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Abstract 11 

Hydrological droughts have considerable negative impacts on water quantity and quality, and 12 

understanding their regional characteristics is of crucial importance. This study presents a mult i-13 

stage framework to detect and characterize hydrological droughts considering both streamflow and 14 

water quality changes. Hydrological droughts are categorized into three stages of growth, 15 

persistence, retreat, and water quality variables (i.e., water temperature, dissolved oxygen 16 

concentration, and turbidity) are utilized to further investigate drought recovery. The framework 17 

is applied to 400 streamflow gauges across the Contiguous United States (CONUS) over the study 18 

period of 1950-2016. The method is illustrated for the 2012 US drought, which affected most of 19 

the nation. Results reveal the duration, frequency, and severity of historical droughts in various 20 

regions as well as their spatial consistencies and heterogeneities. Furthermore, duration of each 21 

stage of drought (i.e., growth, persistence, and retreat) is also assessed and the spatial patterns are 22 

diagnosed across the CONUS. Considering the water quality variables, increased water 23 

temperature (4oC on average) and reduced dissolved oxygen concentration (2.5 mg/L on average) 24 

were observed during drought episodes, both of which impose severe consequences on ecology of 25 

natural habitats. On the contrary, turbidity was found to decrease during droughts, and indicate a 26 

sudden increase when drought terminates, due to increase in runoff. Varied drought recovery 27 

durations are perceived for different water quality variables, and in general, it takes about two 28 

more months for water quality variables to recover from a drought, following the hydrologica l 29 

drought termination.  30 

 31 

Keywords: Drought, Drought recovery, Turbidity, Dissolved oxygen, Water temperature, 32 

CONUS.  33 
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1 Introduction 34 

Drought is among the most devastating natural disasters, which imposes severe impacts on various 35 

environmental and ecological aspects of the affected region (Van Loon and Van Lanen, 2012; 36 

Mishra et al., 2017). Despite its distinction as a climatic extreme event, there is no unanimous 37 

definition for drought because of its different types and distinct origins (Ahmadalipour and 38 

Moradkhani, 2017). Meteorological droughts start when precipitation drops below normal level 39 

and may lead to hydrological imbalances, which disturbs the normal environmental functioning of 40 

a region (Van Loon and Laaha, 2015; Heudorfer and Stahl, 2016). Crausbay, et al. (2017) defined 41 

ecological drought by combining drought impacts from ecologic, climatic, hydrologic, 42 

socioeconomic, and cultural aspects. In ecological drought, water deficit is defined such that it 43 

drives ecosystems beyond their threshold of vulnerability, influencing the ecosystem services and 44 

triggering feedbacks in natural and human systems. 45 

Several studies have discussed that the severity and frequency of droughts have increased in many 46 

parts of the world as a consequence of the changes in rainfall and streamflow patterns, which may 47 

be associated with anthropogenic activities and climate change (Karamouz et al., 2012; 48 

Ahmadalipour et al., 2017a, 2017b). Thus, a systematic framework for detecting drought onset-49 

termination can mitigate drought impacts (Karamouz et al., 2011; 2013; Yan et al., 2017). 50 

Although it is necessary to understand drought recovery mechanism and duration, few studies have 51 

investigated these topics over large spatial domains. (Pan et al., 2013; DeChant and Moradkhani, 52 

2014), while others elaborated on restoring function in plants (Martorell et al., 2014; Secchi et al., 53 

2014). Schwalm et al. (2017) stated that recovery time is the duration that “an ecosystem requires 54 

to revert to its pre-drought condition”. Ecological drought recovery was presumed to coincide with 55 

hydrological drought termination (Anderegg et al., 2015). In riverine ecosystems, water quality is 56 
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an important ecological factor, which has been neglected in the majority of drought recovery 57 

assessments. Understanding drought recovery duration is essential; if a region experiences a new 58 

drought episode before complete recovery from an antecedent drought event, the ecosystem would 59 

experience more severe ecological impacts (Sawada and Koike, 2016). Categorizing a drought 60 

episode into different stages can shed light on drought propagation and provide a better 61 

understanding of drought recovery. There have been few attempts to utilize variable 62 

spatiotemporal thresholds for categorizing droughts into different stages (Bonsal et al., 2011; Parry 63 

et al., 2016a, 2016b). Most of the assessments merely focused on water availability (quantity), 64 

while the recovery of water quality has not been investigated. More specifically, the possible lag 65 

time between drought recovery in terms of water quantity and quality has not been studied. 66 

The fresh water quality is correlated to streamflow, biogeochemical, and anthropogenic influences. 67 

Several studies explored water quality variations during hydrological drought episodes at different 68 

spatial scales (Van Vliet and Zwolsman, 2008; Hrdinka et al., 2012; Hellwig et al., 2017). Mosley 69 

(2015) outlined three driving forces for water quality changes during a drought episode, explicit ly, 70 

