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Abstract
Previous work has provided methods for decomposing unitary matrices to

series of quantum multiplexers, but the multiplexer circuits created in this
way may be highly non-minimal. This paper presents a new approach for opti-
mizing quantum multiplexers with arbitrary single-qubit quantum target func-
tions and ternary controls. For multivalued quantum multiplexers, we define
standard forms and two types of new forms: Fixed Polarity Quantum Forms
(FPQFs) and Kronecker Quantum Forms (KQFs). Drawing inspiration from
the usage of butterfly diagrams, we devise a method to exhaustively construct
new forms. In contrast to previous butterfly-based methods, which are used
with classical Boolean functions, these new forms are used to optimize quan-
tum circuits with arbitrary target unitary matrices. Experimental results on
the new forms applied to various target gates such as NOT, V, V+, Hadamard,
and Pauli rotations, demonstrate that these new forms greatly reduce the gate
costs of ternary quantum multiplexers.
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1 Introduction
Previous works in the field of quantum compilation, such as [1, 22], have generated
methods for decomposition of arbitrary unitary matrices into a series of quantum
multiplexers, but the multiplexers created by these methods may be highly non-
minimal. Several papers are related to the synthesis of binary quantum circuits
with controlled V and V+ gates [17, 18, 20, 21, 22, 23, 24, 25, 26, 27]. Although
quantum computers now allow for multivalued logic, very little has been published
on circuit synthesis with ternary or higher-order multivalued multiplexers. Our
method addresses the case where the gates of the multiplexers are controlled by
many ternary inputs, but target only a single binary qubit. For this case, our
results are significantly less expensive, or even exactly minimal. This paper, by
inventing the new concept of polarity-based multiplexers with arbitrary targets,
gives a new methodology for optimization of ternary-input, binary-output quantum
circuits. Because there are no benchmarks for these kinds of quantum circuits, we
use randomly generated benchmark data and some examples from previous papers.
We also briefly introduce the concept of ternary-controlled multiplexers with ternary
target gates (ternary-input, ternary-output), but our numerical results are restricted
to ternary-input, binary-output multiplexers.

Section 2 gives necessary background for our paper, introducing previous research
and concepts. Section 3 introduces new multi-valued multiplexer forms, Fixed Po-
larity Quantum Forms (FPQFs), and Kronecker Quantum Forms (KQFs), which
generalize the ideas from binary Reed Muller forms to forms that control arbitrary
single-qubit gates. This section also includes an explanation of why our butterfly
decompositions work for transforming standard form multiplexers to FPQFs and
KQFs. Section 4 discusses the program used to compute matrix transformations
and FPQF/KQF forms and also introduces how costs were calculated for these new
types of generalized multiplexers. Section 5 analyses and discusses the results gen-
erated by our program. Because the best improvements for general multiplexers
were found for multiplexers that control V, V+, and NOT gates, we analyze these
results as a special case. Such circuits are created as intermediate results in the
methods from previous research discussed in Section 2. Section 6 draws conclusions
and summarizes the paper.
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Polarity approach to multivalued quantum multiplexer optimization

2 Background

2.1 General background on quantum multiplexers and their place
in quantum circuit synthesis

Figure 1: An arbitrary binary standard
form quantum multiplexer with two con-
trols, represented both mathematically
and as a circuit diagram. The controls are
listed above each function.

The quantum multiplexer is an im-
portant concept in quantum circuit
synthesis. In previous literature, it was
related to multi-qubit control of target
gates, which are theoretically arbitrary.
However, most of the earlier work on
quantum multiplexers was related to
multi-controlled-NOT gates, such as
Toffoli. For instance, this was done for
the synthesis of ESOP circuits as well
as some special cases of ESOP, such
as Fixed Polarity Reed-Muller (FPRM)
and Kronecker Reed-Muller (KRM).
Very little has been published on opti-
mizing similar ternary-controlled forms
and circuits; a rare example is [28].
While some methods decompose ar-
bitrary unitary matrices to smaller
binary-controlled quantum multiplex-
ers [1, 2], only [22] covers the ternary-controlled case. In our paper, we are not
interested in this initial decomposition stage, nor are we interested in the specific
optimization of ternary counterparts of classical Reed-Muller-like forms. Rather, we
introduce a new concept of butterfly-like diagrams to optimize ternary-controlled
quantum multiplexers with arbitrary target single-qubit gates; this is in contrast
to multiplexers in previous work [14, 15], where multi-controlled, binary-controlled
gates (such as Toffoli) only control NOT gates as target.

