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In recent years, methods have been developed to estimate a variety of environmental parameters

based on measurements of the ocean ambient noise. For example, noise has been used to estimate

water depth using the passive fathometer technique and bottom loss estimated and used to invert

for seabed parameters. There is also information in the noise about the water column sound speed,

volume attenuation, and the sea-state. The Fisher information can be used to quantify the basic

information available in the noise measurements and its inverse, the Cram�er–Rao lower bound

(CRLB), provides the lower limit on the variance of an unbiased estimator of a particular parame-

ter. The CRLB can be used to study the feasibility of various measurement configurations and

parameter sensitivities. In this paper, the CRLB is developed for ocean ambient noise and the

environmental information contained in the measurements is determined. The CRLBs provide an

estimate of the underlying information in the data, however, it is independent of the estimation

methodology. This is useful to determine if a given estimation method is reaching the lower

bound. Results illustrating the bounds as well as sensitivities and performance of estimators are

demonstrated using both simulations and data. VC 2019 Acoustical Society of America.

https://doi.org/10.1121/1.5126520

[BTH] Pages: 1824–1833

I. INTRODUCTION

Ocean ambient noise is generated in a variety of ways

such as from waves breaking on the surface, ship sounds,

and biologic activity. This acoustic noise propagates through

the ocean and therefore contains information about the envi-

ronment. For example, seabed reflectivity [or bottom loss

(BL)] can be estimated from the vertical noise directional-

ity.1 The water depth and seabed sub-bottom layers have all

been estimated using cross-correlations of ocean noise.2–5

Ambient noise has also been used for determining the sur-

face wind speed6 and rainfall amounts.7 Given these meth-

ods, a natural questions is: which environmental parameters

can be estimated and how well? That is, which environmen-

tal parameters can usefully be determined and under what

circumstances [e.g., required number of hydrophones and

signal-to-noise ratio (SNR)]? In this paper, the information

content contained in the ocean ambient noise field will be

considered using the Cram�er–Rao lower bounds (CRLBs).8

The CRLB provides a methodology to calculate the mini-

mum variance that an unbiased estimator will have for a

parameter of interest. The CRLB has been applied in under-

water acoustics to isotropic noise,9 in the context of matched

field processing10,11 and tomography12,13 using a known

sound source but here, the focus will be on directional ambi-

ent noise as the data and the information about the seabed

contained in those fields.

There are several methods that have been developed for

determining seabed properties based on beamforming wind-

driven1 or ship14,15 noise on a vertical hydrophone array.

The seabed BL can be determined by taking the difference

between the beamformed power coming from the surface to

that coming from the seabed. BL can also be combined with

inversion methods to estimate seabed properties such as

sound speed and density.16 To use this beamforming meth-

odology in a practical system to map seabed properties over

a large area, measurements of ambient noise can be made

from a drifting or slowly moving vertical array. For the mov-

ing array, data are averaged over a short period of time and

an estimate of the seabed properties is made. The exact

amount of time averaging is complicated and depends on

factors such as seabed variability, frequency band used,

SNR, and measurement geometry. For a given single mea-

surement, the dependency of these factors on the accuracy of

the parameter estimate can be difficult to determine. The

CRLB can be used to compute the lower bound on the esti-

mate variance for a set of unknown parameters. This can be

used in the system design, the measurement strategy (e.g.,

time averaging), as well as in reporting the expected accu-

racy of results.

In this study, the framework for using the CRLB for

ambient noise based parameter estimation is developed. The

study site is from the Noise’09 experiment that used a

moored vertical array with 16 hydrophones. The data set

allowed for estimates of the seabed properties every 15 s (as

might be done using a drifting array) and the variance for

each these estimates computed over a total of about 1 h anda)Electronic mail: siderius@pdx.edu
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40 min. The variance of the 15 s estimates is compared with

the CRLB. For an efficient, unbiased estimator, the variance

should approach the CRLB. Although the estimator used is

simple and robust, it will be shown that it does not attain the

CRLB and suggests an alternative method for estimating

these parameters (with lower variance) may exist. A Monte

Carlo based simulation methodology is used to determine

the performance of the beamformer based estimation and is

compared to the experimental data.

