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ABSTRACT Learning from limited labelled examples is key a research hotspot with excellent scenarios
and potential applications. Currently, most of metric learning-based few-shot models still have the problem
of low recognition accuracy. This is mainly because that they only use the top-layer abstract feature with
semantic information, which ignores the low-layer features that are also critical for the few-shot recognition.
Therefore, the extracted features do not have abundant representation ability, and it is difficult to recognize
easily confusing objects. Moreover, they usually adopt a fixed distance function or train a comparable
network to measure features. These methods lack adaptability, cannot sufficiently fuse features, which
leads to weaken the fitting ability of the metric function. And the same or different classes of images are
treated equally, which makes the metric function have no emphasis point during training. To address these
issues, we propose an end-to-end, metric learning-based model in this paper, called multi-scale decision
network with feature fusion and weighting for few-shot learning (MSDN). Considering the importance of
the low-layer features, we exploit a convolutional network to extract each layer feature. Then, we exploit
a relation network to learn a non-linear metric between the support set and the query set features of each
layer and classify the test images via a voting decision. During feature concatenation, we design a non-linear
feature fusion item to improve the way of concatenation, so that the relation network can have a stronger
function fitting ability to learn the relation score. Meanwhile, we introduce the attention mechanism by
calculating the cosine similarity between the support set and the query set features as their weight, which
makes the relation network pay more attention to the same class of images. Our model achieves the state-of-
the-art accuracy result on Omniglot and miniImageNet datasets compared with popular few-shot recognition
models.

INDEX TERMS Feature fusion, feature weighting, few-shot learning, image recognition, multi-scale feature.

I. INTRODUCTION
A. BACKGROUND
In the past few years, the performance of image recog-
nition models [1]–[7] in deep learning has been signifi-
cantly improved on the benchmark datasets [8]–[11]. These
models typically rely on the deep convolutional network
and large-scale labelled training examples, which obviously
increases the parameters and computation and yields a high
training cost. On the other hand, they can only recognize the
image classes in training data, which limits the further devel-
opment of image recognition. Unlike the machine, human
can easily and effectively learn from few training examples.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

For example, when children are shown few pictures of tigers,
they may always remember what they look like. Researchers
hope that the machine also has such an ability, thus the con-
cept of few-shot learning [12], [13] is proposed in machine
learning.

Few-shot learning aims to learn information about object
classes from one, or only few labelled images. A straightfor-
ward idea is to fine-tune the deep neural network on few-shot
datasets. However, it will lead to a severe over-fitting prob-
lem. This is because that using only a few training examples
will not accurately represent the real data distribution, which
impacts the generalization ability of the model [14].

Meta-learning is a promising method in machine learn-
ing to deal with the few-shot recognition, also known
as learning to learn [15]. In the training stage of
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meta-learning, the dataset is divided into different meta
tasks to learn the generalization ability of the model with
the change of image classes. In the testing stage of meta-
learning, the recognition task can be fulfilled for new
image classes unchanging the existing model. Currently,
few-shot learning algorithms based on meta-learning mainly
include model optimization-based methods [16]–[19], metric
learning-based methods [20]–[28], data augmentation-based
methods [29]–[35] and attention-based methods [21],
[36]–[40]. Among these methods, metric learning-based
method is regard as a simple and effective way to solve the
problem of few-shot recognition.