The concept of a more general quantum multiplexer was first introduced by
Shende et. al. in [3], where they propose the quantum multiplexer circuit block
for usage in recursive decompositions of arbitrary unitary matrices. Other work
by Shende et. al. in [4] focused on optimization of two-qubit unitary operators,
but not on optimization of larger circuits such as quantum multiplexers. In [2],
Vartiainen et. al. demonstrate a method for optimization of arbitrary multi-qubit
gates, but do not provide a method specifically for optimization of the less general
multi-qubit multiplexers. Tucci developed the Qubiter program in [1] to decompose
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arbitrary unitary matrices to series of quantum multiplexers, but a later work by
Hutsell [9] has shown that the output from Qubiter is highly non-minimal, leaving
plenty of space for optimization. There are high degrees of similarities between
lookup-tables (LUTs) and multiplexers, but the multiplexers introduced by us have
arbitrary target gates, in contrast with LUTs, which only have NOTs as target gates.
Work by Soeken et. al. [14, 15] mapped networks of LUTs to reversible gates; our
work creates large LUTs, controlling arbitrary targets, to realize the entire function.
Work by Gidney [13] reduced the cost of adder circuits by reducing the number of
T Gates required, while our method allows for arbitrary target gates, although we
did not use T Gates.

Yet another application of quantum multiplexers is not to control inverters only,
but rather gates that are square roots of NOTs, such as V and V+, and also other
higher-order roots of NOT and their Hermitians [17, 18, 20, 21, 22, 23, 24, 25, 26,
27]. The papers in this area create circuits with multi-controlled gates that can be
optimized. For example, a Controlled-V gate composed with a Controlled-V+ gate
creates a two-qubit Identity, which means that these two gates can be removed from
the circuit.

In this paper, we propose a method that will take into account all the aforemen-
tioned applications of quantum multiplexers.

2.2 Multivalued logic

A q-valued quantum dit is a qudit with q different basis states, which we will call
|0〉 , |1〉 , . . . , |q − 1〉. A set of m q-valued qudits can occupy qm different basis states,
and their collective state is a superposition of these basis states.

The single qudit gates for q-valued logic can be represented by arbitrary per-
mutative q × q matrices. For instance, in ternary logic, these quantum gates are
(+1), (+2), (01), (02), and (12), where:

(+1) =

0 0 1
1 0 0
0 1 0

 ; (+2) =

0 1 0
0 0 1
1 0 0


The other ternary gates are not important to our paper. Cyclic inverters are an
important type of multivalued gates. These are generalizations of the NOT for
multi valued quantum logic. We define the cyclic inverter rk as the gate that takes
a qubit in the state |a〉 to the state |a + k〉, where the addition is taken modulo q.
In the case of ternary, (+1) and (+2) are both cyclic inverters.
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2.3 Binary quantum multiplexers and controlled gates

For didactic reasons, let us first define the binary quantum multiplexer. A binary
quantum multiplexer is a block of gates that will, based on a set of binary-valued
control variables (qubits), use a Boolean product of the control literals to select an
arbitrary unitary binary-valued quantum function (called a target function, or a
target gate) that acts on a single target variable (qubit): see Figure 1. Note that
in the diagram, the black circles denote âĂĲcontrolsâĂİ. That is, if the signal
on the line is |1〉 when it reaches the control, then the control is enabled. If all
controls of a particular target gate are enabled, then the gate will activate. Thus,
when taken together, the controls of a target function form its control function
(the previously mentioned product of control literals). For example, the function F0
is controlled by both c̄1 and c̄2, which means that the control function is c̄1c̄2, and
the target function is active if and only if c1 = 0 and c2 = 0. Target functions can
be any single-qubit quantum functions. Thus, they are represented by unitary 2× 2
matrices.

Suppose we have a multiplexer M with m control variables, which we can denote
as c1, c2, . . . , cm. We can define any of the possible input states to the multiplexer in
terms of the values on the control variables: the input state i can be represented as
a binary string, where each digit ik is equal to the value of its corresponding control
variable ck. For example, if we have c1, c2, c3 which have values of 0, 1, 1 respectively,
i would be 011 = 3. Note that there are only 2m possible input states since we are
assuming that the control variables are always in basis quantum states. However,
we can be dealing with superposition states in the target qubit.

For the multiplexer M , let Fi be the arbitrary single-qubit quantum function
that will act on the target variable if and only if the input state is i: we can say
that the function Fi is a target (controlled) function that is controlled by i.
For example, for the function F3 = F011 controlled by the three variables c1, c2, c3,
we say that F3 is controlled by i = 3 = 011; this is equivalent to saying that F3 is
controlled by the Boolean product c̄1c2c3 since only the input state i = 3 satisfies this
control function. It is clear that any (binary) multiplexer with m control variables
can be represented as 2m controlled functions, one for each input state. Thus, we
can uniquely represent the multiplexer as an ordered set:

M = {F0, F1, . . . , F2m−1}C

where C is the ordered set of control variables. We choose to represent the
multiplexer in this fashion for mathematical convenience in the âĂĲProofâĂİ section
below.

Note that a multiplexer of this form is a direct realization of a Minterm Sum of
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Products form: each minterm of the control variables controls its own target func-
tion. For example, for a multiplexer with two control variables c1, c2, the minterms of
the controls c̄1c̄2, c̄1c2, c1c̄2, c1c2 each appear once and each control a separate func-
tion F0, F1, F2, F3, respectively (once again, see Figure 1). Henceforth, this form of
multiplexer that mirrors the Minterm Sum of Products form will be referred to as
the standard form.

