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ABSTRACT

Wake losses from neighboring plants may become a major factor in wind plant design and control as additional plants are constructed in
areas with high wind resource availability. Because plant wakes span a large range of physical scales, from turbine rotor diameter to tens of
kilometers, it is unclear whether conventional wake models or turbine control strategies are effective at the plant scale. Wake steering and
axial induction control are evaluated in the current work as means of reducing the impact of neighboring wind plants on power and levelized
cost of electricity. FLOw Redirection and Induction in Steady State (FLORIS) simulations were performed with the Gauss–Curl Hybrid and
TurbOPark wake models as well as two operation and maintenance models to investigate control setpoint sensitivity to wake representation
and economic factors. Both wake models estimate losses across a range of atmospheric conditions, although the wake loss magnitude is
dependent on the wake model. Annual energy production and levelized cost of electricity are driven by wind direction frequency, with
frequently aligned plants experiencing the greatest losses. However, both wake steering and axial induction are unable to mitigate the impact
of upstream plants. Wake steering is constrained by plant geometry, since wake displacement is much less than the plant wake width, while
axial induction requires curtailing the majority of turbines in upstream plants. Individual turbine strategies are limited by their effective scale
and model representation. New wake models that include plant-scale physics are needed to facilitate the design of effective plant wake control
strategies.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0207013

I. INTRODUCTION

Installed wind energy capacity continues to expand with the
global demand for renewable energy.1,2 However, regional wind plant
development is a decentralized process involving multiple stakeholders
with independent interest and timelines.3 As new plants are con-
structed in areas with high wind resource availability, additional
growth decreases the distance between neighboring plants. Plant wakes
can extend 50km downstream,3–5 yet 90% of wind plants in the
United States are located within 40 km of a neighboring plant.3

Consequently, wind plants often operate in a wake region imposed by
one or more neighboring wind plants.

Plant wakes reduce the energy available to neighboring plants,
resulting in lower annual energy production (AEP).3–11 Although exact
operating costs are site-specific and proprietary, the combined costs of

neighbor-induced wake losses averaged to an annual loss of
$2.06 1.29 million for the Roscoe Wind Farm Project in Texas.3 In
addition, wakes introduce turbulence into the downstream flow, which
increases fatigue damage.12–17 The extent of a plant wake varies with
atmospheric conditions, turbine arrangement within the plant, and
spacing between plants.4,5,8–11 At the same time, wind turbines are
most sensitive to wake losses when operating below their rated wind
speed.6 Stable conditions with low ambient turbulence intensity allow
wakes to propagate far downstream compared to unstable
conditions.4,5,11

Wind plant wakes are governed by a combination of layout-
specific interactions between turbine clusters and atmospheric
conditions.5,7,11,18 While control strategies such as yaw-based wake steer-
ing8,10,19–25 and induction control26–29 allow plant operators to improve
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net efficiency while utilizing the existing infrastructure, the majority of
work on mitigating wake losses has focused on characterizing the funda-
mental dynamics of the wake from a single turbine or optimizing the
performance of a single plant.8 As such, it is unclear how well single-
wake models and contemporary control strategies extend to multiplant
systems. Foloppe et al.10 found yaw-based wake steering improved the
regional power output for the Belgian offshore wind farm zone. Stieren
and Stevens9 showed optimizing an upstream farm layout leads to a
strong aggregate plant wake, which reduces the energy available to its
downstream neighbor. Because conventional control strategies rely on
modifying individual turbines, these strategies may be constrained to the
subset of conditions where single wakes have an outsized impact on
neighboring turbines. Differences in operating costs between neighbor-
ing wind plants add an additional layer of uncertainty to estimating the
impact of plant wakes. Capital expenses depend on the turbine model,
installation date, and financing at the time of installation. Operating
costs are subject to numerous external factors and can vary as the tur-
bine ages. Power purchase agreements (PPAs) are operator-specific and
subject to negotiations as well as prevailing market rates. Yet economic
values are often presented as national or regional averages.2,30 These
complications are compounded by the limitations of current modeling
tools. Large eddy simulations are too computationally expensive to opti-
mize control strategies over a large number of turbines or wide range of
atmospheric conditions. Engineering wake models are less expensive
than high-fidelity simulations and capable of designing effective control
strategies.22,25 However, these tools are designed to capture individual
wake dynamics and omit relevant physics at the regional scale, such as
gravitational waves, plant blockage, internal boundary layer formation,
and atmospheric stability.31,32

