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Abstract

Nitrogen dioxide (NO2) is a pollutant of interest for study both because of

its controlling role in the oxidant capacity of the atmosphere and the health

risks it poses. Concerns about the health effects of NO2 and its role in

forming deleterious atmospheric species have made it desirable to have low-

cost, sensitive ambient measurements of NO2. A continuous-wave laser-diode

laser-induced fluorescence (LIF) system for NO2 was developed here which

operates at ambient pressure, thereby eliminating the need for an expensive

pumping system. The current prototype system has achieved sensitivity sev-

eral orders of magnitude beyond previous efforts at ambient pressure (limit

of detection of 2 ppb, 60 s averaging time). Ambient measurements of NO2

were made in Portland, Oregon using both the standard NO2 chemilumines-

cence method and the LIF instrument and showed good agreement (r2 =

0.92).

In addition, investigations into surface mediated chemistry involving ox-

ides of nitrogen (namely, NOy) have stimulated new inquiry into potential

heterogeneous sources of NO2 as well as challenged the stability of perma-

nent sinks for NO2. The possibility that surface mediated chemistry plays a

significant role in NOy chemistry in urban air has for the past few decades

received considerable attention. The AP-LIF NO2 instrument is uniquely

suited to measure surface chemistry under near ambient conditions.

The so called ‘renoxification’ reaction of gaseous NO with surface bound

HNO3 yielding NO2 (2HNO3(surface) + NO −→ 3NO2 + H2O(surface)) was
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suggested as a potentially important source of NO2 which also degraded the

stability of nitric acid as a sink of active oxides of nitrogen. Yet, there is

disagreement in the literature as to the importance of this reaction. The

disagreement stems from differing measurements of the rate for the renoxifi-

cation reaction. Because there are differences in experimental setups no one

research group has studied the renoxification reaction under ambient condi-

tions, i.e., at moderate concentrations of NOy and in a static cell held at

1 atm. In this work, the production of NO2 was measured using a novel

AP-LIF. This setup made it possible to measure the rate of production of

NO2 due to the heterogeneous reaction of NO with HNO3 under ambient

conditions. Under these conditions it was found that renoxification due to

gas-phase NO on surface HNO3 is not a significant source of NO2. However,

this study did show the importance of water vapor in the renoxification of

surface HNO3.
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Chapter 1

INTRODUCTION

Nitrogen oxides have a ubiquitous role in the chemistry of the clean and

polluted atmosphere. Although many direct and indirect measurement tech-

niques exist, low-pressure laser-induced fluorescence (LIF) has the advantage

of being both a direct and sensitive measure of NO2. Laser diodes have dra-

matically reduced the cost and energy requirements of NO2 LIF, yet the

low-pressure regime of these systems adds significant cost, energy use, and

bulk via their pumping systems. This investigation examines the use of an

Atmospheric Pressure Laser Induced Fluorimeter (AP-LIF), developed here,

as a sensitive and direct method of measuring low levels of NO2 in the tropo-

sphere as well as its application to in situ chemical kinetics studies involving

NO2 at atmospheric pressures and concentrations.

1.1 Importance of Atmospheric Oxides of Nitrogen

The focus of much of tropospheric air chemistry is on oxides of nitrogen and

volatile organic compounds (VOCs) as well as the secondary pollutants which
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are formed through photochemical reactions (Atkinson, 2000). The principal

forms of chemically active nitrogen oxides in the troposphere are nitric oxide

(NO) and nitrogen dioxide (NO2). The sum concentration in the atmosphere

of these two compounds is called NOx. In the troposphere NOx compounds

are important in controlling the concentration of the two primary day-time

oxidants, hydroxyl radical (OH) and ozone (O3), as well as the night-time

oxidant, nitrate radical (NO3)(Figure 1.1).

Nitrogen oxides are released into the atmosphere through natural and

anthropogenic means. The largest source of nitrogen oxides is the release

of nitrous oxide (N2O) via microbial processes in soil and water. In the

troposphere N2O is not chemically reactive but it is an important agent in

controlling stratospheric ozone. N2O absorbs wavelength shorter than 290

nm found in the stratosphere and dissociates to form N2 and electronically

excited O(1D):

N2O + hν −→ N2 + O(1D) (R 1.1)

.

This reaction is followed by reaction R1.2 which is primarily responsible

for the production of reactive oxides of nitrogen in the stratosphere.

O(1D) + N2O −→ 2 NO (R1.2)

The most significant nitrogen oxide species emitted anthropogenically is

nitric oxide (NO), which is produced when N2 and O2 react during high-

2



Figure 1.1: Nitrogen oxide reaction scheme.
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temperature combustion processes. Smaller amounts of NO2 are also pro-

duced when NO is further oxidized. On a global scale, anthropogenic emis-

sions make up 63% (33 TgN/yr) of the total inventoried sources for NOx,

biomass burning making up another 14 % (7.1 TgN/yr), with the reman-

ing sources of NOx due to microbial activity in soils and production from

lightening discharges (IPCC, 2001).

Photochemical oxidation of natural and anthropogenic emissions is the

means by which the atmosphere maintains a near constant atmospheric com-

position. Understanding changes to this balance requires a better under-

standing of homogeneous and heterogeneous chemistry of the atmosphere as

well as sound measurements with high spatial and temporal accuracy.

The hydroxyl radical is the chief agent in preventing the buildup of hydro-

carbons (RH) and other pollutants in the troposphere. Hydrocarbon removal

is initiated by oxidation with OH:

RH + OH −→ R + H2O. (R 1.3)

The oxidized hydrocarbon, in the presence of sunlight and further reac-

tion with OH, is either removed from the atmosphere as a soluble organic

compound by wet or dry deposition or completely oxidized to CO2. One

source of the hydroxyl radical in the polluted atmosphere is the photolysis

of nitrous acid (HONO):

HONO + hν −→ OH + NO(300nm<λ<405 nm). (R 1.4)
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Reaction R1.4 happens very fast during the day so that significant con-

centrations are not developed. Yet, the build up of HONO during the evening

and subsequent photolysis in the morning has been reported to be a ma-

jor source of OH in the polluted environment (Alicke et al., 2002; Aumont

et al., 2003; Finlayson-Pitts, 2000; Harrison et al., 1996; Kotamarthi et al.,

2001; Lammel and Cape, 1996; Perner and Platt, 1979; Platt and Perner,

1980; Schiller et al., 2001; Stutz et al., 2002; Winer and Biermann, 1994; ?).

Sources of HONO are still not completely understood. Discrepancies between

field measurements and models based on known gas chemistry vary up to an

order of magnitude (Acker et al., 2005, 2006a,b; He et al., 2006; Kleffmann

et al., 2005). In addition to direct emissions, heterogeneous pathways are the

most likely source of HONO in the boundary layer (Finlayson-Pitts, 2000).

Because of its role in forming OH, understanding the sources and sinks of

HONO is critical for understanding the polluted atmosphere.

Another critical atmospheric oxidant is ozone which initiates the oxida-

tion of some hydrocarbons (particularly alkenes) and also oxidizes NO2 to

form the NO3 radical (see Figure 1.1). In the clean troposphere, photolysis

of ozone in the presence of water vapor is a major source of OH radicals,

reaction R1.5 followed by reaction R1.6.

O3 + hν(λ<310 nm) −→ O(1D) (R 1.5)

O(1D) + H2O −→ 2 HO (R1.6)
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Elevated levels of ozone can be detrimental to human and vegetative health

because ozone destroys human and plant cell tissue (Bennett et al., 1975;

Reich et al., 1990).

In the troposphere, ozone is formed via the photolysis of NO2 in oxygen.

Reaction R1.7 followed by reaction R1.8.

NO2 + hν −→ NO + O (R1.7)

O + O2
M−→ O3 + M (R1.8)

O3 can then react with NO to regenerate NO2 and O2 (reaction R1.9):

NO + O3 −→ NO2 + O2. (R 1.9)

This null cycle is known as the Photostationary State (PSS); signifi-

cant side reactions can cause an imbalance in the PSS resulting in a net

production (reactions R 1.10 and R1.11) or loss of ozone, e.g., ozone +

alkene −→ products.

RO2 + NO −→ RO + NO2 (R 1.10)

HO2 + NO −→ HO + NO2 (R 1.11)

NO2 can also be further oxidized by O3 to form the nitrate radical:

6



O3 + NO2 −→ NO3 (R 1.12)

.

NO3 strongly absorbs throughout the visible region and is quickly pho-

tolyzed during the day (reactions R 1.13 and R1.14); with a lifetime of just

5 seconds for overhead sun (Orlando et al., 1993). In the nighttime however

NO3 can build up to significant mixing ratios.

NO3 reacts quickly with unsaturated hydrocarbons to form peroxy radi-

cals (RO2 and HO2). RO2 reacts with NO to form NO2 and jump start the

morning ozone formation in polluted environments (Salisbury et al., 2001).

NO3 radical reaction with some hydrocarbons has also been found to be

an efficient pathway for the formation of condensible compounds leading to

formation of secondary organic aerosols (Hoffmann et al., 1997).

NO3 + hν −→ NO2 + O (R1.13)

NO3 + hν −→ NO + O2 (R 1.14)

Although most of the anthropogenic sources of NOx are found within

the urban setting, formation and long range transport of organic nitrates

(e.g. R 1.15 and R1.16) are responsible for considerable increase of reactive

nitrogen oxides in otherwise unpolluted regions (Singh et al., 1998).

RO2 + NO −→ RONO2 (R 1.15)
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RO2 + NO2 −→ ROONO2 (R 1.16)

Peroxyacetyl nitrate, CH3C(O)OONO2, also known as PAN is the most

abundant organic nitrate in the troposphere and contributes significantly to

the total tropospheric abundance of reactive oxides of nitrogen. Because it is

quite stable at low temperatures PAN is an important means of transporting

NOx over large distances. At higher temperatures and through photolysis

PAN can reproduce NOx species far from the original source. By convention

NOy represents the sum of all reactive nitrogen-containing species, e.g., (NOy

= NOx + HNO3 + PAN + HONO + NO3 + N2O5 + organic nitrates +...).

