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ABSTRACT 13 

A right-hook (RH) crash is a common type of bicycle-motor vehicle crash that occurs between a 14 

right-turning vehicle and through-moving bicycle at an intersection in right hand driving 15 

countries. Despite the frequency and severity of this crash type, no significant driver-16 

performance based evidence of the causes of RH crashes at signalized intersections was found in 17 

the literature. This study examined the driver’s visual attention in a right-turning scenario at 18 

signalized intersections with bicycle lanes but no exclusive right-turning lanes while interacting 19 

with a bicyclist to develop an understanding of RH crash causality. Fifty-one participants in 21 20 

simulated road scenarios performed a right-turning maneuver at a signalized intersection while 21 

conflicting with traffic, pedestrians and bicyclists. Overall, a total of 820 (41*20) observable 22 

right-turn maneuvers with visual attention data were analyzed. The results show that in the 23 

presence of conflicting oncoming left-turning vehicular traffic, drivers spent less visual attention 24 

on the approaching bicyclist, thus, making them less likely to be detected by the driver. The 25 

presence of oncoming left-turning traffic and the, bicyclist’s speed and relative position, and 26 

conflicting pedestrians were found to likely increase the risk of RH crashes. The results of the 27 



current study will help to identify effective crash mitigation strategies which may include 28 

improving the vehicle-human interface or the implementation of design treatments in the road 29 

environment to improve driver and bicyclist performance. 30 

Keywords: Bicycle-motor vehicle Crash, Right hook crash, Bicyclist, Road safety, Driving 31 

simulator, Driver behavior 32 

BACKGROUND 33 

Most bicycle-motor vehicle (BMV) crashes occur at intersections in urban areas—with crashes 34 

involving right-turning vehicles and through moving bicycles, which are commonly termed as 35 

“right-hook (RH) crashes” (see Fig. 1). According to the Oregon (OR) Bicycle Manual, “A RH 36 

crash occurs when a right-turning driver crosses the path of a through bicyclist at an intersection” 37 

( Oregon Department of Transportation (ODOT) 2016). The United States National Highway 38 

Traffic Safety Administration (NHTSA) categorized this crash type as “parallel path” crash 39 

under “driver turn/merge into path of bicyclist” subgroup in NHTSA Manual Accident Typing 40 

(MAT) for Bicyclist Accidents Coder's Handbook (Karsch et al. 2012; Hunter et al. 1995), when 41 

the driver was making a right-turn and the bicyclist was riding in the same or opposite direction 42 

of traffic. RH crashes at intersections can occur as the result of several scenarios of traffic 43 

control and lane geometries at the intersection. This study examined the specific case of RH 44 

crashes after the start-up period at a signalized intersection with no dedicated turning lane. In this 45 

scenario (sometimes referred to as “stale” green) both conflicting vehicles (the bicyclist and the 46 

car) are moving. A RH crash in this condition can occur when a bicyclist overtakes a slow-47 

moving vehicle on the right and the vehicle unexpectedly makes a right-turn, or when a fast-48 

moving vehicle overtakes the bicyclist and then tries to make a right-turn directly in front of the 49 

bicyclist.  50 



NHTSA reports that there were 840 fatal bicycle-related crashes in 2016, which 51 

accounted for 2.2% of transportation-related fatalities. NHTSA reported that 71% of fatal bicycle 52 

crashes occurred in urban areas in 2016, with 30% of them at intersections.  The literature 53 

identifies intersections as hot-spots for bicycle-motor vehicle-related crashes (Korve and 54 

Niemeier 2002; Wachtel et al. 1994; Wang and Nihan 2004; Weigand 2008). 55 

To safely accomplish the dynamic and multifaceted driving task, drivers need to perceive, 56 

identify, and correctly interpret the elements of the current traffic situation including 57 

immediately adjacent traffic, road signs, route direction, and other inputs, while being vigilant 58 

for obstacles and making predictions of near future traffic conditions to maintain control, 59 

guidance, and navigation of the vehicle (Baumann et al. 2007).  60 

Improper allocation of visual attention has been recognized for some time as a causal 61 

factor in vehicular crashes (Treat et al. 1979). A NHTSA study confirmed that 55.7% of 62 

intersection-related crashes occurred due to drivers’ recognition errors such as inattention, 63 

internal and external distractions, or inadequate surveillance (NHTSA 2010). The most 64 

frequently assigned critical reason was found to be inadequate surveillance, which constituted 65 