1) hydrological drivers, dilution, and mass balance, 2) the role of increased temperature, and 3) 71 

increased residence times. Many studies concluded on increasing water temperature during 72 

hydrological drought episodes (Sprague, 2005; Baures et al., 2013; Hanslík, et al., 2016). Higher 73 

water temperature intensifies biological activity, leading to a higher rate of nutrient uptake and 74 

more oxygen release. Drought or low flow condition cause higher water temperature and less 75 

nutrient inflow to water bodies (Hellwig et al., 2017; Mosley 2015). This leads to favorable 76 

changes in physical and hydrological conditions for biological growth increasing the likelihood of 77 

eutrophication. Recently, Sinha et al. (2017) showed that the precipitation changes induced by 78 

climate change will substantially increase the riverine total nitrogen loading across the U.S., which 79 
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will exacerbate eutrophication, especially over the northeastern parts. The solubility of gasses, 80 

such as oxygen, depends on water temperature and theoretically, higher temperature causes less 81 

solubility of oxygen. Previous studies showed that in most cases when water temperature increases, 82 

dissolved oxygen decreases, indicating solubility is the dominant process for the concentration of 83 

dissolved oxygen (Mulholland et al., 1997; Mimikou et al., 2000; Murdoch et al., 2000). 84 

Additionally, decreased streamflow during hydrological drought episodes causes lower velocit ies 85 

and longer residence times (Mosley, 2015). Therefore, sedimentation and higher interaction of 86 

groundwater and surface water lead to lower turbidity during drought episodes (Hrdinka et al., 87 

2012; Mosley et al., 2012). Most of the above-mentioned analyses have been carried out at regional 88 

scales, and there have been just few attempts for investigating water quality changes during 89 

drought episodes over the CONUS. 90 

There are two primary groups of drought identification methods, both of which require long time 91 

series of hydro-meteorological data. The first method is the probabilistic-based approach, which 92 

provides drought intensity according to the deviation from normal condition. Most of the 93 

standardized drought indices follow this approach, which have been employed in numerous studies 94 

(McKee et al., 1993; Vicente-Serrano et al., 2010; Irannezhad et al., 2017). The second drought 95 

identification method is the threshold-based approach: drought onset happens when the variable 96 

of interest falls below a predefined threshold (KO and Tarhule, 1994; Shiau and Shen, 2001; Wong 97 

et al., 2013). Moreover, there are two threshold level families: the constant (i.e., a constant 98 

percentile of annual long-term cumulative frequency distribution) and the variable threshold level. 99 

The variable threshold method is more appropriate when seasonal patterns should be taken into 100 

account, and is broadly used in recent studies (Sung and Chung, 2014; Van Loon and Laaha, 2015; 101 

Heudorfer and Stahl, 2016). Since the environmental functions are related to seasonal cycles, 102 
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droughts are considered as deviations from seasonal cycles and the variable threshold method is 103 

implemented in this study. Thus, eutrophication will increase not only due to changes in nutrient 104 

concentration, but also due to hydrological and physical conditions becoming more suitable. 105 

This paper integrates hydrological drought concepts and its environmental impacts,  and represents 106 

a multi-stage framework to detect and characterize hydrological droughts considering water 107 

quality parameters. The overarching objectives of this study are to fill the following gaps, which 108 

have not been adequately addressed in previous assessments:  109 

1) Developing a framework for hydrological drought detection, and categorizing drought 110 

episodes into different stages of growth, persistence, and retreat. 111 

2) Investigating water quality variations during hydrological drought episodes. 112 

3) Analyzing drought recovery considering both water quality and quantity criteria. 113 

4) Assessing spatiotemporal and probabilistic characteristics of hydrological drought 114 

including frequency, severity, and recovery duration. 115 

2 Materials and Method 116 

In hydrological drought studies, drought recovery is defined as the time when the hydrologica l 117 

variable of interest reverts to its normal condition (Mo, 2011; Pan et al. 2013; DeChant and 118 

Moradkhani, 2014). The ecological perspectives reveals that a complete drought recovery may 119 

require longer time, and it is essential to consider more criteria in addition to water quantity for 120 

drought recovery. In this study, drought recovery is defined as a phase starting within the drought 121 

episode and extending beyond drought termination until the riverine ecosystem reverts to its pre-122 

drought condition. To capture drought recovery duration, drought episodes should be identified. 123 
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Figure 1 presents the methodology, which consists of three main steps explained in the following 124 

sections.  125 

 126 

Fig. 1. The framework for analysis of drought recovery given water quantity and quality 127 

parameters. 128 

2.1 Hydrological drought threshold determination 129 

The characteristics of a region, data availability, and the study objectives are the factors, which 130 

affect the threshold calculation method. Daily quantile based on the long time series is 131 

considered as the optimum value for streamflow threshold because it is capable of capturing 132 

the low flow regime of a basin (Heudorfer and Stahl, 2016). To calculate daily streamflow 133 

threshold level, daily quantiles are computed for the streamflow duration curve over the entire 134 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought
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observation period (1950-2016). Kjeldsen et al. (2000) suggested the range of 70th-95th 135 

percentile as the threshold level. In this study, the 80th percentile (Fleig et al., 2006; Heudorfer 136 

and Stahl, 2016) is considered as the threshold level and the time series of the 365 threshold 137 

levels are generated. In other words, a set of 365 80th percentile values are calculated from the 138 

available observed data for each station. This threshold level is applied for all the stations to 139 

maintain the comparability of characteristics of detected droughts over the study area. 140 

Applying the 80th percentile threshold may result in many short periods of streamflow deficit, 141 

which are not necessarily separate drought episodes. Therefore, a centered moving average of 142 