Metric learning-based method divides the few-shot
recognition task into two stages: 1) The image features
of the support set and the query set are extracted, respec-
tively. 2) A metric algorithm is used to classify the test
images by comparing the distance or similarity between
the support set feature and the query set feature. Some
metric learning-based methods [20]–[22], [24] have been
attracted attention. However, they still cannot achieve high
recognition accuracy. We summary three reasons for these
low-accuracy models as follows: 1) They only exploit the
single-scale feature (top-layer feature) of the images, which
ignores the low-layer features that are also critical for the
few-shot recognition. Traditional convolutional neural net-
work (CNN) can extract discriminative feature information.
For example, the low layers of CNN can capture high res-
olution, texture, contour and so on, while the high layers
of CNN can capture strong semantic representations [41].
Since few-shot learning cannot obtain enough examples,
it is necessary to exploit multi-scale features information on
the limited dataset. Reference [42] proves that the accuracy
of recognition can be improved by adding texture features
of the low-layer. In addition, using only top-layer feature
information will lead to severe information loss, especially
for the small-sized images. 2) In [20]–[22], they use a fixed
metric (e.g., Euclidean or cosine similarity distance), which
lacks non-linear internal structure that captures the similarity
between features. Although [24] learns a non-linear metric
through a comparable convolutional network, called Relation
Network, it simply concatenates the features of the support
set and the query set in the channel dimension before training
Relation Network, which leads to an insufficient feature
fusion. Therefore, none of them can establish a good connec-
tion between the features and learn the features adaptively.
3) In [20], [22] and [24], the image features of the same or the
different classes are equally treated, which makes the metric
function has no emphasis point.

Based on the analysis above, three main issues are studied
by the paper. 1) How to sufficiently extract features? 1) How
to enhance the adaptability of features when measuring the
similarity of features? 3) How to pay more attention for the
same classes of images? Therefore, we propose a multi-scale
decision network with feature fusion and weighting for
few-shot learning (MSDN) to solve these issues. MSDN can
not only exploit multi-layer features to capture abundant

image information, but also make the metric function to
measure the similarity of features better and pay more
emphases for the same classes of images.

B. MAIN CONTRIBUTIONS
Our paper has four main contributions.

1) The idea of multi-scale is exploited to extract features
sufficiently. After calculating the relation score [24] of
each layer feature, the test images are classified via
a well-designed voting strategy. Each useful feature
information is considered, whichmakes the recognition
more accurate based on the method of multi-scale.

2) A non-linear feature fusion item is designed to fuse
the features of the support set and the query set. It can
enhance the adaptability of features and improve the
ability of the metric function.

3) An attention mechanism is introduced by calculating
the cosine similarity between the support set and the
query set features as the weight of each layer fea-
ture vector. It makes the metric function have more
emphases to the same class of images during training.

4) The binary cross entropy (BCE) loss is used during
training. Our model achieves the state-of-the-art accu-
racy result on Omniglot and miniImageNet datasets
compared with popular few-shot recognition mod-
els [16], [18], [21], [22], [24]–[26], [33], [34], 37], 40].
Meanwhile, the ablation experiments onminiImageNet
dataset also demonstrate the effectiveness of every
improvement in our model.

The structure of this paper is organized as follows. Section I
introduces the development of few-shot learning and main
contributions of this paper. Section II summarizes the related
work of few-shot learning. Sections III presents the method
andmodel of this paper. Section IV analyzes and discusses the
experimental performance. Finally, section V summarizes the
study of this paper and gives a future work.

II. RELATED WORK
In this section, we mainly introduce four methods based on
meta-learning: model optimization-based [16]–[19], metric
learning-based [20]–[28], data augmentation-based [29]–[35]
and attention-based methods [21], [36]–[40].

A. MODEL OPTIMIZATION-BASED METHODS
Model-agnostic meta-learning algorithm (MAML) [16] is a
valid few-shot learning algorithm. It can be trained on dif-
ferent meta tasks with a few steps of gradient update and
quickly get a good generalization on the new task. Refer-
ence [17] introduces a new algorithm, called Reptile, which
can be regarded as an updated version of MAML. It learns
the parameter initialization method of neural network so that
it can be adjusted with a small amount of new task data.
Unlike MAML that uses the computational graph of the
gradient descent algorithm to unfold the different calcula-
tion process, Reptile performs a standard stochastic gradient
descent (SGD) in each task, which requires less computation
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andmemory.Meta-Learner LSTM [18] thinks that the param-
eter update rule between Long Short-Term Memory (LSTM)
and SGD is very similar, so LSTM architecture is used to train
the meta-learning model with a good parameter initial condi-
tion. However, it suffers from the need to fine-tune on the tar-
get problem. Reference [19] proposes UMTRA, an algorithm
that performs unsupervised, model-agnostic meta-learning
for classification tasks. The statistical diversity properties
and domain-specific augmentations are used to generate the
training and validation data for synthetic tasks. It can be
applied to other tasks as well, such as video classification.