2.4 Multivalued quantum multiplexers

Figure 2: An arbitrary ternary stan-
dard form quantum multiplexer with two
ternary-valued controls.

A multivalued quantum multiplexer is
a gate that will, based on a set of q-
valued control variables, use a classical
q-valued function to select an arbitrary
binary target function that acts on a set
of target variables. These target func-
tions can be any quantum functions,
acting on any number of target vari-
ables. Thus, they are represented by
unitary matrices, and the entire quan-
tum multiplexer can be represented by
a âĂĲunitary block matrixâĂİ. Figure
2 gives a general ternary multiplexer.

Suppose we have a multiplexer M with m q-valued control variables, which
we will denote c1, c2, . . . , cm. We can represent an input state as a base q string
of numbers, where each digit ik is equal to the value of its corresponding control
variable ck. Note that there are only qm possible inputs (input states) since we are
assuming that the control variables are always in basis states. However, we will be
dealing with superposition states of the target variables.

For the multiplexer M , let Fi be the unitary matrix that will act on the target
variables if the input is i. Also, let C be the set of control variables. Then we can
uniquely represent the multiplexer as an ordered set:

M = {F0, F1, . . . , Fqm−1}C

In this paper, the multivalued multiplexers that we predominately deal with will
have ternary-valued control variables and binary-valued target functions.
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3 Fixed polarity quantum forms (FPQF) and Kronecker
quantum forms (KQF)

3.1 Introduction to multivalued FPQF and KQF

Figure 3: Circuit diagrams for binary mul-
tiplexers. The left diagram shows a stan-
dard form multiplexer; the right diagram
shows a FPQF multiplexer in polarity 11.

One may be familiar with the Fixed
Polarity Reed Muller form (FPRM), a
polarized, canonical form of a binary
Boolean expression where each vari-
able appears solely in either its comple-
mented (negative polarity) or uncom-
plemented (positive polarity) form. For
a function on m variables, there are 2m

different FPRM forms since each of the
variables can either be complemented
or uncomplemented (there are 2 choices for each of the m variables). FPRM is re-
lated to Positive Davio and Negative Davio expansions. There is also the Kronecker
Reed Muller form (KRM), a canonical form of a binary Boolean expression where
each variable appears in either positive, negative, or mixed polarity. There are 3
choices (positive, negative, or mixed) for each variable, so there are 3m different
KRMs for a function on m variables. FPRM is a subset of KRM since KRM is
related to Positive Davio and Negative Davio expansions, along with the Shannon
expansion. If one is familiar with these Boolean forms, it may be easier to understand
our new forms, but knowledge of FPRM and KRM is not critical to understanding
the new concepts that we introduce.

For quantum multiplexers, given a set of control variables, c1, c2, . . . , cm, we can
introduce the concept of polarity in a similar fashion as it appears in FPRM or
KRM. We can do so by creating a multiplexer where each control variable is in a
fixed polarity (either positive or negative polarity); such a multiplexer will henceforth
be referred to as a Fixed Polarity Quantum Form (FPQF). Similarly, we can
create a multiplexer where control variables are in either fixed or mixed polarity;
such a multiplexer will be referred to as a Kronecker Quantum Form (KQF).
When a multivalued variable is in fixed polarity, the control that is activated by
a check against |0〉 becomes implicit and is no longer present; for example, for a
ternary control variable in fixed polarity, controls will only be placed to check for
the values of |1〉 and |2〉, but not |0〉 (|0〉 will be implicit, and any target functions that
originally relied on a check against |0〉 will instead disregard that control variable
completely). Figure 3 contrasts the binary-valued standard form with an FPQF
form. If we wish to create an FPQF or KQF multiplexer that realizes exactly the
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same functions as a particular standard form multiplexer for all input states while
fixing the polarities of some (or all) of the control variables, it is clear that the
functions [G0, G1, . . . , Gqm−1] of this FPQF or KQF multiplexer will be different
from the functions [F0, F1, . . . , Fqm−1] of the standard form multiplexer since the
control functions have changed: see Figure 5 for an example of the way that the
control functions change. In an FPQF multiplexer, it is possible for multiple target
functions to be active for a given input state; for example, for the input state 10 to
a binary multiplexer, both G0 and G2 are active.

Henceforth, we will denote target functions as Fi if they are the target functions
in a standard form multiplexer, and we will denote them as Gi if they are the target
functions of an FPQF/KQF multiplexer. First, it is useful to formally define how
the target functions of a FPQF multiplexer Gi operate.

