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Abstract 

Water management plans are typically developed using historical data records and 

historical return periods for extreme events, such as floods or droughts.  Since these 

analyses of return periods typically assume a certain degree of stationarity (constant 

mean, standard deviation, distribution) in hydrologic variables, the potential future 

impacts of climate change are excluded.  In developing water management plans, 

predicted changes to climate variables should be considered to evaluate the degree of 

non-stationarity that may exist in the future.  In this way, regions most sensitive to 

climate change can be identified and managed appropriately. 

This study performed such a task by using predicted climate data that were 

downscaled from general circulation models (GCM) by regional climate models (RCM) 

to compare climate variables in the historical period of 1971-1998 to the future period of 

2041-2068.  The study evaluated the precipitation and minimum/maximum temperature 

data from five different GCM/RCM combinations: 1) CCSM/CRCM; 2) CCSM/WRFG; 

3) CGCM3/CRCM; 4) CGCM3/WRFG; and 5) HadCM3/HRM3.  The five datasets were 

then used to calculate drought indices and drive a calibrated PRMS model of the Molalla 

Pudding river basin in order to evaluate changes in droughts and streamflow.  The 

predicted changes in droughts and streamflow were then evaluated with social/economic 

factors for twelve cities in the Molalla Pudding river basin by two different water 

vulnerability indices.  The index values were used to determine a rank for each city that 

indicated its relative vulnerability to water scarcity as compared to the other cities.    

In this study, three out of the five datasets predicted increased precipitation (+97-

115 mm/year) over the Molalla Pudding basin and the two datasets using the CCSM 
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GCM data predicted either no change or slightly decreased precipitation (-60 mm/year) 

over the Molalla Pudding basin in 2041-2068.  All datasets predicted increased minimum 

and maximum average temperature of +1.5°C and +1.4°C respectively, and all datasets 

displayed increasing trends in temperature.  The drought indices predicted fewer drought 

events (-2.4 events) over 2041-2068 with no change in duration, and no change to the 

number of serious drought events over 2041-2068 but with increased durations (+1.9 

months).  Results from the hydrologic modeling predicted increased streamflow (+4-249 

cfs) in four out of the five future datasets.  Using the predicted changes in hydrologic 

variables and social/economic census data from 2000, two types of water vulnerability 

indices were calculated for the twelve cities of interest.  The results suggested that cities 

in the western portion of the basin would be more susceptible to current and future water 

vulnerability due to high irrigation demands for water and high social vulnerability as 

determined by minority populations and higher poverty, while the small cities with less 

dependence on agriculture would be less vulnerable. 
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Chapter 1 Introduction 

Water management is necessary for any community of water users.  There exists a 

bare minimum of water necessary for life, and within a community all individuals 

become invested in water distribution.  Water management plans are put into place to 

ensure that all represented members of a community have access to an appropriate 

amount of water for survival.  While these plans are often designed to handle worst case 

scenarios, such as drought or contamination, a plan can never account for every outcome.  

Development of water management plans must rely on historical records in order to 

determine return periods for extreme events, however many tools to evaluate these types 

of events assume stationarity, and don’t account for the possibility of changing means, 

standard deviations or distributions of variables like precipitation and streamflow.  

Should anthropogenic climate change result in non-stationary climate variables, which is 

often the prediction, existing water management plans would be insufficient to describe 

the true vulnerability.    

In the Pacific Northwest, water resources seem plentiful due to the great amount 

of precipitation received in the region, however, with that water comes great political 

interest.  Water rights are divided between citizens, agriculture and habitat, to name a 

few, and in times of drought and water stress, all groups tend to suffer.  While the 

occurrence of droughts and low precipitation years cannot be prevented, water 

management plans can be developed in order to best allocate resources during times of 

stress.  The first step in developing appropriate water management plans is to compare 

water vulnerability in regions of interest over time periods of interest.   
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1.1 Background 

 The first step in performing a climate change study over a refined region of 

interest, like the Molalla Pudding basin, is to find appropriately scaled data.  The primary 

source of anthropogenically influenced, future climate data come from 

atmospheric/oceanic coupled general circulation models (GCM) that have been driven for 

various climate change scenarios.  GCMs are relatively coarse in resolution and therefore 

unable to resolve significant subgrid scale features including topography and land use as needed 

in hydrologic modeling and impact assessment. Therefore, some form of downscaling is needed 

to produce scenarios of higher spatial resolution than currently delivered by raw GCM output. 

Downscaling is the process of translating large scale atmospheric data, called predictors, to finer 

spatial resolution data, called predictands, to allow for the local analysis of climate change 

effects.  By means of the future values of the GCM variables, downscaling methods can calculate 

the climatologic values of temperature and precipitation, which are then used to assess the 

hydrologic impacts due to the climate change. 

Generally two types of downscaling approaches are employed, which are known 

as “dynamic” and “statistical” methods. The dynamic downscaling techniques are 

performed by nesting a physically based, small spatial resolution regional climate model 

within the grid of a GCM output. GCM outputs are used as boundary conditions to drive 

the regional model (Wood et al., 2004). The second method, statistical downscaling, is 

performed by deriving empirical mathematical relationships between GCM climate 

variables and regional scale variables (Wood et al., 2004).   



3 
 

Downscaled climate data can be used to assess climate change impacts at the 

regional scale by comparing the statistics and trends of variables, like precipitation and 

temperature, over historical and future periods.  By considering multiple GCM outputs, a 

degree of uncertainty for future climate projections can be developed.  Downscaled 

climate data can also be used to drive calibrated hydrologic models in order to determine 

expected changes in streamflow and snowpack.    

1.2 Water Vulnerability 

For this study, the primary source of variability considered for future water 

resources is anthropogenic climate change.  Climate change is evaluated specifically in 

the form of water supply, as defined by precipitation anomalies and streamflow.  Since 

water vulnerability encompasses social/economic aspects of a community in addition to 

its hydrology, a number of social vulnerability factors were investigated as well.  In this 

way social and hydrologic factors were assessed simultaneously to develop water 

vulnerability indices unique to the study region, the Molalla Pudding basin in Oregon.  

The water vulnerability indices are conceptual indices that allow the user to include 

appropriate variables that contribute to water scarcity at their own discretion.  In this 

study specific social and hydrologic factors are presented, however the concept is 

adaptable.  Additionally, the water vulnerability indices are calculated in such a way that 

risk is assessed in a relative sense as opposed to within a rigid, predefined/empirical 

framework.  The water vulnerability indices determine a relative ranking system within a 

study region, which enables water management plans to identify, and target for 

improvement, high risk areas. 
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1.3 Goals and Objectives 

 The first goal of the study is to evaluate the climate change impacts based on a 

high projected emissions scenario over the Molalla Pudding basin.  Climate change will 

be evaluated by comparing the changes in mean, standard deviation, distribution, trend 

and seasonality of precipitation and temperature over the historical period, 1971-1998, 

and the future period, 2041-2068.  Predicted climate data will then be used to run a 

hydrologic model and determine expected changes in various hydrologic variables. 

