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Abstract  

 Since the CPT theorem was introduced in the 20th century, it has been one of the most 

important ongoing projects in particle physics. The CPT invariance helps to indicate if there are 

discrete symmetries in relativistic quantum mechanics (RQM), the answer to this question is 

ambiguous. This paper will mainly explain the answers via the timeline and point out misnomers 

and some missing concepts. We (me and my advisor) claim the answer is there are discrete 

symmetries in RQM is “yes, but no, no and yes again”. The most recent experiment shows the 

violation of CPT invariance is only 2×10−10. 
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Introduction 

 In 2017, the experiments data shows the violation of CPT invariance is only 

2×10−10([1]), but we also know that the C, P and T individually are violated in weak 

interactions, but in different degrees. The question is how the combination, CPT can be valid to 

100%? The answer to the question of Are There Discrete Symmetries in Relativistic Quantum 

mechanics is “yes, but no, no, and yes again”.  

The CPT theorem was first introduced by G. Lüders and W. Pauli during 1964-1967 ([2]-

[4]), and it was considered one of the fundamental conservations laws. In 1956, Lee-Yang 

discovered the 𝜃 − 𝜏 puzzle and started to question the conservation law of parity in weak 

interactions ([6]). In 1956-1957, Lee-Oehme-Yang theoretically and Wu et al. ([6], [7]) 

experimentally worked together to figure out, predict and prove the P and C are violated for 

neutrino in weak interactions to nearly 100%. However, the combination of CP was interestingly 

conserved, because neutrino was considered to be massless at that time. In 1964, Cronin and 

Fitch et al. ([10]) discovered out CP and in 1970, Schubert discovered T violation in the neutral 

kaon experiments ([12]). The violation of CP and T showed no discrete symmetry remains valid 

except CPT invariance in relativistic quantum mechanics (RQM) until 2013. Ni and his 

collaborators published a paper and claimed ([16]), “(There is) discrete symmetry in RQM.” Ni 

et al. proved the new symmetry 𝒫𝒯 = 𝒞 being equivalent to the CPT invariance, while the 

original charge conjugation C is essentially wrong. Furthermore, the hidden antiparticle field in 

the original EPR experiment for spinless particles ([14]) and the recent new 𝐾0𝐾0 correlation 

experimental data is analyzed by Ni et al. They emphasize the work by Feshbach and Villars 

dissociation (ψ = 𝜑 + 𝜒) ([17]) to show KG particle work the same as Dirac particle in RQM. 

Because of the principle of special relativity, the new symmetry of 𝒫𝒯 = 𝒞 immerges as the 
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whole universal validity to the foundation of RQM. Lastly, Wigner’s time reversal will be 

discussed in a depth and as why we think it is a misnomer in CPT theorem. Furthermore, CPT 

invariance guarantee the discrete symmetries in RQM, and 𝒫𝒯 = 𝒞 works well for both of Dirac 

particles and neutrinos as tachyons. 

 

I “Yes”:  conservation of individual C, P and T symmetry 

      1. C, P and T symmetries before 1955 

In 1954-1957, Lüders and Pauli proved the validity of CPT theorem in quantum field 

theory (QFT) for the first time ([2]-[4]).  The combination of the theoretical proof of CPT 

theorem and the experimental proof of invariance of CPT was considered as one of the 

fundamental conservation laws, along with the conservation of energy and conservation of 

momentum. Here, C is the charge conjugation and is considered is a discrete symmetry, as 𝑒 →

−𝑒 and 𝜓 → 𝜓∗ with 𝜓 is the wavefuntion (WF). Since 𝜓 transforms to 𝜓∗, the corresponding 

energy transforms to “negative” energy (𝐸 → −𝐸). P is parity and the corresponding 

conservation law is considered as a discrete symmetry with the transformation of 𝑥 → −𝑥. T is 

the time reversal, and was first introduced by Wigner in 1932. Wigner’s time reversal is a 

transformation on a WF with 𝜓(𝑥, 𝑡) ⟶ 𝜓∗(𝑥, −𝑡) using equation without considering Klein-

Gordon equation (KG). This can be easily seen from the invariance of Schrödinger equation’s 

WF under time reversal with 𝑡 → −𝑡:  

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = �̂�𝜓(𝑥, 𝑡) 

                                         𝑖ℏ
𝜕

𝜕𝑡
𝜓∗(𝑥, −𝑡) = �̂�𝜓∗(𝑥, −𝑡)                                         (1.1.1) 

This gives 𝜓(𝑥, 𝑡) ⟶ 𝜓∗(𝑥, −𝑡).                                                                                         (1.1.2) 
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Consider the WF of n terms in a stationary state, the time reversal for this n-terms WF  

([4]) is:   

                                                          𝜓𝑛(𝑥, 𝑡) ⟶ 𝜓∗
𝑛
(𝑥, −𝑡)                                               (1.1.3) 

with                                                   𝜓𝑛(𝑥, 𝑡) = 𝑢𝑛(𝑥)𝑒
−
𝑖

ℏ
𝐸𝑛𝑡                                               (1.1.4) 

                                                       𝜓∗
𝑛
(𝑥, −𝑡) = 𝑢∗𝑛(𝑥)𝑒

−
𝑖

ℏ
𝐸𝑛𝑡                                            (1.1.5) 

Where if 𝑢(𝑥) = 𝑒
𝑖𝒑∙𝒙

ℏ  and 𝑢∗(𝑥) = 𝑒−
𝑖𝒑∙𝒙

ℏ , and the complex conjugate of 𝜓𝑛(𝑥, 𝑡) in the WF 

under the Wigner’s time reversal is 𝜓∗
𝑛
(𝑥, −𝑡). So here time reversal is corresponding to the 

reversal of momentum 𝑝, 𝑝 → −𝑝, with the energy staying the same. Wigner was clear that the 

time reversal is actually motion reversal, and he was also right about the use of the energy 

operator for the particle in Schrödinger equation, because there was no concept of antiparticle at 

all at that time. But we will see below, the definition of so-called Wigner’s time reversal causes a 

lot of confusion later, and it was not his fault.  