After being transported up to hundreds of kilometers NOy species can be

converted back to NOx by the following reactions (Hov and Larssen, 1984;

Moxim, 1990).

N2O5 + hν −→ NO2 + NO3 (R 1.17)

RO2NO2 + M −→ RO2 + NO2 + M (R1.18)

NO3 + hν −→ NO2 + O (R1.19)

NO3 + hν −→ NO + O2 (R 1.20)

If these species are transported from polluted areas and subsequently

converted to NOx they can lead to formation of tropospheric ozone in remote

regions.

Many reactions of nitrogen oxides that are slow in the gas phase occur
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at significant rates on surfaces. Current understanding of magnitude and

mechanisms of heterogeneous reactions in the troposphere are limited, due

in part to the wide range of surfaces available for this chemistry. As an

example, while the sources of HONO are still not completely understood,

in addition to direct emissions, heterogeneous pathways are the most likely

source of HONO in the boundary layer (Finlayson-Pitts, 2000). Because of its

importance as a daytime source of HO (Winer and Biermann, 1994; Alicke

et al., 2002; Aumont et al., 2003; Harrison et al., 1996; Perner and Platt,

1979; Platt and Perner, 1980; Lammel and Cape, 1996; Finlayson-Pitts, 2000;

Schiller et al., 2001; Kotamarthi et al., 2001; Alicke et al., 2002; Stutz et al.,

2002), much research has been focused on finding plausible heterogeneous

sources for HONO (Fairbrother et al., 1997; George et al., 2005; Handley

et al., 2007; Ramazan et al., 2006; Saliba et al., 2000). The heterogeneous

hydrolysis of NO2 which forms HONO has been cited in laboratory studies

as a significant source of HONO (Alicke et al., 2003):

2 NO2 + H2O −→ HONO + HNO3(ads) · (R 1.21)

Hydrolysis of NO2 (reaction R1.21) alone is not sufficient in explaining the

observed night-time build up of HONO in polluted air-masses (Moussiopoulos

et al., 2000). Thus other heterogeneous pathways are expected to be found.

Nitrogen oxides are readily converted to nitric acid via the reaction with

HO:
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HO + NO2 + M −→ HNO3 + M (R1.22)

HNO3 is removed form the atmosphere through wet and dry surface depo-

sition of (Logan, 1983). In this process HO is removed from the atmosphere

which reduces the consumption of hydrocarbons. If the nitric acid remains

on the surface then this reaction contributes to the permanent removal of

oxides of nitrogen from the atmosphere and is a significant step in terminat-

ing the ozone formation cycle. However, recent evidence has pointed to the

possibility of HNO3 being reduced back to photochemically active nitrogen

(e.g. NO, NO2, HONO) via surface chemistry in the so called ‘renoxification’

process (Ramazan et al., 2006). One such possible reaction is the produc-

tion of HONO (R1.23) and gaseous NO2 when NO interacts with HNO3 on

surfaces suggesting that surface bound HNO3 is not a permanent sink for

nitrogen oxides.

HNO3(ads) + NO −→ HONO(ads) + NO2 (R 1.23)

There is general disagreement in the literature about the importance of

reaction R 1.23 (Kleffmann et al., 2004; Rivera-Figueroa et al., 2003; Saliba

et al., 2001). Even so other heterogeneous pathways may exist which form

HONO and other reactive forms of nitrogen oxides (Ammann et al., 1998;

George et al., 2005; Gutzwiller et al., 2002). Work by Diamond and co-

workers (Diamond et al., 2000; Gingrich and Diamond, 2001; Hodge et al.,
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2003; Liu et al., 2003) has shown that organic layers exists on the surface

of most impervious materials, which may react with gas-phase oxidants. It

is critical to determine the importance of heterogeneous chemistry of nitro-

gen oxides, especially in the boundary layer where many surfaces exist, e.g.,

suspended particles, soils, plants, snow and building materials.

Nitrogen oxides also play a role in aerosol formation and composition. As

an example, sea salt particles containing sodium chloride (NaCl) can interact

with oxides of nitrogen such as nitric acid:

NaCl(s) + HNO3(g) −→ HCl(g) + NaNO3(s) · (R 1.24)

In this reaction chloride is replaced with nitrate. This initial reaction does not

have a significant affect on the particle morphology(Finlayson-Pitts, 2000),

but if exposed to water vapor and subsequently dried the surface nitrate can

reorganize and may be responsible for small particles in the marine boundary

layer (Mouri et al., 1995). NOy also has a role in the formation of secondary

aerosol formation(SOA). Especially in urban settings where gas-phase organ-

ics are exposed to large amounts of oxidants even relatively simple organics

from biogenic emissions have amble opportunity to form multifunctional or-

ganics. Some of these have sufficiently low vapor pressures that they will

exist in the particle phase. As an abundant source of oxidation in these

settings NOy has a significant role in SOA formation. Although this work

does not focus on such reactions, gas-phase/ particle partitioning and the

11



formation of organic aerosols through NOy oxidation is something that the

AP-LIF instrumentation can be suited for (see chapter 5).

1.2 Health effects of NOx

Nitrogen dioxide is a pollutant of interest for study both because of its con-

trolling role in the oxidant capacity of the atmosphere and the health risks

it poses, especially for vulnerable populations. NO2 acts as a strong oxidant

and may lead to toxicity in the lungs leading to injury and death. Extremely

high-dose exposure (as in building fires) can result in pulmonary edema and

diffuse lung injury. One time-series analysis demonstrated an association be-

tween NO2 concentrations in metropolitan Los Angeles and cardiovascular

and pulmonary hospital admissions (Linn et al., 2000). The most significant

associations between NO2 in outdoor air pollution and asthma and lower

respiratory disease tend to occur in children (Gillespie-Bennett et al., 2011).

Studies have demonstrated that mild asthmatics’ early and late allergic re-

sponses to mite allergens were exacerbated following exposure to relatively

high concentrations of NO2 (0.2–0.5 ppm), and that NO2 triggered an inflam-

matory reaction by human nasal mucosal cells in an organ culture (Bascom

et al., 1996; Tunnicliffe et al., 1994). Some studies found stronger associa-

tions between exposure and symptoms (e.g., chest tightness and dyspnea on

exertion) during the cumulative lags following exposure than immediately

upon exposure (Anderson et al., 1998; Schierhorn et al., 1999). It is not

only high concentrations of NO2 which cause significant health effects. Re-

12



search indicates that levels of NO2 typically found in urban environments

(20-100 ppb) may cause increased bronchial reactivity in some asthmatics,

decreased lung function in patients with chronic obstructive pulmonary dis-

ease and increased risk of respiratory infections, especially in young children

(Gillespie-Bennett et al., 2011).

In developed countries up to 90% of people’s time may be spent indoors

(Tunnicliffe et al., 1994). This coupled with the fact that indoor concentra-

tions of NO2, resulting from the use of gas for cooking or space and water

heating, are often higher than outdoor concentrations (Dennekamp et al.,

2001) exacerbates the issue for many vunerable populations. NO2 concentra-

tions were 4 to 7 times higher in homes with gas stove, with an average NO2

concentration below the national standard of 100 µg m−3, but short-term

peaks exceeded 1100 µg m−3 (Weinberger et al., 2001).

1.3 Measurement Techniques for NO2 and NOy

While no counties in the US are currently in non-attainment for NO2, the

US EPA has recently announced sweeping new regulations aimed at reduc-

ing NOx levels by 2015 (Environmental Protection Agency, 2005). Therefore,

accurately measuring the concentration of NO2, as mandated under the 1990

Clean Air Act Amendments, Section 182 (c)(1) (Demerjian, 2000), will be-

come increasingly important. In addition to the regulatory purposes of mon-

itoring, ambient measurements are also used by air quality models(AQM) for

characterization and prediction of future high ozone episodes. Tropospheric
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measurements of NO2 are now commonplace and typically accomplished us-

ing techniques based on NO determination. NOx chemiluminescence (CL-

NOx), for example, measures NO2 by first reducing NO2 to NO through a

catalytic or photolytic process (Kelly et al., 1980; Ridley et al., 1988). Nitric

oxide is then measured by reaction with excess ozone or luminol and measur-

ing the chemiluminescence emitted by excited NO2 formed. The technique is

simple and relatively reliable. The detection sensitivity benefits from small

background signal levels because no light source is necessary to initiate the

fluorescence.

Commercial chemiluminescence devices exist which have high sensitivity

(sub-ppb averaged over several minutes), but the accuracy of these mea-

surements is limited due to interferences. The most significant issue with

standard CL-NOx monitors is their inability to directly and specifically de-

tect NO2. It has been well established that other gas phase NOy compounds

are converted by molybdenum oxide catalysts to NO and therefore can be re-

ported as NO2 by a standard CL-NOx monitor (Williams et al., 1998; Winer

et al., 1974). Positive interferences in the measurement of NO2 may lead to

the false classification of an urban area as being in non-attainment. Photol-

ysis can be used to more specifically convert NO2 to NO, which avoids using

a metal catalyst while still employing the chemiluminescence reaction (Gao

et al., 1994). In photolytic chemiluminescence (P-CL) a powerful UV light

source (100 W Hg arc lamp or high power LEDs) is used to decompose NO2

into NO and an oxygen atom. Ozone is then reacted with this NO to form
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excited NO2 which emits light as it is deactivated. In P-CL long residence

times in the detection cell can lead to unwanted thermal or surface mediated

decomposition of other NOy species. Conversion efficiency is the primary

concern for the P-CL; to achieve maximum sensitivity the residence time

and the photon flux can be increased to ensure that NO2 is photolyzed (Kley

and McFarland, 1980). Long residence times in the detection cell can increase

unwanted thermal or surface mediated decomposition of NOy species. For

this reason powerful light sources are used; these light source create excessive

heat and steps must be taken to keep the system cool (Pollack et al., 2010).