The current work considers contemporary control strategies
as means of reducing neighbor-induced wake losses through a
series of turbine setpoint optimizations. Wake loss estimates are
obtained from FLOw Redirection and Induction in Steady State
(FLORIS)33 simulations with two wake models across a range of
measured atmospheric conditions to highlight the impacts of
inflow conditions and wake model selection. Wake steering and
axial induction control are compared to baseline operation to
assess their potential for mitigating wake losses from neighboring
plants. Specifics on modeling approach, simulation setup, and the
optimization functions are detailed in Sec. II. Results are presented
and discussed in Sec. III. Concluding remarks and suggestions for
future studies follow in Sec. IV.

II. METHODS
A. AWAKEN site

The five plants under observation in the American WAKE
experimeNt (AWAKEN) field campaign are a suitable test system,
as these plants operate in close proximity and contain multiple tur-
bine types with different layout strategies.34 In addition, two main
scientific objectives of the AWAKEN project are characterizing
wind plant wake development and assessing the effectiveness of
turbine controls on mitigating wake interactions within turbine
clusters. AWAKEN plant specifications (Table I) including turbine
model and location were obtained from the United States
Geological Survey Wind Turbine Database.35 Turbine models were
created from an open-source 2.8MW reference turbine36 with the
WISDEM/WEIS toolkit.37

B. Atmospheric conditions

Atmospheric conditions spanning 2021 were obtained from
atmospheric radiation measurement (ARM) instruments located at the
Southern Great Plains Central Facility38–44 (Fig. 1). Atmospheric quan-
tities, including wind speed, wind direction, turbulence intensity, shear
exponent, and Monin–Obukhov stability parameters, were reported as

TABLE I. AWAKEN wind plant specifications from the United States Geological Survey Wind Turbine Database.35 The study site is composed of 558 General Electric (GE) tur-
bines with six unique turbine models.

Plant name Operation year Rated power (MW) Total turbines Turbine model Rotor diameter (m) Hub height (m)

Chisholm View 2012 300 167 140� GE 1.68MW 82.5 80
27� GE 2.4MW 107 80

Breckinridge 2015 96.9 57 57� GE 1.7MW 103 80
Thunder Ranch 2017 297.8 120 109� GE 2.5MW 116 90

11� GE 2.3MW 116 80
Armadillo Flats 2018 241.8 126 80� GE 1.7MW 103 80

46� GE 2.3MW 116 90
King Plains 2020 248.2 88 88� GE 2.82MW 127 89

FIG. 1. AWAKEN plants with Atmospheric Radiation Measurement Southern Great
Plains Central Facility location (star) and wind rose of atmospheric conditions.
Marker size is relative to turbine nameplate capacity.
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30-min averages at 25 and 60 m elevations. ARM data were compared
to instrumentation throughout the AWAKEN site to check for varia-
tions at hub-height. Wind direction and turbulence intensity were in
agreement although wind speed differed and was extrapolated from 60
m up to 90 m with a power law. Overall, the 2021 data compare well
with the 2010–2020 averages.45 The annual mean wind speed is 8.8 m/s
with a corresponding mean inflow wind direction of 177.8�, turbulence
intensity of 11.2%, and shear exponent of 0.19. The majority of wind to
the AWAKEN site arrives from the south (59.7%) while winds from the
East of West are relatively uncommon. For FLORIS simulations, wind
speed was discretized into 1 m/s intervals from 5 to 21 m/s, wind direc-
tion into 10� intervals from 0� to 350�, and turbulence intensity into
2.5% intervals from 5% to 25%. Wind speed, direction, and turbulence
intensity frequencies were computed from the number of occurrences
relative to the total number of observations. Shear exponent did not vary
with the other atmospheric variables and was set to a canonical value of
0.2 rather than included as an additional input parameter. In addition,
wind speeds and turbulence intensities with inflow wind directions
between 100610� and 270620� were removed since ARM facilities are
impacted by Chisholm View and Thunder Ranch wind plants.45