 

      2. Four fundamental interactions 

There are four fundamental interactions in nature that are identified as: weak interaction, 

strong interaction, electromagnetic interaction and gravitational interaction. Gravitational 

interaction is also known as gravity, which we experience every day. The electromagnetic 

interaction is a binding force among electrons and protons in an atom. The strong interaction is 

the binding force for quarks and forms them together into protons, neutrons or other relatively 

heavy particles. Quark is one of the elementary particles that have been discovered, and it has 6 

“flavors” of up, down, strange, charm, top and bottom. Weak interaction is an interesting force 
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that allows quarks to switch among six flavors, this usually happens in the beta-decay (𝛽 −

𝑑𝑒𝑐𝑎𝑦).  

 

II “No”: P and C violations and CP conservation 

      1. P and C violations 

                   In 1956-1957, Lee-Yang and Wu et al. ([6]-[9]) worked together, predicted, and then 

experimentally verified that P and C individually violated to nearly 100% in weak interactions, 

especially for neutrinos. Because of the 𝜃 − 𝜏 puzzle, Lee-Yang started to question parity 

conservation in general and especially in weak interactions ([6]). As mentioned in the paper, 

“Parity nonconservation implies the existence of interactions which mix parities”. In other 

words, if parity were violated, a state of atoms or nuclei would cease to be an eigenstate of a 

definite parity, but a mixed state of parity and opposite parity. In Lee-Yang’s paper, they 

analyzed carefully the experimental data until 1956 and came to a conclusion that in the 

electromagnetic and nuclear interactions, the parity conservation law holds in relative high 

accuracy. The situation in weak interactions including the 𝛽 − 𝑑𝑒𝑐𝑎𝑦 was not so clear, so there 

is a great interpretation provided by Lee-Yang ([5], [6]), and they assumed the Hamiltonian 

diving into two terms,  

                                                             �̂� = 𝐶�̂�𝑆 + 𝐶
′�̂�𝑃                                                       (2.1.1) 

where �̂�𝑆 and �̂�𝑃 are scalar and pseudoscalar with 𝐶 and 𝐶′ the coupling constants respectively. 

In the past, the probability of 𝛽 − 𝑑𝑒𝑐𝑎𝑦 to be proportional to the lifetime only, because “…in 

all of these phenomena no interference terms exist between the parity-conserving and parity-

nonconserving interactions” ([6]), the probability of 𝛽 − 𝑑𝑒𝑐𝑎𝑦 is seemingly proportional to |𝐶|2 

+|𝐶′|2 instead of just |𝐶|2. Lee-Yang then firmly pointed out the existence of 𝐶′ in eq. (2.1.1), 
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and also interprets, “ (In eq. (2.1.1)), one has to measure an observable proportional to the 

interference term 𝐶𝐶′, and such observable must be a pseudoscalar which changes its sign under 

the space inversion” ([5]). 𝐶 ≠ 0 and 𝐶′ ≠ 0 simultaneously only if 𝐶𝐶′ ≠ 0.   

  In this case, use the measurement of angular distribution of electrons coming from 𝛽 −

𝑑𝑒𝑐𝑎𝑦 of oriented nuclei to determine if the parity is conserved or not, which was suggested in 

Lee-Yang’s 1956 paper [see eq. (2.1.2) and eq. (2.1.3)]. The angular distribution of 𝛽 − 𝑑𝑒𝑐𝑎𝑦 

can be written as  

                                          𝐼(𝜃) 𝑑𝜃 = (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)(1 + 𝛼 cos 𝜃) sin 𝜃 𝑑𝜃                             (2.1.2) 

where cos 𝜃 ~�̅� ∙ 𝑆̅ with �̅� as its electron’s momentum and 𝑆̅ as nuclei’s spin (they are polarized 

along the z-direction by magnetic field under the low temperature). If 𝛼 does not equal to 0, the 

parity is violated.  So 𝛼 can be written as  

                              𝛼 = 2 [∫ 𝐼(𝜃) 𝑑𝜃
𝜋/2

0
− ∫ 𝐼(𝜃) 𝑑𝜃

𝜋

𝜋/2
] / ∫ 𝐼(𝜃) 𝑑𝜃 < 0

𝜋

0
                          (2.1.3)  

In other words, we can measure emitted electron over 𝜃 between 0 and 90 o (𝜋/2) as an up-half 

sphere, and 𝜃 between 90 o and 180 o (𝜋) as a down-half sphere to determine the angular 

distribution of 𝑒− with respect to 𝜃 being up down asymmetric. Wu’s experiment verified 

measurement of the parity violation with a maximal degree. 

 

2. CP conservation 

Furthermore, Lee-Yang considered combining P and C together to check the CP 

transformation, and they proved the CP is 100% conserved for neutrino ([9]). Since P and C are 

two discrete symmetries, the combined CP is a continuous symmetry. The relationships are 

shown in Table 1.  
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 𝓟 𝓒 𝓒𝓟 

𝒗𝑳 𝑣𝑅 �̅�𝐿 �̅�𝑅 

�̅�𝑹 �̅�𝐿 𝑣𝑅 𝑣𝐿 
Table 1. 𝒗𝑳 is the neutrino particle with left helicity, and �̅�𝑹 is the antineutrino with right helicity. P is the parity transformation; C is the 

charge conjugation transformation. C and P violate to 100% individually in the weak interaction and CP is the combined 

transformations together. 

Assume 𝑣𝐿 is the massless neutrino with left helicity, so the corresponding antineutrino 

should have right helicity as �̅�𝑅. A massless neutrino has same speed as the speed of light c, and 

it is longitudinally polarized permanently. This means in this system, only 𝑣𝐿 -particle and �̅�𝑅-

antiparticle exist, and neither �̅�𝐿 nor 𝑣𝑅 exists.  