An artifact of P-CL instrumentation is the surface deposition of nitrogen

oxide such as HNO3 which will decompose and yield a signal even when a

clean air sample is present. A ‘clean air’ step is required to account for this

background (Kley and McFarland, 1980).

NO2 can also be measured directly using optical absorption techniques.

Differential Optical Absorption Spectroscopy (DOAS) is a direct measure-

ment technique but requires long spatial averaging (Platt and Perner, 1980).

The requirement of a long path length is obviated by using cavity ring down

(CRD) (Osthoff et al., 2006), but a highly stable cavity is required for this

technique. The Tunable Infrared Laser Differential Absorption Spectroscopy

(TILDAS) technique for measuring NO2 employs a low volume, long path

length astigmatic Herriott multipass absorption cell (Macmanus et al., 1995)

with liquid nitrogen cooled laser infrared diodes and detectors (Li et al.,

2004). The laser line width is small compared to the width of the absorption
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feature and the laser frequency position is rapidly swept over an entire ab-

sorption feature of NO2. Courtillot et al. (2006) have developed an optical

feedback cavity-enhanced absorption spectrometer (OF-CEAS) operating in

the blue region of the visible spectrum (400 nm) where NO2 has large absorp-

tion cross sections. The technique relies on optical feedback from the cavity

to reduce the laser line width to well below the cavity-mode line width. In

this arrangement excitation of cavity resonance is optimal. Direct measure-

ments of NO2 down to the hundreds of ppt are possible with this technique.

A newer technique, Cavity Attenuated Phase Shift (CAPS) spectroscopy,

has shown the potential to provide accurate spectroscopic measurements of

NO2 (0.3 ppb detection limit in <10 s) at a reasonable cost (Kebabian et al.,

2005).

Laser Induced Fluorescence (LIF) is also a direct measurement technique

for NO2. LIF has a relatively simple experimental arrangement and excellent

sensitivity at fast averaging intervals(15 pptv at 10 sec) (Thornton et al.,

2000). LIF techniques for ambient NO2 measurements typically employ the

Fluorescence Assay with Gas-Expansion (FAGE) technique (Thornton et al.,

2000; Cleary et al., 2002; Fong and Brune, 1997; Taketani et al., 2007; George

and O’Brien, 1991). In this technique analyte is drawn into a low pressure

(∼1 torr) cell using high volume vacuum pumps, the analyte is subsequently

radiated with laser light. Because of its relatively long radiative lifetime at

low pressures (∼100 µ s at 35 mtorr and 585 nm excitation) the fluorescence

signal can be recorded sometime after the laser has been shut-off, allowing for
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a high signal to noise ratio. Although laser diodes have dramatically reduced

the cost and energy requirements of NO2 LIF (Taketani et al., 2007), the

low-pressure regime of these systems adds significant cost, energy use, and

bulk via their pumping systems.

Several techniques have been used to investigate NO2 surface reactions.

Finlayson-Pitts and co-workers in studying NO2 hydrolysis used a reactor

equipped with a multi-pass Fourier transform infrared (FTIR) white-cell

spectrometer which was cable of measuring NO, NO2, and HONO, but had

a very high limit of detection (20 ppm) (Finlayson-Pitts et al., 2003; Ra-

mazan et al., 2006). George et al. (2005) used a flow tube reactor to investi-

gate the photochemical increase in NO2 uptake on solid organic compounds.

In this investigation a mass spectrometer was used to measure the gases

at high concentrations while a long pass absorption photometer (LOPAP)

and chemiluminescence monitor were used at more atmospherically relevant

concentrations of NOx and HONO. Teklemariam and Sparks (2006) used a

chemiluminescence analyzer to measure NO2 leaf fluxes. One common draw-

back for all of these methods is that the sample must be drawn into a detec-

tion chamber. Under some circumstances it is not possible to draw a sample

without greatly disturbing the system under study. In recent years there has

been much interest in methods of detecting minor species, such as NO2, in

combustion processes. In order to do so, an in situ NO2 detection method is

needed which can detect low concentrations in an environment at or above

1 atm. Mann et al. (1996) compared two techniques with these capabili-
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ties, degenerate four wave mixing (DFWM) and LIF. DFWM is a non-linear

wave mixing technique which allows for a very high signal-to-noise(SNR) ra-

tio (Mann et al., 1996; Smith et al., 1995), and has the distinct advantage

that the SNR goes up with pressure. Although DFWM has a much better

SNR than LIF at atmospheric pressure (Mann et al., 1996), LIF presents

a much easier setup. Both techniques can utilize charged-coupled devices

(CCD) in order to produce images of NO2 concentration profiles. By op-

erating at atmospheric pressure the AP-LIF system can be used to study

many systems in situ for which low pressure is not suited, e.g., flame and

combustion chemistry, surface uptake and release from snow-pack and leafs

as well as many other surface reactions. Also, by operating at atmospheric

pressure the need for a bulky and costly vacuum pump would be obviated;

in this case the development of a sensitive and direct NO2 technique which

is compact and low cost would be beneficial for making ambient measure-

ments. A NO2-LIF system can also be utilized as a ‘back-end’ detector of

an NOy ambient monitor. With the removal of the expensive high-capacity

pump, separate cells for each constituent of NOy can be employed, thereby

eliminating the complexity and potential chemical artifacts associated with

switching between NOy modes (Day et al., 2002).
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Chapter 2

DEVELOPMENT OF AP-LIF FOR NO2

2.1 Laser Induced Fluorescence of NO2

Laser-induced fluorescence (LIF) is the emission from atoms or molecules

which have been excited by laser radiation. Because of this, LIF has the

advantage of being both a direct and selective measure of an analyte. When

a molecule resonantly absorbs a photon of a given wavelength(λ) from a laser

beam, it is put into an excited energy state. In this state the molecule is

unstable and will either decay spontaneously, giving off photons (IF(λF)),

or may lose its energy to a quenching molecule in a non-radiative energy

transfer. Some of the laser light (IL(λ)) will be scattered by bath molecules

and will contribute to the background (IS(λ)). In a typical setup, the flu-

orescence signal is measured at 90◦ to a collimated laser beam (see Figure

2.1), and both fluorescence photons (or signal) and scattered source photons

(or noise) will be detected. Much consideration is thus spent in maximizing

the signal detected whilst reducing the noise so that a higher signal-to-noise

(SNR) ratio may be achieved. As a first step in noise reduction, the fluores-
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cence signal is typically collected at 90◦ degree to the laser beam with the

laser polarized parallel to the plane of the detector. According to Rayleigh

scattering theory scattered photons arriving at the detector will be minimal

under this arrangement, Figure 2.2.

Lasers are excellent excitation sources for doing spectroscopy on molecules.

Because of their narrow spectral line-widths and high energy density it is pos-

sible to excite individual electronic transitions of the target molecule without

adding too much spurious energy to the system. Also, the small focal volume

achievable by the focused laser beam (λ4 ) results in high spatial resolution of

the laser-particle interaction volume allowing the possibility of imaging.

The LIF technique generates a signal which is detected above a back-

ground which, under the best circumstances, is nearly zero and single-photon

detection is possible. As in absorption techniques, LIF also takes advantage

of the unique absorption spectrum of a molecule to achieve analyte selectiv-

ity. In this regard, LIF is also more advantageous because although some

molecules may share molecular transitions, fewer molecules will subsequently

fluoresce. Thus, LIF is a highly selective technique. Still, if sufficient pho-

tons are to be absorbed by the target species, a wavelength should be chosen

which corresponds to a large absorption cross section for the target species

and small ones for other non-fluorescing molecules which may be present.

In its simplest form, LIF for a two level system involves two steps. First,

the molecule is resonantly stimulated by the absorption of a photon with

energy hν. Secondly, the molecule is either radiatively or non-radiatively
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Figure 2.1: Basic Laser Induced Fluorescence setup. Fluorescence emission
(IF) from molecules in a gas mixture, after absorption of laser light IL. Scat-
tered laser light IS also arrives at the detector and is a source of noise.
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Figure 2.2: Intensity due to Rayleigh scattering in air(STP) versus scattering
angle for 410 nm light, perpendicularly (dashed) and parallel (solid) polarized
light to the plane of the detector.
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deactivated. In the radiative deactivation the excited molecule will spon-

taneously emit a photon with energy equal to or less than the excitation

photon. In the nonradiative quenching process the excited molecule loses its

energy to ‘bath’ molecules. These two processes are given respectively by:

X∗ kr→ X + hν (2.1)

X∗ +M
kq→ X +M, (2.2)

where kr (molecules s−1) is the the radiative rate constant for fluorescence,

kq (molecules s−1) is the quenching rate constant of the emitting state and

M is the concentration of the quencher. The effect of the two processes is

that the excited molecule has a finite radiative lifetime, τ , given by:

τ = 1
(kr + kqM) . (2.3)

The radiative lifetime determines how much of the potential fluorescence

signal is quenched by bath molecules and therefore does not fluoresce. The

remainder of the excited molecules will fluoresce giving rise to the expression

for fluorescence yield of photons (FYP):

FY P = kr
(kr + kqM) ×X

∗ (2.4)

Because we are here dealing with gas-phase systems, pressure and con-

centration of bath molecules are directly proportional. Figure 2.3 shows the
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pressure dependence of excited state lifetime and FYP for the system devel-

oped in chapter 3.