This paper is organized as follows: In Sec. II, the algo-

rithms for estimating BL and seabed parameters are

described. In Sec. III the CRLBs are developed for seabed

parameter estimation. This provides a measure of the infor-

mation content that is contained in the ambient noise mea-

surement. Section IV gives results from the Noise’09

controlled experiment and Sec. V uses Monte Carlo methods

to simulate realizations of the Noise’09 ambient noise as a

way to analyze the methodology with known parameters.

Finally, these results and analyses are discussed in Sec. VI.

II. PARAMETER ESTIMATION FROM AMBIENT NOISE

In this paper, the ambient noise field is considered to be

dominated by breaking wave noise. This is not to say other

sources could not be used for parameter estimation. Ship

noise has been used for BL and seabed parameter estima-

tion14,15,17 as have biologic sources.18 Among the parameters

that have been shown possible to estimate from ocean ambi-

ent noise:

• Seabed properties such as BL and sediment sound speed,

density, and attenuation factor;1,16

• Water column sound speed;19

• Water depth and seabed sub-bottom layering;2–5

• Wind speed;6

• Rainfall;7 and
• Hydrophone array parameters such as element locations or

array tilt.20

Here, only surface wave noise generated by wind is con-

sidered. The advantages of using wind driven noise is that it

is ubiquitous and the estimation methodologies are relatively

simple. The focus will mostly be on the seabed parameters

and determining the information content in the noise field.

However, the same approach can be applied to any parame-

ter being estimated.

For the seabed properties, the estimation method is based

on the research from Harrison and Simons.1 The method first

introduced by Harrison and Simons was not an inversion but a

direct estimate of the seabed BL which is defined in terms of

the seabed power reflection coefficient jRðhÞj2 as a function of

grazing angle h which varies from 0�–90�,

BLðhÞ ¼ �10 log10jRðhÞj
2: (1)

To beamform the data at frequency x [adopting an

exp ð�ixtÞ time convention], the complex pressure along a ver-

tical hydrophone array is written as a vector, p ¼ ½p1;…; pM�T
for each of the M hydrophones (suppressing the frequency

dependence and T indicates transpose operation). For

conventional beamforming, the weight for the mth hydro-

phone at a depth of zm with water column sound speed c,

shading window hm, and steered at angle /,

wm ¼ hme�izmk sin /; (2)

where k ¼ x=c. The vertical steering angle / can vary from

�90�–90� with 0� horizontal, and positive angles steered

toward the surface and negative angles toward the seabed.

Writing the steering weights as a vector, w ¼ ½w1;…;wM�T ,

a beam at angle / is wHp, where H represents the Hermitian

(conjugate transpose). The conventional beam power for a

given direction / is (suppressing the frequency dependence),

Bð/Þ ¼ wHpðwHpÞH ¼ wHppHw: (3)

The expectation h�i of the pressure field product hppHi is the

data covariance matrix, K. For L independent snapshots of

pressure field pl, ~K is the approximate value of K taken

from averaging,

~K ¼ 1

L

XL

l¼1

plp
H
l : (4)

Forming the covariance allows for the complex data to be

averaged before beamforming. The beam power can be writ-

ten in terms of the approximated covariance matrix,

Bð/Þ ¼ wH ~Kw: (5)

The seabed power reflection loss is estimated as the ratio of

the positive and negative angles according to,

j ~RðhÞj2 ¼ Bð/�Þ
Bð/þÞ

: (6)

Sometimes these symmetric angles are referred to as conju-

gate angles since, for conventional beamforming, the steer-

ing weights are simply conjugates of each other. Typically,

array shading is used to reduce undesired sidelobe levels in

Bð/Þ. This simply requires multiplying the steering vector

by one of many options for shading vectors prior to the mul-

tiplication in Eq. (5). Choosing a shading vector depends on

the application and here a Taylor window has been applied

to all conventional beamforming (implemented using the

“taylorwin.m” function in MATLAB
21–23).

