𝑛+⋯+𝛽𝑖𝑥𝑖,𝑛                                                                                         (4) 

Meaningful interpretation of coefficients in logistic models relies on how to interpret the 

difference between two odds (25).  Equation (2) shows that the logit model is linear in the logit. 

Especially for a unit change in 𝑥𝑖, we expect the logit change by 𝛽𝑖, holding all other variables 
constant. The odds ratio, which is shown in Equation (5), compares the likelihood of two odds 
and provides a meaningful interpretation of coefficients. If the odds ratio is greater than 1, it 

represents the likelihood of an event with changing one unit in one variable (indicated in the 
numerator) is greater than the likelihood of the event with original value in variables (indicated 
in the denominator). 

𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 = 𝜓 =
𝑜𝑑𝑑𝑠 𝑜𝑓 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑛𝑒 𝑢𝑛𝑖𝑡  𝑖𝑛 𝑜𝑛𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝑜𝑑𝑑𝑠 𝑜𝑓 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡
=

(
𝑃𝑛(𝑖)

1−𝑃𝑛(𝑖)
)

∗

(
𝑃𝑛(𝑖)

1−𝑃𝑛(𝑖)
)

=

𝑒𝛽0 + 𝛽1 𝑥1,𝑛+⋯+𝛽𝑖 (𝑥𝑖,𝑛+1)

𝑒𝛽0 + 𝛽1 𝑥1,𝑛+⋯+𝛽𝑖 𝑥𝑖,𝑛
= 𝑒𝛽𝑖                                                                                                            (5) 

where (
𝑃𝑛(𝑖)

1−𝑃𝑛(𝑖)
)∗ is the odds that an event with changing one unit in one variable (i.e. 𝑥𝑖,𝑛 + 1) 

happens whereas (
𝑃𝑛(𝑖)

1−𝑃𝑛(𝑖)
) is the odds that the event with original value in variables happens. 𝑒𝛽𝑖  

is the odds ratio that indicates the relative amount by which the odds of an outcome change when 
the value of a corresponding independent variable increases by one unit (23). 

The model results were then converted to a risk score based on the odds ratio. 

Conversion to a risk score creates an easy method for interpreting and applying the modeling 
results. For each type of facility and user, the maximum risk score is set to 100. The distribution 

of 100 points to each of the variables was weighted. Additional details on this process can be 
found in the project’s final report (26). The risk scores are comparable for a facility and user type 
but not across the categories (i.e., the scores from the pedestrian segments are not comparable to 

the bicycle intersections). Comparison across the categories can be done by estimating the risk 
score percentile (discussed in the application section). 

RESULTS  

To develop the logit models, a combined backward and forward stepwise method (27) was 
initially used to determine the significant variables to be included in the model, then other 

possible variables (based on engineering judgment and literature) were also explored. The 
dependent variable was the presence of a crash or not (0 or 1). Table 3 summarizes the final 

selected model for pedestrian segments and intersections. Table 5 translates the model 
parameters into the risk score. In this modeling effort, the significant variables should not be 
interpreted as recommendations for engineering-level improvements. The variables are, in many 

cases, explaining more about the safety of the location than the individual variable. Design-level 
safety decisions should use more robust tools such as the Highway Safety Manual (1). 

For pedestrian segments, the significant variables are reasonable and the direction of 
effect is as expected. The model includes variables of exposure and risk. The odds ratio for the 
travel direction (one-way to two-way) indicates that the odds of a pedestrian crash happening on 

a segment are 0.276 times smaller, holding all other variables constant. These results likely 
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reflect some association with more traffic and lanes on one-way streets. The presence of parking 
increases the odds of pedestrian crashes (more pedestrian activity). The effect of increased 

posted speeds on the probability of crashes is in the expected direction (an increase in speed 
increases the probability of a crash outcome). The continuous nature of how the speed was 

modeled also means that the effect is not linear, and that larger speeds have a very significant 
effect on the overall probability prediction. The presence of a two-way left-turn lane (TWLTL) 
would also increase crash potential. The hypothesis is that the additional width and turning 

conflicts add additional risk for pedestrians or higher volumes associated with TWLTL roads. As 
a measure of pedestrian activity, the total population density coefficients indicate that crash 

probability increases with population density. 