30 days is applied to smooth the jagged threshold curve (Heudorfer and Stahl, 2016).  143 

2.2 Identifying drought stages 144 

Comparing the daily observed flow with the threshold to detect hydrological droughts may 145 

cause a sequence of short drought episodes, which are not separated (Tallaksen et al., 1997; 146 

Van Loon and Laaha, 2015). Many studies eliminated any drought event shorter than 15 days 147 

(Hisdal et al., 2004; Fleig et al., 2006). Additionally they applied a pooling method with the 148 

inter-event period of 10 days to integrate separate events (Tallaksen et al., 1997; Fleig et al., 149 

2006), which was found to be not effective, and failed in detecting multi-seasonal drought 150 

events. Therefore, a method is developed here to unify these discrete events by categorizing a 151 

hydrological drought episode into three stages of growth, persistence, and retreat (combining 152 

the methods utilized by Bonsal et al., 2011 and Parry et al., 2016a). The drought persistence 153 

period is the main criterion for hydrological drought assessment. Having identified drought 154 

persistence, drought growth and retreat can then be investigated. The following steps explain 155 

each hydrological drought stage (see supplementary Figure S1): 156 
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 Persistence: the period that streamflow remains below the normal threshold level for 157 

at least 30 consecutive days. If there are more than one period fulfilling this condition 158 

during a drought episode, the longest period is considered as the drought persistence 159 

stage. 160 

 Growth: moving backwards from the beginning of drought persistence, drought onset 161 

is the point when streamflow falls below the threshold level for less than 15 days in a 162 

T-day window (explained in the drought recovery section). Drought growth stage starts 163 

from drought onset until the beginning of drought persistence. 164 

 Retreat: moving forward from the end of drought persistence stage, drought 165 

termination is the time when streamflow falls below the threshold level for less than 166 

15 days in a T-day window (explained in the drought recovery section). Drought retreat 167 

stage starts following the end of drought persistence until drought termination. 168 

2.3 Drought recovery 169 

In this study, drought recovery starts from the beginning of the retreat stage and continues until 170 

T-day after drought termination. The T-day after drought termination (when streamflow has 171 

reverted to its pre-drought condition) is added to drought retreat for drought recovery, because 172 

the basin needs more time to meet normal water quality condition. The T–day period is defined 173 

as the required time for all water quality parameters to recover (to revert to their normal 174 

conditions). Thus, a river is assumed to recover from a drought when the streamflow and water 175 

quality parameters return to their normal (i.e., pre-drought) condition. Water quality is assumed 176 

recovered when there is no significant difference between the median of variable of interest 177 

and its threshold (combining methods by Caruso, 2001, 2002; and Van Vliet and Zwolsman, 178 

2008). The Kruskal–Wallis test (Kruskal and Wallis, 1952), as a nonparametric method, is 179 
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employed at 0.05 significance level to investigate such difference. The historical hydrologica l 180 

droughts in each streamflow station were considered, and the T-day period is calculated in 181 

order to comply with the regional characteristics of each basin. Like streamflow threshold, the 182 

normal water quality condition (threshold) is defined as the long-term daily average of each 183 

water quality variable for the study period, which is then smoothed by thirty-day centered 184 

moving average. 185 

2.4 Study Area and Data 186 

The Contiguous United States (CONUS) is selected as the study area because of its widely variable 187 

climate, which leads to the existence of perennial and ephemeral rivers in different regions. There 188 

are eighteen river basins across the CONUS, which are delineated based on the USGS 2-digit 189 

hydrologic unit codes (excluding Alaska, Hawaii, and Caribbean) as shown in Figure 2. 190 

Hydrologic Units (HU) are areas of land from which surface water drains to a particular point. 191 

Among all the streamflow stations across the CONUS, a small fraction of them monitor water 192 

quality parameters. We considered all the stations operated by USGS over the CONUS and 193 

selected the ones that meet our criteria. The criteria for selecting stations are as follows:  194 

1- Streamflow data availability for at least 30 consecutive years during the study period 195 

(1950-2016);  196 

2- Recording at least one water quality parameter with 5 consecutive years of observed data 197 

and total duration of 10 years; and 198 

3- Being least affected by anthropogenic influences (i.e., dams, abstraction and return flows) 199 
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 200 

Fig. 2. Study area, river basin boundaries, and location of the selected streamflow/water 201 

quality stations. All the stations record streamflow observations, and the water quality 202 

variables are specified using three colors. (For interpretation of the references to color in 203 

this figure legend, the reader is referred to the Web version of this article.) 204 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/streamflow


12 
 

Assessing all stations for the above criteria, we included all the active stations with over 30 years 205 

of streamflow observation that collects at least one of the water quality parameters. Therefore, 400 206 

USGS (the US Geological Survey) stations were selected considering the study period (1950-207 

2016), recording at least one water quality parameter, and being least affected by anthropogenic 208 

influences (such as dams, abstractions, and return flows from irrigation systems and power plants). 209 

Water temperature, dissolved oxygen, and turbidity are assessed as vital water quality parameters 210 