 The second goal of this study is to calculate water vulnerability indices that will 

rank the cities of the Molalla Pudding basin.  The concept of water vulnerability 

encompasses hydrological, social and economic factors, so the index will be developed 

using a number of variables.  Hydrological factors will include expected changes in 

quantity, groundwater supply and stream temperature.  Social and economic factors will 

be determined from the year 2000 census data and will include the following measures of 

vulnerability: age, income/poverty, minority status, disability, employment, mobile 

homes/renters, gender, education and density. 

1.4 Study Area 

The study area chosen for analysis is the Molalla-Pudding basin in Northwest 

Oregon, which has a total area of ~2,270 km
2
 and drains into the middle portion of the 

Willamette River.  The basin was chosen for a number of reasons, including data 

availability, total maximum daily load (TMDL) concerns and land use composition.  The 

Molalla Pudding basin was also chosen due to the regular occurrence of flooding in the 

Lower Pudding river, where significant agriculture needs exist.  Understanding the 



5 
 

vulnerabilities of a high agriculture basin are important because of the importance of food 

supply and expected yield.  Should the risk of low agricultural yield be expected to 

increase for water supply reasons, the management of water resources should be 

reevaluated to ensure minimized changes in agriculture output.  

The major rivers of the basin are the Molalla and Pudding rivers, flowing 40 and 

39 kilometers respectively, and these rivers divide the basin into two distinct areas.  The 

eastern portion of the basin containing the Molalla river, is characterized by a large area 

of high, forested land in the upper portion of the river reach, which drops to lower 

elevation agricultural and urban areas, while the western portion of the basin containing 

the Pudding river is predominantly characterized by agricultural use and some urban 

development.  Both rivers transmit most of their flow (80-90%) during the wet season of 

November-April, and are primarily precipitation driven as snowpack does not contribute 

greatly to annual discharge.  The fluctuation in flow between winter and summer months 

is great, particularly in the Pudding river where more surface water is diverted for 

irrigation purposes.  While the Pudding river has greater winter average flows 

(Qavg,Molalla=2,392 cfs and Qavg,Pudding=2,927 cfs), the river then takes a much greater drop 

to lower summer average flows (Qavg,Molalla=100-200 cfs and Qavg,Pudding=46 cfs), most 

likely due to diversions.  Current late summer in-stream water requirement for habitat and 

minimization of pollution in the Pudding river is approximately 12-40 cfs, which is 

already quite low and violated from time to time due to current management scenarios.  

Climate change analyses will help to determine if the frequency of violation will increase 

or decrease in future years. 
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Figure 1: Position of the Molalla Pudding basin with respect to Willamette river basin in 

Oregon. 

 

In addition to agriculture and habitat/pollution concerns, the Molalla and Pudding 

rivers (and their tributaries) provide drinking water for a number of the major cities in the 

basin.  In the eastern portion of the basin, the Molalla river and its tributaries are 

protected surface water drinking sources for the cities of Canby, Molalla and Colton 

while in the western basin, Silver creek and Abiqua creek (tributaries of the Pudding 

river) are protected surface water drinking sources for the city of Silverton.  In addition to 

surface water sources, a number of protected groundwater drinking source areas are 

scattered throughout the basin, primarily in the western portion.  These protected 

groundwater drinking source areas service at least 24 schools (mostly elementary grades), 

22 mobile home parks, various housing developments/businesses and cities including: 

Aurora, Barlow, Donald, Gervais, Hubbard, Keizer, Mount Angel, Mulino, Scotts Mills, 

Salem, Wilsonville and Woodburn.  The protected groundwater drinking source areas 
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drain to approximately 267 springs/wells and for roughly one third of these springs (~93) 

the maximum water time of travel to the intake is less than 5 years.  These springs will be 

more sensitive and respond quicker to future climate changes.  The majority two thirds of 

total wells (~165) have a maximum water time of travel to the intake of 10-15 years and 

therefore water users will be impacted by climate changes much later than smaller spring 

users. 

 
Figure 2: Protected ground and surface drinking water source areas. 

 

1.5 Datasets 

The observed data used for the drought analysis over the Molalla-Pudding basin 

was provided by the Western Regional Climate Center (WRCC) group.  The WRCC 

provides monthly total precipitation and monthly mean maximum and minimum 

temperatures data for a number of gages throughout Oregon.  The 10 gages selected for 
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this study were located in Detroit, Estacada, McMinnville, Oregon City, Salem, Scotts 

Mills, Silver Creek Falls, Silverton and Stayton and the time period of interest was 1971-

1998.  As can be seen in table 1, the gages cover an elevation range of 150-2320 feet, 

which provides a good description of precipitation and temperature over the entire basin, 

from the forested mountains to the open valley.  In order to evaluate general climate over 

the Molalla Pudding basin, the data were organized to describe its four quadrants: NW, 

NE, SW and SE. 

Table 1: Observed data gage elevations. 

Gage Elevation (feet) 

Detroit Dam 1220 

Estacada 410 

McMinnville 150 

Oregon City 170 

Salem  210 

Scotts Mills 2320 

Silver Creek Falls 1350 

Silverton 410 

Stayton 430 

N Willamette 150 

 

 The dynamically downscaled data used in this study were provided by the North 

American Regional Climate Change Assessment Program (NARCCAP), an international 

program funded by the National Science Foundation (NSF), the U.S. Department of 

Energy (US DOE), the National Oceanic and Atmospheric Administration (NOAA) and 

the U.S. Environmental Protection Agency Office of Research and Development to 

provide a high resolution climate change dataset for research on uncertainties in regional 

scale projections of future climate.  NARCCAP uses a variety of regional climate models 

(RCMs) driven by atmospheric-ocean GCMs under the Special Report on Emissions 
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Scenarios (SRES) A2 scenario to predict various climate variables.  The SRES A2 

scenario is generally considered to represent a high-end, although not the highest, 

greenhouse gas emissions scenario, and can present a future “worst-case” with continued 

increases in temperature.   The historical period considered by NARCCAP was 1971-

2000 and the future period considered was 2041-2070.    The spatial resolution of all 

models was 50 km and the temporal resolution was variable-dependent; precipitation data 

were provided at 3-hour intervals, and temperature data was provided at daily intervals. 

In this study, five datasets from NARCCAP were considered; three different 

RCMs and three different GCMs are represented.  The first RCM includes data predicted 

by the HRM3 RCM driven by the HadCM3 GCM (both models developed by Hadley 

Centre), the second RCM is WRFG which was driven by the CCSM and CGCM3 GCMs 

and the third RCM is CRCM which was also driven by the CCSM and CGCM3 GCMs.  

Due to differing end dates in the NARCCAP model outputs, this study chose to focus on 

28 year periods as all datasets included complete 28 year runs.  So, the historical period 

considered by this research was 1971-1998 and the future period considered was 2041-

2068.  As can be seen in figure 3, the location of output gridpoints was not the same for 

all three RCMs so datapoints were averaged to produce values in the same quadrants as 

those defined for the observed data: NW, NE, SW and SE. 
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Figure 3: (Upper) Location of WRCC gages from which observed precipitation and 

temperature data were collected; (Lower) Location of grid points for the NARCCAP 

RCMs: WRFG, HRM3 and CRCM.  
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In addition to the hydrologic data used to assess climate change and drive 

hydrologic models, streamflow data were collected to establish the baseline flow in the 

basin and to validate the hydrologic models.  Streamflow data was acquired from the US 

Geological Survey for four different sites in the Mollala Pudding basin, two along the 

Molalla river and two along tributaries (Silver creek and Butte creek) of the Pudding 

river.  

