A Review of Integrated Propulsion, Suspension and Guidance Passive Guideway Maglev Technologies

Jonathan Bird
Portland State University, bird@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details
Abstract—This paper provides a review of integrated propulsion, suspension and guidance maglev technology that use fully passive guideway structures.

Keywords—levitation, propulsion, linear motor, maglev

I. INTRODUCTION

Maglev vehicles utilize magnetic fields in order to create suspension, propulsion and guidance forces without physical contact and thus speeds well in excess of 500 km/h are possible. Maglev can offer trip times that are competitive with air travel for only a fraction of the energy consumed by an aircraft [1]. The lack of frictional forces between the vehicle and the guideway, and maglev’s low energy consumption compared to aircraft means that the operational costs, once the transportation system has been developed, should be low [2]. Furthermore, whereas aircraft rely solely on petroleum and consequently create a large amount of air pollutants, such as CO₂, NOₓ, SO₂O, H₂SO₄ and soot [3] maglev’s electric power can be derived from many renewable energy sources.

Recently there has been renewed interest in maglev vehicle technology because of the SpaceX Hyperloop proposal to use high-speed vehicles within partially evacuated tubes or tunnels [4]. By reducing air resistance, vehicle speeds up to 1,200 km/h could be achievable [5-7]. Such speeds cannot be achieved using high-speed rail. Also, unlike high-speed rail, maglev vehicles have the ability to accelerate rapidly, climb steep grades, negotiate tight turns and operate in extremely adverse weather conditions [2]. Maglev vehicles enable lighter weight and smaller vehicles to be utilized and their inherently quiet operation eliminates the need for costly noise abatement in urban environments.

Despite maglev’s attractive characteristics U.S. firms and Transit authorities have been reluctant to invest in this technology. Overseas high-speed rail has been extensively used rather than maglev. The reason for this is undoubtedly, in part, due to maglev’s extremely high initial capital cost [8]. The author believes that there are three main causes for maglev’s high cost: (1) a specialized elevated guideway needs to be constructed in order to house the vehicle suspension technology. (2) A linear synchronous motor for propulsion is invariably used, this turns the entire guideway into a motor. (3) A highly elaborate mechanical guideway directional switching mechanism is needed to change lanes. This is because maglev vehicles, unlike traditional rail, typically wrap around the guideway. Unless further transformational research is conducted to demonstrate that a radically lower cost maglev technology can be developed it is unlikely maglev will be taken up by future urban and intercity planners.

One potential method of significantly reducing guideway costs would be to integrate the propulsion, suspension and guidance forces into one motor and generate all the necessary forces using only one guideway surface. The design and control of such a motor is undoubtedly significantly more complex because all force requirements must be simultaneously met using one motor. Nevertheless, using such an approach appears to be the only foreseeable way that the guideway cost can become comparable to high-speed rail and interstate highway costs since rail and automobiles rely only one surface element.

Proponents often claim that the disadvantage of using a passive guideway is that a power source or power generator must be on the vehicle and/or a high-speed power transfer technique must be utilized. However, the rapid improvements in power electronic technology in recent decades has made inductive power transfer techniques a much more tenable solution [9-14]. Also a traditional high-speed rail pantograph system could be used at lower speeds especially if the maglev guideway can be integrated into existing rail networks.

Integrated passive guideway designs were extensively studied in the 1970’s and early 80’s [7, 15-46]. In this paper these less well-known technologies are reviewed, and an attempt is made to compare and critique the different techniques. An in-depth review of all maglev technologies can be found in [47]. This review is focused on past high-speed maglev vehicle designs.

I. LINEAR INDUCTION MOTOR USING SEPARATE ELECTROMAGNETIC SUSPENSION AND GUIDANCE

The linear induction motor (LIM) is similar in many respects to its rotary counterpart. However, unlike the rotary induction motor, the secondary of the LIM is much shorter than the primary and this introduces new detrimental electromagnetic effects. The single-sided linear induction motor (SLIM), and double sided linear induction motor (DSLIM) typologies are shown in Fig. 1.

The DSLIM iron or alloy secondary must be positioned vertically on the guideway with the short primary placed on the vehicle. Whilst the SLIM primary is positioned horizontally on the ground and usually has a thin copper or aluminum sheet on top of the back-iron to provide a low resistance current path. For a given weight, the DSLIM develops greater
thrust than a SLIM [49], and unlike the SLIM the large attractive force between the primary and secondary members is cancelled out [49]. The German Transrapid 04 [40, 50, 51], shown in Fig. 2 used the DSLIM. The DSLIM has somewhat better electrical characteristics but the design of the guideway and track switching using a SLIM is far simpler.