For pedestrians at intersections, the final model includes total population density; the 
number of transit lines through the intersection; the number of major-road right-turn lanes; the 

major-road AADT in 2014; the presence of a median on the minor road; and the number of right-
turn lanes the minor road. The density and transit variables reflect pedestrian activity levels and 

the direction is as expected (increased probability with increases in these measures). Similarly, 
the coefficient of major-road AADT was significant and positive. The presence of right-turn 
lanes on the major road is associated with an increased probability. The lack of a median on the 

major road also increases the crash probability. However, on the minor roadway, the coefficient 
for the presence of a right-turn lane on the minor road is not as expected. 

Table 4 summarizes the final selected model for bicycle segments and intersections, 
including model coefficients, standard error, p-value, significance and odds ratios. Table 6 
translates the model parameters into the risk score. Unlike the pedestrian models, few variables 

were found to be significant in the bicycle models, especially for the segment model. For the 
bicycle intersection models, the significant variables include bicycles per day, the number of 

transit stops, the minor-road functional class, minor-road total traffic lanes, and minor-road right-
turn lanes. Clearly, the number of bicycles per day captures the increased exposure as volumes 
increase. The number of transit stops indicates a presence of other road users and possibly 

additional interactions with bus traffic. The number of lanes on the minor road can be interpreted 
as increasing the total intersection size. 

For the bicycle segment model, the significant variables include the presence of crossing 
(no crossing is the base condition); AADT (factored to 2014); three-leg intersection density; and 
bike volume (per day). Unlike all the other crash occurrence models, very few variables were 

found to be significant in the model. The final selected model includes variables at a lower 
confidence level for significance than the other models. The final model does include an 

exposure metric for bicycles per day and the sign is expected (as bicycles per day increase then 
probability also increases). Three-leg intersection density (hypothesized to be associated with 
less connectivity) is associated with a positive increase in crash probability. Vehicle volume, 

represented by AADT in the model, has the positive coefficients as expected, indicating that high 
vehicle volume could lead to high risk for bicyclists on this segment. The presence of crossings 

decreases the probability of bicycle crashes on the segments. It is hypothesized that the presence 
of pedestrian crossings is related to the overall design of the roadway (i.e., a more non-
motorized, user-friendly character). 
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APPLICATION 

The risk-scoring tables were applied to all segment and intersection samples in the modeling 

dataset. Figure 2 shows the distribution of scores for each of the risk tools as applied to these 
locations, and the percentile and mean values of these distributions. With the exception of the 

intersection tool for pedestrians, the distributions are skewed. The bicycle segment model is less 
distributed, reflecting the limited number of significant variables that were in the model. The risk 
scores are only intended to be evaluated within each context (i.e., the risk score for bicycles at 

intersections is not comparable to the score for pedestrians on segments). The distributions of the 
risk scores could be used when making comparisons across the tools by estimating the percentile 

of the score. The values for the 25th, 50th and 75th percentile are shown in Figure 2.  For example, 
a risk score of 46 would be above the 75th percentile of the calculated scores for the pedestrian 
segment and bicycle intersection risk scores, but only average for the other two tools. 

To further demonstrate the application of the tool, a total of 10 intersection projects was 
selected from the ARTS final project list in the more urban ODOT regions. The projects are 

listed in Table 7, including brief descriptions of the proposed project elements. Table 7 also 
includes the projects’ benefit-to-cost ratio (B/C) as reported by ODOT. To calculate the risk 
score, the values for each of the variables at the project location were collected, then the risk 

scores for each variable (shown in Table 3 (for pedestrians) and Table 5 (for bicycle)) were 
summed to compute a project risk score. As a reminder, the risk scores between the two types are 

not comparable. Therefore, the risk score percentile is also shown in Table 7.  