B. METRIC LEARNING-BASED METHODS
SiameseNetwork [20] is a special neural network architecture
with weight sharing. It inputs two images to extract image
features, and calculates the Euclidean distance between the
training data and the test data to measure their similarity.
Matching Network [21] encodes the support set and the
query set by using different LSTM architectures and mea-
sures them by using a weighted (attention-based) metric
function. Once the model is trained, it can produce sensible
test labels for unobserved classes without any changes to the
network. Prototype Network [22] learns an embedding space
by computing the mean of the support set to get the prototype
representation of each class. Therefore, the few-shot recog-
nition task can be regarded as finding the nearest neighbor
in the embedding space. Task dependent adaptive metric
model (TADAM) [23] uses the idea of Prototype Network
to construct a class representation for metric calculation.
It introduces some technics, including metric scaling, task
conditioning and auxiliary task co-training, to improve gen-
eral metric learning-based methods. Relation Network [24]
thinks of that the metric is also a critical factor of influenc-
ing the recognition result. Therefore, it trains a comparable
convolutional network to learn a non-linear metric in the
embedding space instead of using a fixedmetric distance. Our
proposed model (MSDN) can be regarded as the improve-
ment of Relation Network as well. Reference [25] proposes
Prototype-Relation Network (PRN) by using the idea of
Prototype Network and Relation Network. Moreover, PRN
designs a novel loss function, which takes both inter-class and
intra-class distance into account. References [26] and [27] use
the graph convolutional network (GNN) to solve the few-shot
recognition problem. According to the similarity between
nodes, GNN selectively spreads the image information of
the existing label to the test image that is most similar to
it. Reference [28] proposes a hybrid meta-learning model,
called Meta-Metric-Learner, which combines the benefits of
optimization- and metric based methods. It proves the effec-
tiveness of fusing different few-shot learning methods.

C. DATA AUGMENTATION-BASED METHODS
AttributeGuidedAugmentation (AGA) [29] uses an attribute-
guided method to augment the training examples by mapping
images into an attribute space. The method can be applied to
the few-shot recognition in a transfer-learning setting without

prior knowledge of the new classes and object-based few-shot
scene recognition. References [30] and [31] use the idea of
hallucinating to synthesize new labelled training examples.
Reference [32] proposes DAGAN, which uses the generative
adversarial networks (GAN) to generate new examples. The
model can be applied to novel unseen classes because this
generative process does not depend on the classes them-
selves. MetaGAN [33] also draws on the idea of generative
adversarial networks. It exploits the imperfect generator in
GAN to generate fake data between the manifolds of different
real data classes, which provides additional training signals
to the classifier as well as makes the decision boundaries
much sharper. Reference [34] proposes Adaptive Learning
Knowledge Networks (ALKN) to learn the knowledge of
different classes from the features of labeled samples and
store the learned knowledge into memory, which will be
dynamically updated during the learning process. Themethod
of knowledge augmentation can make up for the lack of train-
ing samples. Reference [35] proposes a novel auto-encoder
network dual TriNet for feature augmentation. It can directly
synthesize multi-layer instance features by utilizing semantic
information to solve the few-shot recognition problem.