Figure 4: Circuit diagrams for ternary
multiplexers. The upper diagram shows
a standard form multiplexer; the lower di-
agram shows a FPQF multiplexer in po-
larity 22. (polarity 22 means that both
variables are in polarity 2)

In an FPQF multiplexer, Gi is a
unitary matrix acting on the target
variable and controlled by all input
states j such that jk = ik if ik 6= 0
(where jk and ik are the kth digits of
j and i, respectively). That is, Gi is
only controlled by the control variable
ck if the kth digit of i is not 0. We have
previously mentioned that multiple tar-
get functions may be active for a par-
ticular input state; conversely, a target
function can be activated by multiple
input states. For example, on a binary-
valued multiplexer with two controls,
G1 = G01 is controlled by both the in-
put states 01 and 11. That is, G1 is
activated if the input state is 01 or 11.
Similar to our notation for a standard
form multiplexer, we denote an FPQF multiplexer as M = {G0, G1, . . . , Gqm−1}C,p

where p is the polarity of the FPQF multiplexer as represented by a base q string.
For q-valued logic, there are qm possible FPQF forms for a given set of functions
Fi, so we need a fast way to compute all possible polarities of [G0, G1, . . . , Gqm−1]
from [F0, F1, . . . , Fqm−1]. Note that the circuit structures for all FPQF polarities
are highly similar; while Figure 4 shows an FPQF multiplexer in polarity 22, other
polarities can be realized simply by applying a cyclic inverter to the beginnings of
control lines that we would like to place in an alternative polarity, then modifying
the target functions Gi.

12
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In a KQF multiplexer, whether or not a gate Gi is active is dependent on the
polarity. If the kth variable is in a fixed polarity, Gi is controlled by all input states
j such that jk = ik if ik 6= 0. That is, unless ik is 0, Gi is controlled by the control
variable ck. If the kth variable is in a mixed polarity, Gi is controlled by all input
states j such that jk = ik. Alternate fixed polarities can be realized simply by
applying a cyclic inverter to the beginnings of controls lines that we would like to
place in a different polarity, then modifying the target functions Gi accordingly.
Figure 4 gives two example circuit diagrams for ternary multiplexers. The notation
for controls is slightly different for ternary multiplexers. The control circles contain
numbers. If the signal of the line is equal to the contained number when it reaches
the control, then the control is enabled; otherwise, it is not.

Figure 5: Mathematical relationships be-
tween the target functions of a binary
standard form multiplexer Fi and the tar-
get functions of an FPQF multiplexer Gi

in polarity 11. This example case in-
volves multiplexers with two control vari-
ables (and thus four target functions).

There is a clear mathematical rela-
tionship between the target functions
Fi of the standard form multiplexer and
the target functions Gi of the FPQF
multiplexer. Below we provide an ex-
ample of how this relationship can be
calculated.

Remember that a gate Fi or Gi is
active if all its controls are enabled.
Consider an example with two binary
control variables, where we want the
standard form and FPQF multiplexers
to realize exactly the same target func-
tions for all different control inputs.
For input state 00, F0 is active in the standard form multiplexer and G0 is ac-
tive in the FPQF multiplexer. Thus, F0 = G0. For input state 01, F1 is active in
the standard form multiplexer, but two gates are active in the FPQF multiplexer:
G0, G1 (Figure 3 may help to visualize this). Thus, F1 = G1 · G0, and therefore
G1 = F1 ·G0

−1 = F1 · F0
−1. Note that the · operation is the matrix multiplication

operation applied on the target functions when represented as unitary matrices.
Similar observations can be made for input states 10 and 11; see Figure 5 for all the
mathematical formulas that we derive. We have shown that the functions Gi can be
directly calculated from the functions Fi for an example with two controls. Next, we
demonstrate how to compose a transformation that can perform these calculations,
which will allow us to generalize the process of calculating Gi from Fi.

For a given multiplexer M = {F0, F1, . . . , Fqm−1}C and a given KQF form
M = {G0, G1, . . . , Gqm−1}C,p, define Tm,p as the transformation over U , the space of
valid m×m unitary matrices, that takes the vector [F0, F1, . . . , Fqm−1] to the vector
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[G0, G1, . . . , Gqm−1] for a certain polarity p (remember that polarities of a multi-
plexer are represented as base q strings, where the ith digit denotes the polarity for
the ith control variable, in the same way as we previously introduced for FPRM
polarities in [29]). We now provide a formal explanation for decomposing Tm,p into
a series of simpler transformations, which we can then represent with KQF butterfly
diagrams similar to how it is used in classical KRM butterflies [5, 10].

3.2 The Kronecker product

Figure 6: Example of Kronecker product
(⊗) on two 2× 2 matrices

Figure 6 illustrates the concept of the
Kronecker product. The Kronecker
product can be applied to any two ma-
trices, each of arbitrary dimension.

3.3 Formal explanation of
multivalued butterfly
decomposition

This explanation demonstrates that we
are able to decompose the transforma-
tion that takes a standard form multiplexer to a KQF multiplexer into a series of
butterfly diagrams.