In the table 1, 𝑣𝐿 becomes 𝑣𝑅 after parity transformation, and 𝑣𝐿 becomes �̅�𝐿 after charge 

conjugation transformation. �̅�𝑅 becomes �̅�𝐿 after parity transformation, �̅�𝑅 becomes 𝑣𝑅 after 

charge conjugation transformation. Furthermore, both of 𝑣𝑅 and �̅�𝐿 do not exist in nature, but 

only when 𝑣𝐿 and �̅�𝑅 go through both 𝒞𝒫 transformations. It seems the violation of P and C were 

recovered by the combination of them, and the story would have a happy ending. 

 

III “No”: A neutral 𝑲𝟎�̅�𝟎 experiment and CP violation 

In a neutral 𝐾0�̅�0  system, 𝐾0 is the neutrally charged particle and �̅�0  is the neutrally 

charged antiparticle of 𝐾0, where 0 is the spin zero. 𝐾0 (𝑑�̅�) is composed of a down quark (𝑑) and 

a strange antiquark (�̅�), so �̅�0 (�̅�𝑠) is composed of a down antiquark and a strange quark as the 

antiparticle of 𝐾0.  𝐾0 and �̅�0 are created in strong interaction which are the eigenstates of the 

hamiltonian. 𝐾1
0 and 𝐾2

0 are two eigenstates in weak interaction, which are two different linear 

combination of 𝐾0�̅�0 system with two different main decay modes. 

                                                       𝐾1
0 → 𝜋+𝜋−, or  𝜋0𝜋0 

                                                    𝐾2
0 → 𝜋+𝜋−𝜋0, or  𝜋0𝜋0𝜋0,                                        (3.1) 
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𝐾1
0 decays into two final pions whereas 𝐾2

0 decays into three final pions, so CP eigenvalues of 

𝐾1
0 is +1 and of 𝐾2

0 is -1. Let  𝐾1
0 and 𝐾2

0 presented in terms of 𝐾0 and �̅�0. Assuming CP is 

conserved ([11]),  

                     𝐾𝑆
0 = 𝐾1

0 =
1

√2
(𝐾0 − �̅�0),  CP𝐾1

0 =
1

√2
(�̅�0 + 𝐾0) = +𝐾1

0 

                    𝐾𝐿
0 = 𝐾2

0 =
1

√2
(𝐾0 + �̅�0), CP𝐾2

0 =
1

√2
(−�̅�0 − 𝐾0) = −𝐾2

0                 (3.2) 

However, the experiment shows the lifetimes of 𝐾1
0 and 𝐾2

0 are different, 𝐾1
0 decays much more 

quickly than 𝐾2
0. So 𝐾1

0 and 𝐾2
0 are also denoted as 𝐾𝑠 and 𝐾𝐿 respectively with different 

lifetimes 𝜏𝑆 =0.8923×10−8𝑠, 𝜏𝐿 =5.116×10−8𝑠, and with mass difference 𝑚𝐾𝐿 −𝑚𝐾𝑆 =

3.484×10−12MeV. 

In 1964, J. Cronin and V. Fitch’s experiment discovered that the 𝐾0�̅�0 system in the 

weak interaction is with only a little CP violation of 0.3%, because they found 𝐾𝐿 → 𝜋
+𝜋−, 

𝜋0𝜋0 too. In 1970, K.R. Schubert et al. ([12]) discovered the time reversal is also violated to 

0.3% in weak interaction in their experiment. Therefore, C, P, and T are violated in weak 

interaction individually, but a combination of CPT is invariant. Hence, in 1965, Lee-Wu 

proposed the CPT relationship between particle and antiparticle,  

                                                    |�̅�⟩=CPT|𝑎⟩                                                                (3.3) 

where �̅� is the antiparticle and 𝑎 is the particle ([13]). The old C (charge conjugation) is no 

longer the particle and antiparticle transformation.  
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IV “Yes”: there are discrete symmetries in RQM 

1 Why Momentum-energy operator for antiparticle was overlooked so long? 

While CPT theorem and CPT invariance are widely accepted, most people still don’t 

accept the momentum- energy operator for antiparticle [eq. (4.1.1)] ([14]) versus the momentum-

energy operator for particle [eq. (4.1.2)].  

                             �̂�𝑐 = 𝑖ℏ∇ , �̂�𝑐 = −𝑖ℏ
𝜕

𝜕𝑡
                                                          (4.1.1) 

                                                  �̂� = −𝑖ℏ∇, �̂� = 𝑖ℏ
𝜕

𝜕𝑡
                                                             (4.1.2) 

Many people simply just accept one set of momentum-energy equation as eq. (4.1.2), and 

they might think C-operation can be used to simply transform eq. (4.1.2) to eq. (4.1.1). But C 

invariance is violated to 100% in the weak interactions, so we have to accept two sets of 

momentum-energy equations, which is simply proved by CPT transformation. Experimental data 

already shows that the antiparticle’s energy is always positive, and just like that in particle. But 

the “hole theory” insists that we could explain the energy of antiparticle is “negative”, because 

the use of the “hole theory” would bring the energy back to positive. Therefore, it is the time to 

abandon the “hole theory” now. 