D. ATTENTION-BASED METHODS
Simple Neural Attentive Learner (SNAIL) [36] is a simple
meta-learnermodel with attention. It can overcome the bottle-
neck of themeta-learner to internalize and refer to past experi-
ence by combining temporal convolutions and soft attention.
Meta Network [37] uses the meta information to produce the
fast weight. The fast weight and the slowweight are combined
to classify the test images. Meanwhile, the similarity between
the memory index and the input embedding is calculated by
using cosine similarity as attention. Matching Network [21]
also introduces the attention mechanism to predict the output
class label. The attention mechanism can take a simple form,
such as Softmax function over the cosine distance. Atten-
tive Matching Network (AMN) [38] proposes a feature-level
attention mechanism to help similarity function pay more
emphases on the features that better reflect the inter-class
differences as well as to help embedding network learn better
feature extraction capability. Moreover, AMN also learns a
discriminative embedding space that maximizes inter-class
distance and minimizes intra-class distance. Reference [39]
extends the target recognition system by using a few-shot
recognition weight generator with attention mechanism, and
redesigns the convolutional network model classifier with
cosine similarity. It is able to quickly learn new classes
without sacrificing the initial accuracy of training. Refer-
ence [40] applies channel attention and spatial attention mod-
ule (C-SAM) to Relation Network. It can mine more effective
information by using samples of different classes that exist in
different tasks.

III. METHOD AND MODEL
In this section, we first define the notation and terminology
of few-shot learning. Then, we propose our model MSDN
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and introduce the design details of MSDN, including loss
function, voting strategy, feature fusion and feature weight-
ing. Finally, the training algorithm is given to describe the
procedure of training.

A. PROBLEM SETUP
Meta-learning has been widely used in the field of few-shot
learning. In general, meta-learning divides the dataset into
training tasks and test tasks (sometimes validation tasks may
be required). During training, we randomly extract C × K
samples to construct a meta task as the support set, where C
is the unique class of the image and K is the image number
of per class. Then, we extract a batch of samples from the
remaining images of the C classes as the query set. The
target of few-shot learning is to learn how to classify the C
classes from a series of different meta tasks. It is called C-
way K-shot problem. During testing, the testing dataset is
also divided into the support set and the query set. By entering
them into the trained model, the test images in the query set
can be classified.

Formally, the support set and the query set can be formu-
lated as, respectively:

S = {(xs, ys)}
C×K
s=1 (1)

S denotes the support set. The xs and ys denote the image
and its corresponding class label from the support set, respec-
tively.

Q = {(xq, yq)}Nq=1 (2)

Q denotes the query set and N denotes the number of images
in the query set. The xq and yq denote the image and its
corresponding class label from the query set, respectively.

When setting K = 1, the problem is one-shot learning;
K > 1, the problem is few-shot learning.

B. MODEL OVERVIEW
In this paper, we propose an end-to-end, metric learning-
basedmodel, calledmulti-scale decision networkwith feature
fusion and weighting (MSDN) to solve the few-shot recogni-
tion problem. MSDN is shown in Fig. 1.

As show in Fig. 1, MSDN model consists of two net-
works: Feature Extraction Network (FN) and Relation Net-
work (RN). Take 2-way 1-shot problem as an example.

We randomly sample two different classes of images xs1,
xs2 from the support set: a cat (left in Fig. 1) and a dog (right
in Fig. 1); sample one image xq1 from the query set: a cat
(middle in Fig. 1). Our target is to classify the image xq1 in
the query set.

First, we input xs1, xs2 and xq1 into FN to extract each
layer feature. For each image, we construct a four-layer
feature pyramid, denoted as {Fi(xs1)}4i=1, {Fi(xs2)}

4
i=1 and{

Fi(xq1)
}4
i=1, respectively. The Fi denotes the feature of

ith layer. Next, we concatenate the support set feature
and the query set feature of each layer with operator{
Ci
(
Fi (xs1) ,Fi

(
xq1
))}4

i=1 and
{
Ci
(
Fi (xs2) ,Fi

(
xq1
))}4

i=1,

which Ci(•, •) denotes concatenating the two features of the
ith layer in the channel dimension. The improved concatena-
tion way is designed in section III.C. Then, we input the con-
catenated features into RN to calculate the relation score of
each layer