C. Economic data

Financial data for the Southern Great Plains region30 were used
to inform the optimization efforts (Table II). Capital expenses
(CapEx), operating expenses (OpEx), and fixed charge rate (FCR) rep-
resent the most recent estimate (2022) of national averages for land-
based turbines in the United States.30 Power purchase agreement
(PPA) data are the most recent (2022) estimates for wind plants in the
U.S. Southwest Power Pool region.2 Because economic data are confi-
dential, costs were computed for each plant on a per-turbine basis
using the best estimate for a typical land-based turbine.30

D. Turbine O&M models

Heightened wind speeds and turbulence intensities lead to large
loads and reduce turbine fatigue lifetimes, which increases turbine
operation andmaintenance (O&M) costs.12–17 Recent efforts have pro-
duced a variety of models for estimating fatigue damage.12,15–17

However, the relationship between fatigue loads and atmospheric
trends is dependent on individual turbine characteristics and the time
history of flow conditions at each turbine. While the models developed
by Stanley et al.17 and Natarajan16 provide means for estimating time
histories for specific conditions, implementing this functionality in
FLORIS is beyond the scope of the current study. Furthermore, the
relationship between fatigue damage and turbine operating costs is
poorly defined, as much of this information is proprietary. In light of
these limitations, two methods are employed for representing the
effects of turbine wear on O&M expenses. Because FLORIS simula-
tions are steady state, both methods are designed to approximate tur-
bine wear at a specific operating condition. Annual wear is
approximated by weighting the output of each model by the frequency
of the corresponding atmospheric condition in a similar manner to
AEP calculations.

The first model is designed to capture the effects of wind speed
and turbulence intensity on turbine fatigue life through the L10 metric,
where L10 represents the estimated time or number of rotations until a
drivetrain bearing reaches 10% probability of failure.46–48 A two-step

fit is performed to map a family of logistic curves to the unwaked L10
data from Clark et al.15 First, the minimum turbine lifetime is esti-
mated from a linear fit of turbulence intensity and L10 yielding
L10min ¼ �4:9TI þ 2:95, where TI is the hub-height turbulence inten-
sity. Next, L10min is substituted into a logistic function to find L10,

L10 ¼ L10min þ L10max � L10min

1þ eaðUH�bÞ ; (1)

where UH is the hub-height velocity, a ¼ 0:85 and b ¼ 7:75 are fit
coefficients, and L10max ¼ 25 is the design lifetime in years following
Clark et al.15 The logistic function agrees well with the published data
and provides a smooth mapping from turbine operating conditions to
bearing life expectancy (Fig. 2).

The second model considers turbine loading rather than bearing
wear and is derived from the definition of thrust coefficient,

FT ¼ 1
2
CTqAU

2
A; (2)

where CT is the turbine thrust coefficient, q is the air density, A the rotor
area, and UA the rotor-averaged velocity. Although rotor loads are an
instantaneous structural response to fluid–blade interactions, this repre-
sentation abstracts individual component lifetimes by assuming turbine
O&M costs scale with wind speed across the rotor and turbine operation.