Table 2: USGS Stream gage records. 

USGS Gage River Period 

14198500 Molalla River near Wilhoit 1971-1993 

14200300 Silver Creek at Silverton 1971-1979 

14201500 Butte Creek at Monitor 1971-1985 

14200000 Molalla River near Canby 1971-1979 

 

 For water rights and water demand information, data were collected from the 

State of Oregon Water Resources Department’s online Water Availability Reporting 

System 

(http://apps.wrd.state.or.us/apps/wars/wars_display_wa_tables/search_for_WAB.aspx).  

This tool provided the monthly natural flow, the monthly consumptive uses and storages 

and the monthly inflow requirement for habitat, for several creeks and river sections of 

the Molalla Pudding basin.  The information was used to determine the water demand 

from various sectors (irrigation, agriculture, municipal) of the basin and those numbers 

were translated to the major cities of the basin.  Overall, six reaches representing the 

Pudding river and its tributaries and five reaches representing the Molalla river and its 

tributaries were used to evaluate the water demand of the basin. 

  

http://apps.wrd.state.or.us/apps/wars/wars_display_wa_tables/search_for_WAB.aspx
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Table 3: Reaches evaluated for water demand. 

Reach 

Abiqua creek to Pudding river, mouth 

Butte creek to Pudding river, mouth 

Milk creek to Molalla river, mouth 

Mill creek to Pudding river, mouth 

Molalla river above Gribble creek 

Molalla river above Milk creek 

Molalla river above N Fork Molalla river 

N Fork Molalla river to Molalla river, mouth 

Pudding river above Mill creek 

Pudding river above Howell Prairie 

Silver creek to Pudding river, mouth 

    

 The final data requirement for the calculation of water vulnerability indices was 

demographic information on the cities of the Molalla Pudding basin.  This information 

was primarily acquired through the US Census Bureau’s online fact finder tool 

(http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml) for the year 2000, as that 

record was complete for all cities of interest.  Additional information on the geography 

and land use of the basin was acquired from the Oregon Geospatial Enterprise Office.  .     

http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml
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Chapter 2 Methods 

2.1 Bias Correction 

Very often the process of downscaling data produces a fine resolution dataset that 

is similar to the observed data, but has a slightly different distribution, mean or standard 

deviation.  The reasons for some of these differences come from biases found in the 

GCM and RCM used to produce the dataset.  Removing or correcting these biases is 

useful in climate change studies because the purpose of the study is to evaluate changes 

in variability and spatial patterns of climate variables of interest (Johnson and Sharma, 

2011).  Additionally, bias correction allows datasets from multiple GCM-RCM 

combinations to be compared. 

As will be seen in the Results section regarding validation of the climate data, the 

GCM-RCM model outputs required some correction.  The NARCCAP datasets generally 

had medium to high correlation with observed data, but typically had different mean and 

standard deviations over the historical period.  Additionally, the distributions of the 

NARCCAP climate variables were similar to, but not exactly similar to those from 

observed data.  For this reason, the precipitation and temperature outputs from the 

NARCCAP data were all bias corrected before performing analyses. 

Since the NARCCAP data was well correlated with the observed data, the bias 

correction procedure used in this study was quite simple, and aimed to readjust the 

NARCCAP data to match the monthly mean and monthly standard deviation over the 

historical period.  Future data were also bias corrected using a similar equation, which 

maintained the differences in monthly means and standard deviations between the 
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historical and future periods.  Other advanced methods of bias correction, like quantile 

mapping, were not used in this work due to their assumption of historical and future 

datasets sharing the same probability distribution.  The benefit of using dynamically 

downscaled data was the independence from statistical assumptions, and that 

independence needed to be preserved through the bias correction procedure. 

The bias correction was performed as so.  For a variable, V, with historical 

modeled monthly mean Vhist,avg, historical modeled monthly standard deviation Vhist,sd, 

observed monthly mean Oavg and observed monthly standard deviation Osd, the historical 

and future bias corrected values, Vhist,bc and Vfut,bc respectively, were calculated as: 

         
               

        
         

 

        
              

        
         

The calculations were performed on monthly values (cumulative precipitation, 

average maximum temperature and average minimum temperature) to produce a monthly 

bias corrected dataset which could be compared to other GCM-RCM datasets and could 

be analyzed using established hydrology techniques to detect status and trend. 

This particular bias correction method was selected as the computation procedure 

was relatively simple and because the procedure did not make the assumption that 

historical and future data had the same distributions.  As will be shown in the results 

section, the distributions for bias corrected future variables were different than the 

distributions over the historical period.  This information provided another perspective 
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when considering climate change impacts and the occurrences of extreme events.  

Additionally, when compared with other bias correction and scaling techniques (Johnson 

and Sharma, 2011) this monthly bias correction method performed well and produced 

datasets with little error.  This method performed particularly well with respect to 

reproducing the monthly mean, monthly median, annual mean and annual median of 

corrected datasets. 

2.2 Drought Index 

For this study, accumulated monthly precipitation deficit indices were used as 

drought indictors (Bryant et al., 1998; Philips and MacGregor, 1998).  The benefit of 

using precipitation deficit indices was that precipitation was the only input variable.  For 

a climate change study this was ideal, as the indices represented the uncertainty of only 

one variable as opposed to many.  This was particularly desirable for a dataset 

downscaled to mid-level resolution over a large area.  Additionally, simple indices 

relying only on precipitation were been found to work comparatively well to more 

complicated indices, such as the Palmer Drought Severity index (Oladipo, 1985).  The 

precipitation deficit indices presented in this paper, have been used widely in Europe for 

some time (Blenkinsop and Fowler, 2006; Fowler and Kilsby, 2004), but have not been 

as widely applied in American research.  The two indices used in this study evaluate the 

3-month deficit (DSI3) and 6-month deficit (DSI6) periods to determine general drought 

events and extreme drought events. 

The procedure to calculate the indices is fairly straightforward, and can be carried 

out in a spreadsheet format or with statistical computing software.  First, monthly 
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precipitation anomalies with respect to the 1971-2000 mean were calculated.  The DSI3 

relied on a 3-month initiation and termination rule, so if one considered the anomaly in 

month t as Xt, a drought would initiate in month t if the sum of Xt, Xt-1 and Xt-2 were less 

than its 3-monthly mean (or if the accumulated deficit were negative).  The index value 

assigned at time t would be a positive value equal to the deficit in month t.  Next, month 

t+1 was considered.  If the next month also had a negative precipitation anomaly and if 

the sum of Xt-1, Xt and Xt+1 were less than its 3-monthly mean (accumulated deficit was 

negative), then the drought continues and the index at time t+1 were the positive value 

equal to the sum of the deficits in months t and t+1.  Now, if month t+1 had a positive 

precipitation anomaly, but the sum of Xt-1, Xt and Xt+1 were still less than the 3-monthly 

mean, the drought would continue but the index would be the positive value equal to the 

difference of the deficits in months t and t+1.  The drought would be terminated when the 

3-monthly mean was exceeded by the sum of the preceding precipitation anomalies.  The 

DSI6 would be calculated in the same way as the DSI3, but would use 6-month initiation 

and termination periods.  This DSI6 would be considered comparable to a hydrologic 

drought.   