The SLIM can be designed to have either an axial or a transverse flux path, as illustrated in Fig 2. The transverse flux SLIM can be superior to the axial SLIM if the stack length is small compared with the pole-pitch because the transverse SLIM has a shorter magnetic path and this results in a lighter design with less back iron [52, 53]. However, when using a variable frequency supply the pole pitch can be made smaller than the stack length and therefore the use of a transverse flux SLIM for high-speed operation no longer has a significant advantage [45, 54].

The LIM air-gap flux is inductively created and therefore with an increased air-gap, the power factor becomes inevitably low [45]. Also, because the primary is short relative to the secondary, it is always coming into contact with new un-magnetized guideway regions resulting in a reduction in thrust force at high translational speeds. This effect gets increasingly worse when the relative translational speed exceeds the speed with which the electromagnetic field diffuses through the conductor of the secondary [54, 55].

For a given design speed, the end-effect can be reduced by using a higher frequency and a greater number of pole-pairs [54, 57, 58]. However, the number of poles that can fit onto the primary for a given design length, L, is limited by tooth saturation, and more importantly by the air-gap leakage [59]. For pole pitches much less than 200mm the air-gap leakage increases significantly. Nonaka recommended a pole-pitch no less than 300mm regardless of the design speed [59]. Therefore, the frequency to pole number ratio can only be increased so far before the primary length, L, of the LIM must be increased in order to operate at a good efficiency. This means that for high-speed applications, the LIM primary must be very long and unwieldy.

Problems with the end effect and low power factor have limited the use of the LIM to low-speed applications. Currently the Japanese HSST and Korean UTM use the LIM with electromagnetic suspension [60, 61].

Although electromagnetic suspension is highly efficient for low speed operation at high speed the iron guideway must be laminated in order to mitigate the induced eddy currents and drag forces. The use of laminated steel on the guideway will greatly add to the maglev guideway cost [62].

II. SINGLE SIDED LINEAR INDUCTION MOTOR USING IRON ATTRACTION

The SLIM creates a large attractive force between the primary and secondary. Therefore, this attractive force can be used to provide a vehicle with the magnetic suspension force [15-18]. Such a maglev vehicle was developed and showcased in 1972 by the Romag Corporation [15, 18, 19]. Fig. 3. shows that both an overhead and a ground vehicle configuration were developed. However, at higher speeds large induced currents in the track created by the SLIM result in the attractive force becoming significantly diminished, and at high enough speeds the normal force becomes a large repulsive force [63-65]. Therefore, this integrated method is not effective, or safe, for very high speed applications. Furthermore, since AC electromagnetic attraction produces only half the average suspension force per unit area compared to a DC electromagnet attraction [44] using a purely alternating current will result in poor suspension performance. In order to improve the suspension performance using this technique a DC current bias can be used to improve the attractive force, such a technique has been used more recently for low speed steel plate transportation [66-68].

III. IRON CORED LINEAR SYNCHRONOUS MOTOR

The linear reluctance motor inherently creates a large attractive magnetic force; it was proposed by Ross that this attractive force could be used to create an integrated maglev motor [15-18], where the reluctance forces created by salient track poles could be used for propulsion while the iron’s attraction could be used for suspension. However, the disadvantage of such a motor is that all the air-gap flux is provided by the AC magnetizing current flowing in the three-phase primary windings and this creates a low power factor. In order to improve on this design Levi proposed that a DC excitation on the primary be used to provide the magnetic suspension force and magnetization field, while an AC winding is used to synchronously interact with the salient pole guideway structure to create a propulsive force. This type of integrated maglev motor has been termed Iron Cored Linear Synchronous Motor (ICLSM) [21, 22]. A variety of different salient track structures have been proposed for the ICLSM, three such types, the homopolar, heteropolar, zig-zag ICLSM [20, 42, 45, 69] designs are illustrated in Fig. 4 – 6. It has also been suggested
that magnets could provide the fixed field MMF excitation [23, 24].