E. Optimization functions

External wake losses (EWLs) from neighboring plants are quanti-
fied through the ratio of turbine performance with and without neigh-
boring plants. This ratio isolates the impact of external plant wakes on
turbine operation by canceling internal wake losses between turbines
within a plant. Two cost functions are considered for mitigating EWL
by either improving plant power output or reducing levelized cost of
electricity (LCOE). In addition, two subfunctions were implemented
within each cost function to test optimizer sensitivity to turbine selec-
tion. In the first subfunction, the optimizer was allowed to control any
turbine individually, and the cost function was evaluated across all tur-
bines in the domain. In the second, the optimizer was again allowed to
control any turbine, but the cost function was only computed for tur-
bines with known EWL. A turbine was designated as having EWL if
the power output was reduced by at least 0:5% from the presence of an
upstream plant.

The power cost function seeks to reduce EWL by minimizing the
difference in power between plant operation with and without
upstream neighbors,

min
x

: 1�
Xn

i¼1

Pi;x
Pi;0

; (3)

where n is the total number of turbines, Pi;x is the power of turbine i at
control setting x, and 0 denotes the reference power of the turbine

TABLE II. Economic data for (1) US national average land-based turbine costs30 and
(2) regional average purchase agreement price.2

CapEx1

(US$/kWh)
OpEx1

(US$/kWh) FCR1 (%)
PPA2

(US$/MWh)

1462 43 5.78 20
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under typical operation in the absence of neighboring plants. This cost
function returns the optimal per-turbine yaw or axial induction setting
for each atmospheric condition.

Optimizing power output alone neglects changes in turbine
O&M costs from implementing control strategies as well as differences
in installed capacity and operating costs between plants. LCOE
includes this information and is defined here as

LCOE ¼
X

i¼1

F i

Xn

j¼1

FCR � CapExj þ OpExj
CFj;x � 8; 760 ; (4)

where F i is the frequency of atmospheric condition i, FCR is the fixed
charged rate, CapExj is the capital cost of turbine j in $/kW, OpExj is
the O&M cost for turbine j in $/kW, CFj,x is the capacity factor of tur-
bine j operating at control setting x, and 8760 scales steady-state power
estimates to the annual capacity factor for the current atmospheric
condition. Because the precise O&M costs under different operating
strategies are not available for the turbines at the AWAKEN site, these
effects are represented through the ratio of L10 or FT under active con-
trol to typical operation given by

Rj ¼ L10;0
L10;x

or Rj ¼ FT;x
FT;0

; (5)

where L10;0 is the L10 bearing lifetime under typical operation, L10;x is
bearing lifetime at control setting x, FT;0 is the rotor-averaged load
force under typical operation, and FT;x is the rotor-averaged load force
at control setting x. For a turbine j at control setting x, OpExj becomes
OpExðxÞj ¼ Rj � OpExj. With this formulation, any reduction in bear-
ing lifetime or increased force on the turbine will raise O&M costs,
while improved bearing wear or reduced loads lower O&M costs. The
LCOE cost function for a specific atmospheric condition i is then

min
x

:
Xn

j¼1

LCOEj;x

LCOEj;0
� 1; (6)

where, as before, j denotes the turbine in question, 0 indicates typical
operation in the absence of neighboring plants, x is the active control

setting, and the cost function returns x as the optimal per-turbine yaw
or axial induction setting for each atmospheric condition.

F. Modeling approach

Wind plant simulations were performed with FLORIS version
3.1.33 Although engineering wake models can underestimate the plant
wake velocity deficit far downstream,6,7,49 the large number of itera-
tions needed to evaluate control strategies necessitates a computation-
ally efficient approach. Two wake models were used in the study to
perform a direct comparison between models and facilitate both yaw
and axial induction control. The Gauss–Curl Hybrid (GCH) was
selected for its physical fidelity representing yawed wakes50 and the
TurbOPark model was selected as it has demonstrated good agreement
with measured plant performance in offshore settings.7,49 The GCH
model is based on a Gaussian wake profile51,52 and includes the effect
of the counter-rotating vortex from yaw misalignment on wake deflec-
tion and recovery.50,53,54 Wakes in the GCH model are represented on
a grid and wake merging is computed via sum of squares to avoid neg-
ative velocity deficits. The TurbOPark model was designed to capture
far wake development and employs a top hat velocity deficit,55 which
includes the effects of local turbulence intensity on wake expansion.7

Velocity deficits in the TurbOPark model are treated as points that are
linearly superimposed on downstream turbines. Optimal agreement
using the TurbOPark model was realized by increasing FLORIS turbu-
lence intensity by a constant 2.5% and setting the wake expansion
parameter, A, to 0.2.