       In 1935, the original Einstein-Podolsky-Rosen (EPR) paper ([14]) discussed an ideal 

experiment for two spinless particles, which is precisely linked to a 𝐾0�̅�0 correlation experiment 

in 1998. Both experiments pointed to the necessity of the existence of antiparticle and the 

opposite momentum-energy operators for antiparticle versus that for particle. The hidden 

relationship was first pointed out by Ni and his friend Guan (1935-2007) ([15]), and this 

relationship satisfies four commutation relations: 

                          [𝑥1 − 𝑥2, �̂�1 + �̂�2] = 0, [𝑡1 + 𝑡2, �̂�1 − �̂�2]=0                                       (4.1.3) 
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                          [𝑥1 + 𝑥2, �̂�1 − �̂�2]=0, [𝑡1 − 𝑡2, �̂�1 + �̂�2] = 0                                       (4.1.4) 

Here we only consider back-to-back events of 𝐾0�̅�0 correlation, therefore, let �̂�1 be the 

momentum of a particle running to the right, and �̂�2𝑐 be the momentum of an antiparticle running 

to the left, 𝑥1 = 𝑣𝑡1 > 0, 𝑥2 = −𝑣𝑡2 < 0. Similarly, �̂�1 is the energy for a particle and �̂�2𝑐 is 

that for an antiparticle. So  

                                              �̂� = −�̂�𝑐, �̂� = −�̂�𝑐                                                                    (4.1.5)         

Eq. (4.1.4) becomes 

                                  [𝑥1 + 𝑥2, �̂�1 + �̂�2𝑐] = 0, [𝑡1 − 𝑡2, �̂�1 − �̂�2𝑐]=0                                    (4.1.6) 

There is tiny CP violation in the coupled equation of 𝐾𝑆
0 and 𝐾𝐿

0, and it can be neglected. 

As the “strangeness” in this system is an additive quantum number.” 𝐾0𝐾0 or �̅�0�̅�0 are with 

strangeness but 𝐾0�̅�0 or 𝐾0𝐾0 have zero strangeness. Ni et al. used comparison of intensities of 

antisymmetric states of system with zero-strangeness and strangeness to test in which state 𝐾0�̅�0 

pair was created in their paper in 2013 ([16]).  

 Both 𝐾0,  �̅�0 and 𝐾0�̅�0 pair is created in 𝐽𝑃𝐶=1−− antisymmetric state, so the intensities 

of zero-strangeness and strangeness are respectively:  

𝐼𝑧𝑒𝑟𝑜
𝑎𝑛𝑡𝑖𝑠𝑦𝑚(𝑡𝑎, 𝑡𝑏) =

1

8
𝑒−2𝛾𝑡̅{𝑒−𝛾𝑆|𝑡𝑎−𝑡𝑏| + 𝑒−𝛾𝐿|𝑡𝑎−𝑡𝑏| + 2𝑒−𝛾|𝑡𝑎−𝑡𝑏| cos[Δ𝑚(𝑡𝑎 − 𝑡𝑏)]}        (4.1.7) 

𝐼𝑠𝑡𝑟𝑎𝑛𝑔𝑒𝑛𝑒𝑠𝑠
𝑎𝑛𝑡𝑖𝑠𝑦𝑚 (𝑡𝑎, 𝑡𝑏) =

1

8
𝑒−2𝛾�̅�{𝑒−𝛾𝑆|𝑡𝑎−𝑡𝑏| + 𝑒−𝛾𝐿|𝑡𝑎−𝑡𝑏| − 2𝑒−𝛾|𝑡𝑎−𝑡𝑏| cos[Δ𝑚(𝑡𝑎 − 𝑡𝑏)]}  (4.1.8) 

where 𝑡𝑎 and 𝑡𝑏  are proper times of particle 1 and particle 2 respectively, and Δ𝑚 = 𝑚𝐿 −𝑚𝑆, 

𝛾 =
1

2
(𝛾𝐿 + 𝛾𝑆), 𝑡̅ = 𝑡𝑎(𝑓𝑜𝑟 𝑡𝑎 < 𝑡𝑏) and 𝑡̅ = 𝑡𝑏(𝑓𝑜𝑟 𝑡𝑎 > 𝑡𝑏). The main difference between eq. 

(4.1.7) and eq. (4.1.8) is the " + " and " − " in the last terms. The strangeness and zero-

strangeness for 𝐾0�̅�0 pair created in antisymmetric state has strongest intensity in EPR limit 

(𝑡𝑎 = 𝑡𝑏) because the strangeness is zero.  
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 In this EPR limit, 𝑥1 + 𝑥2 = 𝑣(𝑡1 − 𝑡2) = 0, 𝑝2𝑐 = −𝑝 < 0, 𝐸2𝑐 = 𝐸1 > 0, so the 𝐾0�̅�0 

system has the lowest eigenvalues (0, 0, 0) of three commutative operators. These eigenvalues in 

𝐾0𝐾0 events become 0, 2𝑝 and 2𝐸, so they have zero intensity at EPR limit. 

 

2    FV dissociation of KG equation  

Interestingly, KG equation was long regarded as less important as Dirac equation in 

RQM. The new story began in 1958; Feshbach and Villars (FV) ([17]) rethought about how the 

Klein-Gordon (KG) equation [eq. (4.2.1)] can obtain particle and antiparticle in the system. They 

divided wavefuntion of KG equation ψ into two parts as eq. (4.2.2). 

                  (𝑖ℏ
𝜕

𝜕𝑡
− 𝑉)

2

𝜓(𝑥, 𝑡) = −𝑐2ℏ∇2𝜓(𝑥, 𝑡) + 𝑚2𝑐4𝜓(𝑥, 𝑡)                        (4.2.1)                

    ψ = 𝜑 + 𝜒                                                                 (4.2.2) 

Where 𝜑 represents the particle field and 𝜒 represents the antiparticle field,  

                                                   𝜑 =
1

2
[(1 −

𝑉

𝑚𝑐2
)𝜓 + 𝑖

ℏ

𝑚𝑐2
�̇�]                                            (4.2.3)     

                                                    𝜒 =
1

2
[(1 +

𝑉

𝑚𝑐2
)𝜓 − 𝑖

ℏ

𝑚𝑐2
�̇�]                                           (4.2.4) 

Eq. (4.2.3) and eq. (4.2.4) of FV dissociation obey Schrödinger- like equation and couple 

together as,  

(𝑖ℏ
𝜕

𝜕𝑡
− 𝑉)𝜑 = 𝑚𝑐2𝜑 −

ℏ2

2𝑚
∇2(𝜑 + 𝜒) 