We first discuss a notation used in the following proof. Let us define an arbi-
trary transformation B, which acts on a subset of all the functions of a multiplexer.
We define the butterfly transformation Bn,i as a transformation that acts on a set
of qn functions represented as unitary matrices, [F0, F1, . . . , Fqn−1], such that every
set of functions Fr0, Fr1, . . . , where the base q representations of r0, r1, . . . differ
only at the ith digit, is acted upon by the transformation B. For example, if B
takes [a, b] to [b, a · b] for a binary case, then B2,1 is the transformation performed
on 22 = 4 functions, where B is acted upon pairs of functions whose binary rep-
resentations of index only differ at the 1st digit. The transformation B2,1 would
take the functions [F0, F1, F2, F3] to [F1, F0 · F1, F3, F2 · F3]. This is because B was
applied to the pairs [F0, F1] = [F00, F01] and [F2, F3] = [F10, F11] since the indices
of each pair of functions differ only at the 1st digit. As an additional example,
if B takes [a, b, c] to [b, c · b−1, a · b−1] for a ternary case, then B2,1 is the trans-
formation performed on 32 = 9 functions, where B is acted upon the triplets of
functions whose ternary representations of index only differ at the 1st digit. The
transformation B2,1 would take the functions [F0, F1, F2, F3, F4, F5, F6, F7, F8] to
[F1, F2 · F1

−1, F0 · F1
−1, F4, F5 · F4

−1, F3 · F4
−1, F7, F8 · F7

−1, F6 · F7
−1] since B is

14



Polarity approach to multivalued quantum multiplexer optimization

applied to the triplets [F0, F1, F2], [F3, F4, F5], and [F6, F7, F8]. See Figure 9 for an
illustration of this particular ternary transformation. Note that Bn,i is the algebraic
representation of a column of butterflies on qn objects where each butterfly kernel
is stretched by qi; thus, we call Bn,i a butterfly transformation. A more in-depth
explanation of FPRM and KRM butterflies (which are useful, but not essential, to
understand our FPQF and KQF butterflies) can be found in [29]. We now show
how a KQF transformation for q-valued controls can be decomposed to butterfly
transformations: A0, A1, . . . , Aq−1.

First, we define the transformations Ap, for 0 ≤ p ≤ q − 1. We define Ap as
a degree q transformation that takes [a0, a1, . . . , aq−1] to [b0, b1, . . . , bq−1] such that
b0 = ap+1 and bk = ak+p+1 · ap+1

−1 for k 6= 0. For example, for ternary (degree
q = 3), A0 would take [a0, a1, a2] to [b0, b1, b2] = [a1, a2 · a1

−1, a0 · a1
−1], A1 would

take [a0, a1, a2] to [b0, b1, b2] = [a2, a0 · a2
−1, a1 · a2

−1], and A2 would take [a0, a1, a2]
to [b0, b1, b2] = [a0, a1 ·a0

−1, a2 ·a0
−1]. We claim that Tm,p = Apm⊗Apm−1⊗. . .⊗Ap1 .

We prove this by induction on m.

3.3.1 Base Case: We first establish the claim for m = 1

We start by calculating T1,p. We have M = {F0, F1, . . . , Fq−1}C = {G0, G1, . . . ,
Gq−1}C,p. In order for this to be true, the multiplexers must output the same
values for all inputs of the control variable. By definition, for the multiplexer
{G0, G1, . . . , Gq−1}C,p, the function Gk for k 6= 0 is selected by k and the polar-
ity shifts the control variable by q−1−p, so Gk is selected when the control variable
is (k−(q−1−p))mod q = (k+p+1−q)modq = k+p+1. Thus, we have G0 = Fp+1.
For k 6= 0, we have Gk · G0 = Fk+p+1, so Gk = Fk+p+1 · G0

−1 = Fk+p+1 · Fp+1
−1.

Thus, the transformation Ap over U takes [F0, F1, . . . , Fq−1] to [G0, G1, . . . , Gq−1].
Thus, we have T1,p = Ap as desired.

3.3.2 Induction: We establish the claim for m, assuming it holds for
m− 1.

For the induction step it suffices to show that Tm,p = Tm−1,p′ ⊗ T1,p1 , where p′ =
p− p1qm−1 (p′ is the polarity p without its leading digit, p1).

Given a multiplexer M = {F0, F1, . . . , Fqm−1}C with control variables c1, c2, . . . ,
cm and t target variables, it can be reinterpreted as a multiplexer with one control
variable, c1, and t+m−1 target variables. If we let C ′ be the set of control variables
without c1, then M = {M0, M1, . . . , Mq−1}c1 , where each of Mk is a multiplexer
of m − 1 control variables that can be expressed as Mk = {Fkqm−1 , Fkqm−1+1, . . . ,
F(k+1)qm−1−1}′C . See Figure 7 for an illustration of this.
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Figure 7: Example illustration of the rein-
terpretation of a multiplexer as a series of
smaller multiplexers.

Now, in order to show that Tm,p =
Tm−1,p′ ⊗ T1,p1 , we will realize M in
two steps. First, we implement M as
a multiplexer with one control variable
in KQF form. That is:

M = {M0
′, M1

′, . . . , M ′
q−1}c1,p1

We will then show that each of Mk
′

is a multiplexer, so we will decompose
each of the Mk

′ into KQF form with
polarity p′.

Figure 8: Butterfly kernels for binary
FPQF and KQF butterfly diagrams. Only
the first two types of kernels are present
in FPQF diagrams.