2.1.1 FAGE LIF technique

Under the condition that kqM << kr, which is the case when the pressure is

reduced, i.e., M is reduced, equation 2.4 can be rewritten as:

FYP = X∗. (2.5)

In this case the fluorescence yield is 100% of the excited molecules. By

reducing the pressure, the radiative lifetime of the excited molecule is made

longer, i.e., fluorescence will continue for a longer time. This increase is useful

when considering noise reduction. The gross signal arriving at the detector

is the sum of the analyte fluorescence and the background ‘noise’ due to

scattered excitation photons and ‘dark counts’ of the detector. The scattering

of excitation photons is due to Rayleigh scattering and by reflections off the

optical components and walls of the instrument. Rayleigh scattering is an

elastic process; meaning that when the light source is shut off, the presence

of scattered photons vanishes nearly instantaneously. Because of this, the

elongated lifetime of the fluorescence signal allows for temporal filtering, a

noise filtering technique unique to LIF. In order to achieve temporal filtering

the detector is either blocked or shut off during the pulsed excitation of

the target species. When the pulse is ended and the elastically scattered
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Figure 2.3: Fluorescence lifetime and yield (FYP) versus pressure. The
parameters used here are those for the system developed in chapter 3: the
excitation wavelength (λ = 406.3 nm), the detection solid angle (ω = 0.038),
the fraction of fluorescence in the PMT spectral window (F = 0.7), the
transmission of the optics (0.8), the path length (l=1 cm), the absorption
cross section (σ = 6 x 1019 cm2 molecule−1), the radiative rate constant
(kr = 1

τ0
= 2.6 x 104 s−1), and the quenching constant(Q = 6 x 1011 cm3

molecule−1 s1).
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excitation photons are gone, the detector is turned on and subsequently only

the fluorescence photons are detected. Temporal filtering can only work if

the fluorescence lifetime of the target species is several times longer than the

elctronic gates achievable with the system. For this reason the analyte is

typically sampled into a moderate vaccuum (∼ 1 torr) where the radiative

lieftime is elongated. This technique is known as Fluorescence Assay by Gas

Expansion (FAGE) (George and O’Brien, 1991; Hard et al., 1984). In this

case the SNR is theoretically infinite, although imperfections in the setup

cause this to not be the case. A second and useful effect of operating at

lower pressure is that Rayleigh scattering, which is proportional to pressure,

is reduced. This is important since in any ‘real’ application of FAGE, the

laser cannot be shut off immediately, and so it is inevitable that some noise

will be present. In the case of reduced Rayleigh scattering the noise is also

reduced. Several research groups have successfully implemented LIF for in

situ atmospheric measurements of NO2 using the FAGE technique which

utilizes the relatively long radiative lifetime of NO2 at low pressures (∼100

µs at 35 mtorr and 585 nm excitation) and have achieved excellent sensitivity

at short averaging times.

2.2 Atmospheric Pressure LIF

Operating LIF at low pressure is not always desirable or economical. Al-

though laser diodes have dramatically reduced the cost and energy require-

ments of FAGE systems (Taketani et al., 2007), the low-pressure regime of

26



these systems adds significant cost, energy use, and bulk via their pump-

ing systems. For some systems under study a low pressure environment is

not possible, e.g., combustion and flame studies (Barnes and Kircher, 1978;

Mann et al., 1996), studying biological systems (Teklemariam and Sparks,

2006) or kinetic experiments with direct comparison to atmospheric condi-

tions(Ramazan et al., 2006).

For most molecules an LIF system which operates at or above ambient

pressures will not be able to take advantage of the elongated lifetime (cf.

Figure 2.3) because the lifetime at ambient pressure is too short for readily

available electronics to perform temporal filtering. In this case, low limits

of detection are achieved primarily through a reduction of background noise

with optical long-pass filters and by increasing the signal using higher laser

powers (Barnes and Kircher, 1978; Mann et al., 1996; Parra and George,

2009). In the case of a continuous wave (CW) setup the limit of detection

(LOD) for the AP-LIF system can be calculated by:

LOD = nσ, (2.6)

where σ is the standard deviation of the signal(photons s−1) distribution,

and n is the number of standard deviations of separation from required at

given confidence interval (e.g. n = 3 for the 1% C.I.). The gross signal is

the sum of the fluorescence (S) and the background photons (B). When the

noise of the gross signal is described by a Poisson distribution, as in the case
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of photon counting schemes typically used for LIF, the noise (σ) associated

with the signal is the sqaure root of the gross signal:

σ =
√
S + 2B. (2.7)

To make theoretical calculations of the LOD in terms of the lowest dis-

tinguishable concentration of analyte we can use the following equation for

the fluorescence signal rate:

SX = CX × EX × FY P, (2.8)

where CX is the collection efficiency of the detection system, EX is the ex-

citation rate, and FYP is the fluorescence yield. Under the high pressure

conditions condition that kqM >> kr in equation 2.4 it can be written as:

FY P = kr
kqMq)

×X∗. (2.9)

In this case case X∗ combines with M in the denominator as the mixing

ratio of excited molecules, with the result that the number of fluorescence

photons is independent of pressure (or quencher concentration) and is linearly

dependent on the mixing ratio of the excited target species (cf. Figure 2.3).

In this pressure regime the fluorescence yield is greatest although the fluo-

rescence lifetime is the shortest and Rayleigh scattering will also be greater.

The fluorescing molecule will emit photons uniformly in 4× π steradians
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of the sphere, but only a fraction of that light falls within the solid angle

of the collection optics and the spectral window of a typical detector. CX

represents the efficiency involved with collecting the fluorescence signal,

CX = Ω× F × T, (2.10)

where Ω is the solid angle intercepted by the collection optics for a typical

off-axis design, F is the fraction of fluorescence occurring within the spectral

window of the detector and T is the fraction of transmitted fluorescence

through the optics (lens and filters).

Ex represents the overlap of the laser line (ϕ) and the wavelength depen-

dent absorption cross section for the target molecule (σX). EX has units of

photons molecule−1s−1, and is expressed by:

EX =
∫
ϕ(ν)σX(ν, temp, pressure)dν, (2.11)

The SNR is proportional to the signal rate and inversely proportional to

the square root of σ:

SNR = S

σ
(2.12)

While both the signal and noise will increase linearly with laser power

(noise due to Rayleigh and wall scattering), because of σ increase, the overall

SNR for atmospheric pressure LIF system will increase with laser power.
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2.3 Application of AP-LIF to NO2

Nitrogen dioxide absorbs in the UV and visible portions of the electromag-

netic spectrum (Schneider et al., 1987), with largely a continuum absorption

spectrum(Figure 2.4). NO2 is also spectroscopically complex, leading to long

lifetimes(∼100 µs) for most fluorescence transitions (Donnelly and Kaufman,

1978). The zero-pressure fluorescence lifetime, τ , and the radiative rate con-

stant are reciprocal (equation 2.3 with M=0). Therefore a fluorescence tran-

sition with a shorter lifetime has a faster radiative rate constant and a greater

fluorescence yield (equation 2.9). Shorter transitions are not advantageous in

FAGE systems because of the difficulty in separating very short fluorescence

signal from instantaneous scattered signal.

The fluorescence lifetime was found to be in the range of 28 to 42 µs

for the 400-410 nm range (Sivakumaran et al., 2001a,b) as opposed to >80

µs for wavelengths used in other LIF instrumentation, thereby gaining a

factor of 2 in fluorescence yield by exciting in the blue. Furthermore, it is

advantageous to choose a wavelength further into the blue which allows more

of the red-shifted fluorescence to be within the spectral window of a typical

detector (200-900 nm). Table 2.1 shows a comparison of LIF instrumentation

including, the excitation wavelength, the operating pressure and the limit of

detection LOD. These systems, except those of Barnes and Kircher (1978),

Mann et al. (1996), and this study, all operate at pressures lower than 10

Torr.
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Figure 2.4: NO2 absorption spectrum.
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The analysis above indicates that the fluorescence yield is higher at at-

mospheric pressure, is pressure independent, and the yield is even higher for

transitions that have short lifetimes.

In order to reduce the background to make atmospheric pressure LIF

measurement possible optical filters are required. Emission of the excited

state is allowable to all lower lying energy states for the excited molecule,

this means that fluorescence will typically be broadband and to the side of

longer wavelengths (or redshifted) than that of the excitation source. For

this reason a long pass (LP) optical filter is used in front of the detector.
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Chapter 3

DESCRIPTION OF AP-LIF FOR AMBIENT NO2 MONITOR-

ING

3.1 Introduction

In order to make ambient measurements with less complexity and cost, a

continuous-wave laser-diode LIF-based approach for ambient measurements

of NO2 that operates at ambient pressure was developed (Parra and George,

2009). The current system has achieved sensitivity several orders of magni-

tude beyond previous efforts (Barnes and Kircher, 1978; Mann et al., 1996),

and with further equipment improvements it promises to be a sensitive,

portable, and relatively low-cost NO2 monitoring system. The use of high-

quality optical filters has facilitated low-concentration detection by providing

substantial discrimination against scattered laser photons without the use of

time-gated electronics, which add complexity and cost to the LIF instru-

mentation. This improvement allows operation at atmospheric pressure with

a low-cost diaphragm sampling pump. With improvements in the optical

train, it is expected that this system will easily achieve sub-parts-per-billion
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detection limits, making it suitable for ambient regulatory measurements of

NO2.

3.2 Description of Ambient Monitor

The instrumental design used for the AP-LIF is typical of LIF instrumenta-

tion.The AP-LIF cell is an anodized aluminum chamber consisting of a cubic

portion (4 x 4 x 4 cm) and two side arms (20 cm) ending with windows held

at Brewster’s angle (Figure 3.3). The overall length of the cell is thus 44 cm.

A 25 mm achromatic lens with anti-reflection coating and 30 mm focal length

(Edmund Optics, ACH 25 x 30 VIS-NIR) was used to collect and collimate

the fluorescence signal; the focus intersected the laser line.