As the projects listed in Table 7 were the final projects selected through the ARTS 
process, it is expected that the projects with higher B/C value also have higher risk scores. The 

application of the risk scores corresponds well to the project’s final B/C value. Referring to 
Table 7, the risk scores for the projects with the two highest B/C ratios are above the 75th 

percentile score (55) of pedestrian intersection models. The lower-ranked B/C projects 
correspond to lower percentiles of the risk score. A similar exercise was conducted for another 
five intersection projects that relate to bicycles. As shown, the higher risk scores align with the 

higher B/C ratios with the exception of the Albany project. The 75th percentile risk score is 
42.75; all of the projects are below this value.  

CONCLUSION 

In this study, the research team developed a method to identify and prioritize locations with 
quantitative risk factors of pedestrian and bicycle crashes, not merely based on crash histories. A 

database of 188 segments and 184 intersections, including detailed geometric and operational 
elements as well as broad descriptors of the built environment, is assembled for analysis. 

Logistic regression models for the crash occurrence (crash or not) were developed and a method 
was developed to create a risk-scoring tool for pedestrians and bicycles at intersections and 
segments (a total of four scoring tools) using the model results. To demonstrate the application of 

the risk-scoring tool, the tool was applied to safety projects that were recommended in 2015 All 
Roads Transportation Safety (ARTS) project lists.  

The primary challenge to quantifying the risk for pedestrian and bicycles is the missing 
measures of exposure and the relatively few pedestrian and bicycle crashes observed on most 
segments and intersections. The inclusion of the bicycle STRAVA data significantly improved 

the bicycle models, though the data’s ability to accurately represent all bicycle travel is still 
somewhat uncertain.  
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In this research, the value of each risk score was derived from the modeling output. All 
models suffer from the limitations of the input data set. With a larger or different sample for 

modeling, there is a possibility that the risk scores would be different. The inclusion of exposure 
measures would likely improve the modeling results. Finally, it is clear that a larger dataset, 

perhaps derived from GIS or automated data mining tools, would produce a very robust database 
for a similar modeling effort. Rather than a statewide focus, a regional or MPO-level analysis 
would likely yield good results leveraging the more detailed spatial data available. 
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TABLE 7 Summary of Categorical Variables 

  Variable Frequency Percentage 
of Sample  

Segments Number of traffic lanes 
(excluding two-way left-turn 
lane) 

1 Lane 2 1.06% 
2 Lane 112 59.57% 

3 Lane 16 8.51% 
4 Lanes or 
more 

58 30.85% 

Presence of two-way left-turn 
lane (TWLTL) 

No 130 69.15% 
Yes 58 30.85% 

Presence of marked midblock 
crosswalks within segment 

No 181 96.28% 
Yes 7 3.72% 

Presence of on-street parking No 143 76.06% 
Yes 45 23.94% 

Traffic direction One-way 24 12.77% 
Two-way 164 87.23% 

Posted speed limit (mph) 20 12 6.38% 
25 40 21.28% 

30 27 14.36% 

35 79 42.02% 
>35 30 15.96% 

Intersections Intersection legs 4-Leg 157 85.33% 
3-Leg 27 14.67% 

Major road. Presence of right-turn 
lane 

No 133 72.28% 
Yes 51 27.72% 

Major road. Presence of median No 165 89.67% 
Yes 19 10.33% 

Minor road. Functional class Arterial 92 50.00% 
Collector 92 50.00% 

Minor road. Presence of right-
turn lane 

No 120 65.22% 
Yes 64 34.78% 

Minor road. Total number of 
traffic lanes 

2 43 23.37% 
3 90 48.91% 

4 26 14.13% 
>4 25 13.59% 

Number of transit lines that go 
through the intersection 

0 34 18.48% 

1 90 48.91% 
2 49 26.63% 

3 9 4.89% 
>3 2 1.09% 

 
  



15 
Wang Monsere Chen Wang 

TABLE 8 Summary of Continuous Variables 

Variable Mean Standard 
Deviation 

Total population density (people per square mile) 4086.92 5333.08 

Three-leg intersection density (per square mile) 162.66 110.12 

Number of transit lines through intersection 1.36 1.18 

Major road AADT 14,080.34 8,143.53 

Minor road AADT 7,648.98 5,480.24 

Segment AADT 10,806.27 7,607.40 

Bicycle volume, Intersection 261.26 641.24 

Bicycle volume, Segment 94.32 165.37 
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TABLE 9 Pedestrian Modeling Results 