First, we show that each of Mk
′

is a multiplexer. Note that the com-
position of two multiplexers is an-
other multiplexer with target func-
tions that are the composition of the
original multiplexersâĂŹ target func-
tions. And the inverse of a multi-
plexer is another multiplexer whose tar-
get functions are the inverses of the
original multiplexerâĂŹs target func-
tions. Thus, since the transforma-
tion T1,p1 takes [M0, M1, . . . , Mq−1] to [M0

′, M1
′, . . . , Mq−1

′] each of the functions
Mk
′ is a multiplexer. Now, let Mk

′ = {Fkqm−1
′, Fkqm−1+1

′, . . . , F(k+1)qm−1−1
′}C′

Then, we can easily compute [F0
′, F1

′, . . . , Fqm−1
′] from [F0, F1, . . . , Fqm−1]. Once

again, because of the way multiplexers compose, the transformation T1,p1

also takes [Fk, Fk+qm−1 , Fk+2qm−1 , . . . , Fk+(q−1)qm−1 ] to [F ′k, F ′k+qm−1 , F ′k+2qm−1 , . . . ,

F ′k+(q−1)qm−1 ] for all 0 ≤ k ≤ qm−1 − 1.
Finally, we can realize M = {G0, G1, . . . , Gqm−1}C,p from M = {M ′

0, M ′
1, . . . ,

M ′
q−1}c1,p1 by representing each of the multiplexers M ′

k in KQF form. Thus, we
have:

M ′
k = {F ′kqm−1 , F ′kqm−1+1, . . . , F ′(k+1)qm−1−1}C′

= {Gkqm−1 , Gkqm−1+1, . . . , G(k+1)qm−1−1}C′,p′

16



Polarity approach to multivalued quantum multiplexer optimization

Figure 9: Butterfly kernels for
ternary FPQF and KQF butter-
fly diagrams. Only the first three
types of kernels are present in
FPQF diagrams.

Thus, the transformation Tm−1,p′ takes
[F ′kqm−1 , F ′kqm−1+1, . . . , F ′(k+1)qm−1−1] to [Gkqm−1

, Gkqm−1+1, . . . , G(k+1)qm−1−1]. Thus, by the
definition of the Kronecker product, Tm−1,p′ ⊗
T1,p1 takes [F0, F1, . . . , Fqm−1] to [G0, G1, . . . ,
Gqm−1] and we have Tm,p = Tm−1,p′ ⊗ T1,p1 as
desired.

4 Discussion of the program
used to compute FPQF and
KQFs

4.1 FPQF and KQF butterflies

Here, we introduce the FPQF and KQF but-
terfly kernels that are used in FPQF and KQF
butterflies. These are illustrated in Figure 8 for
binary, and Figure 9 for ternary.

They are based on the previously given ex-
planation for composition. In Figure 9, the four
butterflies correspond to A0, A1, and A2, along with a special case A3 for mixed
polarity in KQF, which is a transformation that has no effect on the target functions.
The appearance of the binary kernels in Figure 8 may seem arbitrary, but they are
in fact based on the appearance of butterfly kernels for FPRM butterfly diagrams
and other Fast Fourier Transform butterflies .

The construction of FPQF butterfly diagrams is similar to the construction of
FPRM butterfly diagrams, as discussed in [29]. However, note that the inputs to
the diagram are no longer the minterms of a Boolean function, and the outputs
are no longer spectral coefficients; rather, the inputs are the target functions Fi

of the standard form multiplexer, and the outputs are the target functions Gi of
the polarized multiplexer. See Figure 10 for an example of the FPQF butterfly
diagrams for all polarities of FPQF on a binary multiplexer with three controls .
Figure 11 gives an example FPQF butterfly diagram for a single polarity of a ternary
multiplexer with two controls , and Figure 12 gives further examples. Figure 12 also
demonstrates that the target functions have no effect on the shape of the butterfly
kernels; only the polarity has an effect.
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Figure 11: Sample KQF butterfly diagram for a standard form multiplexer with two
ternary control variables. This butterfly converts a ternary standard form multi-
plexer into a KQF form with polarity 00.
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Figure 12: Two arbitrary examples of butterfly diagrams. These diagrams are for
multiplexers with ternary-input, ternary-output; in contrast, our program functions
for ternary-input, binary-output.

19



Jin, Saffat, Morgan, and Perkowski

4.2 Quantum cost of FPQF/KQF polarities

Figure 10: All polarities of FPQF but-
terflies for a standard form binary multi-
plexer with three control variables. Note
that the sequences of functions Gi gener-
ated by each FPQF butterfly are different.