Based on analysis presented in chapter 2 , the expected fluorescence sig-

nal is ∼40 counts s−1ppb−1 for this system. To achieve a LOD of 1 ppb

NO2 for a 60 s averaging time and a SNR =2, the background should be

less than 24,000 counts s−1. Background reduction (Sbg ≈ 10,000 counts s−1)

was achieved through the use of high-quality long-pass filters. The collimated

signal was passed through four long-pass filters with cut-on wavelengths at

440nm(Chroma Tech, HQ440LP) to reject scattered laser photons and trans-

mit fluorescence photons. These filters each achieve an optical density of 5

for wavelengths shorter than 431 nm and a transmittance greater than 90%

for wavelengths in the range of 448–900 nm (Figure 3.2). A second 25 mm

achromatic lens with anti-reflection coating and 30 mm focal was placed after

the long-pass filters and focused the signal onto the detector.
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Figure 3.1: AP-LIF detection cell: 1) long-pass optical filters 2) achromatic
focusing lenses 3)concave mirror 4) cell sidearms (not shown are optical baf-
fles and Brewster angled windows.)
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Figure 3.2: Transmission spectrum of Long Pass filters. Filters are from
Chroma Tech., HQ440LP
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An excitation laser beam was directed through the first window, down

the length of the chamber and exited through the second window. In order

to facilitate alignment of the laser beam and the detection focal volume (i.e.

the center of the chamber) two ‘steering’ mirrors were used prior to the laser

beam entering the first window (sFigure 3.1). The chamber was anodized

to minimize stray light from scattering into the detector and adding to the

background noise. Baffling was also added down the length of the side arms.

Upon exiting the chamber the laser beam was redirected by a third steering

mirror and captured in a 30 W ‘beam-dump’.

Fluorescence photons were detected by a photomultiplier tube (PMT)

with quantum efficiency above 10% to 900nm (Burle electron tubes, C31034).

The PMT was kept at -25◦ C in a thermoelectric cooler (EMI Gencom, FACT

50 MKIII). The signal from the PMT was picked up by a discriminator

(Phillips, Model 704) with a pulse-pair resolution of 3.3 ns. Pulses from the

discriminator were counted by a 100MHz counter (Tennelec,TC531). The

output of the counter was read by a digital input/output module (Measure-

ment Computing USB-DIO96/H) and then imported to a microcomputer

via the USB bus. Data acquisition software written in-house using LabView

simultaneously recorded photon rate and analog signals from the laser con-

trolling system, i.e., laser power, current, and temperature.

A temperature-and current-controlled 35mW continuous-wave GaN semi-

conductor laser diode centered on 405nm (Sanyo, DL 5146-152) was used for

the current design. The compact and relatively inexpensive laser diode is
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Figure 3.3: AP-LIF schematic: 1) laser source 2) laser beam dump 3) steering
mirrors 4) long-pass optical filters 5) achromatic focusing lenses 6) PMT
detector 7)concave mirror 8) cell sidearms (not shown are optical baffles and
Brewster angled windows.)
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capable of being tuned over the range of 395-415nm. Taketani et al. (2007)

also employed a GaN laser diode tuned to 410nm and using the FAGE-LIF

technique they were able to achieve a LOD of 390 ppt for a 60 s average

time. A greater SNR was achieved by tuning the diode to 406.3 nm, where

the absorption cross section of NO2 is ∼6 x 1019cm2molecule−1 (Sivakumaran

et al., 2001a,b) at ambient pressure and temperature. The typical lifetime

for a laser diode operating near room temperature is ∼100,000 h.

In the two faces orthogonal to the detector and laser beam there are 0.25

in. (0.63 cm) stainless steel gas ports (Swagelok) to which 0.25in(0.63 cm)

polytetrafluoroethylene tubing is connected for gas delivery and removal.

Ambient measurements were made by connecting a diaphragm pump (Ri-

etschel Thomas, Model 2107, capable of 46.1 lpm at 760 torr) to one of the

gas ports while gas was drawn through the second gas port from an ambient

roof-top intake manifold (Figure 3.4). Prior to entering the LIF chamber,

the sample was passed through a Teflon filter (SKC, 47mm) with a 2 µm

pore size to remove light-scattering particles. Background measurements

(ambient air minus NO2) were made by passing the sample through ferrous

sulfate (FeSO4) which reduces NO2 to NO. A digitally controlled Teflon valve

switched between ambient air and background.

Calibration of the AP-LIF instrument was performed for 0–350 ppb NO2

concentrations. A standard of 46 ± 5 %ppm NO2 in N2 (Matheson Tri-

Gas) was diluted with clean air using a multigas dilution system (Dasibi

Model 5008). Clean air was produced from compressed ambient air passed
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Figure 3.4: Schematic of ambient pressure LIF monitor and colocated Chemi-
luminescence monitor. For calibration the dilution system with NO2 standard
and zero air inputs is used to deliver various concentrations of NO2.When
monitoring ambient NO2 the digital valve is switched to deliver the air sample
through the FeSO4 filter for background measurements
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through a laboratory constructed Purafil/Drierite/activated charcoal/ molec-

ular sieve filtration pack. The resulting air is ozone free, NOx < 1 ppb, total

volatile hydrocarbons <1 ppb, dew point -0.6 ◦ C. Finally, the purified air is

passed through a FeSO4 cartridge in order to convert residual higher oxides

of nitrogen to nitric oxide. A collocated chemiluminescence NOx (CL-NOx)

(calibrated with NIST standard gases at the Oregon Department of Environ-

mental Quality), with a stated LOD of 0.4 ppb was used for calibrating the

AP-LIF instrument. Both instruments were allowed to stabilize at a given

concentration for at least 30 min before using the point for calibration. The

two methods are in good agreement (r2 = 0.998) as shown in Figure 3.5. The

slope of this plot is 16 ± 0.04 counts s−1 ppb−1, the standard error in y is

equivalent to 2.0 ppb and the intercept is equivalent to 0.4 ± 1.6 ppb NO2.

This sets the LOD for the AP-LIF at 2 ppb (1 min averaging time), and is the

lowest reported concentration LIF measurement of NO2 at atmospheric pres-

sure. Actual operating system parameters, such as actual optical collection

efficiency, filter transmission, and overlap of fluorescence to PMT quantum

efficiency, are likely to be the causes of the discrepancy between expected and

achieved sensitivities. These also provide a good starting place for improving

the sensitivity of the AP-LIF instrument, such as increasing the solid angle

(µ) collected by adding a curved mirror opposite of the collection lens.

For ambient measurements a chemiluminescence NOx analyzer (Thermo

Environ. Inc., Model 42c) and an ozone monitor (Daisibi Environ. Corp.,

Model 1003AH) sampled ambient air from the same manifold as the LIF
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Figure 3.5: Calibration of the LIF NO2 signal(counts s−1) against a standard
chemiluminescence analyzer (CL-NO2 parts per billion).
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instrument (Figure 3.4). When monitoring ambient NO2 the digital valve is

switched to deliver the air sample through the FeSO4 filter for background

measurements. Periodically, the AP-LIF system and CL-NOx were auto-

matically cross compared using a dilution system to deliver a fixed NO2

concentration followed by zero air. The data was collected by an analog-to-

digital converter (Measurement Computing, USB-1408FS) and imported to

the data acquisition software.

3.3 Analysis of Potential Interferences

A potential source of interference for LIF-NO2 systems is the photolysis of

ambient NO3 to NO2 during the time that it crosses the laser beam and

the subsequent excitation to fluorescence of the produced NO2 (George and

O’Brien, 1991). For wavelengths shorter than 585nm the quantum yield of

NO2 from this reaction is near unity. The absorption cross section of NO3

at 406.3nm is 0.2 x 10−19 cm2 molecule−1. Based on a numerical simulation

of the kinetics of photodissociation, laser excitation, and fluorescence, with

the flow rate and photon flux of this system the production of NO2 from

NO3 will be negligibly low even when [NO3] is orders of magnitude greater

than [NO2]. By operating in continuous-wave mode, this system has the

advantage of very low photon density, thereby significantly reducing the like-

lihood of two photon inferences. Other species which can photodissociate

to NO2 include HNO3, N2O5, HNO4, peroxyacyl nitrate, and ClNOx but,

with absorption cross sections 10-100,000 times smaller than that of NO2,
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these will not interfere significantly at concentrations typically found in the

atmosphere. The quenching rate constant for water is 6 times greater than

for air (Donnelly and Kaufman, 1978), resulting in a LIF signal reduction of

∼14% for 3% vol./vol. H2O (approximately 100% relative humidity at 298

K) (Taketani et al., 2007). Simultaneous measurement of relative humidity

and temperature can be used to correct for this when needed.

3.4 Ambient Measurements with AP-LIF

Ambient measurements of NO2, NO, and O3 were made 10 through 14 Febru-

ary 2009 at Science Building 2 on Portland State University’s campus (Port-

land, Oregon) at a 1 min average interval. Air was drawn through a 10m

long intake manifold (15 cm diameter) from the rooftop, approximately 40m

above street level (the top of the intake is 2 m above the roof surface). The

I-405 expressway runs 200m west and south of the building. The AP-LIF in-

strument, CL-NOx and ozone analyzers sampled from this manifold via 0.25

in. (0.63 cm) perfluoroalkoxy tubing. A Teflon filter with a pore size of 2 µm

(SKC, 47mm) was used in front of the AP-LIF sampling tube (the same as

the one integrated into the CL-NOx system). A background measurement

was made once every 30 min for 5 min by passing the sample through a filter

of FeSO4 to convert NO2 to NO. The ambient data is presented with a 1 min

averaging time for all instruments. Figure 3.6 shows the good agreement be-

tween the two NO2 methods (r2 = 0.92, slope = 0.98, intercept = 0.7 ppb).