Optimizations were performed for each atmospheric condition
using the L-BFGS-B method,56,57 as implemented in SciPy version
1.10.1.58 Yaw angles were optimized between 0� and 25� at an inflow
velocity of 8 m/s. Optimal yaw angles were linearly interpolated toward
0 at 5 and 11 m/s to mimic a utility-scale yaw steering controller.22

Axial induction was modeled by weighting each turbine’s thrust coeffi-
cient for a given wind speed by a scalar parameter 0 � x � 1, where 0
is shut down and 1 is normal operation. This approach allows tuning
individual thrust coefficients and is implemented in a development
version of FLORIS 3.1.59 At the time of writing, yaw control is not

FIG. 2. Linear fit of turbulence intensity (left) and corresponding family of logistic curves (right) for bearing L10 lifetime in years with reference data from Clark et al.15
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implemented for the TurbOPark wake model, so direct comparisons
between wake models are limited to losses among plants and axial
induction control. In total, 20 cases with 558 turbines and 1554 atmo-
spheric conditions each were evaluated in FLORIS (Table III).

III. RESULTS AND DISCUSSION
A. External wake losses at the AWAKEN site

Wind plants at the AWAKEN site interact with their neighbors
across a range of atmospheric conditions. EWLs occur for 48% of pos-
sible inflow conditions with both wake models. Losses are most pro-
nounced at moderate wind speeds between 5 and 9 m/s when turbines
are below rated power and when wake recovery is limited by low ambi-
ent turbulence intensity below 7.5% (Fig. 3, top). Both wake models
predict similar EWL trends in response to atmospheric conditions.
However, EWL estimates using the TurbOPark model are approxi-
mately twice the magnitude of those from GCH under the same condi-
tions. This discrepancy is expected as the TurbOPark model was
designed to capture far wake evolution over several kilometers,7,49

while the GCH model was developed to capture dominant physics
including the counter-rotating vortex pair from misalignment within
typical plant spacings.50

Turbines in close proximity to neighboring plants experience
high EWL regardless of atmospheric conditions since wake recovery is
primarily dependent on separation distance. EWLs are concentrated in
the outer edges of each wind plant (Fig. 4). This indicates internal
wake losses dominate for the remaining turbines over the momentum
deficit created by an upstream plant. In addition, plants with many
neighbors, such as Breckinridge and King Plains, are more likely to be
in a wake for a given wind direction, resulting in EWL across a greater
range of wind directions. The arrangement of plants at the AWAKEN
site leads to EWL across 75% of inflow wind directions at Breckinridge
and King Plains, while Armadillo Flats, Chisholm View, and Thunder
Ranch experience EWL under 40% of inflow directions (Fig. 3,
bottom).

Changes in AEP and LCOE from the presence of a neighboring
plant are driven by how often high-loss conditions occur. Although

TABLE III. Suite of FLORIS cases as determined by simulation objective (A), wake model (B), turbine selection (C), controls strategy (D), and turbine O&M model (E).