(SWAMP, 2010), and rest of the water quality parameters are neglected due to their short record 211 

or poor spatial coverage. Missing data for streamflow and water quality parameters are estimated 212 

by the USGS therefore significant gaps of observed data are filled. Figure 2 shows the location of 213 

the 400 selected stations, all of which measure water temperature; whereas some stations do not 214 

record either dissolved oxygen or water turbidity. 215 

3 Results 216 

3.1 Verification of the hydrological drought detection framework: The 2012 US drought 217 

The drought detection method applied in this study is verified for the historic drought event 218 

(Rippey, 2015). An unusually dry winter in 2011-2012 coincided with warm and dry spring and 219 

summer, and  affected most parts of the CONUS. It led to catastrophic drought impacts over the 220 

affected states and caused $40 billion damage, mostly due to agricultural losses (Rippey, 2015). 221 

Nearly two-thirds of the nation dealt with drought on September 2012 according to the US Drought 222 

Monitor (USDM). The USDM (Svoboda et al., 2012), detected a severe to extreme drought 223 

episode affecting all over the CONUS with higher persistence duration in south and Midwest. The 224 

results of our analysis also detect a hydrological drought event in 38 states, with a duration of 11 225 

months on average (ranging from 4 to 15 months). The onset, termination, and duration of the 226 

2012 US drought are shown in Figure 3 for each of the affected states. Figure 3 shows that in 227 
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Midwestern and Southeastern states, the 2012 drought tended to persist longer and drought 228 

recovery took more time for these regions, while drought recovery in the Pacific Northwest took 229 

shorter time.  230 

 231 

Fig. 3. Chronology of drought stages for the 2012 drought over the affected US states. 232 

In this study, drought growth is defined as the period that the hydrological variable (e.g. 233 

streamflow) falls below threshold for at least 15 days in 60 days. Drought persistence is the period 234 

that streamflow remains below the threshold for over 30 consecutive days. In other words, drought 235 

growth focuses on capturing the onset of a drought and its initial stages, whereas drought 236 

persistence is the period that drought intensifies and lasts until ameliorat ion and then proceeds to 237 

the recovery stage. Therefore, the persistence period of drought is generally longer than the growth 238 

stage. For example, in the 2012 US drought, prolonged period of high air temperature in late spring 239 

resulted in soaring atmospheric evaporative demand in central US that quickly translated to severe 240 

and extreme drought conditions, drying the soil moisture and substantially reducing the 241 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought
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streamflow, especially in central US (Hobbins et al., 2016; Otkin et al., 2017). Therefore, for the 242 

2012 drought the growth stage was very short, making its detection very challenging and 243 

subsequently causing considerable impacts (McEvoy et al., 2016; Yan et al., 2017). 244 

A thorough examination of water quality changes over this drought episode is executed. Water 245 

temperature shows the maximum deviation from threshold occurred in the river basins that are 246 

located in lower latitude (see Figure S2). Additionally, Figure 3 reveals that in the sates that are 247 

located in lower latitudes, drought persistence tends to be longer. Dissolved oxygen shows the 248 

same pattern where California, Arizona, Texas and South Carolina experienced the most deviation 249 

from the normal condition with relatively longer persistence. On the other hand, turbidity tends to 250 

deviate most for this drought episode in mountainous areas that are located in dry climate. 251 

Southeast US and generally the areas located on east coast show the least deviation of turbidity 252 

compared to other regions.  253 

3.2 Spatial analysis of drought stages 254 

Figure 4 (top) shows the number of hydrological drought episodes over the CONUS during the 255 

study period (1950-2016). It is worth mentioning that, in order to keep the maps easier to follow, 256 

all the presented results are interpolated using inverse distance weighted interpolation method. The 257 

figure reveals that generally, the Pacific Northwest, Mid-Atlantic, and Great lakes basins 258 

experienced droughts more frequently than other basins. The Upper Colorado and Ohio River 259 

basins also experienced relatively frequent drought episodes. In general, Western US indicates a 260 

tendency towards more frequent hydrological drought events. Another drought characterist ic 261 

investigated in the figure is drought duration. Figure 4 (bottom) shows the average duration of 262 

drought over the CONUS. Texas, South Atlantic and Missouri show longer drought duration 263 
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compared to other regions. Comparing drought frequency and drought duration, the regions with 264 

more frequent droughts tend to have shorter drought episodes. 265 

 266 

Fig. 4. Spatial distribution of number of drought (top) and average drought duration in days 267 

(bottom) during the historical period of 1950–2016. 268 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought
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Besides the total duration of drought (shown in Figure 4), the duration of each stage of drought is 269 

also assessed. Figure 5 illustrates the duration of drought growth, persistence, and recovery across 270 

the CONUS for the study period. Figure 5a shows the average duration of drought growth (days). 271 

As seen in this figure, the South Atlantic, Texas gulf, and Missouri basins indicate longer drought 272 

growth duration compared to other regions. Generally, prolonged drought growth periods cause 273 

drought identification complex, since the streamflow deviation is not significant and it usually 274 

does not get attention until it reaches the persistence period. Another parameter presented in the 275 

figure is duration of drought persistence (Figure 5b). The figure illustrates that drought, on average, 276 

persists less than 2 months in most of the Eastern US. Whereas in California, Upper Colorado, 277 