{
rs1,q1

}4
i=1 =

{
RN i

(
Ci
(
Fi (xs1) ,Fi

(
xq1
)))}4

i=1
and

{
rs2,q1

}4
i=1 =

{
RN i

(
Ci
(
Fi (xs2) ,Fi

(
xq1
)))}4

i=1. The
relation score produces a scalar in range of 0 to 1 representing
the image similarity between the support set and the query
set [24]. For example, in Fig. 1, we can get

{
rs1,q1

}
i=1 =

0.9 (cat) and
{
rs2,q1

}
i=1 = 0.3 (dog) for the first layer

Relation Network (RN ). Finally, we use a voting strategy
of the minority being subordinate to the majority to decide
which class the query set image xq1 should belong to.
In Fig. 1, the feature comparison results of the first, second

and fourth layers show that the probability of the cat class is
high for the query set, whereas the feature comparison result
of the third layer is considered to be the dog class with a high
probability. According to the voting strategy, the query set
image xq1 should be classified as the cat (correct classification
in Fig. 1).

C. DESIGN DETAILS OF MSDN MODEL
1) LOSS FUNCTION
In this paper, the binary cross entropy (BCE) loss is used to
train our model. It can produce a relation score r between
0 and 1 to represent the image similarity between the support
set and the query set. The BCE loss function is:

BCE(y, r) = −
∑

y log r+ (1− y) log (1− r) (3)

The y denotes:

y =

{
1, ys = yq
0, ys 6= yq

(4)

In our model, each layer feature is used to predict the relation
score, so the total loss is:

Lmin =
4∑
l=1

BCE(yl, rl) (5)

2) VOTING STRATEGY
We use such a voting strategy that the minority is subordinate
to the majority to classify the test images. The relation score
of each layer needs to be calculated, thus we can get four
classification results. The specific voting strategy is:
If four results are the same (AAAA) or three results are

the same and the remaining one result is different (AAAB),
or two results are the same and the remaining two results are
different (AABC), then it is obvious that the same result (A)
should be selected as the final classification result.
If two results are the same and the remaining two results

are also the same (AABB), or four results are different
(ABCD), then the result of the fourth layer should be selected
as the final classification result because it is obtained by
the top-layer feature. In other words, once we cannot vote,
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FIGURE 1. Overview of our model MSDN for a 2-way 1-shot problem.

we should classify the test images according to the result of
the top layer.

3) FEATURE FUSION
For the K -shot problem where K > 1, Relation Network [24]
element-wise sums over the top-layer feature output of FN for
all the support set samples to form the feature map of training
class. The pooled class-layer feature map is combined with
the query set image feature map. In our work, we take the
same operation, but for each layer of FN.

In Relation Network [24], the concatenation way of the
support set and the query set features can be simply described
by formula:

C
(
Fs,Fq

)
= Concate(Fs,Fq) (6)

Fs denotes the feature of the support set and Fq denotes the
feature of the query set. The function Concate(·, ·) denotes
that the features are concatenated in the channel dimension.

However, it is only a simple linear concatenation, which
cannot sufficiently fuse the support set and the query set
features. To enhance the fitting ability of RN, we design a
non-linear feature fusion itemFs�Fq and concatenate it to the
channel dimension for each layer feature. It can be described
by formula:

C ′
(
Fs,Fq

)
= Concate(F s,Fq,Fs � Fq) (7)

The operation � denotes element-wise product.
The adding of Fs � Fq can guarantee RN to adaptively

adjust the fusion way of features, so it can learn a stronger
relation score during training.

4) FEATURE WEIGHTING
According to Equation (6) and (7), RN treats the features of
the support set and the query set equally. To make RN pay
more attention to the same class of images and less attention
to the different class of images, the cosine similarity between
the support set and the query set features is calculated as the
weight of each layer feature vector:

Cos
(
Fs,Fq

)
=

Fs · Fq
||Fs|| × ||Fq||

(8)

The operation · denotes dot product and× denotes ordinary
multiplication.