Variable Coefficients Standard 
Error 

P-value Significanc
e 

Odds 
Ratio 

Segments 

Travel direction (one-way or two-way)  -1.289 1.018 0.001 *** 0.276 

Presence of on-street parking 1.337 0.514 0.012 * 3.808 

Presence of two-way left-turn lane 1.071 0.384 0.005 ** 2.918 

Posted speed limit (mph) 0.047 0.027 0.082 . 1.048 

Total population density (people per square 
mile) 

0.0017 0.00006 0.006 ** 1.002 

Number of traffic lanes (excluding two-way 
left-turn lane) 

0.370 0.016 0.023 * 1.447 

Null deviance: 249.16 on 188 degrees of freedom   Residual deviance: 204.62  on 182  degrees of freedom   AIC: 
218.62 

Intersections 

Total population density (people per square 
mile) 

0.00024 0.000072 0.000 *** 1.000 

Number of transit lines through intersection  0.383 0.208 0.065 . 1.467 

Major road, number of right-turn lanes 0.784 0.432 0.070 . 2.190 

Major road, AADT 2014 0.000063 0.000023 0.005 ** 1.000 

Major road, presence of median -1.260 0.664 0.058 . 0.284 

Minor road, number of right-turn lanes -1.312 0.440 0.003 ** 0.269 

Null deviance：238.99 on 183  degrees of freedom   Residual deviance：195.40  on 177  degrees of freedom   

AIC：209.4 
Significant Code: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’; 0.1 ‘‘. 
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TABLE 10 Bicycle Modeling Results 

Variable Coefficients Standard 
Error 

P-value Significance Odds Ratio  

Segments 

Presence of marked midblock 
crosswalks within segment 

-1.207 -3.662 0.000976 *** 0.2991 

AADT 2014 0.00003187 0.00002124 0.1336  1.00003187 

Three-leg intersection density (per 
square mile) 

0.002087 0.001486 0.1602  1.002089 

Bicycles per day (STRAVA) 0.001007 0.000994 0.3110  1.0010012 

Null deviance：240.60 on 188  degrees of freedom    Residual deviance：220.35  on 183 degrees of freedom    AIC：
230.35 

Intersections 

Bicycles per day (STRAVA) 0.00146 0.00024 0.0368 * 1.001 

Number of transit stops 0.3507 0.1924 0.0683 . 1.420 

Minor functional class (arterial as base) -0.9096 0.3585 0.0112 * 0.4027 

Minor road, total number of traffic 
lanes 

0.49698 0.2067 0.0231 * 1.644 

Minor road, presence of right-turn lane -0.7056 0.3581 0.0488 * 0.4938 

Null deviance ：232.04 on 167  degrees of freedom   Residual deviance ：200.04  on 161 degrees of freedom   

AIC：214.04 

Significant Code: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’; 0.1 ‘‘. 
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TABLE 11 Summary of Risk Scores for Pedestrians 

Segments 
 

Intersection  

Variables Levels Risk Score 

 

Variables Levels Risk Score 

Total population density (per square 

mile) 

<=1000 0 
 

Total population density (per square 

mile) 

<=1000 0 

1001-3000 6  1001-3000 5 

3001-5000 8 
 

3001-5000 8 

5001-7000 11 
 

5001-7000 13 

>7000 20  >7000 21 

Traffic direction 
One-way 17 

 

Number of transit lines with routes 

through intersection 

0 (base) 0 

Two-way 0 
 

1 6 

On-street parking 
Yes 17  2 8 

No 0  3 12 

Posted speed limit (mph) 

<=25 0 
 

>3 25 

30 6  

Major AADT (2014) 

<=5000 0 

35 8  5001 -  10000 5 

>35 12  10001 -  15000 7 

Presence of TWLTL 
Yes 14 

 
15001 -  20000 10 

No 0 
 

20001 -  25000 13 

Total traffic lanes 

2 0  >25000 18 

3 or 4 10  Presence of median on major road 
Yes 0 

>4 20 
 

No 13 

    Minor road, presence of right-turn lanes 
Yes 0 

    No 15 

    Major road, presence of right-turn lanes 
No 0 

    Yes 8 
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TABLE 12 Summary of Risk Scores for Bicycles 