In order to compare indices from various quadrants of the study basin, all deficit 

values were standardized by dividing the absolute deficit by the total annual precipitation 

for that dataset.  This provided the drought index as a percentage deficit which enabled 

inter-quadrant comparisons.  Following the procedure used by Fowler and Kilsby (2006), 

DSI3 indices with values greater than 10% indicated a 3-6 month drought event that 

would be likely to affect surface water resources.  Similarly following Fowler and Kilsby 
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(2006), DSI6 indices with values greater than 30% indicated serious droughts lasting at 

least 6 months that were more likely to affect groundwater resources. 

2.3 Hydrologic Modeling 

The hydrologic model used in this study was the Precipitation-Runoff Modeling 

System (PRMS) which was developed by the US Geological Survey.  PRMS is described 

as a “modular deterministic, distributed-parameter, physical-process watershed model” 

and was used to simulate runoff through a series of surface and groundwater reservoirs.  

PRMS modeling evaluates the lateral and vertical interactions between hydrologic 

response units (HRU) to determine the amount of water within the subsurface and the 

amount lost from the basin as surface runoff or evaporation.  PRMS relies on information 

about land use, impermeable surface, vegetation canopy, soil type and hydrology to 

perform mass balance calculations on a daily time step.   

The PRMS model routes water from upstream HRUs to downstream HRUs, 

streams or lakes.  Additionally, water is brought onto the HRU by precipitation and can 

infiltrate to the subsurface reservoir or leave the HRU surface by evapotranspiration due 

to temperature and solar radiation.  Potential evapotranspiration is calculated by the 

Hamon formulation, which relies on a calibrated HRU parameter, HC, saturated water-

vapor density, ρ, as calculated by air temperature and the possible number of hours of 

sunlight, sh (Markstrom et al., 2008): 

       
  

  
 
 

  

The water remainder contributes to surface runoff or infiltration, which are 

computed by antecedent soil moisture and a non-linear variable source area method.  
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Runoff over pervious area is calculated by a Hortonian runoff method in which 

contributing runoff area, Fperv, is that where throughfall is greater than the soil infiltration 

rate.  Runoff, RO, is then calculated from upstream HRU runoff and precipitation as 

(Markstrom et al., 2008): 

                 

    Water not contributing to runoff, qsi, can infiltrate the soil by the following 

equation, where VSM is the volume of melted snowpack and A is the pervious area of the 

HRU.  In this equation, the amount of water infiltrating is the difference between the total 

amount of water coming into the basin and the runoff out of the basin (Markstrom et al., 

2008): 

          
   

 
         

Infiltrated water is then partitioned between the preferential flow reservoir, for 

fast-flowing interflow through large pore spaces, the capillary reservoir and the gravity 

reservoir.   

For this study, an existing calibrated PRMS model of the Molalla Pudding basin 

was used to perform hydrologic modeling over historical and future periods.  The Molalla 

Pudding PRMS model was first developed by the US Geological Survey in 1997 as part 

of a study to evaluate the hydrology of the whole Willamette basin (Laenan and Risley, 

1997).  The Willamette PRMS model was updated five years later to refine the basin 

delineations and to include updated land surface map information (Lee and Risley, 2002).  

Finally, in 2010 the Willamette PRMS model was updated further to run compatibly with 

the latest version of PRMS and recalibrated to include relevant and updated snow 
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parameter data, digital elevation model, soil information, land use/cover and geology 

(Jung and Chang, 2010). 

For this study, the model was validated over the historical period of 1971-1998 by 

comparing runoff results to USGS gage streamflow.  The validated model was then run 

with the predicted NARCCAP data variables, precipitation, maximum temperature and 

minimum temperature, to determine changes in future runoff.  These modeled values, 

over both the historical and future periods, were included in the development of water 

vulnerability indices that allowed ranking of vulnerability of the Molalla Pudding cities. 
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Figure 4: Schematic of the PRMS model water balance system (Markstrom et al., 2008).  
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2.4 Water Vulnerability Index  

 The first water vulnerability index (WVI) considered in this study was one 

presented by Sullivan (2011) to evaluate scarcity in southern Africa.  The WVI was 

separated into two components: supply driven vulnerability and demand driven 

vulnerability.  As their names would suggest, the supply component reflects the 

vulnerability of the water system itself, while the demand component reflects 

vulnerability of water users.  The total WVI is a sum of the supply and demand 

components. 

 Sullivan describes supply driven vulnerability through the categories of resource 

vulnerability, extreme event vulnerability, land cover vulnerability and storage 

vulnerability, while demand driven vulnerability is described through by the categories of 

demographic vulnerability, household vulnerability, economic vulnerability and bulk 

demand vulnerability.  The specific variables used to quantify these categories were 

modified for this study in order to capture the most value from the available datasets, and 

deviated slightly from Sullivan’s. 

 For supply driven vulnerability (SDWV), seven total variables were used.  

Resource vulnerability was described by mean annual runoff (R) and protected 

groundwater area per capita (GW), where runoff was an output from the PRMS 

hydrologic model.  Extreme event vulnerability was described by the number of months 

having less than 18.4 cumulative millimeters of precipitation (Z) and by the number of 

months having more than 263.6 cumulative millimeters of precipitation (Ex).  These 

thresholds were determined by fitting observed monthly precipitation data with a gamma 
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distribution and finding the 10% and 90% probabilities of exceedance.  Land cover 

vulnerability was described as the percentage of upstream area with impervious surfaces 

(UU) and as the percentage of water diverted for irrigation and agriculture (I) within a 

city’s subbasin.  Finally, storage vulnerability was described by the coefficient of 

variation (CV) (standard deviation/mean) of precipitation. 

 For demand driven vulnerability (DDWV), six total variables were used.  

Demographic vulnerability was described by total population (TP) and population density 

(PD), while household vulnerability was described by the percent of the population living 

in poverty (EC).  Economic vulnerability was described by the percentage of the 

population working in water-dependent sectors, including agriculture, mining, and 

manufacturing (EMP).  Bulk demand vulnerability was described by the total annual 

water demand (DEM), which was determined by evaluation of historic demand.  Finally, 

ecological demand was described by a maximum 7-day stream temperature average as 

observed over the period May-October 2004 (T). 

 All variables that were not already represented as percentage values were 

normalized and inverted if a high value did not indicate vulnerability.  Each of the 

variables also received weights, r, that denoted risk giving rise to vulnerability, however, 

for this preliminary assessment all variables received a weight of one.  The equations for 

the SDWV, DDWV and the WVI were then: 
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2.5 Social Vulnerability Index with Water Components 

The second vulnerability index considered in this study was an adaptation of the 

Social Vulnerability Index (SOVI) that was developed by the US Army Corps of 

Engineers (USACE) in response to the devastation of Hurricane Katrina (Dunning and 

Durden, 2011).  SOVI evaluates nine categories of social vulnerability through thirty 

different variables, described in table 4, that were acquired through the 2000 US Census.  

The nine categories described by SOVI are age, income/poverty, minority status, 

disabled, employment, mobile homes/renters, gender, education and density.  Since SOVI 

does not include specific variables relating to water demand and water supply, this study 

expanded on the index by adding several of the variables from the WVI analysis and 

drought information. 