Texas, and Souris-Red-Rainy basins, droughts tend to persist more than three months. Lastly, mean 278 

drought recovery duration is presented in Figure 5c. It can be seen that there are regions located in 279 

South Atlantic, mid-Atlantic, Texas, and Arkansas River basins with average drought recovery 280 

duration of 6 months. Whereas, California, Pacific Northwest, Great lakes, and Ohio River basins 281 

tend to recover from drought in less than 4 months. Comparing the average duration of drought 282 

stages (Figure 5a, b, and c) discloses that drought recovery takes longer time than drought growth 283 

and persistence. Moreover, the regions corresponding to longer drought growth require more time 284 

for drought recovery. 285 

 286 
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Fig. 5. Mean duration (in days) of a) drought growth; b) persistence; and c) recovery in the 287 

historical period of 1950–2016. 288 

3.3 Drought impacts on water temperature 289 

Figure 6 shows temporal changes of water temperature, dissolved oxygen, and turbidity during 290 

three hydrological drought episodes affecting three selected stations in South Carolina in 2009, 291 

Kansas in 2014, and Oregon in 2012. These stations are chosen since they represent the mean 292 

pattern of the river basin they are located, and they provide the same length of records for water 293 

quality. A statistical analysis on all stations reveals that a hydrological drought is associated with 294 

an increase in water temperature (see Table 1). Kruskal–Wallis test is applied to detect whether 295 

there is a significant difference (at p-value<0.05) between the median of water temperature during 296 

a drought episode and the water temperature threshold level. Additionally, Figure 6 reveals that 297 

water temperature threshold follows a seasonal pattern and it tends to be higher (/lower) in the 298 

warmer (/colder) seasons. It is worth mentioning that the same pattern is seen all over the study 299 

area. Results of the Kruskal-Wallias test indicated that for most drought episodes (more than 85% 300 

of all stations) there is a significant difference between water temperature during drought episodes 301 

and the normal water temperature threshold. Additionally, the mean, median and the maximum 302 

water temperature in all stations were higher than the mean, median and the maximum water 303 

temperature threshold, respectively. Figure 6 (first column) shows that water temperature during 304 

2-month (/4-month) drought episodes in South Carolina and Oregon (/Kansas) are mostly above 305 

the normal water temperature threshold level (normal condition). The figure illustrates that water 306 

temperature reverts to its normal range 42, 68, and 27 days after drought termination in South 307 

Carolina, Kansas, and Oregon, respectively. On average, among all stations over the CONUS, 308 

water temperature reverts to its pre-drought normal state 52 days after drought termination (the 309 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought
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required time for water temperature to recover from a hydrological drought). The spatial 310 

distribution of the average time required for water temperature to recover from a hydrologica l 311 

drought is presented in Figure 7-a. 312 

 313 

Fig. 6. Drought impacts on water temperature, dissolved oxygen, and turbidity during three 314 

hydrological drought episodes occurred in South Carolina in 2009 (first row), Kansas in 2014 315 

(middle row), and Oregon in 2012 (bottom row). The red bar shows drought duration (onset to 316 

termination) and the green bar indicates the required time for water quality to recover. (For 317 

interpretation of the references to color in this figure legend, the reader is referred to the Web 318 

version of this article.) 319 

Table 1. Minimum, median, and maximum deviation of water temperature, dissolved oxygen, 320 

and water turbidity during drought for each river basin. 321 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/turbidity
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/turbidity
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought
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Temperature (°C) Dissolved Oxygen (mg/L) Turbidity (FNU) 

Min Median Max Min Median Max Min Median Max 

1. Pacific Northwest 1 1.5 2.8 1 1.5 2.3 14 25 50 

2. California 2 2.8 5.8 1.3 1.8 2.8 18 32 55 

3. Great Basin 2 2.5 4.8 1.2 1.6 2.7 36 68 110 

4. Lower Colorado 2.2 3 5.6 1.4 1.7 2.8 40 72 95 

5. Upper Colorado 1.5 2 3.2 1.1 1.5 2.3 35 68 114 

6. Rio Grande 2.2 3.2 5.7 1.4 1.8 2.6 42 61 103 

7. Texas Gulf 2.1 3 5.9 1.3 1.7 3 29 36 68 

8. Arkansas 1.5 1.9 5.5 1 1.4 2.8 33 66 120 

9. Lower Mississippi 2.5 3 4.8 1.3 1.6 2.6 15 29 48 

10. Missouri 1.3 2.8 4.3 1.2 1.5 2.2 44 72 113 

11. Souris-Red-Rainy 1.2 1.9 2.8 1.1 1.4 1.8 16 30 62 

12. Upper Mississippi 1.5 1.9 3 1.2 1.5 2.1 18 28 52 

13. Great Lakes 1.4 2.1 2.7 1 1.4 2.2 17 31 56 

14. Tennessee 2 3 3.3 1.2 1.6 2.5 14 26 50 

15. Ohio 1.2 2.2 3 1.1 1.4 2.3 11 26 46 

16. South Atlantic 2.2 2.9 4.9 1.4 1.9 2.9 10 21 39 

17. Mid-Atlantic 1.5 2.3 3.1 1.2 1.5 2.3 11 20 44 

18. New England 1.2 1.8 2.6 1.1 1.4 2.1 15 31 56 

 322 
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 323 

Fig. 7. Spatial distribution of average time needed for; a) water temperature, b) dissolved 324 

oxygen, and c) turbidity to recover from drought after the hydrological drought termination (i.e. 325 

after the streamflow has reached normal conditions). 326 

This study showed that water temperature increased during hydrological drought episodes, which 327 

is in agreement with many previous assessments (Chessman and Robinson, 1987; Caruso, 2001; 328 