WemultiplyCos
(
Fs,Fq

)
by each layer featureC ′

(
Fs,Fq

)
.

Therefore, the final feature concatenation is:

C ′′
(
Fs,Fq

)
= Cos

(
Fs,Fq

)
× C ′

(
Fs,Fq

)
(9)

Feature weighting can also be regarded as an attention-
based method, so RN can have more emphases for the same
class of images during training.

5) TRAINING PROCEDURE
Algorithm 1 summarizes the training loss computation of our
proposed MSDN.

As shown in Algorithm 1, N is the number of examples in
the training set, K is the number of classes in the training set,
Nc ≤ K is the number of classes per episode,Ns is the number
of support examples per class, Nq is the number of query
examples per class, Dk denotes the subset of D containing
all elements (xi, yi) such that yi = k , Fsi and Fqi denote the ith

layer feature of the support set and the query set, respectively.
ri and Li denote the relation score and loss of the ith layer,
respectively.
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Algorithm 1 Training Procedure of MSDN

Input: Training set D = {(xi, yi)}Ni=1 , yi ∈ {1, 2, . . . ,K }
Output:The loss L for a randomly generated training episode
1: SelectNc randomly fromK classes to construct the support
set S and the query set Q
2: for k in {1, 2, . . . ,Nc} do
3: Select Ns randomly from Dk to constitute S
4: Select Nq randomly from (Dk − Sk ) to constitute Q
5: end for
6: {Fsi}4i=1 = FN (S) by Feature Extract Network (RN)
7:
{
Fqi
}4
i=1 = FN (Q) by Feature Extract Network (RN)

8: L = 0
9: for i in {1, 2, 3, 4} do
10: Concatenate Fsi and Fqi by Equation (9) to constitute Ci
11: ri = RN (Ci) by Relation Network (RN)
12: Compute loss Li by Equation (3) and (4)
13: L = L + Li
14: end for
15: Update L by Adam optimization algorithm

TABLE 1. The details of using on Omniglot and miniImageNet dataset.

IV. EXPERIMENTS
In this section, first, we introduce the environments and
datasets. Next, we set the parameters of the network archi-
tecture. After making more specific experimental details,
we carry out quantitative empirical comparisons to demon-
strate that our model can achieve the best result compared
with popular few-shot models. The ablation experiment also
demonstrates the effectiveness of every improvement in our
model. Finally, we simply analyze the influence of parameter
selection on experimental results and the time complexity of
algorithm.

A. ENVIRONMENTS AND DATASETS
In this paper, all experiments about the few-shot recognition
task are implemented on the Pytorch1.0 GPU platform in
SERVERUbuntu 16.04 environment. A 1080Ti graphics card
with 11G memory is enough for these experiments.

We use two classic image datasets in few-shot learning:
Omniglot [43] and miniImageNet [21]. Table 1 shows the
details for the two datasets.

As shown in Table 1, Omniglot consists of 1623 characters
from 50 various alphabets. Each character represents a class.
There are 20 examples for each class with the image size
of 28 × 28. Following [21], [22], and [24], we rotate images
90 degrees, 180 degrees and 270 degrees to add new classes
and use 1200 classes plus rotated classes as the training data
and remaining 423 classes plus rotated classes as the test data.

MiniImageNet is a subset of ImageNet dataset [10].
As shown in Table 1, miniImageNet consists of 100 randomly
classes and there are 600 examples for each class with the
image size of 84 × 84. We use the same split proposed
by [18], which consists of 64 classes for training, 16 for
validation and 20 for test.

B. NETWORK ARCHITECTURE PARAMETERS
The network architecture of MSDNmodel is shown in Fig. 2.
In order to fairly compare our models with baseline models
in section IV.D, we take the same network depth and similar
parameter settings for Feature Extraction Network (FN) and
Relation Network (RN).