The specific WVI variables added to SOVI were runoff, groundwater storage, low 

precipitation events, extreme precipitation events, percentage impervious area, 

percentage of water diverted for agriculture, precipitation coefficient of variation, total 

water demand and total evaporative demand.  Drought indices were also added to SOVI 

by including the number of events, length of events and intensity of events as determined 

by the DSI3 and DSI6 evaluations.  Once all of the contributing variables had been 

collected for each of the twelve Molalla Pudding cities, the data were organized in a 



24 
 

matrix by city and evaluated by Principal Components Analysis (PCA) with varimax 

rotation of the loading matrix. 

PCA is a technique used to reduce the dimensionality of a dataset while retaining 

most of its intrinsic information content (Haykin, 1999).  For a dataset described by 

matrix, X, with a nonzero mean the PCA technique determines a weighting or loading 

matrix, w, which projects the dataset into the principal component space, A, where the 

variance along each component is maximized: 

          

The matrix A has the same statistical characteristics as the original matrix, X, and 

so it could be seen that the variance of the dataset is represented by the expected value of 

the matrix, A
2
.  Relying on substitution, the covariance matrix, R, of the dataset X can be 

included in the calculation as so (Haykin, 1999): 

                                      

In order to determine the values of w that will diagonalize the covariance matrix, 

or maximize the variance within each component and minimize the covariance between 

components, the matrix w must be composed of orthogonal components (Haykin, 1999).  

Another way of describing this mathematically is to say the weighting matrix, w, and the 

covariance matrix, R, must satisfy the following relation for some diagonal matrix, B: 

      

If the matrix B is instead represented by a scalar vector, b, comprised of the 

diagonal values of B, the equation represents the unique relationship between 

eigenvectors, w, and eigenvalues, b: 
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Therefore, determining the eigenvectors, w, and eigenvalues, b, of a covariance 

matrix, R, will result in determining a weighting matrix, w, which has orthogonal 

components and which will maximize the variance of those components.  Applying the 

weighting matrix to the original dataset will produce a set of principal components that 

are uncorrelated, orthogonal, and which can be selected based on the amount of variance 

described.  The principal components associated with eigenvalues greater than one are 

selected based on the Kaiser criterion (Kaiser, 1960). 

In order to better understand the structure of the dataset, rotation of the principal 

component axes was performed by varimax rotation (Kaiser, 1958).  Varimax rotation 

rotates the axes so that variance is maximized and the loadings matrix has very large and 

very small values.  This technique makes clearer the variables associated with the 

principal component axes.  The varimax rotation is used here to determine which 

components are associated with which SOVI variables.  Analysis of the types of variables 

associated with a component can establish whether or not that component indicates 

vulnerability.  For example, a component that was highly correlated with poverty and 

unemployment would indicate vulnerability and higher values of the dataset along that 

component would indicate greater vulnerability.  In this way, each component can be 

evaluated to determine whether its scores should be added or subtracted to determine a 

vulnerability score.  

 The SOVI+Water Component vulnerability index is computed by either adding or 

subtracting the component scores for each city such that higher component scores 
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indicate greater vulnerability.  Since this index is calculated based on the relationships 

within the dataset itself, the vulnerability score is only meaningful with respect to the 

dataset used in the analysis.  The values of the indices do not have a specific meaning that 

can be evaluated from empirical tables; they can only be used to rank and compare the 

sites included in the dataset. 
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Table 4: Social vulnerability factors considered for the SOVI + WC. 

Variable name  Description  Vulnerability 

dimensions  

MEDAGE  Median age  Age  

QKIDS  Percent of population under 5 years of age  Age  

QPOP65  Percent of population 65 and over  Age  

QSSBEN  
Percent of population collecting social security 

benefits  
Age, income/poverty  

QBLACK  Percent African American  Minority status  

QINDIAN  Percent Native American  Minority status  

QASIAN  Percent Asian and Hawaiian Islanders  Minority status  

QSPANISH  Percent Hispanic  Minority status  

MIGRA  Foreign born  Minority status  

NRRESPC  Per capita residents in nursing homes  Age, disabled  

QRENTER  
Percent renter-occupied housing units  Mobile 

Homes/renters  

QMOHO  
Percent of housing units that are mobile homes  Mobile 

Homes/renters  

PERCAP  Per capita income  Income/poverty  

MHSEVAL  Mean value of owner-occupied housing units  Income/poverty  

M_C_RENT  Mean contract rent  Income/poverty  

QRICH  Percent of households earning $100,000 or more  Income/poverty  

QPOVTY  Percent living below poverty level  Income/poverty  

PPUNIT  Average number of people per household  Income/poverty  

QCVLUN  Percent civilian unemployment  Employment  

QCVLBR  
Percent of population participating in the labor 

force  
Employment  

QAGRI  
Percent employment in farming, fishing, and 

forestry occupations  
Employment  

QTRAN  
Percent employment in transportation, 

communications, and other public utilities  
Employment  

QSERV  Percent employed in service industry  Employment  

QFEMLBR  Percent females participating in the labor force  Employment, gender  

QFEMALE  Percent female population  Gender  

QFHH  
Percent female-headed household, no spouse 

present  

Gender, 

income/poverty  

QED12LES  
Percent of population 25 years or older with no 

high school diploma  
Education  

HODENT  Number of housing units per square mile  Density  

QRFRM  Percent rural farm population  Density, rural status  

QURBAN  Percent urban population  Density, urban status  
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Chapter 3 Results 

3.1 Data Validation 

Before calculating drought indices or running hydrologic models, the downscaled 

NARCCAP data need to be validated against historical observations.  Evaluation of status 

and trend were completed by comparing data means, data distributions, trends and 

Pearson correlation coefficient over the period 1971-1998.  While the models generally 

had good correlation for all variables, the decision to bias correct all NARCCAP data was 

made due to the significant differences in mean values and in distributions.     

The NARCCAP precipitation data generally had good correlation (0.42-0.61) 

over the historical period for all quadrants of the Molalla Pudding basin.  The means and 

distributions, however, displayed the lack of NARCCAP data to match the observed 

precipitation record.  The observed data indicated that mean annual precipitation over the 

basin was 1390-2196 mm per year, while the NARCCAP models had varying spatial 

disagreements with that value.  The two CRCM records generally had little variation 

between the annual precipitation (1488-1775 mm/year) of the quadrants and did not 

describe the full variability of the system.  The HRM3 model, on the other hand, modeled 

too much variability with quadrant precipitation ranging 547-3017 mm/year.  The WRFG 

datasets had good variability, but overestimated precipitation in the western half of the 

basin and underestimated precipitation in the eastern half of the basin.  Additionally, 

figure 5 demonstrates the inability of any of the NARCCAP datasets to capture the 

precipitation distribution observed for each quadrant.   