It is notable that the relatively high frequency changes in NO2 levels are
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reproduced by both instruments. The wind direction during this period is

generally from the East with an average temperature of ∼5 ◦ C; these winds

originate from the Columbia River Gorge (Green et al., 2008). Nitrogen ox-

ide and ozone anti-correlation was evident during this period. The high NO

period on 12 February 2009 is attributable to the accumulation of NO emis-

sions into the airshed during a low ventilation period (high-pressure system

with very low wind speed). Since very little photochemistry was occurring

during the overcast days of this period, oxidation of NO to NO2 is limited to

ozone titration.

The use of high-quality optical filters has facilitated low-concentration de-

tection of NO2 using AP-LIF by providing substantial discrimination against

scattered laser photons without the use of time-gated electronics, which add

complexity and cost to the LIF instrumentation. This improvement al-

lows operation at atmospheric pressure with a low-cost diaphragm sampling

pump.

Chemiluminescence detection of NO2 has known and potentially signifi-

cant interferences. Yet, it is the most common method for in situ ambient

regulatory monitoring of NO2. LIF offers a direct and sensitive method for

ambient NO2, but current systems are complex and costly to operate. By

operating at higher pressures this system lowers the cost and complexity of

LIF for in situ ambient detection of NO2. This system can be utilized as a

‘back-end’ detector of an NOy ambient monitor. Since this NO2 system does

not require an expensive high-capacity pump, separate cells for each con-
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Figure 3.6: Ambient measurements of ozone, NO, CL-NO2, and AP-LIF NO2
made 10 through 14 February 2009 at the Portland State University campus
Science Building 2 near the I-405 expressway.
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stituent of NOy can be employed, thereby eliminating the complexity and

potential chemical artifacts associated with switching between NOy modes.

In summary, the AP-LIF instrument developed here for NO2 which may op-

erate at atmospheric pressure has a limit of detection of 2 ppb (SNR = 2)

with an averaging interval of 60 s. With improvements in the optical train,

it is expected that this system could achieve sub-parts-per-billion detection

limits, making it suitable for ambient measurements of NO2. Tuning of the

laser on and off the NO2 absorption peak will eliminate the need for FeSO4

for background measurements.
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Chapter 4

INVESTIGATION OF HETEROGENEOUS NOy CHEMISTRY

USING AP-LIF

4.1 Introduction

The possibility that surface mediated chemistry plays a significant role in

urban air chemistry has, for the past few decades, received considerable at-

tention (Fairbrother et al., 1997; Handley et al., 2007; Kinugawa et al., 2011;

Kotamarthi et al., 2001; Ramazan et al., 2004; Rivera-Figueroa et al., 2003;

Saliba et al., 2001). Heterogeneous reactions have been cited for the discrep-

ancies, up to an order of magnitude, between field measurements of nitrous

acid (HONO) in the boundary layer and the known formation and destruc-

tions paths of HONO (Acker et al., 2005, 2006a,b; He et al., 2006; Kleffmann

et al., 2005). While the sources of HONO are still not completely understood,

in addition to direct emissions, heterogeneous pathways are the most likely

source of HONO in the boundary layer (Finlayson-Pitts, 2000). Because of

its importance as a daytime source of HO much research has been focused on

finding plausible heterogeneous sources for HONO (Fairbrother et al., 1997;
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George et al., 2005; Handley et al., 2007; Saliba et al., 2000; Ramazan et al.,

2006). Up to 30 % of the boundary layer HO in the polluted environment

comes from photolysis of HONO (Alicke et al., 2002). Heterogeneous hydrol-

ysis of NO2 (reaction R4.1) is a significant pathway for HONO formation

(Finlayson-Pitts, 2000; Finlayson-Pitts et al., 2003; Lammel and Cape, 1996;

Ramazan et al., 2006).

2 NO2 + H2O −→ HONO + HNO3(ads) (R 4.1)

In this reaction nitrous acid is released in the gas phase while nitric acid

remains on the surface (Barney and Finlayson-Pitts, 2000; Goodman et al.,

1999). NO2 hydrolysis alone is not sufficient in explaining the observed night-

time build up of HONO in polluted air-masses, which is on the order of 10

ppb in polluted environments (Moussiopoulos et al., 2000). Other hetero-

geneous pathways have been cited as sources of HONO, such as reaction of

NO2 on suspended soot particles (Ammann et al., 1998) as well as the re-

action of NO2 with organics dissolved in aqueous solution (Gutzwiller et al.,

2002). A photoenhancement of HONO generation through NO2 hydrolysis

was reported by Akimoto et al. (1987). George et al. (2005) found that pho-

toenhanced conversion of NO2 on organic films to produce HONO exceeds

the rate of the dark reaction by an order of magnitude. Recent evidence has

pointed to the possibility of HNO3 being reduced back to photochemically

active nitrogen (e.g. NO, NO2, HONO) via surface chemistry (Ramazan
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et al., 2006; Rivera-Figueroa et al., 2003; Saliba et al., 2001).

The so called ‘renoxification’ of surface adsorbed HNO3 could play a sig-

nificant role in urban air chemistry because of the high portion of surfaces

available such as roadways, sidewalks, roofs, windows, etc. as well as high

concentrations of atmospheric particles. Handley et al. (2007) found the thin

films coating urban surfaces may be comprised of up to ∼7% nitrate and

∼10% organic compounds. Furthermore it was found that the existences of

loss processes other than wash-off are needed to account for the measured

resident lifetime of nitrate on these surfaces, pointing to heterogeneous chem-

istry (Handley et al., 2007).

The heterogeneous reaction of surface HNO3 with gas-phase NO to form

HONO(ads) and NO2 (reaction R 4.2) was found to be thermodynamically

favorable even though such a reaction in the gas phase is slow (Fairbrother

et al., 1997).

HNO3(ads) + NO −→ HONO(ads) + NO2 (R 4.2)

It has been suggested that reaction R 4.2 along with reaction R4.3 repre-

sent significant pathways for returning oxides of nitrogen into the boundary

layer (Ramazan et al., 2006; Rivera-Figueroa et al., 2003; Saliba et al., 2001).

HONO(ads) + HNO3(ads) −→ 2 NO2 + H2O (R4.3)

Renoxification of surface adsorbed HNO3 via reaction with NO (reaction
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R4.2) has been the subject of several studies (Kaiser and Wu, 1977; Kl-

effmann et al., 2004; McKinnon et al., 1979; Mochida and Finlayson-Pitts,

2000; Rivera-Figueroa et al., 2003; Saliba et al., 2001; Smith, 1947; Streit

et al., 1979; Svensson et al., 1987). It was reported that the reaction rate is

proportional to the concentrations of HNO3 and NO and to the surface-to-

volume ratio, demonstrating the heterogeneous nature of the reaction. Saliba

et al. (2001) reported that reaction depended on the amount of surface wa-

ter coverage and concluded that the reaction rate reached a maximum at

intermediate humidity levels corresponding to a surface water coverage of

approximately three monolayers.

Several researchers have made use of FTIR to study the kinetics of renox-

ification under static conditions (Mochida and Finlayson-Pitts, 2000; Rivera-

Figueroa et al., 2003; Saliba et al., 2001). FTIR is a desirable technique for

studying heterogeneous chemistry because chemical species can be measured

spectroscopically both on the surface and in the gas phase (Mochida and

Finlayson-Pitts, 2000). FTIR also operates at atmospheric pressure so reac-

tion can be studied at ambient pressure. One drawback of using FTIR to

study reactions R 4.2 and R4.3 is the high concentrations of NOy which must

be used because of the high limit of detection of FTIR (∼ 1 ppm) (Mochida

and Finlayson-Pitts, 2000; Rivera-Figueroa et al., 2003; Saliba et al., 2001).

For comparison the standard instrument used for ambient monitoring of

NO2 is the chemiluminescence analyzer with a typical limit of detection of

<0.5 ppb for a 60 second average interval. Chemiluminescence is not a direct
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measure of NO2 and other NOy under some circumstance are inadvertently

measured as NO2. suffer from interferences in studying reaction R 4.2 and

R4.3. Furthermore because chemiluminescence instruments use a detection

cell held at reduced pressure (<200 torr) chemical reactions cannot be stud-

ied in situ with chemiluminescence instrumentation, instead a flow through

apparatus must be used.

Kleffmann et al. (2004) using a flow through glass reactor and a chemilu-

minescence detector were able to use initial NO mixing ratios much closer to

ambient concentrations (0.5 - 10 ppm) and concluded that under these cir-

cumstances they cocnluded that reaction R4.2 is not a significant source of

NO2 in the atmosphere. Furthermore, the inclusion of reaction R4.2 in field

studies with low NO mixing ratios did not account for high [HONO]/[NO2]

ratio (Alicke et al., 2003; Soergel et al., 2011).

Hence, disagreement exists as to the importance of reaction R4.2 (Kleff-

mann et al., 2004; Rivera-Figueroa et al., 2003; Saliba et al., 2001). Knipping

and Dabdub (2002) demonstrated that the inclusion of the reaction R4.2 in

an airshed model of the South Coast Air Basin in southern California helped

to resolve the long standing discrepancies between model results and observa-

tions. Their results indicate that the inclusion of reaction R4.2 is important

in correctly predicting ozone concentrations. In certain regions inclusion of

this renoxification mechanism led to increases in ozone concentration as much

as 30 ppb or a 20% increase over the baseline model. Rivera-Figueroa et al.

(2003) found reaction R 4.2 to be of atmospheric importance, but because of
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their detection method, initial mixing ratios of NO in the range from 787-

5511 ppm were used. These concentrations are several orders of magnitude

greater than those expected in the atmosphere. Under low NOx conditions

reaction R4.2 was determined not to be of importance in laboratory experi-

ments (Kleffmann et al., 2004).

Because of the disagreement about this potentially important process and

the different experimental conditions under which the reactions were followed

it was deemed useful make new measurements reactions R 4.2 and R4.3 using

a novel experimental setup.