A Wake losses Power optimization LCOE optimization

B GCH TurbOPark GCH TurbOPark GCH TurbOPark

C All EWL All EWL All EWL All EWL

D Yaw CT Yaw CT CT CT Yaw CT Yaw CT Yaw CT

E FT L10 FT L10 FT L10 FT L10 FT L10 FT L10

FIG. 3. Mean plant external wake losses in response to wind speed (top left), turbulence intensity (top right), and percentage of wind directions under which external wake losses
occur (bottom) for the GCH (dashed circles) and TurbOPark (dotted squares) wake models. Here, AWAKEN denotes the average EWL across the five wind plants in the study site.
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low wind speeds and turbulence intensity exacerbate EWL, wind direc-
tion frequency is the primary driver, as plants aligned with common
wind directions incur the greatest losses (Fig. 5, top). Because the
majority of wind to the AWAKEN site arrives from the south, King
Plains, Chisholm View, and Breckinridge experience the bulk of AEP
losses. Although Armadillo Flats can experience high EWL from its
proximity to neighboring plants, those wind directions are infrequent,
leading to a lower AEP loss compared to its neighbors. Thunder
Ranch is distant from neighboring plants and has the lowest AEP
increase. This trend is reflected in plant LCOE, where frequently
aligned plants experience the greatest cost increase (Fig. 5, bottom).
Turbine quantity, size, and nameplate capacity also influence LCOE

through plant capacity factor. The increase in LCOE for Armadillo
Flats is twice its average EWL, while the changes in LCOE for
Breckinridge, Chisholm View, and King Plains are all comparable to
their average EWL. Thunder Ranch has a negligible increase in LCOE
relative to its average EWL due to a combination of its location relative
to the other plants during the most frequent wind directions, large
number of turbines, and high per-turbine capacity factor.

B. Power optimization

Power optimizations were performed for each cost function,
wake model, and turbine selection function by finding for the optimal
per-turbine yaw angle or induction setting, assuming steady atmo-
spheric conditions. It is important to note the power objective function
seeks to minimize the disruption caused by upstream plants rather
than maximize total power output across all plants at the AWAKEN
site. While wake steering has been shown to improve performance in
dense plant arrangements,10 the current study focuses on external
rather than internal wake losses, as the distance between plants at the
AWAKEN site allows individual wakes to merge into an aggregate
plant wake. This distinction has immediate ramifications: Both yaw-
based wake steering and axial induction are unable to reduce EWL
from neighboring plants.

Including upstream plants in the cost function leads to no change
in yaw or thrust setting, regardless of the atmospheric condition or
wake model as the losses experienced by upstream plants surpass the
reduction in EWL of their downstream neighbors. At the plant scale,
key problems arise at the plant scale that limit the effectiveness of tur-
bine controls as a means to reduce EWL. First, wake displacement
from yaw is on the order of rotor diameter, while an aggregate plant
wake can be measured in kilometers, depending on the turbine layout.

FIG. 5. Baseline AEP losses per plant (top) and increase to LCOE (bottom) due to EWL for both wake models. Here, AWAKEN shows the average AEP loss and LCOE
increase across the five wind plants in the study site.

FIG. 4. Relative EWL across all atmospheric conditions. Color denotes wake loss
magnitude as a percentage relative to other turbines with EWL. Size is relative to
turbine nameplate capacity.
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When the distance between plants exceeds typical row spacing, or
when the upstream plant is large, individual turbine wakes merge into
a bulk momentum deficit. As a consequence, wake steering is limited
to the subset of atmospheric conditions and plant layouts where indi-
vidual turbine wakes have an outsized influence on EWL.
Furthermore, the version of FLORIS used in this study generates
steady-state snapshots of turbine operation and the resulting wake
field, assuming homogeneous inflow conditions. Including heteroge-
neous wind speeds and wind directions, as well as mesoscale coupling
for plant blockage and boundary layer feedback, would greatly
improve plant wake representation.

Neglecting losses in upstream turbines and only considering
the change in performance for the subset of turbines with EWL
under typical conditions allows the optimizer to identify beneficial
yaw and thrust settings for downstream plants. However, these set-
tings are detrimental to regional power output, as they explicitly
ignore power losses in upstream plants. For the majority of inflow
wind directions, the number of turbines required to reduce EWL at
a downstream plant disproportionately impacts any upstream
neighbors. When optimizing axial induction for the subset of tur-
bines with EWL, the optimal result was to deactivate any upstream
turbines by setting their thrust coefficient to 0 (Fig. 6). This out-
come suggests axial induction control is ill-suited to addressing
power losses between neighboring plants.