29 
 

The NARCCAP maximum and minimum temperature data, with the exception of 

the HRM3-HadCM3 model, had high correlations (0.71-0.93) over the historical period 

for all quadrants.  From the historical records, average maximum temperatures ranged 

14.6-16.4°C and average minimum temperatures ranged 5.06-5.37°C.  Much like the 

precipitation records, the CRCM datasets underestimated the mean maximum 

temperature (13.4-15°C) and mean minimum temperature (2.43-4.48°C) by 1-2 degrees 

and overestimated the temperature variability for all quadrants.  The HRM3 model 

overestimated the mean maximum temperature (16.1-20.8°C) and the mean minimum 

temperature (5.56-9.24°C) by several degrees and also overestimated the temperature 

variability.  The WRFG datasets also underestimated both the mean maximum 

temperature (6.5-14.2°C) and the mean minimum temperature (1.96-4.75°C) values, 

while overestimating the temperature variability across the Molalla Pudding quadrants.   

Figures 6 and 7 demonstrate the inability of NARCCAP datasets to capture the 

temperature distributions observed over the Molalla Pudding basin. 

Since the NARCCAP datasets present different historical means and distributions 

from the observed dataset, the decision to perform bias correction was made.  Since the 

NARCCAP sets do show high correlation with the observed data, a relatively simple bias 

correction method can be used to shift and adjust the data to match the observed mean 

and standard deviation.   
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Figure 5: Precipitation distributions over 1971-1998 before bias correction.  

  



31 
 

Figure 6: Maximum temperature distributions over 1971-1998 before bias correction
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Figure 7: Minimum temperature distributions over 1971-1998 before bias correction. 
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3.2 Bias Correction 

As can be seen in figures 8-10, the bias correction of NARCCAP precipitation 

and temperature data resulted in datasets that better matched the status and trend of the 

observed data over 1971-1998.  Precipitation shows good correlation (0.47-0.56) and 

temperature shows high correlation (0.90-0.94) for all NARCCAP models.  Additionally, 

the annual means and the probability distributions in the historical NARCCAP data now 

match the observed data.   

The trends in the historical datasets were also compared using the Mann-Kendall 

statistic.  Observed precipitation shows a slight decreasing trend over 1971-1998 and 

observed temperature shows a significant increasing trend over 1971-1998.  The bias-

corrected NARCCAP precipitation data also shows a slight decreasing trend, except for 

two datasets in the NW quadrant.  Since the magnitude of the trend is quite small, this 

discrepancy is not considered to be significant.  For temperature, the NARCCAP data 

consistently shows agreement with the large increasing trend seen in the observed 

dataset.  Interestingly, the observed data and NARCCAP sets both show much greater 

increases in minimum temperature than in maximum temperature.     
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Figure 8: NARCCAP precipitation distributions over 1971-1998 after bias correction.
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 Figure 9: NARCCAP maximum temperature distributions over 1971-1998 after bias 

correction.
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Figure 10: NARCCAP minimum temperature distributions over 1971-1998 after bias 

correction. 
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3.3 Climate Change Evaluation 

Once the NARCCAP precipitation and temperature data were downscaled, 

assessments of climate change in the Molalla-Pudding basin could be made.  Overall, the 

five RCM/GCM combinations were in agreement as to the change in status and trend in 

the two variables considered.  There were discrepancies between models that will be 

discussed in the following sections, but generally the NARCCAP data for the future 

period 2041-2068 was consistent. 

Only the WRFG-CCSM model showed a significant decrease in future 

precipitation, the remaining four models showed either no change (CRCM-CCSM) or 

increases in precipitation.  The greatest changes were seen in the eastern half of the basin 

(+100-200 mm/year), suggesting the models were influenced by the hydrology of the 

Cascade Mountain ranges and a potential for increased mountain runoff.  Evaluations of 

the future trend of precipitation were also considered by the Mann Kendall test and 

overall the models show agreement in the increasing trend of precipitation for future 

years.   

For temperature changes in 2041-2068, all models showed increases in both 

maximum and minimum temperatures.  For the most part, all models showed greater 

increases in minimum temperature (+1.51°C) than in maximum temperature (+1.42°C).  

The NARCCAP models also have agreement in the significant increasing trend in future 

precipitation, as determined by the Mann Kendall test.  While the future increasing trends 

are high they are not as high as the increasing trends over the historical period.  This 

could represent a leveling off of future temperature that many climate models are 

predicting.    
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Figure 11: NARCCAP precipitation distributions over 2041-2068 after bias correction.
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Figure 12: NARCCAP maximum temperature distributions over 2041-2068 after bias 

correction.
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Figure 13: NARCCAP minimum temperature distributions over 2041-2068 after bias 

correction. 
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3.4 Drought Indices 

Using the DSI3 and DSI6 drought indices discussed in the methods section, the 

historical and future precipitation data were evaluated to determine expected changes in 

drought occurrences, drought length and drought intensity (as a percentage of mean 

annual precipitation).  First, the indices were applied to the observed data in the four 

quadrants of the Molalla-Pudding basin.  Over the 28 year historical period, the basin 

experienced 11-12 drought events and 4-5 serious drought events, depending on the 

quadrant.  The average duration for the minor events was ~6.7 months, while the average 

duration for the serious events was ~4.9 months.  The intensity of the drought events was 

measured as the percent deficit with respect to mean annual precipitation; the minor 

events had average intensities of 21% and the serious events had average intensities of 

36% over the historical period.  The drought events calculated using the NARCCAP data 

matched the observed drought statistics well. 

For minor events, the NARCCAP models tend to predict a decrease in the number 

of events.  The average across the basin results in a decrease of 2 events for 2041-2068.  

For serious events, the NARCCAP models show less agreement.  Several models predict 

either no change in the number of serious events, or small changes of ±1, which leads to 

an inconclusive understanding of future occurrences.  Since there are no significant 

increases or decreases, the prediction of this study is that there will be no change in the 

number of these serious drought events. 
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Figure 14: Change in the number of drought events from 1971-1998 to 2041-2068. 

 

While there is expected to be a slight increase in the number of minor drought 

events, the duration of these events is not expected to change by more than a month.  The 

NARCCAP models predict slight decreases and slight increase in D3 durations, but not 

by significant margins.  The predictions for the serious D6 events do, however, 

consistently agree that drought durations will increase by ~1.9 months.   

 
Figure 15: Change in the duration of serious events from 1971-1998 to 2041-2068. 
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The final drought characteristic captured by the D3 and D6 statistic is drought 

intensity with respect to mean annual precipitation.  For both the minor and serious 

drought events, the NARCCAP data predict an increase in drought intensity.    

 
Figure 16: Change in the intensity of drought events from 1971-1998 to 2041-2068. 
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3.5 PRMS Modeling 

The final step in assessing the future hydrology of the Molalla-Pudding basin was 

through hydrologic modeling with the Precipitation-Runoff Modeling System.  

Evaluating the changes in runoff and soil moisture, in addition to the precipitation 

anomalies just described, will contribute to a multivariate understanding of water 

resources under future climate.   

Before running the PRMS model with the predicted future datasets, the accuracy 

of the calibration was validated by comparing runoff results to observed streamflow data 

from the US Geological Survey.  The primary statistics of interest were the correlation 

coefficient and the Nash-Sutcliffe value; the results of model validation are presented in 

table 5.  Since the Molalla Pudding basin is primarily ungauged, there were only four 

observed data records that were used for validation.  The correlation (0.83-0.91) and NS 

(0.69-0.80) statistics indicated that the PRMS model was well calibrated, so future runs 

were completed using the NARCCAP precipitation and temperature data. 