IV. THE ELECTROMAGNETIC RIVER

Eastham and Laithwaite proposed that if the SLIM was used without any track back-iron then the induced currents in the conductive, non-magnetic, track could create a large repulsive force between the primary and the conductive secondary, and this could allow the SLIM to create both the suspension and thrust forces simultaneously [32, 33]. An illustration of a prototype model vehicle using this method, which Laithwaite imaginatively termed an Electromagnetic River (ER), is shown in Fig 8. The primary is on the ground and the model vehicle has an aluminum secondary on its underside. Such a method of eddy current repulsion goes back to the first proposed maglev system by Bachelet in 1912 in which guideway solenoids were used to suspend a conductive ‘vehicle’ [40, 75]. Unfortunately, the suspension of a vehicle using the LIM’s inductive repulsive forces, with a reasonable air-gap, requires a very large amount of reactive power. Therefore the ER motor must operate with an extremely low power factor [34-36, 76] In order to create a sufficient suspension-to-weight ratio water cooling of the windings would be essential [36] and, the primary would need to be very long (at least 8m) in order to accommodate enough poles to counteract the end-effects and provide sufficient thrust force at high speeds [59].

It has also been proposed that superconducting winding could be used in order to improve the suspension/weight ratio at a large air-gap [39, 77]. However, superconductors have losses when transmitting alternating current and these losses increase with the operating frequency and field density. At the high operating frequencies required by the ER the AC losses will become excessively large [78]. Also, the use of an even larger air-gap, will result in an even greater leakage flux, and make for an especially abysmal power factor [39].

The ER concept has never developed past the construction of small-scale models, where the track is active and the vehicle has a passive aluminum underside.

V. MECHANICAL ROTATION OF MAGNETS

Rather than creating a traveling magnetic field using windings, it is also possible to create the traveling field by rotating magnets or superconducting magnets. The rotation of the magnets over a conductive non-magnetic surface, such as aluminum, will induce currents in the aluminum that can then create suspension and thrust forces like with the ER concept. However, as the air-gap field is provided by the magnet sources there will be no associated low power factor seen by the motor. Therefore, unlike with the LIM and ER increasing the air-gap will not require more reactive power. However, the rotation of the magnetic sources will introduce new mechanical losses and a motor will be required to rotate the magnets. With the use of rare-earth magnets or superconductors
the combined system maybe designed to be relatively light weight. [38, 80-82]

This concept was first proposed by Davis and Borcherts [37]. They proposed rotating superconductors because using superconductors in a LIM configuration would create large AC losses [37, 38]. A radial and a helical superconducting magnet configuration were proposed [37, 38, 41, 65], as shown in Fig. 9 and Fig. 10.

As with the LIM the propulsion forces are dependent on the relative velocity of the rotor compared to the translational velocity and therefore a slip is always present [83]. Large braking forces result when the peripheral speed of the rotor is rotated slower than the vehicles traveling speed.

Although low or high-temperature superconductors may be used a significantly lower cost solution is achieved by using rare-earth Nd-Fe-B magnets [81]. Fujii and Ogawa first considered rotating axially placed rare-earth magnets [80, 84-87]. Two proposed methods for creating thrust and suspension force simultaneously using a tilt and an overlap type magnet wheel is shown in Fig. 11 and Fig. 12. The overlap type has better magnetic coupling to the guideway than the tilt type, but in order to create a large thrust a large portion of the rotor has to be rotated over air [85]. Greater guidance can be achieved by using an inclined guideway as shown in Fig. 13 [85]. However, such a guideway will make vehicle directional switching complex and the guidance force is at the permanent expense of a reduced suspension force. Only results for standstill operations of these two topologies have been published.

A Nd-Fe-B Halbach rotor configuration was considered by Bird as shown in Fig. 14 [47, 81, 88, 89]. Using the illustrated split-sheet topology creates some re-centering lateral forces [47]. However, the re-centering forces do not scale well and result in a significant reduction in the lift and thrust. Although the magnetic coupling between the guideway and magnetic rotor is poor this electrodynamic wheel topology has the potential to enable a completely flat guideway structure to be utilized, such a topology could therefore potentially be as low cost as high-speed rail.

VI. CONCLUSION

A review of less studied passive integrated suspension, propulsion and guidance technologies has been presented. A discussion of the advantages and disadvantages of each technology was highlighted. The ICLSM and the use of mechanical rotational magnets, such as the electrodynamic wheel appear to offer the best means of attaining similar cost-performance to the prevailing high-speed linear synchronous motor designs with separate electromagnetic or electrodynamic suspension. The use of a radial magnet electrodynamic wheel topology offers the tantalizing possibility of reducing the guideway costs to a similar level as incurred by high-speed rail. However, significant control challenges must be overcome before this technology can be implemented in a full-size vehicle.

ACKNOWLEDGMENT

This material is based upon work supported by the National Science Foundation under grant number 1810489.