                                             (𝑖ℏ
𝜕

𝜕𝑡
− 𝑉)𝜒 = −𝑚𝑐2𝜒 +

ℏ2

2𝑚
∇2(𝜒 + 𝜑)                                 (4.2.5)     

Recall the energy in special relativity (SR) with V=0:  

                                                         𝐸 = ±√𝑐2𝑝2 +𝑚2𝑐4                                                    (4.2.6)     

therefore, the energy eigenstates of KG equation [eq. (4.2.1)] can be also written as, 
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𝜓~𝑒(−
𝑖
ℏ
𝐸𝑡), 𝐸 > 0 

                                                                𝜓~𝑒(−
𝑖

ℏ
𝐸𝑡), 𝐸 < 0                                                    (4.2.7) 

In this case, we can see energy can be positive or negative, and eq. (4.2.6) can also be written as 

when 𝑉 ≠ 0,  

                                                       (𝐸 − 𝑉)2 = 𝑐2𝑝2 +𝑚2𝑐4                                                (4.2.8) 

and the energy for an antiparticle:  

                                                     (�̂�𝑐 − 𝑉𝑐)
2
= 𝑐2�̂�𝑐

2 +𝑚2𝑐4                                              (4.2.9)        

eq. (4.2.8) satisfies the KG equation for a particle:  

                              (𝑖ℏ
𝜕

𝜕𝑡
− 𝑉)

2

𝜓(𝑥, 𝑡) = −𝑐2ℏ∇2𝜓(𝑥, 𝑡) + 𝑚2𝑐4𝜓(𝑥, 𝑡)                         (4.2.10) 

and KG equation for an antiparticle:  

                             (𝑖ℏ
𝜕

𝜕𝑡
− 𝑉)

2

𝜓𝑐(𝑥, 𝑡) = −𝑐
2∇2𝜓𝑐(𝑥, 𝑡) + 𝑚

2𝑐4𝜓𝑐(𝑥, 𝑡)                       (4.2.11) 

A continuity equation can be derived from eq. (4.2.10) as  

                                                           
𝜕𝜌

𝜕𝑡
+ ∇ ∙ 𝑗 = 0                                                             (4.2.12) 

where 𝜌 can be expressed as  

                                                          𝜌 =𝜑∗𝜑 − 𝜒∗𝜒                                                             (4.2.13) 

There are two differences between Dirac equation and KG equation, 1) As eq. (4.2.5) and 

eq. (4.2.10) shown, KG equation has the second order of  
𝜕

𝜕𝑡
 while Schrödinger and Dirac 

equation have first order of  
𝜕

𝜕𝑡
 . Schrödinger didn’t consider the concept of antiparticles whereas 

Dirac did. 2) The probability for Schrödinger equation and Dirac equation is always positive-

definite, but it is not for KG equation. Why for many years, |𝜑|>|𝜒|, KG particle shows it is a 

particle whereas |𝜑|<|𝜒|, the KG particle shows it is an antiparticle. But this is still not good, 
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because 𝜌 being a probability density, and it must be positive-definite. This puzzle remains until 

the Ni et al.’s paper in 2013 ([16]) where FV dissociation for KG particle was further developed 

into a space-time (𝑥 → −𝑥, 𝑡 → −𝑡) invariance 𝒫𝒯 = 𝒞 as follows,  

                                {
𝑥 → −𝑥, 𝑡 → −𝑡

𝑉(𝒙, 𝑡) → −𝑉(𝒙, 𝑡) = 𝑉𝑐(𝒙, 𝑡)
   

                              {

𝜓(𝒙, 𝑡) → 𝒫𝒯𝜓(𝒙, 𝑡) = 𝜓𝑐(𝒙, 𝑡)

𝜑(𝒙, 𝑡) → 𝒫𝒯𝜑(𝒙, 𝑡) = 𝜒𝑐(𝒙, 𝑡)

𝜒(𝒙, 𝑡) → 𝒫𝒯𝜒(𝒙, 𝑡) = 𝜑𝑐(𝒙, 𝑡)
                                              (4.2.14)          

Apply 𝒫𝒯 = 𝒞, eq. (4.2.14) to eq.(4.2.13):  

                                                             𝜌 →  𝒫𝒯𝜌 = 𝜌𝑐 

                                                                = 𝜒𝑐
∗𝜒𝑐 −𝜑𝑐

∗𝜑𝑐                                                      (4.2.15) 

and suppose 𝜌𝑐 could be positive or zero if 𝜌 is negative, and puzzle for decades is finally 

solved. 

In retrospect, Feshbach and Villars’s historical contribution to physics and even to natural 

science and sociology. One of their major contributions is that they unveiled an universal 

principle of nature: nothing is pure in this world. Everything is impure because there are always 

two sides of confrontation inside. There is no exception to elementary particles: ψ = 𝜑 + 𝜒, 𝜑 

means a hidden particle field, and 𝜒 is a hidden antiparticle field. The realistic KG particle shows 

up as a particle or an antiparticle depending on which of 𝜑 field or 𝜒𝑐 field is in charge inside 

(|𝜑|> |𝜒|or |𝜒𝑐|>|𝜑𝑐|). 

 

𝟑    𝓟𝓣 = 𝓒 as the essence of special relativity (SR) 

The principle of the SR and the nonrelativistic quantum mechanic (NRQM) are two 

ingredients that keep RQM (KG equation and Dirac equation) work. The principle of SR is much 

deeper than general relativity. The latter seems more complicated and difficult to learn, but it is 



 15 

essentially a classical field theory. General relativity doesn’t consider the relationship of particle 

and antiparticle, but only the gravity and curvature of spacetime. It is well known that SR is 

characterized by the invariance of the Lorentz transformation, and which links infinite inertial 

frames moving each other with relative arbitrary speed 𝑣 (𝑣 𝑐⁄ < 1) along the same direction. 