Table 5: Statistics to verify the accuracy of the Molalla Pudding PRMS calibration. 

USGS Gage River 
Period Correlation 

Nash-

Sutcliffe 

14198500 Molalla River near 

Wilhoit 
1971-1993 0.83 0.69 

14200300 Silver Creek at Silverton 1971-1979 0.91 0.75 

14201500 Butte Creek at Monitor 1971-1985 0.91 0.80 

14200000 Molalla River near Canby 1971-1979 0.90 0.80 

         

The PRMS model driven with NARCCAP precipitation and temperature data 

produced estimates of streamflow over the historical and future periods.  Over the 

historical period, the NARCCAP modeled streamflow ranged 2350-2620 cfs, and over 
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the future period, the NARCCAP modeled streamflow ranged 2160-2850 cfs.  Generally 

the models predicted increased streamflow, due to increased precipitation.  Additionally, 

over the historical period the NARCCAP modeled streamflow matched the decreasing 

trend of streamflow seen in the observe data.  Predicted future streamflow, however, 

showed an increasing trend.  

 
Figure 17: Change in total runoff from 1971-1998 to 2041-2068. 
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Figure 18: Changes in future seasonal runoff predicted by the five PRMS models driven 

by the CRCM-CCSM, CRCM-CGCM3, HRM3-HadCM3, WRFG-CCSM and WRFG-

CGCM3 NARCCAP datasets. 
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3.6 Water Vulnerability Index 

 Using the demographic information from the 2000 US Census, the water demand 

information from the State of Oregon Water Resources Department and the output of the 

PRMS model runs driven by historical and future NARCCAP data, the WVIs were 

calculated for the twelve cities being evaluated.  The WVIs were calculated for each 

model separately to provide five historical WVIs and five future WVIs for each city.  A 

final cumulative WVI was calculated by averaging all NARCCAP driven PRMS outputs 

over both the historical and future periods.  Figures 19 and 20 display the WVI scores for 

all cities in ascending order, so that the cities with the highest WVI are the most 

vulnerable. 

 The DDWV values between the cities were more variable than the SDWV values 

and ranged 14-53%.  Assessing the DDWV values first, the four most vulnerable cities of 

Gervais, Mount Angel, Hubbard and Woodburn, had the highest percentage of the 

population in poverty, the highest percentage of individuals employed in a water-

dependent sector (agriculture), high water demands for irrigation and high population 

density.  The four least vulnerable cities of Scotts Mills, Barlow, Aurora and Colton, on 

the other hand, tended to have unique combinations of variables that contributed to low 

vulnerability, however, the common thread was low agriculture economics.  Scotts Mills 

generally had low vulnerability for all categories, and the lowest vulnerability with 

respect to habitat (as described by stream temperature).  Barlow and Colton generally had 

low vulnerability in all categories, except population/population density and stream 

temperature.  Finally, Aurora had high vulnerability due to the upstream agriculture 

demands and due to stream temperature, but low vulnerability for all other categories.     
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 The SDWV values between the cities were less variable, and generally ranged 20-

42%.  The cities with the two greatest SDWV scores were Woodburn and Hubbard due to 

their high irrigation demands and lower runoff.  The cities with the two lowest SDWV 

scores were Aurora and Barlow due to their high runoff, low irrigation demands and low 

vulnerability groundwater supply. 

 As can be seen in figures 19 and 20, the historical and future periods show much 

agreement in the ranking of vulnerable cities.  The WVI tended to rank the small, low 

agriculture cities of Scotts Mills, Barlow, Aurora and Colton as being the least 

vulnerable.  These cities have fewer upstream demands for water and are well equipped 

to handle social demands.  The WVI tended to rank the furthest west cities of Woodburn, 

Hubbard, Gervais and Mount Angel as being the most vulnerable.  These cities have great 

agricultural demands placed on water and are located at lower elevations generally 

receiving less precipitation and runoff.  These cities do tend to be primarily groundwater 

dependent, however, the combination of low runoff and high demand for irrigation and 

agriculture make the region highly vulnerable.   
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Figure 19: Historical period 1971-1998 WVI scores for Molalla Pudding basin cities.  

Cities on the left are least vulnerable and cities on the right are most vulnerable. 

 

 

 
Figure 20: Future period 2041-2068 WVI scores for Molalla Pudding basin cities.  Cities 

on the left are least vulnerable and cities on the right are most vulnerable.   
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3.7 Social Vulnerability Index with Water Components 

Using the SOVI variables outlined in the methods section, the drought indices and 

the components of water vulnerability used in the WVI, the SOVI + WC was calculated 

for the historical and future periods.  The individual PRMS outputs for each of the 

NARCCAP datasets were all put into the table for principal components analysis and thus 

the SOVI + WC represents all RCMs.   

Tables 6 and 7 outline the varimax rotated principal components determined for 

the historical and future periods.  Both periods showed similar categorizations of 

principal components, with slight differences for the lower ranked components.  Overall, 

the first three components described ~55-60% of the variance of the dataset over both 

periods, inclusion of nine principal components for the historical period described ~97% 

of the variance and inclusion of ten principal components for the future period described 

~99% of the variance. 

The variable loadings associated with the principal components, shown in tables 6 

and 7, indicate interesting relationships between water demand and social vulnerability.  

Component one indicates high positive loading from water variables associated with 

agriculture (demand, low precipitation in the western basin) and high positive loading 

from Spanish population/minority population social variables, implying a connection 

between Spanish laborers and agriculture.  Component two indicates high positive 

loading from runoff and Asian population (generally considered less socially vulnerable) 

and high negative loading from percent of population in poverty and unemployment, 

indicating people with less wealth would be more inclined to live in regions with less 

available water.  Component three, interestingly, had high positive loading from variables 
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indicating female and elderly populations and from stream temperature and had high 

negative loading from agriculture employment.  This could indicate that fewer women 

and elderly persons were found working in agriculture and that increased agriculture was 

found in regions with lower stream temperatures.   

As can be seen in figure 21, the historical and future periods show much 

agreement in the ranking of vulnerable cities.  The SOVI + WC tended to rank the 

furthest upstream and furthest east cities of Colton, Molalla, Silverton and Aurora as 

being the least vulnerable as these regions had the greatest precipitation, low evaporation 

and fewer droughts.  The SOVI + WC tended to rank the western cities of Mount Angel, 

Gervais, Woodburn and Hubbard as being the most vulnerable as these regions had less 

precipitation, less runoff and high evaporation.   
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Table 6: Principal components and associated vulnerability dimensions for the Molalla 

Pudding basin over the historical period. 

PC High Positive Loading High Negative Loading 

% 

Variance 

Explained 

1 

Low Precipitation 

Variability 

Drought Length 

Drought Intensity 

Urbanization 

Demand 

Spanish Population 

Minority Population 

High Precipitation 28 

2 
Runoff 

Asian Population 

Population in Poverty 

Unemployment 
22 

3 

Female Labor 

Female Population 

Population over 65 

Pop with Social Security 

Stream Temperature 

People per Household 

Agriculture Employment 
10 

4 

Percent children 

Indian Population 

Immigrant Population 

Female Head of Household 

Rural farm population 

Median age 
8 

5 

Renters 

Nursing Home Residents 

Housing density 

Urban population 

Mobile Home population 8 

6 
Transportation employment 

Service industry employment 
Labor employment 7 

7 

Wealth 

Income 

Housing value 

Low education 6 

8 
Number drought events 

GW resources 
NA 5 

9 Irrigation NA 3 
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Table 7: Principal components and associated vulnerability dimensions for the Molalla 

Pudding basin over the future period. 