For parameter estimation, a model for the ambient noise

field is used along with beamforming to produce a modeled

power reflection loss (denoted jRmðhÞj2). Here, the wave-

number integration model OASES (Ref. 24) is used to gener-

ate the surface noise on the vertical array for a given set of

environmental parameters. The OASES model directly pro-

duces the covariance matrix K(a) for a set of parameters in

the vector a. This is an exact covariance matrix based on the

theoretical model for surface noise developed by Kuperman

and Ingineto.25

To obtain an estimate for a, an exhaustive search is per-

formed considering all possible parameter values (e.g., for

sediment sound speed, density, and attenuation). For each

J. Acoust. Soc. Am. 146 (3), September 2019 Martin Siderius and John Gebbie 1825



possible a, a covariance K(a) is computed in OASES, beam-

formed, and then the power reflection coefficient jRmðhÞj2
computed. The minimum mean squared error (MMSE) is

then computed between the measured (estimated from data)

and modeled for a set of discrete angles, hn,

MMSE ¼ min
XN�1

n¼0

jRmðhnÞ � ~RðhnÞj2
" #

; (7)

where hn is a vector from 0� to 90� in 1� increments. The

angular sampling increment was deemed sufficient based on

the slowly varying nature of the reflection loss curves with

respect to angle and that the beamforming is more than

10� oversampled for a 16 hydrophone array.

A. Adaptive beamforming

Adaptive beamforming is often used as an alternative

to shading the steering vector to suppress sidelobes.8,26 The

adaptive steering vectors are computed using the data itself

( ~K) and produces sidelobes that minimizes the beam power

from directions other than the steering direction. This can

be implemented in different ways, but here the minimum

variance distortionless processor is used and adaptive

weights wA are computed from the conventional weights

according to,

wA ¼
~K�1w

wH ~K�1w
: (8)

The adaptive weights are then used in place of the conven-

tional weights in Eq. (5) and then to compute the power

reflection loss.

Adaptive processing to compute BL from ambient noise

has been proposed previously.27,28 However, some caution is

needed when directly using the power reflection coefficient

or BL from an adaptive beamformer. The adaptive processor

gives an undistorted response in the steering direction and

minimizes the power in other directions with no constraint

on symmetry between upward and downward steered beams.

Since the BL algorithm depends on the symmetry of the

beam powers (implicit in taking the ratio of upward and

downward beams), distortions can occur due only to differ-

ences in the beams which can be misinterpreted as due to the

seabed. These types of adaptive beamformer distortions of

the BL estimate will be illustrated in Sec. IV and is more

fully described in Ref. 29.

Even though the BL may contain artifacts, adaptive

processing may still be advantageous for environmental

parameter estimation. If the modeled BL is computed using

the same adaptive processing then, presumably, the artifacts

would be similar enough to allow a comparison with adap-

tively processed measured data. This implies that even if

there are distortions introduced in the adaptive beamformer,

the model will distort similarly. The minimum mean squared

difference is again used between measured and modeled

power reflection loss in Eq. (7) for the adaptively processed

modeled and measured data. The adaptively processed

power reflection loss curves can result in better estimates of

the environmental parameters (in terms of the variance of

the estimate) as will be demonstrated in Sec. IV.