There is one invariant with respect to infinite continuous transformation (without 𝑣 explicitly) 

being,  

𝑐2(𝑡1 − 𝑡2)
2 − (𝒙1 − 𝒙2)

2 

                                          =𝑐2(𝑡′1 − 𝑡′2)
2 − (𝒙′1 − 𝒙′2)

2 

         = constant                                                                          (4.3.1) 

Now we have another discrete symmetry 𝒫𝒯 = 𝒞 (𝑥 → −𝑥, 𝑡 → −𝑡) which can keep the 

equation eq. (4.3.1) invariant. In order to show 𝒫𝒯 = 𝒞 is of dynamical nature transforming a 

particle to its antiparticle. Let’s write down another two invariances for a particle and an 

antiparticle respectively, and consider the particle and antiparticle into Lorentz transformation in 

terms of energy and momentum. Eq. (4.3.2) and eq. (4.3.3) show, particle and antiparticle are 

equal under the mass inversion.  

                      𝐸2 − 𝑐2𝒑2 = 𝐸′2 − 𝑐2𝒑′2 = 𝑚2𝑐4                                           (4.3.2) 

                                  𝐸𝑐
2 − 𝑐2𝒑𝑐

2 = 𝐸′𝑐
2
− 𝑐2𝒑′𝑐

2
= 𝑚𝑐

2𝑐4 = 𝑚2𝑐4                                (4.3.3)   

where eq. (4.3.2) and eq. (4.3.3) are proved by our mass inversion (𝑚 → −𝑚) as eq. (4.3.4). 

{
𝑚 → −𝑚𝑐 = −𝑚

𝑉(𝒙, 𝑡) → 𝑉(𝒙, 𝑡) = 𝑉𝑐(𝒙, 𝑡)
 

                                                     {

𝜓(𝒙, 𝑡) → 𝜓𝑐(𝒙, 𝑡)

𝜑(𝒙, 𝑡) → 𝜒𝑐(𝒙, 𝑡)

𝜒(𝒙, 𝑡) → 𝜑𝑐(𝒙, 𝑡)
                                                           (4.3.4) 
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when 𝑚 → −𝑚, there is �̂� → −�̂�𝑐, and �̂� → −�̂�𝑐, 𝑖. 𝑒. −𝑖ℏ∇→ −𝑖ℏ∇, 𝑖ℏ
𝜕

𝜕𝑡
→ 𝑖ℏ

𝜕

𝜕𝑡
. In short, for a 

classical theory being relativistic or not, the simplest criterion is to see whether it is invariant or 

not under the mass inversion (𝑚 → −𝑚). 

Hence, we see the new discrete symmetry (in one inertial frame like the room I am 

standing at rest). It is easy to use the continuous Lorentz transformation involving infinite inertial 

frames. On the contrary, we can say the thousands of experiments, which support for the validity 

of SR as well as for 𝒫𝒯 = 𝒞 symmetry. 

 

4 Why use strong reflection and hermitian conjugation to prove CPT theorem?  

In this section, we try to present the proof of CPT theorem, which is simply but rigorous 

notation. We propose that the strong reflection proposed by Pauli is expressed as 𝒫�̂�, and which 

is the counterpart of 𝒫𝒯 = 𝒞 (at the level of RQM) at the level of QFT. In the Fock space, the C, 

P and T transformations at the level of RQM can be expressed as �̂�, 𝑃 ̂𝑎𝑛𝑑 �̂� at the level of QFT 

respectively.  

 In the following, begin from Lee-Wu’s particle-antiparticle CPT symmetry as eq. (4.3.4), 

eq. (4.3.5) shows the new transformation of 𝒫𝒯 = 𝒞 symmetry for particle |𝑎𝒑,ℎ⟩ and 

antiparticle |�̅�𝒑,−ℎ⟩ is after the �̂��̂��̂� transformation in eq (4.3.6). The strong reflection was 

explained by Pauli in ref. [4],  “When the space-time coordinates change their sign, every 

particle transforms into its antiparticle simultaneously.” Now, suppose the particle 

|𝑎𝒑,ℎ⟩=�̂�
†
𝒑,ℎ|0⟩ with a definite helicity,  and use strong reflection and hermitian conjugation to 

prove this relationship.  

                                                  |�̅�⟩=�̂��̂��̂�|𝑎⟩                                                               (4.3.4) 
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                                              {

�̂�|𝑎𝒑,ℎ⟩ = |�̅�𝒑,ℎ⟩

�̂�|𝑎𝒑,ℎ⟩ = |𝑎−𝒑,−ℎ⟩

�̂�|𝑎𝒑,ℎ⟩ = |𝑎−𝒑,ℎ⟩

                                                      (4.3.5) 

                            �̂��̂��̂�|𝑎𝒑,ℎ⟩ = �̂��̂�|𝑎−𝒑,ℎ⟩ = �̂�|𝑎𝒑,−ℎ⟩ = |�̅�𝒑,−ℎ⟩                               (4.3.6) 

On the other hand, the Pauli’s strong reflection means eq.(4.3.7),  

                                                  𝒫�̂��̂�†𝒑,ℎ𝒫�̂�
−1 = �̂�𝒑,−ℎ                                             (4.3.7)  

Use the rule (which was missed in Ni’s paper) as eq. (4.3.8),  

                                           �̂� ∙∙∙→ �̂�𝒫�̂�|0⟩ = ⟨0|�̂� ∙∙∙ �̂�                                            (4.3.8) 

we can derive the following (4.3.9)-(4.3.10). 