Zielinski, 2009). Our analyses on all studied stations demonstrated that water temperature 329 

considerably increases from the beginning of the persistence stage of drought and it remains above 330 

the normal threshold even after drought termination. If the growth stage lasts for more than 40 331 

days, water temperature may increase even during the growth stage. In most cases, water 332 

temperature reaches its maximum deviation when the maximum departure is happened in 333 

streamflow. The minimum, median, and maximum deviation of water temperature from the normal 334 

threshold for each river basin are presented in Table 1. The table shows that the basins located in 335 

lower latitudes experienced higher water temperature rise. It is worth mentioning that the 336 

maximum water temperature increase coincided with the most severe drought episode in all river 337 

basins. 338 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/turbidity
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/streamflow


21 
 

3.4 Drought impacts on turbidity 339 

Decreased turbidity is detected during drought episodes using the Kruskal–Wallis test (Figure 6 340 

right column). The test indicated that for most of the stations (90% of them), the median observed 341 

turbidity during drought was significantly lower (p-value <0.05) than the normal turbidity 342 

threshold. There were few stations that the difference between the medians was not significant. 343 

However, for all stations, the mean and median of observed turbidity during drought episodes were 344 

lower than the mean and median of the normal turbidity threshold, respectively (see Table 1). Low 345 

turbidity is generally desired for most water consumption purposes (specifically domestic 346 

demand). On the other hand, since drought terminations mostly coincide with a sudden increase of 347 

flow (i.e. higher runoff causes higher turbidity), the turbidity thrusts up during the drought 348 

termination. This implies that more time is required for the turbidity to recover after hydrologica l 349 

drought termination. Figure 6 (right column) shows that after a 2-month (/4-month) drought 350 

episodes in South Carolina and Oregon (/Kansas), turbidity needs 67 and 24 (/40) days to recover, 351 

respectively. On average, among all stations over the CONUS, turbidity requires 42 days to recover 352 

after hydrological drought termination. Spatial distribution of turbidity recovery time reveals that 353 

it takes less than 60 days for most of the regions to recover from drought (Figure 7c). There are 354 

some scattered areas in Arkansas, Pacific Northwest, southeast Missouri, and great Lakes river 355 

basins with recovery times more than 60 days.  356 

Our analysis detected that turbidity is usually lower than the normal threshold during hydrologica l 357 

droughts, which is in agreement with the findings of several previous studies (Caruso, 2001, 2002; 358 

Golladay and Battle, 2002; Goransson et al., 2013). The improvement of water turbidity can be 359 

attributed to less storm events that causes decreased runoff, which is associated with less erosion 360 

of solid transports to the watercourses during drought. Lower streamflow during the hydrologica l 361 
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drought also causes slower velocity, which increases sedimentation and decreases turbidity. Table 362 

1 showed that for the river basins located in dry climate with mountainous characteristics (e.g. 363 

Lower Colorado and Great basins), the maximum deviation of turbidity is higher than other river 364 

basins. Such higher deviation implies the tendency of these basins to terminate droughts with a 365 

sudden increase in streamflow (Paulson et al., 1985; Mensing et al., 2008; Asadi Zarch et al. 2011). 366 

It has been discussed that turbidity can have various impacts on ecology and natural habitats. High 367 

concentration of particulate matter during drought recovery period decreases light penetration, and 368 

consequently reduces productivity and natural habitat quality. It also increases sedimentat ion, 369 

which makes siltation more likely, and can result in harming the habitat for fish and aquatic life 370 

(Lake, 2011). 371 

3.5 Drought impacts on dissolved oxygen 372 

Dissolved oxygen alteration is investigated in all stations using the Kruskal–Wallis test to examine 373 

if the median of observed dissolved oxygen is significantly different from the threshold. The test 374 

shows that there is a significant difference between the medians of dissolved oxygen during 375 

drought episodes and the normal dissolved oxygen threshold (p-value < 0.05). During drought, the 376 

mean and median of dissolved oxygen in all stations were lower than the mean and median of 377 

dissolved oxygen threshold, respectively (see Table 1). Figure 6 (middle column) illustrates that 378 

after a drought episode with 2 (/4) months duration, dissolved oxygen recovery lasts for 15 and 64 379 

(/47) days in south Carolina and Oregon (/Kansas), respectively. On average, among all stations 380 

over the CONUS, dissolved oxygen requires 51 days to recover after hydrological drought 381 

termination. Dissolved oxygen recovery takes more than 2 months in southeast Missouri, Texas, 382 

and South-Atlantic river basins (see Figure 7b). Moreover, Figure 6 shows that the dissolved 383 

oxygen follows a seasonal pattern and it reaches to the lowest (/highest) level during warmer 384 
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(/colder) seasons. This pattern is seen all over the study area. This diagram shows the reverse 385 

relationship between water temperature and dissolved oxygen and explains the decreases of 386 

dissolved oxygen level during drought episodes due to the increases in temperature.  387 