In this study experiments were conducted in a static borosilicate glass

reactor held at ambient pressure and relative humidities. The static reactor

was coupled to an atmospheric pressure laser induced fluorimeter(AP-LIF)

to detect gas-phase nitrogen dioxide. Laser induced fluorescence (LIF) is

a desirable technique for this study, because it is a direct measure of NO2

and therefore will not suffer interferences from the other NOy species. Also,

because of its operation at atmospheric pressure the AP-LIF is well suited

for studying gas-phase reaction which may have different kinetics at reduced

pressures. The AP-LIF instrument used here and described elsewhere was

developed as an ambient NO2 monitor (Parra and George, 2009) but was

reconfigured to work as a static cell reactor for studying reactions R 4.2 and

R4.3.

Briefly, the AP-LIF uses laser light from a 410nm, 100mW, continuous

wave laser diode to excite NO2 molecules. Excited state molecules, NO2*,
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lose energy through non-radiative quenching or by fluorescing. Fluorescence

light , proportional to [NO2], is collected, filtered against excitation source

photons, and subsequently detected by a photo multiplier tube (EMI, 9816)

which is held orthogonal to the laser beam.

4.2 Description of Static Cell Reactor

with coupled AP-LIF Detector

In order to study reactions R 4.2 and R4.3 the AP-LIF was coupled to 1 liter

spherical borosilicate glass bulb with a surface area of 483 cm2 (Figure 4.1).

The volume of the AP-LIF cell was 780 cc. The volume of the coupled system

was V=1.78 liters. The surface area of the glass reactor was 0.0483 m2.

The AP-LIF chamber walls were coated with halocarbon wax (Halocarbon

Products Inc. Series 1500) to prevent surface reactions from taking place

on the aluminum detection cell walls. The surface to volume ratio for the

coupled system was S/V = 27 m−1.

The glass reactor was conditioned with nitric acid prior to experiments.

This pre-conditioning was carried out with the glass reactor decoupled from

the AP-LIF instrument. Dry, gaseous HNO3 was obtained from the vapor

above a HNO3/H2SO4 mixture (1:2/v:v). The glass reactor was first washed

with Milli-Q water (Millipore, 18 MΩ) and then pumped down to 100 mtorr

while being heated for 30 minutes to remove any surface water. The glass

reactor was then exposed to 30 mtorr (∼1 x 1018 molecules) of HNO3(g).

After exposing the reactor for 30 minutes it was again evacuated to 100

55



Figure 4.1: Setup for studying heterogeneous NO2 chemistry. A 1 liter
borosilicate glass reactor coupled to AP-LIF.
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mtorr for 5 minutes. This procedure was repeated 3 times ending with a

30 minute pump down to get rid of gaseous oxides of nitrogen. This nitric

acid ‘conditioning’ method was similar to that used by Saliba et al. (2001).

Between experiments and prior to blank runs the glass reactor was removed

from the AP-LIF, rinsed with Mill-Q water and evacuated to 100 mtorr for

30 minutes to remove water vapor and any surface contaminants. After the

glass reactor had been treated it was affixed to the AP-LIF. The coupled

system and the gas delivery tubing were then pumped down to 100 mtorr for

at least 10 minutes before experiments.

In each experiment either 0 or 2.5 ppm of NO in N2 was introduced

into the reactor. The desired mixing ratio of NO was produced using a

dilution system (Dasibi 5008) to mix a humidified N2 stream and NO. The

desired relative humidity was achieved by bubbling N2 through Milli-Q water

(Millipore, 18 MΩ). This produced a stream with 100% RH which was then

diluted with dry N2 to achieve the desired relative humidity (0-75% RH).

The desired concentration of NO and RH was introduced into the reactor via

1/8” PFA tubing and a stainless steel T-piece junction at a flow rate of 1

lpm. One leg of the T-piece was able to be switched between a vacuum pump

and exhaust(Figure 4.1). The other leg of the T-piece was connected to the

reactor via 1/8” stainless steel tubing. A stainless steel valve situated near

the reactor allowed the reactor to be isolated from the gas delivery tubing

during experiments. The [NO]/RH mixture was flowed into the previously

evacuated chamber until the chamber pressure was at 1 atm.
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Calibration of the coupled system was carried out by first rinsing the

borosilicate glass bulb with Milli-Q water and subsequently pumping on it

while being heating to remove water and any other surface contaminants.

The reactor was assembled and the entire reactor system was evacuated to

100 mtorr for 30 minutes to get rid of any gaseous NOy. The reactor was

filled with the desired concentration of NO2 and the LIF signal was recorded

for at least 30 minutes.

After treating the surface with nitric acid the total surface HNO3 (mea-

sured as NO–
3) and HONO (measured as NO–

2) concentrations were deter-

mined using a standard NaOH titration method using bromothymol blue

indicator. A diazo dye colourimetric technique was used to measure the sur-

face adsrobed HONO alone. Sample from a 250 ml wash was reacted with

sulphanilamide to form a diazo compound. The sample was then reacted

with N-(1-naphthyl) ethylenediamine dihydrochloride to form an azo dye.

The diazo dye intensity, proportional to the nitrite concentration, was de-

termined colourimetrically at 520nm and compared to identically-prepared

standard and blank solutions.(Zhou et al., 2011)

HNO3 used was 70 wt % (Sigma-Aldrich) and H2SO4 was 95.8 wt %

(Sigma-Aldrich). NO in N2 (Airgas, 73.65 ppm) was passed through a packed

FeSO4 filter to reduce any higher oxides of nitrogen to NO. Nitrogen (Polar,

99.999%) was used without further purification.
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4.3 Results

4.3.1 Calibration of Static Cell Reactor

with coupled AP-LIF Detector

Figure 4.2 shows a calibration curve for the AP-LIF reactor. The sensitivity

of this instrument is 4.5 ppb count−1 s, and the standard error is 4 ppb (5

min ave.) corresponding to a LOD = 38 ppb for NO2. The low LOD allows

measurements of the potential renoxification reaction for NO2 levels expected

in the urban environment (10-100 ppb).

The surface adsorbed HONO concentration was determined by a diazo

dye technique with an average [NO–
2]= 1.42 ± 0.38 x1016 molecules. Surface

adsorbed HNO3 was determined by subtracting the nitrite concentration from

the total nitrate and nitrite concentration ([NO–
3] + [NO–

2]) found through

titration; the average nitric acid concentration was found to be [NO–
3] = 1.27

± 0.20 x 1017 molecules. This corresponded to a surface coverage for HONO

and HNO3 of 2.93 x 1013 and 2.64 x 1014 molecules cm−2, respectively. The

fact that nitrite was found adsorbed to the reactor walls following treatment

with dry gaseous nitric acid was not entirely unexpected. Handley et al.

(2007) found that some of the gas-phase nitric acid taken up by organic films

would yield its dissociated form (i.e., H+ + NO–
3). Furthermore, illumination

of the film with actinic radiation caused deprotonation possibly releasing gas

phase HONO and/or NO2. Similarly, Ramazan et al. (2004) suggested that

photoenhanced catalysis of HNO3 on wet surfaces to form HONO on wet
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Figure 4.2: Calibration of static reactor coupled to AP-LIF detector. The
LOD = 38 ppb (2 σ) at a 5 min ave. interval.
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surfaces was energetically possible for wavelengths below 700nm:

HNO3 + H2O(ads) + hν(λ< 710nm) −→ HONO(ads) + H2O(ads) (R 4.4)

4.3.2 Formation of NO2 from surface adsorbed HNO3 and HONO

Reaction R4.3 has been found to happen much faster than reaction R 4.2

(Kleffmann et al., 2004; Mochida and Finlayson-Pitts, 2000; Rivera-Figueroa

et al., 2003; Saliba et al., 2001). Kleffmann et al. (2004) found the rate of NO2

formation by reaction R 4.3 was linear with HONO and HNO3 concentrations

as well as surface-to-volume ratio, indicating that reaction R4.3 was indeed

a surface reaction. It was seen that the rate constant of reaction R4.3,

which was independent of HONO and HNO3 concentration, had a exponential

dependence on relative humidity (k(3) = 2-15 x 10−17 cm3 s−1 cm for 21-

85% RH). Reactions R 4.3 and R4.1 are of importance in understanding the

cycling between HONO and NO2 where there are large sources of HONO (i.e.

in urban settings) (Calvert et al., 1994).

Because HONO was found adsorbed to the surface after the HNO3 surface

treatment the rate production of NO2 via reaction R4.2 and its dependence

on the concentration of water vapor first needed to be quantified so that it

could be subtracted when considering NO2 production via reaction R4.2. In

these experiments, after being treated with dry gaseous HNO3, the reactor

was filled with N2 (up to 1 atm) and with varying relative humidity. During

the experiments significant amounts of NO2 were formed (see Table 4.1).
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Table 4.1: Initial reactant NO, RH and initial rate of NO2 formation.
RH NO dNO2/dt
(%) (ppbv) (molecules cm−3 sec−1)

0 0 3.2E+05
23 0 1.3E+10
14 0 1.5E+10
28 0 3.4E+10
17 0 3.9E+10
36 0 1.2E+11
32 0 1.2E+11
66 0 1.2E+12
69 0 1.3E+12
68 0 1.4E+12
1 2455 8.0E+04
16 2455 1.2E+10
45 2455 2.2E+11
72 2455 1.3E+12
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Figure 4.3 shows the time profiles of NO2 formation at 0, 32 and 66%

RH respectively. The rate of formation of NO2 increased with RH. That

the interaction is happening at the surface is further indicated by the fact

that the production rate of NO2 is not linear with water vapor. Instead the

formation of NO2 seemed to match well with the number of expected layers

of water on the surface. Fractional water coverage was calculated using the

equation for a BET isotherm:

fractionalcoverage = cBRH

(1−RH)[1 + (cB − 1)RH] (4.1)

where the constant cB = 100 was used. Figure 4.4 shows the theoretical

layers of water on the borosilicate glass as well as the rate of formation of

NO2 versus relative humidity. This result, that the rate of NO2 depends on

fractional water coverage, is similar to that found in other studies (Rivera-

Figueroa et al., 2003; Saliba et al., 2001).