III. CRLBS

The covariance K(a) is computed using OASES for a

given set of environmental parameters and measurement

geometry. The modeling output produces the covariance due

only to surface waves so white, additive noise needs to be

added. This would be due, for example, to uncorrelated sen-

sor noise and is added as a scaled identity matrix I,

KN ¼ Kþ r2
NI; (9)

where the a dependency is suppressed. The scaling depends

on the relative levels between the surface noise and the sen-

sor noise and is a function of wind speed that changes the

surface wave conditions. In the cases here, the SNR is the

relevant quantity and the SNR (in decibels) is defined as

SNR ¼ 10 log10

tr K½ �
Mr2

N

; (10)

where M is the number of sensors (K has dimensions

M�M) and tr indicates taking the trace of the matrix.

The information about the unknown parameters a is

contained in the Fisher Information Matrix, J, with elements

defined by8

Jij ¼ Ltr K�1
N

@KN

@ai
K�1

N

@KN

@aj

� �
; (11)

where L is the number of independent snapshots that are

used to estimate K. The variance of any unbiased estimator

of a is bounded by the inverse of the Fisher Information

Matrix. For a given parameter estimate ~ai from the set of

parameter estimates ~a, the variance is,

E ð~ai � aiÞ2
h i

� J�1½ �ii: (12)

That is, the variance on the parameter estimate is bounded by

the diagonal terms in the inverse of the Fisher Information

Matrix.

Here, covariance matrices are computed using OASES

and the derivatives in Eq. (11) are numerically determined

using a central finite difference,

@KN

@ai
�
@KNþDai

� @KN�Dai

2Dai
; (13)

using calculations of the covariance matrix for small pertur-

bations to the parameter ai of Dai.

A. Example: Surface noise in an infinite half-space

A simple example problem is useful to not only show

the methodology but to also test the numerical computation

of K and its derivatives against a known analytic solution.

To do this, the Cron–Sherman model can be used that calcu-

lates surface noise in a non-attenuating ocean without a

1826 J. Acoust. Soc. Am. 146 (3), September 2019 Martin Siderius and John Gebbie



seabed (i.e., an infinite half-space).30,31 The covariance

matrix for hydrophones separated by a vertical distance dij

¼ zi � zj using the Cron–Sherman model is

Kij ¼ 2
sin kdij

kdij
þ cos kdij � 1

k2d2
ij

" #

þ i2
cos kdij

kdij
� sin kdij

k2d2
ij

" #
: (14)

Since the covariance matrix is a function of the water

column sound speed through k ¼ x=c, the derivative with

respect to sound speed, @K=@c can be taken analytically. In

this way, the CRLB for the water column sound speed can

be computed using analytic expressions for the covariance

and its derivatives and this compared to the numerical

covariance computation (using OASES) and finite difference

approximation. For this example, a vertical array is used

with 16 hydrophones separated by 1 m (this configuration is

chosen to match the experiments described in Sec. IV). The

results are shown in Fig. 1 for various SNRs obtained by

varying the level of added uncorrelated noise. The figure

shows the CRLB on standard deviation rather than variance

of the estimate. As expected, the standard deviation of the

sound speed estimate approaches zero for high values of

SNR. Further, the numerical computation is in good agree-

ment with the analytic result.

IV. RESULTS FROM THE NOISE’09 EXPERIMENT

The Noise’09 experiment took place off the coast of

southern California (approximately 20 km southwest of

Point Loma) between January 30 and February 10, 2009.

Four 16-hydrophone vertical line arrays with 1 m element

spacing were deployed at separation distances of about 500,

1000, and 2000 m. The arrays were moored on the Coronado

Bank in about 150 m water depth with the deepest hydro-

phone 7 m from the seabed for each array. The arrays were

self-recording with sampling frequency of 25 kHz and all

analysis is done on a single array at a single frequency of

600 Hz. During the experiment, the wind speed varied from

0 to 14 m/s and therefore the surface wave noise also

changed during the experiment. The data used here were

chosen during a period with sustained wind speeds � 10 m/s

on February 6, 2009 from 5:00 to 8:00 UTC (only 1 h 40 min

of data were available during this 3 h period). The data proc-

essing consisted of dividing the time series data into non-

overlapping snapshots of length 0.16384 s and transforming

to the frequency domain using a 4096 sample length Fast

Fourier Transform. The data snapshots were averaged using

Eq. (4) with L¼ 90 (total time of 14.75 s).