Our analysis also identified a decline in dissolved oxygen when a hydrological drought takes place, 388 

which is in agreement with findings of many studies showing a decrease in dissolved oxygen 389 

during hydrological droughts (Boulton and Lake, Ylla et al., 2010; 1992; Hellwig et al., 2017). 390 

Generally, in river basins with perennial rivers and higher streamflow, the variability range of 391 

dissolved oxygen is limited due to the deeper flow in rivers, which leads to less reaeration. On the 392 

other hand, most ephemeral rivers with shallow flow are located in lower latitude. Dissolved 393 

oxygen requires longer recovery time in these river basins because of higher water temperature 394 

and less oxygen solubility in spite of better reaeration. Therefore, in most river basins, water 395 

temperature is the dominant process (rather than reaeration and biological activity) that controls 396 

dissolved oxygen level. During drought persistence stage, dissolved oxygen shows a similar 397 

pattern to water temperature, and the maximum deviation of dissolved oxygen happens in the 398 

persistence stage. Many aquatic species can survive only within a specific temperature range and 399 

a minimum dissolved oxygen level. Therefore, considering dissolved oxygen and water 400 

temperature is essential for maintaining the ecology and biology of water resources systems 401 

(Mathews and Marsh-Mathews, 2003; Lake, 2011). Droughts have caused flora and fauna fatalit ies 402 

in different parts of the world, for instance in Australia (Leigh at al., 2015), southern US (Buskey 403 

et al., 2001), and California (Brumbaugh et al., 1994; Israel and Lund, 1995). The reported reasons 404 

for aquatic fatalities due to droughts were decline in dissolved oxygen level, vanishing the natural 405 

habitat of species, loss of streams connectivity, and alteration of food (Lake 2003, 2011; Leigh at 406 

al., 2015). 407 
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4 Discussion 408 

Applying the hydrological drought detection method, a total of 9247 drought episodes were 409 

identified in 400 stations across the CONUS during 1950-2016. Figure 8 shows the relationship 410 

between drought duration, recovery time (required time for streamflow and water quality to revert 411 

to its pre-drought state), and annual flow across three different river basins with diverse climate  412 

(i.e. Pacific Northwest, Arkansas, and South Atlantic). The figure illustrates that there is a 413 

significant inverse relationship between drought duration and the annual flow in all three river 414 

basins (R2> 0.5 and p-value<0.05). Therefore, annual streamflow deficits are probably more 415 

intense during prolonged drought events compared to shorter drought episodes. Similar results are 416 

found for recovery time and annual flow, and severe annual streamflow deficits are more likely to 417 

result in longer recovery time. However, recovery time is positively correlated to drought duration 418 

for these river basins (R2> 0.5 and p-value<0.05), and similar pattern is found in all the river basins 419 

over the CONUS. The positive correlation found between drought duration and annual flow is in 420 

agreement with the findings of Spinoni et al. (2014) and Austin et al. (2018). These studies also 421 

showed that if a drought episode lasts longer, drought severity increases and the affected area deals 422 

with exacerbated water stress. Thomas et al. (2014) investigated hydrological droughts and 423 

recovery time for south and southeastern USA, and concluded that for longer and more severe 424 

hydrological droughts, longer drought recovery duration should be expected. These findings are 425 

in consensus with the findings of the present study, indicating an inverse relationship between 426 

recovery time and annual flow and a direct relationship between drought duration and recovery 427 

time. 428 
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 429 

Fig. 8. Relationship between drought duration and annual flow (left), recovery time and annual 430 

flow (middle), and drought duration and recovery time (right) over the Pacific Northwest (top), 431 

Arkansas (middle) and South Atlantic (bottom) river basins. 432 

Figure 9 shows hydrological drought severity over the CONUS for the study period. Severity 433 

indicates the ratio of accumulated streamflow deficit to streamflow in normal condition during 434 

drought episodes (elaborated in equation 1).  435 

𝐷𝑟𝑜𝑢𝑔ℎ𝑡 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦  =  
∑ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑡𝑟𝑒𝑎𝑚𝑓𝑙𝑜𝑤𝑖 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝐼 =𝑜𝑛𝑠𝑒𝑡

∑ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖
𝑇𝑒𝑟𝑚𝑖𝑎𝑛𝑡𝑖𝑜𝑛
𝑖=𝑜𝑛𝑠𝑒𝑡

∗ 100                       436 

𝑖𝑓 (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑡𝑟𝑒𝑎𝑚𝑓𝑙𝑜𝑤𝑖 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖) < 0     (Equation 1) 437 

 438 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought
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 439 

Fig. 9. Spatial distribution of normalized drought severity over the CONUS during 1950–2016. 440 

Severity is defined as the ratio of accumulated streamflow deficit to streamflow in normal 441 

condition during drought episodes. 442 

The figure shows that California, Great basin and South Atlantic river basins experienced more 443 

severe droughts during the study period. Texas and Souris basins also experienced severe droughts. 444 

Comparing Figure 9 (drought severity) and Figure 4 (number of droughts) reveals an inverse 445 

relation between drought severity and frequency in areas located in the Pacific Northwest, 446 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/streamflow
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California, Great Basin, Upper Colorado, Texas, Arkansas, Ohio, New England, Upper 447 