FN is a four-layer convolutional neural network. The com-
bination of a 3 × 3 kernel size with 64 filters, a batch
normalisation and a ReLU activation function [44] is used for
each layer and a 2 × 2 max pooling is added for the first two
layers. Because each layer feature needs to be concatenated as
the input of RN, theymust be reshaped to the same size before
concatenating. In FN, a 2 × 2 average pooling is used to
reshape the feature of the first layer, which has the same size
with the features of next three layers. According to the way of
concatenation in Equation (9), the concatenated features with
64 × 3 channels will be obtained for each layer.

RN is also a four-layer neural network with two convolu-
tional layers and two fully connected layers. The combination
of a 3 × 3 kernel size with 64 filters, a batch normalisation
and a ReLU activation function is used for the first two layers.
Before entering the fully connected layer, the

input size of 64 and 64 × 3 × 3 will be obtained for
Omniglot and miniImageNet datasets, respectively. Then,
the combination of 8 hidden units and a ReLU activation
function is used for the first fully connected layer, and the
combination of 1 hidden unit and a Sigmoid activation func-
tion is used for the second fully connected layer in order to
get the relation score.

C. MORE EXPERIMENTAL DETAILS
For the comparative experiments on Omniglot dataset and
miniImageNet dataset, our model is trained from scratch
with random initialization. We take the Adam optimization
algorithm [45] with the learning rate 10−3 and cut it in half
every 50,000 episodes.

There are two popularC-way settings onOmniglot dataset:
5-way and 20-way. Because the accuracy of 5-way is almost
100%, we only compare 20-way result with 1-shot and 5-shot
settings. As shown in Table 1, in each training episode,
the 20-way 1-shot experiment consists of 1 support image and
10 query images and the 20-way 5-shot experiment consists
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FIGURE 2. The network architecture parameters of MSDN model.

of 5 support images and 5 query images. During testing,
following [22] and [24], we batch 1 and 5 query images
per class respectively and calculate the accuracy results by
averaging over 1000 randomly generated episodes from the
testing data for evaluation.

We take the 5-way 1-shot and the 5-way 5-shot settings on
miniImageNet dataset. As shown in Table 1, in each training
episode, the 5-way 1-shot experiment consists of 1 support
image and 15 query images and the 5-way 5-shot experiment
consists of 5 support images and 10 query images. During
testing, following [22] and [24], we batch 15 query images
per class respectively and calculate the accuracy results by
averaging over 600 randomly generated episodes from the
testing data for evaluation.

We compare our model (MSDN) with the current pop-
ular few-shot recognition models, including MAML [16],
Meta-Learner LSTM [18],MatchingNetwork [21], Prototype
Network [22], Relation Network [24], PRN [25], GNN [26],
MetaGAN + MAML [33], ALKN [34], Meta Network [37]
and C-SAM [40]. MSDN and these baseline models are not
be fine-tuned except for MAML.

D. RESULTS AND ANALYSIS
1) COMPARATIVE EXPERIMENTS
We compare our model with several state-of-the-art models
in various experiment settings and datasets. Table 2 and
Table 3 show the comparative accuracies on Omniglot and
miniImagenet dataset, respectively.

In Table 2 and Table 3, the±N%denotes the standard devi-
ation with 95% confidence interval. The experimental data
shows that our model (MSDN) achieves the best accuracy
result compared with baseline models on two benchmark

TABLE 2. Few-shot recognition on Omniglot dataset.

TABLE 3. Few-shot recognition on miniImageNet dataset.

datasets, except that it has the same accuracy as ALKN [34]
in 5-way 1-shot setting of Table 3. In MSDN, the multi-scale
features are fully utilized and the useful information of
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TABLE 4. Ablation experiment on miniImageNet dataset.

each layer is retained. Therefore, the extracted features have
stronger representation ability in various types of datasets for
the image recognition task. Meanwhile, compared with these
baseline models, the low-layer features can capture the abun-
dant detail information for the small-sized and easily con-
fusing objects. During feature concatenation, the non-linear
feature fusion term and attention mechanism also enhance the
fitting ability of RelationNetwork andmake the relation score
of the same class of images higher. Therefore, our model can
achieve a higher recognition accuracy.