Once the data covariance matrix is computed, these

were beamformed and the power reflection loss and BL were

estimated. One set of 90 snapshots will be referred to as a

realization. Each realization was compared against the mod-

eled data for each of the combinations of parameters. Three

unknown parameters were considered, sediment sound

speed, density, and attenuation and the search space and

increments for each parameter are shown in Table I. The

parameters that correspond to the MMSE for each realization

is saved and results from all realizations were combined to

produce a mean and standard deviation for the estimation. A

total of 416 realizations of data were used and the histograms

for the lowest MMSE for each estimate are shown in Fig. 2

using conventional beamforming. The histograms resulting

from using the adaptive beamformer are shown in Fig. 3.

The CRLB for this experimental configuration was com-

puted using Eq. (12). Table II shows the parameter estimates

and the
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLB
p

(in terms of standard deviation rather than

variance). The mean and standard deviation for the conven-

tional beamforming process are denoted l and r and for the

adaptive beamforming process as lA and rA.

A. BL comparisons

It is worthwhile to consider the BL curves themselves

since this is the basis for the seabed parameter estimates.

Recall that for the estimates given in Table II, a short time

average of 14.75 s of data was used to make a single estimate

of sound speed density and attenuation. For the entire data

set, this produces a total of 416 estimates, all at the same

location (presented as histograms in Figs. 2 and 3). Since the

array was moored, an alternative way to process is to aver-

age the entire data set of about 1 h and 40 min to form a sin-

gle covariance matrix and that can then be used in the

beamforming algorithm to produce what should be an excel-

lent representation of BL. This long-average BL calculation

FIG. 1. (Color online) CRLB (in terms of standard deviation) for estimating

water column sound speed. Solid line is the analytic solution using the

Cron–Sherman model for the covariance matrix and derivative with respect

to c. The dashed line is the numerical computation using OASES for the

covariance and finite difference approximation.

TABLE I. Seabed parameter search values.

Parameter Min. Max. Increment

Sound speed (m/s) 1480 1800 10

Density (g/cm3) 1.0 3.0 0.050

Attenuation (dB/k) 0.0 2.0 0.025

J. Acoust. Soc. Am. 146 (3), September 2019 Martin Siderius and John Gebbie 1827



is shown as the solid lines in Fig. 4. Both conventional

beamforming (top panel) and adaptive beamforming (lower

panel) of the 1 h 40 min of data are shown.

A comparison can be made between the long-average

BL and the BL curves computed using the estimated seabed

parameters given in Table II. To accomplish this, the esti-

mated seabed parameters (i.e., the mean values) are input to

the OASES noise model to produce a simulated covariance

matrix that is beamformed using both conventional and

adaptive beamforming and the up/down ratio taken to pro-

duce BL. One might think the mean seabed parameters could

be put directly into a seabed reflection loss formula (e.g., as

described in Ref. 26) to calculate BL directly for comparison

with the data estimates, however, the additional steps of

computing the covariance and beamforming provide a better

comparison with the data that has been processed in a similar

way. The main processing effect is due to the beamformer

that produces beams of width that depend on the length of

the array. When computing BL, the beamwidths cause a

“smearing” of the calculated BL curve. A better comparison

can therefore be made by smearing model results in the same

way the data were processed. These modeled and

beamformed-processed BL curves (using mean of the esti-

mates) are also shown in Fig. 4 as the dashed-dotted lines.

Note that the adaptive beamformer produces “wiggles” in

the BL curve. While these wiggles can actually appear to be

real (caused, for example, from layering in the seabed) they

are often artifacts that are due to the adaptive beamformer.