Having developed a method to calcu-
late all possible FPQF and KQF forms
of a multivalued standard form mul-
tiplexer (that is, by constructing and
evaluating all possible FPQF or KQF
butterfly diagrams), we now introduce
how the cost of quantum multiplex-
ers will be calculated for our ternary
multiplexer program. Similar to [8],
we define the cost of a quantum cir-
cuit in terms of the number of uncon-
trolled and single-controlled gates re-
quired to realize it; we can find this
by summing the costs of all the con-
trolled gates in the multiplexer circuit.
The concept is being discussed with
regards to ternary-valued multiplexers;
however, formulations for the costs of
multi-controlled ternary gates do not
exist yet. Thus, we approximate cost
by using currently existing costs for
multi-controlled binary gates. Maslov
et.al. [7] has previously established the
following cost functions for binary Toffoli gates with m controls (see Table 1). We
will assume that we are able to use a single Ancilla bit for our entire circuit, so
the equation 32m− 96 is relevant to us. For reasons that are not important to the
understanding of this paper (and which are discussed in [8]), it is therefore theoret-
ically possible to create any multi-controlled gate through the same process as the
construction of a Toffoli: see Lemma 6.1 in [8]. Thus, the cost functions that have
been developed by [8] for Toffoli gates can also be applied to formulate the cost of
multi-controlled binary gates of any type.

For approximation, we will assume that the cost of multi-controlled ternary gates
with n controls is directly proportional to the cost of multi-controlled binary gates
with n controls. Additionally, we assume that the cost of cyclic inverters is similar to
the cost of a binary inverter; in other words, we assume that(+1) and (+2) gates cost
roughly as much as a NOT gate. We base this assumption on results from previous
work by Wang et. al. [28], where multi-controlled Toffoli-like gates were realized
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Multi-controlled gate size (m + 1) Number of Ancilla bits Gate Cost
1 0 1
2 0 1
3 0 5
4 0 13
5 0 29
6 1 52
7 1 84
8 1 116
9 1 154
10 1 192

(m + 1) > 10 1 32m− 96

Table 1: Costs of multi-controlled gates with m controls. These gates use one or
fewer Ancilla bits, which can be reused. Reproduced from [8]

for ternary logic with costs that were proportional to multi-controlled binary Toffoli
gates.

4.3 Algorithm of the program

Figure 13: A standard form binary mul-
tiplexer (left) and its FPQF equivalent in
polarity 11 (right). Note the drastic sim-
plification of the circuit.

A program was written to automate
the process of generating KQF butter-
flies and calculating costs of the result-
ing circuits. The program is written in
Java because of its strong Object Ori-
ented Programming (OOP) support;
the code uses many classes (such as
Multiplexer, Function, and more), and
thus, JavaâĂŹs strong support of OOP
is a large benefit. When executed, the

program asks for the target functions of the standard form multiplexer in the form
of unitary matrices as input (which are inputted in ascending natural order based
off the index of the controls), and outputs the least expensive polarity of FPQF.

Alternatively, the program can also parse the names of common functions (e.g.
âĂĲPXâĂİ for Pauli X, or âĂĲHâĂİ for Hadamard) to unitary matrices. The
program uses a Depth First Search algorithm to generate all possible KQF forms
by recursively applying layers of butterflies; that is, for each layer of butterflies,

21



Jin, Saffat, Morgan, and Perkowski

the program first applies a layer of polarity 0 butterflies to the multiplexer and
recursively calls itself; after the call returns, the program backtracks by one layer
and applies a layer of polarity 1 butterflies to the multiplexer, then recursively calls
itself, etc. Butterflies are implemented as a series of matrix transformations, as seen
in Figure 11. The polarity 0 butterfly receives three unitary matrices, a, b, and c. It
then outputs c as the first output, a·c−1 as the second output, and b·c−1 as the third
output. These outputs can be encoded as the combinations of matrix inversions and
matrix multiplications. The other butterfly polarities can be coded similarly. Once
all KQF forms are generated, cost can be calculated as previously discussed: for each
controlled function, determine the number of controls n needed for that function. If
n < 10, the program references the costs derived by [8]. Otherwise, the code uses
the equation 32m− 96 to determine the cost of the gate.

Figure 14: The butterfly diagram used to
convert the standard form multiplexer to
FPQF polarity 11 in Figure 13.

By finding the costs of all KQF polarities, the program can exhaustively deter-
mine which polarities are the cheapest, thus finding the exact minimum cost for an
FPQF or KQF realization of a multiplexer.

5 Analysis and results

An additional program was written (also in Java) to generate large random test cases;
initially, the test multiplexers were created by randomly pulling target functions
from a set of common quantum functions: Pauli Rotations, Hadamard, NOT, V,
V Hermitian, and Identity. A set of well-known quantum circuit cases were also
created manually, such as a binary case that involves Identity, V, V, and NOT, as
seen in Figure 13. The corresponding butterfly diagram for the case in Figure 13 can
be found in Figure 14. Another example is provided in Figure 15 of a standard form
ternary multiplexer and its drastically cheaper FPQF counterpart. On these well-
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Number of
Controls

Original
Cost

Best
Polarity

Worst Po-
larity

Average
Polarity

Best Cost
Reduction

3 322 148 322 210 54%
4 2100 1007 2100 1276 52%
5 11713 5248 11713 6727 55%
6 52785 24722 52785 31798 53%
7 219258 108331 219258 138359 51%
8 874045 442109 874045 562295 49%
8 869705 442573 869705 562481 49%
8 870170 442521 870170 562351 49%

Table 2: Data on ternary cases generated with Paulis, Hadamards, NOTs, V/V
Hermitians, and Identities. The program generated all KQF polarities.

known cases, the program correctly generated all polarities, including the optimal
solutions.