                                      𝒫�̂�|𝑎𝒑,ℎ⟩ = 𝒫�̂��̂�
†
𝒑,ℎ𝒫�̂�

−1𝒫�̂�|0⟩  

                                                      = �̂�𝒑,−ℎ𝒫�̂�|0⟩ = ⟨0|�̂�𝒑,− ℎ                                    (4.3.9)     

take hermitian conjugation of the (4.3.9)  

                                [𝒫�̂�|𝑎𝒑,ℎ⟩]
†
= [⟨0|�̂�𝒑,− ℎ]

†
= 𝑏†𝒑,− ℎ|0⟩                                  (4.3.10)  

                                   |𝑎𝒑,ℎ⟩

𝑠𝑡𝑟𝑜𝑛𝑔 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 
𝐻𝑒𝑟𝑚𝑖𝑡𝑖𝑎𝑛 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛
→                  |�̅�𝒑,−ℎ⟩                                        (4.3.11)  

which coincides with the (4.3.6). After the detailed transformations of eq. (4.3.9) and 

(4.3.10), we eventually have eq (4.3.11) and that proves strong reflection plus hermitian 

conjugation can successfully prove the CPT theorem in Fock space. Q.E.D 

 

 

 

 

 

V Summary  
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  There are some modifications on basic concepts in physics discussed as follow:  

1  Is Wigner’s time reversal a continuous symmetry or a discrete symmetry? 

Wigner’s time reversal involves both of 𝑡 → −𝑡 and 𝜓(𝑥, 𝑡) ⟶ 𝜓∗(𝑥, −𝑡). This is also 

explained in detail in these two excellent books of J. J. Sakurai ([18], [19]), where Sakurai 

pointed out that name of Wigner’s “time reversal” is just a misnomer. It would be much better to 

be renamed as the “motion reversal”. Unfortunately, Sakurai’s advice was overlooked for so 

long, even after the discovery of Kobayashi and Maskawa’s successful explanations on the tiny 

violation T-symmetry. This misnomer was pointed out again after the publication of Ni et al.’s 

paper ([16]) in 2013.  

Wigner was clear his “time reversal” is a continuous symmetry. Since Wigner’s time 

reversal is so complicated at the level of RQM with spin, many people including me might be 

confused about whether the meaning of time reversal is a discrete symmetry or not? After the 

discovery of T violation, Kobayashi and Maskawa successfully described the tiny CP or T 

violation into a small phase angle in the Cabbibo- Kobayashi-Maskawa (CKM) matrix of unitary 

transformation ([20], [21]) between eigenstates of quarks in strong interactions and that in weak 

interactions within the standard model of particle physics. We highly appreciate Kobayashi and 

Maskawa’s contribution to the particle physics and provided this mechanism. They emphasize 

again CP or T is actually a continuous symmetry. Because unlike a continuous symmetry, we 

believes the discrete symmetry either is conserved to 100% or is violated to 100%, like the parity 

symmetry.  

The question is if T is a continuous symmetry, then CPT is a continuous symmetry as 

well. How can it be equivalent to our 𝒫𝒯 = 𝒞, which is a discrete symmetry obviously? The 

answer is the old C survived in the CPT transformation because the two complex conjugations 
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canceled out with each other in C and T transformations fortunately. 𝑡 → −𝑡 in T and 𝑥 → −𝑥 in 

P (these two are discrete symmetries combined into one discrete symmetry, a new 𝒫𝒯 = 𝒞), as 

long as we insist C being a transformation of particle to antiparticle without the change the signs 

of 𝑥 and 𝑡. So CPT invariance is equivalent to the symmetry of 𝒫𝒯 = 𝒞 exactly. Hence, we can 

still use the old C in further research work, but we should never forget that the definition of C or 

T is essentially wrong or a misnomer? Therefore, both C and T cannot be valid to 100%.  

 

2 There are discrete symmetries in relativistic quantum mechanics (RQM) 

    2. 1 Symmetries in 𝓟𝓣 = 𝓒 for Dirac particles and neutrino as tachyons 

 We have three discrete symmetries in RQM, in which one is a universal invariance and 

two are partially valid (either 100% correct or 100% wrong).  

 𝓟 = 𝑷 
         (𝒙 → −𝒙) 

𝓣 
         (𝒕 → −𝒕) 

𝓟𝓣 = 𝓒 

Dirac particle √ 
          (100%) 

× 
           (100%) 

√ 
         (100%) 

𝒗, �̅� as tachyons × 
          (100%) 

√ 
          (100%) 

√ 
          (100%) 

Types of 
symmetry 

         Discrete            Discrete         Discrete  

Table 2. Three individual transformations in 𝓟𝓣 = 𝓒 transformation between Dirac particle and tachyons.  𝓟 is the parity 

transformation and 𝓣 is the time inversion while keeping 𝓟𝓣 = 𝓒 invariance.  

 In table 2, there are only 𝑡 and 𝑥 with their inversions, but never including 𝑒 → −𝑒. We 

emphasize the time inversion 𝒯 (𝑡 → −𝑡) as the counterpart of 𝒫. Interestingly, the Dirac 

particle has parity conservation but violates the 𝒯 inversion to 100%. On the contrary, neutrinos 

as tachyons (𝑣, �̅�) violate the parity conservation to 100% but keep the 𝒯 inversion valid to 

100%. Similarly, a discrete symmetry can only either be 100% valid or 100% violated.  In 2017, 

the experiment shows “CPT invariance is consistent at a relative precision about 2×10−10” ([1]).  
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The value of 2×10−10 indicates the violation of the universal symmetry (CPT= 𝒫𝒯 = 𝒞) in all 

interactions doesn’t exceed 2×10−10. 

Furthermore, there are two things are implied in table 2. 1) Individual space or time 

inversion is not universally correct. This reveals the space and time are essentially tightly related, 

so inversion of either of them cannot be totally incorrect. This is why the product of a “no” and a 

“yes” gives a “yes”, and there are obviously three discrete symmetries under three 

transformations (𝒫, 𝒯 and 𝒫𝒯 = 𝒞). 2) 𝒫𝒯 = 𝒞 reveals a new symmetry, and it implies the 

combined spacetime inversion is equivalent to the transformation of particles and antiparticles. 