Note that the same wiggles appear even in the simulation

where it is known that no layering exists. The appearance of

similar wiggles in the model is why adaptive processing can

still be used to estimate seabed parameters even if the BL

curve has these artifacts (i.e., the same wiggles appear on

data and model). More details about these artifacts are

described in Muzi et al.29 To illustrate the true (i.e.,

“unsmeared”) result, the actual BL is calculated using a the-

oretical seabed reflection loss model26 along with Eq. (1) for

BL. For the calculation of reflection loss, the same estimated

mean parameters given in Table II are used. These curves

are referred to as the estimation true BLs and are shown in

Fig. 4 as the dashed lines. Note these curves are a bit sharper

than the ones that have been “smeared” through

beamforming.

B. CRLB for horizontal versus vertical arrays

One of the ways the CRLB can be used is for system

design. There are typically many parameter trade-offs and

some configurations may inherently be better than others in

terms of the information contained in the measurement. To

illustrate, the Noise’09 vertical array configuration can be

compared to a hypothetical system that uses a horizontal

FIG. 2. (Color online) Noise’09 Data:

Histograms of the 416 parameter esti-

mates using conventional beamform-

ing. Top panel is sediment sound

speed, middle is density, and lower is

attenuation. The mean values (l) and

standard deviations (r) are shown in

each panel.
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array. In both cases, there are 16 hydrophones with 1 m spac-

ing. The vertical array has hydrophones at depths from 128

to 143 m while for the horizontal array all hydrophones are

at 128 m depth and vary in range from 0 to 15 m. Results

showing the
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLB
p

are in Fig. 5. The figure shows there is

a reasonable amount of information about the seabed even in

the horizontal array data although the variance of the optimal

estimator is higher than if the data were taken from a vertical

array. Interestingly, the beamforming algorithm used with

the vertical array would be useless when applied to the hori-

zontal array data due to the orientation. Conjugate beams are

perfectly symmetric on the horizontal array and therefore the

calculation taking the ratio would not produce the power

reflection coefficient (in fact, would result in 0 dB at all

angles). Therefore, while the beamforming algorithm applied

to a horizontal array would be pointless, the sensor level

data does actually contain seabed information. A different

estimator (from the ratio of beams) would be needed to

extract this information.

V. ANALYSIS USING MONTE CARLO METHODS

The estimation method in Sec. II, and as applied to mea-

surements in Sec. IV, showed that the variance of the esti-

mate does not reach the CRLB. This is an indication that the

estimator is not efficient as described by

c ¼ CRLB

r2
; (15)

which for the Noise’09 data the sound speed has an effi-

ciency of approximately c ¼ ð7:70=32:12Þ2 ¼ 5:8%.

Although the estimation method is robust and simple to

implement, it is not very efficient indicating there is informa-

tion in the covariance matrix that does not translate into the

estimate after beamforming and dividing conjugate beams.

This raises the questions: Is there a more efficient estimator?

Answering this is beyond the scope of this article as one

would need to consider the complexity and robustness of a

different estimator. That is, even if a more efficient estimator

exists, it may not be preferred if it is not robust or not practi-

cal to implement. A second question that is considered in

this section is: Are these estimation efficiencies inherent to

the method, or is there something particular about this data

FIG. 3. (Color online) Noise’09 Data:

Histograms of the 416 parameter esti-

mates using adaptive beamforming.

Top panel is sediment sound speed,

middle is density, and lower is attenua-

tion. The mean values (lA) and stan-

dard deviations (rA) are shown in each

panel.

TABLE II. Seabed parameter for conventional beamforming mean values

(l) and standard deviation (r) and adaptive beamforming mean values (lA)

and standard deviation (rA).