C. LCOE optimization

LCOE optimizations were performed in the same manner as
power optimizations, with the addition of two models for turbine
O&M costs based on L10 bearing lifetime and rotor-averaged thrust
force FT . As before, it is important to note the goal of these optimiza-
tions is to mitigate the additional costs incurred from EWL, as opposed

to minimizing LCOE within plants. Despite including turbine O&M
costs in the optimizations, neither strategy lowers EWL-driven LCOE.

Including upstream plants in the cost function leads to no change
in turbine operation as power losses from implementing yaw or induc-
tion control in the upstream plants outweigh the benefits to their
downstream neighbors. Omitting the LCOE of upstream turbines
allows the optimizer to yaw or shut down turbines as needed to miti-
gate EWL-based LCOE. Again, these solutions are detrimental to
regional performance, as the increased LCOE due to power losses in
upstream plants exceeds the cost savings of their downstream neigh-
bors. Although the turbine O&M models provide the optimizer with
an additional degree of freedom, LCOE is more sensitive to changes in
capacity factor than operating costs.

The cost function ratio is introduced to quantify the impact of
controls strategy and O&M model on the proportion of turbines
selected for control. This ratio is defined as the number of turbines
selected for control by a given function relative to the total number of
turbines selected for control at the AWAKEN site. Of the two control
strategies, wake steering affects fewer turbines and is selected less often
than axial induction (Fig. 7). With wake steering, a similar number of
turbines are yawed across cost functions and turbine O&M models. In
comparison, large portions of the AWAKEN site are selected for
induction control, as this strategy allows the optimizer to disable any
upstream turbines to reduce EWL, as discussed previously (Fig. 6). In
particular, the L10 bearing lifetime O&M model leads to unrealistic
behavior where all of the turbines are selected for induction control.
For example, when 5% of the turbines are controlled, 15% of the time
it is to improve power with yaw, 35% to improve LCOE with yaw
using the FT model, 15% to improve LCOE with yaw using the L10
model, 25% to improve power with induction control, and the remain-
ing 10% to improve LCOE with induction control using the FT model.
When the optimizer chooses to control 95% of the turbines, none are

FIG. 6. Optimal turbine yaw (left column) and thrust coefficient weight (right column) for an inflow of 7 m/s from 200� at 5% ambient turbulence intensity. Control adjustment
denotes the degree of yaw between 0� and 25� or thrust coefficient reduction from 0% to 100%. For induction control, 0% is typical operation and 100% is complete shutdown.
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yawed, approximately 5% of the time turbines are induction controlled
to improve LCOE with the FT model, and 95% are to improve LCOE
with induction control using the L10 model. Because operating costs
due to bearing wear increase with velocity in the L10 model, this for-
mulation has the unintended consequence of incentivizing thrust con-
trol regardless of EWL.

Optimization surfaces show how LCOE varies relative to rated
operation across O&M costs and capacity factor combinations (Fig. 8).
LCOE optimizations are driven by turbine power output, with O&M
models providing an incentive to lower operating costs above rated
power. Optimizations are constrained by capacity factor, since LCOE
behaves like 1=x below rated power (Fig. 8, bottom). Above rated
power, the O&M models are limited by only representing a single
component of turbine wear. Because both models are primarily func-
tions of hub-height velocity, they are in competition with power output
during the optimization process. Under the L10 function, optimal
LCOE is found by improving bearing lifetime at or above rated power
(Fig. 8, left column). Since bearing wear increases with velocity, this
model disincentivizes yawing upstream turbines or reducing their
thrust to mitigate wake losses. Paradoxically, operating in the wake of
an upstream plant is the optimal strategy when only considering bear-
ing wear. Under the FT function, optimal LCOE is achieved by reduc-
ing thrust force on the rotor while preserving power output (Fig. 8,
right column). Because peak thrust occurs near rated wind speed,
increasing velocity by controlling upstream turbines improves power
output and lowers operating costs. The optimal solution to improve
LCOE is to achieve rated power without experiencing wear from oper-
ation, which is infeasible with the current O&M models. Because
LCOE behaves like 1=x below rated power, any control action that
reduces capacity factor leads to a sharp increase in LCOE. Since tur-
bine power scales with U3, operating costs would have to decrease
faster than U3 or else decline with increasing wind speed above rated
power. Replacing the L10 or FT O&M models with a descriptive func-
tion for each turbine type based on local maintenance records would
enable new avenues for optimizing operating costs above rated power.
Furthermore, the economic values used in this study are regional or