2) ABLATION EXPERIMENT
In order to objectively analyse the impact of each improve-
ment of our model, we do the ablation experiment that
resembles the variable-controlling approach on miniIma-
geNet dataset. The result of the ablation experiment is shown
in Table 4.

As shown in Table 4, we carry out the following four
groups of experiments based on Relation Network [24],
including (A) onlymulti-scale voting, (B) only feature fusion,
(C) only feature weighting and (A + B + C) entire model
MSDN. The experimental results of (A), (B) and (C) show
that every improvement of our model is better than Relation
Network. And we find that using only multi-scale voting can
achieve more significant improvement in accuracy compared
with only feature fusion and only feature weighting. This also
suggests that extracting more abundant feature information
is critical for the few-shot recognition task. During feature
concatenation, the accuracy of (B) has a slightly higher
than (C). This is because that the non-linear feature fusion
itemwe designed can significantly improve theway of feature
fusion and enhance adaptability of features during training.
Although the feature weighting makes our model pay more
attention to the same class of images, it is only a kind of
simple and fixed attention-based method (weighted by the
cosine similarity). Therefore, its influence on the experimen-
tal result is not as obvious as (C). Finally, we also find that
the accuracy of entire MSDN model also far exceeds that of
Relation Network.

3) THE SELECTION OF PARAMETERS
‘‘Higher way’’ setting experiment. In Table 3, we have a
slightly higher standard deviation compared with Prototype
Network [22]. This is understandable because Prototype Net-
work uses more classes (higher ‘‘way’’) to train instead of
using our standard training classes. Therefore, we add the

TABLE 5. ‘‘Higher way’’ setting on miniImageNet dataset.

‘‘higher way’’ setting experiment to determine the influence
for the experimental results. The result is shown in Table 5.

In [22], Prototype Network uses 30-way (30 classes) for 5-
way 1-shot problem and 20-way (20 classes) for 5-way 5-shot
problem in training, thus it shows a higher accuracy compared
with our standard training way (class) setting. When adding
the way (class) in training, the accuracy of our model exceeds
Prototype Network with lower standard deviation. Moreover,
we also find that the accuracy will reach a bottleneck when
continuing to add the way (class).

4) THE COMPARISON OF TIME COMPLEXITY
According to Algorithm 1, although our model uses the
idea of multi-scale, the time consumption is almost the
same as Relation Network [24] at the stage of feature
extraction because the four-layer features can be obtained
simultaneously by Feature Extraction Network. However,
the time complexity of our model is almost four times that
of Relation Network [24] when calculating the relation score
(Algorithm 1. line 9-14). Considering that only four-layer
convolutional networks (RNs) are used, the time complexity
does not increase much. During running, our model can still
get the experimental results quickly.

V. CONCLUSION
In this paper, we propose a multi-scale decision network with
feature fusion and weighting for few-shot learning (MSDN).
We use Feature Extraction Network to extract the features of
the support set and the query set in each layer and inputs them
into Relation Network for comparison. The test images can
be classified by a clear majority voting strategy. Meanwhile,
we introduce the feature fusion and the feature weighting to
enhance the fitting ability of Relation Network during feature
concatenation. The comparison experiments on Omniglot
and miniImageNet datasets show that our model achieves
the state-of-the-art result compared with popular few-shot
recognition models. The ablation experiment on miniIma-
geNet dataset also demonstrates the effectiveness of every
improvement in MSDN.

The future work will mainly focus on three aspects.
1) We will study the voting mechanism to design a more
robust voting strategy. 2) We will extend MSDN from
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supervised to semi-supervised or unsupervised learning to
take advantage of the large number of unlabeled examples.
3) We will apply MSDN model to more challenging tasks,
such as the few-shot detection [46], [47] and the zero-shot
recognition [48], [49].
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