Parameter l r lA rA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLB
p

Sound speed (m/s) 1667 32 1678 25 7.70

Density (g=cm3) 2.16 0.16 2.22 0.14 0.08

Attenuation (dB=k) 0.57 0.55 0.58 0.49 0.06
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set? For example, if there are biologic noise sources or ship

noise in the data it may produce higher estimation variances

leading to lower efficiencies even if the methodology itself

is 100% efficient. Further, in cases such as this where it is

not possible to attain the CRLB, how can the variance of the

estimation be calculated? Monte Carlo methods can be used

to help answer if the efficiency found here is inherent and it

provides a framework for producing estimation variances

(and biases as described in Sec. V A) in cases like this where

the CRLB is not attained by the estimation method.

The Monte Carlo approach is to first create a synthetic

data set similar to measurements. Here, the Noise’09 data set

will be simulated and then parameters estimated to deter-

mine the variance for comparison against the actual mea-

surements and the CRLB. The exact covariance matrix K is

computed using a numerical model such as OASES (same as

used to calculate the CRLB) and uncorrelated noise is added

to this for whatever SNR is desired KN ¼ Kþ r2
NI. Random

snapshots of data can be computed using an eigenvalue

decomposition procedure described in Ref. 26. Here, the

covariance is decomposed into a vector of eigenvalues K
and a matrix of eigenvectors, V,

KN ¼ VKVH: (16)

To create random snapshots, a vector d containing a realiza-

tion of complex, normally distributed random numbers are

created such that hddHi ¼ I where hi indicates taking the

expectation. The simulated covariance matrix for a single

data snapshot is then,

Nl ¼ VK1=2d: (17)

This can be averaged over L snapshots as was done with the

data to get an estimated covariance matrix,

~K ¼ 1

L

XL

l¼1

Nl; (18)

which can then be processed in exactly the same way as the

Noise’09 measured data.

A total of 416 realizations were computed using 90

snapshot averages for ~K, followed by an estimate of the sea-

bed parameters. The “true” parameters for the seabed proper-

ties are taken from the mean values found from conventional

beamforming given in Table II. The added white noise was

adjusted to produce an SNR of 15 dB. The histogram with

results for conventional beamforming is shown in Fig. 6.

The results are very similar to those found with the experi-

mental data but it is worth noting the discrepancies. The

sound speed of approximately 1653 m/s is slightly lower

than the true value of 1667 m/s. However, in terms of a frac-

tion of the standard deviation, the sound speed estimate is

only off by 0.44r. In comparison, the density estimated is

too high and has an error which is a much larger factor of

2.12r. This bias, particularly in the density estimate, will be

explored further in Sec. V A.

A. Bias in beamforming estimates

The previous simulations showed a slight bias in the

estimates. The sound speed and attenuation were slightly

lower than the true value and the density somewhat higher.

FIG. 4. (Color online) BL using Noise’09 data and modeled BL using the

estimates given in Table II. Top panel is for conventional beamforming of

the data (solid line) and model (dashed line). The bottom panel is using

adaptive beamforming of the data (solid line) and model (dashed line).

FIG. 5. (Color online) Square-root of the CRLB versus SNR for each of the

seabed parameters: sound speed, density, and attenuation. The dashed line is

for a horizontal array and the solid line for a vertical array.
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As previously mentioned, the CRLB gives the lower bound

on the variance of an unbiased estimator. In addition to the

beamforming BL algorithm not attaining the CRLB, it is

also not unbiased. However, the bias depends on the SNR as

well as many other factors including the specific seabed

properties.

To determine the bias, Monte Carlo methods can be

applied in a way similar to the previous examples. However,

in this case, the simulated “data” is created for a variety of

SNR values and for each an estimate of the seabed properties

is made. One difference between these calculations and those

simulating the Noise’09 scenario is the number of realiza-

tions is increased from 416 to 1000 (to better insure conver-

gence). The results are shown in Fig. 7. Some features of the

plot are worth noting. At low SNR values (below around

5 dB), many of the estimates hit the upper bound of the

search space causing the bias curve to appear to flatten. This

is an artifact and therefore very low SNR values are not

shown. At low SNR values all three seabed properties are

biased toward higher values. However, as SNR increases,

the sound speed and attenuation then bias toward lower val-

ues. These slightly negative values for the sound speed and

attenuation estimates are consistent with the simulations

done in Sec. V with 416 realizations and 15 dB of SNR. All

three seabed parameters rapidly approach zero bias as SNR

increases above 15 dB.