PC High Positive Loading High Negative Loading 

% 

Variance 

Explained 

1 

Low Precipitation 

Variability 

Drought Length 

Drought Intensity 

Urbanization 

Demand 

Spanish Population 

Minority Population 

High Precipitation 24 

2 
Runoff 

Asian Population 

Population in Poverty 

Unemployment 
21 

3 

Female Labor 

Female Population 

Population over 65 

Pop with Social Security 

Median age  

Stream Temperature 

People per Household 

Agriculture Employment 
10 

4 

Percent children 

Indian Population 

Immigrant Population 

Female Head of Household 

Rural farm population 

Median age 
8 

5 

Renters 

Nursing Home Residents 

Housing density 

Urban population 

Mobile Home population 8 

6 Drought Intensity GW Resources 7 

7 

Wealth 

Income 

Housing value 

Low education 7 

8 
Transportation employment 

Service industry employment 
Labor employment 6 

9 
Number drought events 

Irrigation 
NA 4 

10 Storage variability NA 4 

 

  



54 
 

  

Figure 21: Historical and future SOVI + Water Component scores for Molalla Pudding 

basin cities.  Cities on the left are least vulnerable and cities on the right are most 

vulnerable.  
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3.8 Comparison of Vulnerability Indices 

 Once the two different approaches to calculating vulnerability indices were 

completed, the relative rankings of cities could be compared and discussed.  Figures 22 

and 23 compare the rankings of the twelve cities based on output of the vulnerability 

indices, and one can see that there is much agreement.  The two methods consistently 

ranked the cities of Woodburn, Hubbard, Gervais and Mount Angel as the most 

vulnerable due to their position in the lower precipitation portion of the basin and due to 

the extensive irrigation and agriculture demands placed on the water supply.  The two 

methods also consistently ranked Colton as the least vulnerable city due to its high 

rainfall and position upstream.  The cities of Scotts Mills, Silverton, Molalla, Aurora and 

Barlow also were consistently ranked as having low vulnerability, while Brooks and 

Canby had mid-level vulnerability. 

 In terms of use and access to data, the two methods were similar in their data 

requirements.  The WVI was generally easier to use because of the lower number of 

required input variables and straightforward calculation, however, there were several 

aspects of social vulnerability unaccounted for.  The SOVI + WC had a greater data 

requirement and involved the use of a complicated calculation, that required user 

interpretation, however many aspects of vulnerability could be accounted for.  Overall, 

the WVI was a good index for quick calculations, however, the SOVI + WC index could 

be very beneficial for evaluating large areas with great diversity and broad distributions 

of vulnerable groups. 
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Figure 22: Comparison of WVI and SOVI + WC rankings for the historical period. 

 

 
Figure 23: Comparison of WVI and SOVI + WC rankings for the future period.  
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Chapter 4 Discussion 

The vulnerability indices used in this research were useful tools for determining 

which cities in the Molalla Pudding basin relied on vulnerable water supplies.  The 

indices while useful, however, are not perfect and will only reflect vulnerabilities 

represented by the input data.  One of the deficiencies of the existing vulnerability indices 

is the lack of water quality data and the lack of environmental vulnerability, as most 

variables focus on human demand.  In the Pacific Northwest, for example, human water 

shortages tend to be infrequent, however, instream flow and quality requirements for 

habitat are often not met.  Additionally, the presence of dangerous constituents in 

waterways makes vulnerability from intake and recreation a real possibility.  In 

developing indices that include water quality measures, the user should be very careful in 

determining which constituents should be considered and how those constituents should 

be weighted.  As can be seen in figure 24, cities like Hubbard, Woodburn and Gervais, 

which were consistently ranked as most vulnerable, may not have the same water quality 

problems with respect to bacteria and hexavalent chromium.  A city like Colton which 

was consistently ranked as having lowest vulnerability, however, was one of the few 

cities with a TMDL for hexavalent chromium, a dangerous carcinogen.  This 

demonstrates importance of carefully selecting water quality constituents.   

Additionally, some variables, like dams, may be beneficial to one group and 

detrimental to another.  From a human water supply perspective, dams are quite useful, 

while from an anadromous fish perspective, dams make fish passage to breeding grounds 

impossible.  Other variables that can be tricky to evaluate are extreme precipitation 

events and high runoff.  A city like Aurora received a low vulnerability rating because its 
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position at the confluence of the Mill and Pudding rivers ensures high runoff access.  

Aurora is also very susceptible to flooding events because of its position, and that 

vulnerability is not fully accounted for in the existing indices.   

Another deficiency in the water vulnerability indices presented in this paper is the 

lack of predicted population growth for future index calculations.  The 2000 Census and 

geographic data were not modified for expected changes in growth and land use, so 

predicted vulnerability could be affected by these areas.  For example, a large city with 

high water demand could be ranked as having high vulnerability even if its future growth 

is quite small.  While a small town with low historical demand could be more vulnerable 

in the future due to relatively high population growth and development.  These concepts 

should be considered in further climate change vulnerability studies.   
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Figure 24: Stream reaches (red) with existing Total Maximum Daily Load (TMDL) 

requirements for various water quality and habitat vulnerability variables.  
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Chapter 5 Conclusion 

 Overall, the predicted climate data shows increases in precipitation and 

temperature in the future period 2041-2068.  These variables exhibit an increasing trend 

and precipitation increases are greater in the eastern portion of the basin where the 

Cascade mountain range is located.  These increases tend to translate to an increase in 

basin runoff, but a small decrease in soil moisture.  The seasonality of runoff is also 

predicted to change with decreased flows in the Winter/Spring months, little to no change 

of flow in the Summer months and increased flow in the Fall months.  While the Molalla 

Pudding basin is not a snowmelt driven basin, the changes in seasonality could be due to 

increased temperatures removing a snow component.  If more precipitation is falling as 

rain, then an increased Fall runoff would be expected. 

 The climate change data also predict differences in future droughts, as defined by 

precipitation anomaly indices.  Minor drought occurrences are expected to decrease by 1-

2 events per 30 year period, while serious drought occurrences are not expected to 

change.  Duration of minor drought events are not expected to change, while serious 

drought events are predicted to increase by 1-2 months on average.  Both minor and 

serious drought intensities (with respect to mean annual precipitation) are expected to 

increase but only by 1-8% on average. 

 The calculations of vulnerability indices provided a ranking of vulnerability by 

city in the Molalla Pudding basin that could be a useful management tool in water 

resources applications.  Overall the two vulnerability measures had good agreement in 

the rankings and both tended to list the westernmost cities of Woodburn, Gervais, 
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Hubbard and Mount Angel as being the most vulnerable to water scarcity.  Since these 

cities compete with high irrigation and agriculture demands in a region receiving less 

precipitation than the eastern basin, management plans should account for alternative or 

supplemental water sources during times of extreme drought or low precipitation periods. 
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