Segments  Intersections 

Variables Levels Risk Score  Variables Levels Risk Score 

Bikes per day (STRAVA) 

<=200 0  

Bikes per day (STRAVA) 

<=200 (base) 0 

201-800 15  <= 800 11 

>800 25 
 

>800 20 

AADT 

<=5000 0  

Number of transit stops 

0 (base) 0 

5001-10000 12  1 7 

10001-15000 14  2 10 

15001-20000 16  3 14 

20001-25000 19 
 

>3 27 

>25000 25 
 Minor functional class 

Collector 0 

Three-leg intersection density per 

square mile (EPA Smart Location) 

1-150 0  Arterial 12 

151-200 13 
 

Minor road total number of traffic lanes  

2 (base) 0 

>200 16 
 

3 8 

Presence of marked crosswalk 
Yes 0  4 12 

No 34  >4 31 

    Minor road presence of right-turn lane 
Yes (base) 0 

    
No 10 
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TABLE 7 Application of Risk Scores to Selected Intersection Projects 

Type City Project Name Proposed Project 
Elements  

B/C Risk 
Score 

Risk 
Percentile 

Pedestrian Keizer RIVER RD NE @ 
SAM ORCUTT 
WAY NE 

Install No Pedestrian 
Phase Feature with 
Flashing Yellow Arrow 

17.16 67 > 75th 

Beaverton SW HALL BLVD 
@ SW NIMBUS 
AVE 

Install Pedestrian 
Countdown Timer(s) 

17 63 > 75th 

Eugene I 105 @ MP 1.8: 
COBURG RD @ 
MLK JR BLVD  

Install No Pedestrian 
Phase Feature with 
Flashing Yellow Arrow; 
Install Urban Green Bike 
Lanes at Conflict Points 

9.87 58 > 75th 

Albany GEARY ST @ 
QUEEN AVE 

Install Pedestrian 
Countdown Timer(s) 

7.13 46 = 50th 

Salem BROADWAY ST 
NE @ PINE ST NE 

Install No Pedestrian 
Phase Feature with 
Flashing Yellow Arrow 

2.45 53 = 75th 

Bicycles Salem D ST NE @ 
LANCASTER DR 
NE 

Install Urban Green Bike 
Lanes at Conflict Points; 
Add No Pedestrian Phase 
Feature with Flashing 
Yellow Arrow 

20.66 40 < 50th 

Salem FAIRVIEW AVE 
SE @ 12TH ST SE 

Install Urban Green Bike 
Lanes at Conflict Points 

20.06 18 < 25th 

Portland LOMBARD ST @ 
N INTERSTATE 
AVE (US 30B) 

Install Pedestrian 
Countdown Timer(s) 

16.80 28 < 50th 

Albany GEARY ST @ 
QUEEN AVE 

Install No Pedestrian 
Phase Feature with 
Flashing Yellow Arrow; 
Install Urban Green Bike 
Lanes at Conflict Points 

7.13 34 > 50th 

Eugene RIVER RD @ 
IRVING RD 

Install Urban Green Bike 
Lanes at Conflict Points 

2.45 18 < 25th 
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(a) Number of Segments by Crash Frequency (b) Number of Intersections by Crash Frequency 

FIGURE 1: Number of Segments and Intersections by Crash Frequency 

  

125

41

15
7

119

45

14 11

0

20

40

60

80

100

120

140

0 1 2 >2

N
u
m

b
e
r 

o
f 

S
e
g
m

e
n
ts

Number of Crashes

Bike

Pedestrian

92

44

25

9

119

34
25

6

0

20

40

60

80

100

120

140

0 1 2 >2

N
u
m

b
e
r 

o
f 

In
te

rs
e
c
ti
o
n
s

Number of Crashes

Bike

Pedestrian



22 
Wang Monsere Chen Wang 

 

FIGURE 2 Risk-Score Distribution for Each Facility Type and User 
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