FIG. 6. (Color online) Simulation:

Histograms of the 416 parameter esti-

mates using conventional beamform-

ing. Top panel is sediment sound

speed, middle is density, and lower is

attenuation. The mean values (l) and

standard deviations (r) are shown in

each panel.

FIG. 7. Top panel shows the estimate for the seabed sound speed versus

SNR, middle panel for the seabed density, and lower panel for the seabed

attenuation.
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Given the expected bias in the estimates, to first order,

the bias can be taken away from the estimates in Table II (at

15 dB SNR). That results in a sound speed estimate for the

Noise’09 data of 1678 m/s, a density estimate of 1.88 g/cm3,

and attenuation of 0.58 dB/k. As a check, when the bias val-

ues are compensated for on the simulated data, the sound

speed is adjusted up from 1656 to 1667 m/s (the exact true

value), the density is adjusted down from 2.48 to 2.2 g/cm3

(compared the true value of 2.16 g/cm3) and the attenuation

adjusted from 0.57 to 0.53 dB/lambda (compared to the true

value of 0.54 dB/lambda).

VI. DISCUSSION AND CONCLUSIONS

The ocean ambient noise field contains information

about the environment and various estimation methods exist

to extract quantities such as the seabed properties. The

CRLBs) can be used to quantify the variance an unbiased

estimator can reach for a given parameter. In this study, the

framework for the CRLB from ambient noise measurements

has been developed and the calculations were demonstrated.

This methodology can be used for system design and for

understanding various trade-offs.

For this study, the beamforming technique used to esti-

mate BL was considered along with a parameter estimation

for the seabed properties of sound speed, density, and attenu-

ation. The estimation is based on taking short time averages

of data and computing BL based on the beamforming algo-

rithm. A model is then used to compute all possible BL

curves over a selected search space. The minimum least

squared error between the measurement and each of the

modeled BL curves were computed and for each realization

of data the minimum error gave the parameter estimates.

This was repeated for many realizations to give a mean and

standard deviation for the estimates for comparison with the

CRLB. This is possible to do if the array is not moving as

was the case for the Noise’09 data considered here. It was

found that the beamforming BL method was not very effi-

cient in terms of reaching the CRLB. Further, the estimates

were shown to have a bias that can be significant at low val-

ues of SNR. The bias was computed and removed from the

original estimates. For the Noise’09 data, the true values of

the seabed properties are not known accurately enough to

know if the adjustment helps. However, for the simulations,

the seabed properties are known and the bias compensation

brought the estimated values closer to the true value, making

the final estimates extremely good. It was also shown that

adaptive beamforming introduced artifacts into the BL

curve. However, in the estimation process these artifacts are

also introduced into the model. The end result was that the

adaptive beamforming estimation of seabed properties had a

lower variance than those estimated using conventional

beamforming.

The Noise’09 experimental data was considered here

and the array was moored; however, practical application of

the algorithm would more likely have the array moving to

survey the seabed over a desired region. At a given location,

only a single realization of data would be used to produce an

estimate of the seabed sound speed, density, and attenuation.

However, since the estimator does not reach the CRLB, the

variance is unknown and this is nearly as important as the

estimate itself. To estimate the variance and bias of the

beamforming based estimation method, Monte Carlo meth-

ods were developed and through simulations were shown to

produce results very similar to the measured data. These

methods can be used for this estimation method to deter-

mine, for example, the variance and bias a drifting array

would have.
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