national averages. Incorporating operator-specific CapEx and lifetime
OpEx into the optimization would allow the optimizer to better tailor
turbine operation to individual plants.

IV. CONCLUSIONS

EWLs were presented for neighboring plants within the
AWAKEN project. Results were obtained from FLORIS simulations
for each of the five plants in the study area. Simulations were per-
formed based on measured atmospheric conditions using the GCH
and TurbOPark wake models with turbine models created in
WISDEM/WEIS. Multiplant wake interactions are shaped by plant
power density, distance between neighboring plants, and regional
atmospheric conditions. Because wind plants are designed around
expected inflow conditions, wake losses are unevenly distributed
among plants. Plants located along the most common wind direction
experience a disproportionate amount of external wake losses.

Wake steering and axial induction were evaluated in FLORIS as
control strategies for plant operators to mitigate external wake losses.
Two optimization cost functions were considered, one based on EWL
and the other on EWL-driven LCOE costs. LCOE optimizations also
included two models for turbine O&M costs. Neither strategy was able
to reduce EWL or improve LCOE when balancing the losses between
upstream plants with the benefits of their downstream neighbors.
Neglecting the losses from upstream plants revealed wake steering and
axial induction can reduce plant wakes, although these strategies were
ill-suited for improving regional performance. Improving bearing life-
time and reducing turbine loads are viable avenues for improving
LCOE, although the precise benefit for a given plant depends on
detailed economic information which is not readily accessible.

As implemented in contemporary engineering wake models, con-
trol strategies are limited to scenarios where individual turbine wakes
are the dominant flow feature. Yaw-based wake steering is feasible
when plant spacing is sufficiently dense to where all wakes may be
treated as internal wake or when atmospheric conditions allow single
wakes to persist far downstream. However, wake steering is limited by
plant geometry since plant wakes can span several kilometers, while

FIG. 7. Percentage of turbines in the AWAKEN site selected for either wake steering or axial induction control by cost function and turbine O&M model. Cost function ratio is
computed for each bin as the proportion of turbines chosen for control by a given function.
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typical wake displacement from yaw is on the order of rotor diameter.
Axial induction control is a poor candidate for mitigating plant wake
losses as it requires curtailing an unreasonable portion of upstream
plants. High-fidelity simulations that include plant-scale flow features
and SCADA from operating wind plants are needed to confirm if the
findings reported here are a consequence of controls implementation
in current engineering wake models or the control strategies
themselves.

Nonetheless, addressing losses from neighboring plants is
likely to become a significant driver of plant design and operating
strategy as installed wind plant density increases. New approaches
are needed to consider plant interactions at the regional scale that
balance physical fidelity with computational feasibility. The devel-
opment of plant-level engineering wake models that include rele-
vant physics, such as blockage, local speedup, aggregate wake
merging, and plant boundary layer formation, may allow future
efforts to identify opportunities to optimize plant performance.
We anticipate the ideas and approach developed here will help
direct future efforts to focus on improving the relationship
between turbine operation and costs; modeling aggregate wind
plant wakes; and designing optimal wind plants.
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