Clearly enough, the definition of inversion between particles and antiparticles is just residing in 

this symmetry transformation (𝒫𝒯 = 𝒞), and not comes from elsewhere. This is just what a 

specific natural law in physics can do. Just like Newton’s second law defines mass in 𝐹 = 𝑚𝑎, 

and mass (𝑚) is just residing in this equation, and not coming from elsewhere.  

 

2. 2 Symmetries in C, P, CP, T, and CPT  

       C         
(𝝍⟶ 𝝍∗) 

          P 
   (𝒙 → −𝒙) 

       CP 
  (𝝍⟶ 𝝍∗) 
   (𝒙 → −𝒙) 

        T 
  (𝝍⟶ 𝝍∗) 
   (𝒕 → −𝒕) 

     CPT 

Dirac 

particle 

(𝒗 ≤ 𝒄) 

      Yes  
(But no for  

neutrino, 𝑚=0) 

      Yes  
(But no for 

neutrino, 𝑚=0) 

           Yes 
(But no for 𝐾0𝐾0 to a 

tiny degree) 

        Yes 
(But no for 𝐾0𝐾0 

to a tiny degree) 

      Yes 
     (100%) 

Neutrino 

as 

tachyons 

(𝒗 > 𝒄) 

       No 
   (100%) 

       No  
    (100%) 

       Yes 
    (100%) 
(See discussion 

below)  

       Yes 
     (100%) 
(See discussion 

below) 

       Yes 
     (100%) 

Type of 

symmetry 

  Discrete    Discrete   Continuous   Continuous    Continuous  

Table 3. Five individual transformations in CPT transformations between Dirac particle and tachyons. C is the charge conjugation 

transformation, P is parity transformation, T is the time reversal and CP is a combination of C and P transformations. 

 

 For the massive Dirac particle with 𝑣 < 𝑐 in free motion, the CP (𝜓 ⟶ 𝜓∗, 𝑥 → −𝑥) 

transformation is equivalent to T (𝜓 ⟶ 𝜓∗, 𝑡 → −𝑡) and both of them are continuous 
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symmetries. Hence, the fact of C, P and T is violated individually to different degrees in different 

case, and this fact means that none of them is essentially correct. Especially, C is actually wrong 

from the beginning, because in which the particle and antiparticle are detached from the 

spacetime. T is just a misnomer as a “time reversal”, because it is not a basic time inversion (𝑡 →

−𝑡 only). However, CPT= 𝒞= 𝒫𝒯 shows up as a continuous symmetry in table 3, and unlike C is 

a discrete symmetry. Therefore, we think that is a reflection of the definition of C and T being 

essentially incorrect, and the requirement of SR dictates the space and time should be inverted 

simultaneously. Therefore, the inversions of space and time work as one discrete symmetry not 

separately.  

 

    2. 3 Why consider neutrinos as tachyons in two above tables? 

 Neutrinos are interesting because they violate the parity to 100% and only 𝑣𝐿 , �̅�𝑅 exist 

whereas 𝑣𝑅, �̅�𝐿 are forbidden, even though they do have “mass”. We believe the best candidates 

for neutrinos are just tachyons. If we consider relative velocity (between two coordinate systems) 

exceeds some critical values, we stay in one of these two systems, and will see the tachyon 

particle looks like running backward in time (or a violation of causality), or energy of particle 

changes from positive to negative. This strange result is also called tachyons paradox (see 

Appendix 1). In order to find the solution of this paradox, we have to admit the existence of 

antineutrinos as antitachyons and use its momentum-energy operators. This explanation of 

tachyon paradox is similar to the 𝒯 symmetry for tachyons in table 2. In some sense, the 

existence of tachyonic neutrinos builds a bridge between the old notation CPT and the new 

notation 𝒞= 𝒫𝒯.  
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2. 4 The “arrow of time”  

 Look back in table 2, it seems we overlooked 𝒯-violation (𝑡 → −𝑡) of Dirac particle for a 

long time. Dirac particle’s 𝒯-violation has a huge impact, because it implies the existence of 

“arrow of time” at a microscopic level. In 1876, Loschmidt’s paradox pointed out that there is 

“arrow of time” implied by the second law of thermodynamics at a macroscopic level. But 

Newton’s second law 𝐹 = 𝑚𝑎 = 𝑚𝑑2𝑟

𝑑𝑡2
 shows a particle’s motion could reverse at a microscopic 

level, and this is why people definite the time reversal in WF in QM accordingly. Now, it seems 

the 𝒯-violation of Dirac particle does show the “arrow of time” at a microscopic level. So, we 

should also admit the “arrow of time” is at both microscopic and macroscopic levels, and it’s 

time to happily end the solution of the Loschmidt’s paradox.  

 We are made of Dirac particles, and that is why we can feel “arrow of time” inside our 

bodies to adapt the evolution of surrounding environment. We must admit the principle of 

causality before we can recognize the object world. Hence, time (𝑡) is not a coordinate of 

particle, rather it is an invention of human being. It is always moving forward from past to 

present and to the future, and never turning back. Accordingly, use one set of energy operator we 

are able to distinguish the particle (𝐸 > 0) from the antiparticle (𝐸 < 0), because of the 

existence of “arrow of time”. Furthermore, we use two sets of energy operators so that 

antiparticle has the positive energy as 𝐸𝑐 > 0. By contrast, the space orientation of 𝑥 is arbitrary. 

So momentum of the particles or antiparticles can be positive or negative without any 

limitations.  
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2.5 A proposal 

After so many events happened since1956, it’s time for the contemporary theoretical 

particle physics to correct the momentum-energy operator in RQM from one set to two sets. At 

least in teaching RQM, we should let our young generations to learn two sets of momentum-

energy operators, let them to make their own judgment.  
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Appendix 1. (Appendix 9B in [2]) 
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