Mississippi, and Mid-Atlantic river basins. This inverse relationship implies that the regions 448 

affected by more frequent droughts, experienced less severe droughts, in general. This is found in 449 

the Pacific Northwest, Upper Colorado, and mid-Atlantic river basins. Whereas, those parts of the 450 

CONUS that experienced less frequent droughts (e.g. California, Texas and South-Atlantic river 451 

basins), suffered from more severe droughts. Griffin and Anchukaitis (2014) showed that for the 452 

period of 2012-2014, California experienced the most severe drought condition in the last century. 453 

Our analysis also finds Southern California among the regions that the most severe hydrologica l 454 

droughts have happened during the study period. Additionally, California experienced a 455 

hydrological drought in 2012, which lasted for almost a year (Figure 3), and that drought episode 456 

was accompanied by two major hydrological droughts in the following years. Anderson et al. 457 

(2013) and Long et al. (2013) showed that Southern US experienced more severe drought episodes 458 

compared to Northern regions during the period of 2000-2012. Figure 9 also corroborates that 459 

these areas (i.e. Florida, Southern Plains, and Southwestern US) experienced more severe 460 

hydrological droughts compared to the rest of the US. 461 

Figure 10 illustrates the correlation between the deviation of water quality parameters (during 462 

drought episodes) and drought severity over 18 river basins. In general, water temperature and 463 

dissolved oxygen are more correlated with drought severity than turbidity. Dissolved oxygen and 464 

drought severity are highly correlated in California, Lower Colorado, Texas, Rio Grande and South 465 

Atlantic river basins, all of which are located in the lower latitudes. Turbidity and drought severity 466 

correlation is the highest  in Missouri and Arkansas, both located in arid climate. Comparing Figure 467 

10 with Figure 7 reveals that in the river basins that require longer recovery time for dissolved 468 

oxygen, the correlation between dissolved oxygen and drought severity is highest. Similar pattern 469 
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is found for turbidity recovery time in the Great Lakes, Missouri, and Arkansas, where the 470 

correlation between drought severity and turbidity is the highest, compared to other water quality 471 

parameters. Figure 10 shows that the southern US regions (basins 2-7 and 16) indicate higher 472 

correlation between water quality variations and drought severity, with dissolved oxygen 473 

indicating the highest correlation, which reveals the higher vulnerability of aquatic life to drought 474 

severity in southern US. 475 

 476 

Fig. 10. The correlation coefficient between drought severity with water temperature, dissolved 477 

oxygen, and turbidity variations and over 18 river basins of the U.S. 478 

The empirical cumulative distribution functions (CDFs) are developed to probabilistically analyze 479 

drought duration in the study period. Figure 11 shows the CDF of drought duration for Ohio, 480 

Missouri, and South Texas-Gulf river basins. These river basins are selected as they show the 481 

lowest, highest, and mean drought duration, respectively. The figure shows that with 75% 482 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/correlation-coefficient
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/turbidity
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probability, drought durations are 180, 220, and 300 days in Ohio, Missouri, and Texas river 483 

basins, respectively. Additionally, historical hydrological droughts indicated a median (50% 484 

probability) duration of 110, 125, and 140 days for Ohio, Missouri and Texas river basins, 485 

respectively. In another interpretation, if a drought episode begins in these river basins, it is 55, 68 486 

and 75% probable that it lasts for 200 days or less in Texas, Missouri and Ohio, respectively. In 487 

conclusion, it is more likely for Texas to experience more long-term drought events compared to 488 

other river basins.  489 

 490 

Fig. 11. Cumulative probability distribution (CDF) of drought duration in Ohio, Missouri, and 491 

South Texas-Gulf coast basins, representing least, most, and mean drought duration among all 492 

US basins, respectively. 493 

5 Summary and Conclusions 494 

It is essential to understand drought impacts on freshwater resources quality and their recovery 495 

duration. To this end, this study developed a framework for hydrological drought detection in order 496 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought


30 
 

to categorize droughts into three stages of growth, persistence, and retreat, investigated water 497 

quality variations during droughts, analyzed recovery time for each water quality parameter, and 498 

finally assessed spatiotemporal and probabilistic characteristics of drought episodes. The method 499 

was applied on 400 streamflow and water quality stations over the CONUS with daily observation. 500 

The historic 2012 US drought was selected to validate the presented methodology. On average, 501 

drought persistence was found to last less than 2 months in most of the Eastern US. Whereas in 502 

California, Upper Colorado and Texas river basins, drought tends to persist more than three 503 

months. Results showed that, drought frequency is negatively correlated with drought severity and 504 

duration, whereas drought duration and recovery time are positively correlated. In terms of water 505 

quality, results showed that increased temperature, decreased turbidity, and lower dissolved 506 

oxygen were observed during hydrological droughts. Average recovery time for water 507 

temperature, turbidity and dissolved oxygen were 52, 42 and 51 days following hydrologica l 508 

drought termination, respectively. Furthermore, turbidity recovery time was found to be less than 509 

60 days after drought termination for most of the CONUS, whereas, dissolved oxygen recovery 510 

indicated to be more than 2 months (maximum 69 days) in the lower latitude river basins. 511 
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