5.1 Randomly generated cases: Pauli X/Y/Z, Hadamard and H
Hermitian, NOT, V and V Hermitian, Identity

Cases with more variables take exponentially longer time to run, so it became
impractical to run the program on test cases with more than 9 control variables .
In the best case, the KQF forms that were generated had costs as little as 50% of the
cost of the standard form multiplexer, and the cost difference between the average
polarity and the optimal polarity was significant: see Table 2 for results on several
examples. Note that the best case cost reduction decreases slightly as the size of
the multiplexer increases, which suggests that the method becomes less effective as
multiplexer size increases.

It is interesting to note that the optimal polarities (not shown in the tables) were
all FPQF forms; Shannon expansions were not a part of the optimal solution for
any of the test cases. This suggests that for this type of randomly generated data,
having a Shannon expansion does not improve the cost of the result.

5.2 Randomly generated cases: NOT, V and V Hermitian

This method was also tested on quantum multiplexers randomly generated from
a much smaller pool of target gates: NOT, V, and V Hermitian only. We are
interested in using this set of gates as targets because there are several algorithms
to synthesize quantum reversible circuits with this set of gates [8]. In addition, this
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Number of
Controls

Original
Cost

Best
Polarity

Worst Po-
larity

Average
Polarity

Best Cost
Reduction

3 378 133 378 180 65%
4 2430 737 2430 1029 70%
5 12879 3710 12879 5210 71%
6 61965 17260 61965 24438 72%
7 255879 77828 255879 105731 70%
8 1016955 324077 1016955 428118 68%
8 1016955 325687 1016955 427870 68%
8 1016955 326620 1016955 427705 68%
9 3798819 1277506 3798819 1649713 66%
9 3798819 1280032 3798819 1649279 66%

Table 3: Data on ternary cases generated with NOTs, Vs, and V Hermitians. The
program generated all KQF polarities.

set of gates is very conducive for canceling to Identity, so we expect best case cost
reduction to be even greater for this set of data. It can be seen in Table 3 that the
cost reduction is significantly greater (at 60-70%), and as before, the significant cost
difference between the best case and average case costs means that it is meaningful
to search for the best polarity instead of only using a random one. Once again,
the effectiveness of the method decreased as size increased. Note once more that
randomly generated functions are the most difficult cases.

Once more, the KQF method did not offer improvements on the best case cost;
all of the optimal butterflies were FPQF forms.

6 Conclusion

In this paper, we first define standard form multiplexers and two new types of mul-
tiplexer forms: FPQF and KQF forms. Next, we provide a method to convert
a standard form multiplexer to an FPQF or KQF form using a polarity transfor-
mation, and we give a proof for decomposing these transformations into smaller
transformations that can be represented with butterfly diagrams in an analogous
way to well-known FPRM and KRM butterfly diagrams. Note that unlike work
on ESOP minimization [6, 11, 12, 19], our work is an extension of Reed Muller to
quantum circuits where the target gate can be any arbitrary target function instead
of only NOT, like in classical Reed Muller. Then, we test this method for randomly
generated standard form ternary multiplexers that use target functions from a small
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pool of common quantum functions, finding that cost reductions are as high as 70%,
but decrease as size (and equivalently, complexity) of the standard multiplexer in-
creases. We also find that there are significant cost differences between the best case
polarity and the average case polarity, which justify the long runtime required to
exhaustively apply Depth First Search to find the maximally optimized KQF form.
Additionally, we discovered that on randomly generated data, KQF offers no benefit
on best case cost reduction (the best case answers are always FPQF forms) while
having a longer run time than a program that searched among FPQF forms only.
This suggests that on randomly generated multiplexers, there is no benefit to using
KQF; only FPQF should be used to optimize these types of multiplexers.

Figure 15: A standard form ternary multi-
plexer and its FPQF equivalent in polarity
20.

The FPQF and KQF methods can
also be extended to any multivalued
quantum multiplexers, not just ternary
or binary: it is expected that the ef-
fectiveness and cost reductions of these
methods will be very high for multi-
valued logics with q > 3 as well.
However, the time costs of the cur-
rent algorithm are exponentially great
due to the use of complete search,
which suggests low scalability potential
for circuits with high variable counts .
Furthermore, the steadily decreasing
trend of effectiveness of this method on
larger randomly generated multiplexers
suggests that more research should be
conducted to find alternate methods for
optimizing larger standard form multi-
plexers since it appears that the FPQF
method will not net many savings at extremely high sizes. This is consistent with
findings in [11] and [12], which suggest that Reed Muller-based methods, such as
FPRM, KRM, and even GRM [12], lead to non-minimal results when minimizing
Boolean functions that contain minterms with high Hamming distances. Finally, all
our methods can be extended to incompletely specified functions, generalizing the
method from [16].
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