4.3.3 Formation of NO2 from surface adsorbed HNO3

and gas-phase NO

Reaction R4.2 was investigated in several experiments at relative humidities

in the range of 0-72% and a NO mixing ratio of 2.5 ppm. In these exper-

iments, after being treated with dry gaseous HNO3, the reactor was filled

up to 1 atm with NO2 in N2 at a mixing ratio of 2.5 ppm and with vary-

ing relative humidity. Production of NO2 did not exceed production due to
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Figure 4.3: NO2 concentration versus time for HNO3 conditioned reactor
held a different RH: a) RH = O%, b) RH = 17%, c) RH = 32%, and d) RH
= 66%.
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Figure 4.4: Rate of NO2 production and surface water coverage (stars) versus
relative humidity for the HNO3 conditioned vessel. Initial NO concentration
were 0 for gray circles and 2455 ppb for black circles.
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reaction R4.3. The rate of production of NO2 due to reaction R4.3 was

subtracted from the intial reaction rates found when introducing [NO] = 2.5

ppm (Figure 4.6).

Reaction probabilities (γ) for reaction R4.2 can be calculated. The re-

action probability for NO reacting with surface adsorbed HNO3 can be cal-

culated using the initial loss rate of NO (d[NO]
dt

), the cell volume (Vcell), and

the surface area (A) of the reactor and M is the molecular weight of NO:

γ =
(−d[NO]

dt
)Vcell

A[NO]0
√

RT
2πM

. (4.2)

However in this case NO was not measured, instead we use a third of the

initial NO2 production rate based on the overall stoichiometry of reaction

R4.2. The upper limit for the reaction probability in these experiments was

found to be γNO−>NO2
< 3 ± 3 x 10−9. The greatest uncertainty was found

for relative humidities greater than 70%; with the error most likely coming

from the uncertainty in HONO being produced (see discussion).

There has been general disagreement as to the importance of reaction

R4.2 the renoxification of surface bound HNO3. Using static cell conditions

Rivera-Figueroa et al. (2003) set the lower limit for γNO−>NO2
at 6 ± 2 x

10−9 ; similarly Saliba et al. (2001) estimated γNO−>NO2
was on the order of

10−8 . In contrast, Kleffmann et al. (2004) set the upper limit for γNO−>NO2

< 2.5 x 10−9. In that study a flow through system was used, coupled to a

chemiluminescence analyzer which allowed for lower NOy concentration to
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Figure 4.5: NO2 production versus RH for HNO3 conditioned reactor with
[NO]=0 (triangles) and 2.5 ppm(stars).
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Figure 4.6: NO2 production due to reaction R4.3 versus RH with
NO=2.5ppm.
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be used.

The work done here, using the AP-LIF coupled static reactor, is in line

with the results found by Kleffmann et al. (2004). The finding here set the

value of γNO−>NO2
< 3 ± 3 x 10−9 which is considerably lower than other

studies of reaction R4.3 conducted under static cell conditions using much

higher initial NO concentrations. In the case that the reaction kinetics of

the urban impervious surfaces are similar to borosilicate glass, the overall

reaction of nitric oxide reacting with surface bound nitric acid to form NO2

does not appear to be of importance for atmospheric renoxification.

4.4 Discussion

Within experimental accuracy no NO2 was seen to be produced for 0% RH.

Kleffmann et al. (2004) found reaction R4.3 to be first order in both [HONO]

and [HNO3] and that the rate constant for reaction R4.3 was exponentially

dependent on water vapor, k(3)296±1K = 3.39 x 10−16 exp(-3.19 X 10−2 RH)

(cm3 s−1 cm) (Kleffmann et al., 2004). This being the case we should expect

to see NO2 formed even at 0% RH, given that both HNO3 and HONO were

determined to be present on the surface after rinsing. The lack of NO2

production suggest that for our investigation HONO is not formed on the

surface when water is not present. It is suspected that the surface HONO is

formed after the surface comes into contact with water.

Also, since the rate constant is expected to decrease exponentially with

water vapor (Kleffmann et al., 2004) and because reaction R4.3 is first order
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in [HONO] we can conclude from these experiments that as the water vapor

increases more HONO is produced either in the gas phase or adsorbed to the

surface.

While the glass reactor is optically isolated from the AP-LIF excita-

tion laser (internally and externally), steps were taken to verify that surface

chemistry was not being photocatalyzed by the laser source. This was ac-

complished by allowing reaction R4.3 to take place with the AP-LIF laser

turned off and only turned on briefly every ten minutes for 30 seconds to get

a measure of [NO2]. The rate of NO2 production under these conditions was

the same as that found with the AP-LIF laser source on all the time (see

Table 4.1). Other sources for the generation of surface adsorbed HONO may

exists, and there is strong evidence in field studies that there are indeed non-

photochemical heterogeneous sources of HONO yet to be identified (Ziemba

et al., 2010). It may be the case that the formation of surface HONO from

HNO3 adsorbed on wet glass like surfaces could account for some of this miss-

ing source. Further investigations of HONO production via this pathway are

needed.

AP-LIF has proven adaptable to the study of in situ measurement of het-

erogeneous chemistry under more ‘real’ environmental conditions. A future

experimental setup will take advantage of some of the improvements to re-

duce the limit of detection. Furthermore, AP-LIF for NO2 could be used in

tandem with FTIR so that more species may be followed while providing a

greater sensitivity for NO2.
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Chapter 5

Further Work with AP-LIF

5.1 Thermal dissociation AP-LIF for measurement of NOy

As with all NO2-LIF systems this system can be utilized as a ‘back-end’

detector of an NOy ambient monitor. The term NOy is used to denote the

sum of all nitrogen compounds in air, i.e., NOy = NOx + PAN + HNO3 +

NO–
3(Particulate) + 2N2O5 + Other reactive N compounds. Because some

of these species can be long lived in the atmosphere, monitoring NOy is

critical for understanding how oxides of nitrogen are transported to remote

areas. The low pressure LIF technique coupled to a thermal dissociation

(TD-LIF) oven has been successfully used to measure atmospheric NOy (Day

et al., 2002). When heated most NOy species will dissociate into NO2 and a

companion radical species

XNO2 + heat −→ x + NO2 (R 5.1)
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where x = RO2, RC(O)OO, RO, OH, HO2, NO3, ClO, BrO. With different

NOy species dissociating at different temperatures a TD-LIF instrument can

be built with multiple ovens to selectively dissociate and measure individual

groups of oxides of nitrogen (Day et al., 2002)

Separate detection cells for each constituent of NOy are employed elimi-

nating the complexity and potential chemical artifacts associated with switch-

ing between NOy modes (Day et al., 2002). Figure 5.1 illustrates a conceptual

schematic of the AP-LIF for NO2 , peroxyacyl nitrates (PAN) , alkyl nitrates

(AN), nitric acid.

Laser light is directed by steering mirrors sequentially through the four

cells and into beam dump. The fluorescence light signals are collected at each

fluorescence cell with respective fiber collection optics to fiber optic multi-

plexer (Figure 5.2) and then into filter pack which contains a pair of lenses

and a long pass filter. The signal from filter pack is then detected by PMT

and processed. Inside the housing of the multiplexer is a right prism with a

mirrored surface on the hypotenuse. The face of the mirror is at 45 degrees

to the end of the cylindrical housing. A stepper motor is attached to the

right prism through one end of the housing. The positions of the fiber optic

ports correspond to the positions of the stepper motor such that, for each

position of the mirror, the light entering from one of the fibers is reflected

off the mirror and directed out of the end of the housing. It then passes

through the filter pack and into the PMT. Using this multiplexer, the signals

coming from the four fluorescence cells may be sampled sequentially as the
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Figure 5.1: Conceptual schematic of a thermal dissociation AP-LIF instru-
ment for NO2, PAN, AN and HNO3 with ovens held at ambient temp., 200◦

C, 400◦ C, 600◦ C, respectively.
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mirror rotates using just a single filter pack and PMT. This design elimi-

nates the cost, bulk, complexity and power requirements of 3 PMT/cooler

systems and also minimizes the need for cross-channel calibrations in or-

der to account for differences such as PMT quantum efficiencies and photon

counting electronics. A diaphragm pump can be used to draw ambient gas

for sampling into the four cells through four respective gas flow tubes orig-

inating from a common sampling and calibration manifold and particulate

filter. The separate tubes have respective quartz tube sections which may be

heated to distinct predetermined temperatures. These quartz thermal disso-

ciation flow tubes (∼ 1 m length, 1 cm ID) are coupled to each of the four

cells. Three flow tubes are temperature controlled at approximately 200◦

C, 400◦ C, 600◦ C, respectively for thermal dissociation of PAN, AN and

HNO3 measurements respectively, using nichrome wire heating jackets and a

custom-built controller circuit (Day et al., 2002). Each subsequently hotter

oven thermally dissociates the species which require lower temperature to be

converted to NO2. Thus, to get [NO3] the AN channel must be subtracted

from the HNO3 channel. The fourth tube, for ambient NO2 measurement, is

insulated but not heated. Thus, each of the three distinct species of interest

may be detected by converting it by heat to NO2 which is then measured

to derive the amount of the original species of interest. Particulate nitrate

(PN) can also be measured by recording the difference in the NO3 channel

(i.e. 600◦ C oven) with and without the particulate filter in place. Since

this NO2 detection technique does not require an expensive high-capacity
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pump, separate cells for each constituent of NOy can be employed, thereby

eliminating the complexity and potential chemical artifacts associated with

switching between NOy modes.
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Figure 5.2: Multiplexer device which sequentially redirects the fluorescence
signal from multiple sources to a single detector.
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