44.1% of all intersection-related crashes. Inadequate surveillance occurs when the driver is in a 66 

situation where they need to scan a certain location to safely complete a maneuver and they 67 

either fail to look in the appropriate place or looks but does not see. This failure can occur at an 68 

intersection when the driver looks in the required direction before making a turn but fails to see 69 

the approaching traffic (Dingus et al. 2006); or when the driver fails to identify the visual cue on 70 

time, since the visual cue is in an unexpected location or incompatible with the driver’s schemes 71 

(Borowsky et al. 2008). 72 



Driver’s visual attention was also found to be a factor in the case of motor-bicycle 73 

crashes. One of the major contributing factors to this crash type is the improper allocation of 74 

driver’s visual attention while making turns at an intersection. Before making a right turn, drivers 75 

focus their visual attention on the cars coming from the left and fail to detect the bicyclist 76 

coming from their right early enough to respond safely, even when the bicyclist could be easily 77 

detected (Summala et al. 1996; Wachtel et al. 1994). In the case of a bicyclist coming from an 78 

unexpected direction, prior research found that even if drivers looked in the relevant direction 79 

and noticed the bicyclist, often the identification was too late to effectively stop or yield 80 

(Räsänen and Summala 1998). 81 

It is worth noting that although the topic of right-turning vehicle crashes with bicycles 82 

appears in the literature with some frequency (Summala 1988; Wachtel et al. 1994; Weigand 83 

2008), comparably little substantive research has been conducted on this topic. Improper 84 

allocation of drivers’ visual attention and inadequate surveillance methods were demonstrated as 85 

factors contributing to crashes between a driver turning right and a bicyclist from previous 86 

studies. A safe right-turning maneuver requires that the driver will look and detect the bicyclist, 87 

so their decision to make the right turn will be based on that information and corresponding 88 

conditions at the intersection. It was the goal of this study to measure the driver’s visual attention 89 

in these cases to identify the scenarios that increase the risk of a RH crash. The study hypothesis 90 

was that right-turning driver’s visual attention would be influenced by the relative position of 91 

bicyclists and other visual cues in the driving environment; thereby bicyclists’ relative position 92 

and speed would increase the crash risk. The primary failure mechanism would be drivers who 93 

fail to detect the bicyclist when approaching from behind in the driver’s blind spot as compared 94 

to when the bicyclist is riding in front of the driver in her focal vision.  95 



RESEARCH METHODOLOGY 96 

Participants 97 

A total of 67 individuals, primarily from the community surrounding Corvallis, OR, participated 98 

in the driving simulator study. The responses recorded from 16 participants who exhibited 99 

simulator sickness, were excluded from the original data set. As such, the results of 51 100 

participants (30 males, 21 females) aged 19-69 (mean=30.24) were included in the analysis. All 101 

participants had a valid driving license with at least one year driving experience and were 102 

required to declare that they were still mentally and physically fit to drive at the time of the 103 

experiment. Participants were given $20 compensation in cash for participating in the 104 

experiment. 105 

Apparatus 106 

The driving simulator 107 

The Oregon State University (OSU) Driving Simulator is a high-fidelity, motion-based 108 

simulator, consisting of a full 2009 Ford Fusion cab mounted above an electric pitch motion 109 

system capable of rotating ±4 degrees (see Fig. 1. Schematic description of a right-hook crash. 110 

 111 

Fig. 2). The vehicle cab is mounted on the pitch motion system with the driver's located at the 112 

center of the viewing volume. The pitch motion system allows for the accurate representation of 113 

acceleration or deceleration (Oregon State University 2011). Three projectors with a resolution 114 

of 1,400 by 1,050 are used to project a front view of 180 degrees by 40 degrees on three adjacent 115 

screens, measure 3.4 meters by 2.3 meters each. A digital light-processing projector is used to 116 

display a rear image for the driver’s center mirror and the two side mirrors have embedded liquid 117 

crystal displays (LCD). The simulator is equipped with a surround sound system that produces 118 



ambient and driving sounds. The simulator software is capable of capturing and outputting 119 

highly accurate values for performance measures such as speed, position, brake, and 120 

acceleration. The virtual environment was developed using Simcreator simulator software 121 

package by Realtime technologies (RTI), Internet Scene Assembler (ISA) and Google Sketchup.  122 

Eye-tracking 123 

Eye-tracking data were collected with the Mobile Eye-XG platform from Applied Science 124 

Laboratories (ASL) as displayed in Fig. 3. This platform allows the user to have both 125 

unconstrained eye and head movement. A sampling rate of 30 Hz was used, with an accuracy of 126 

0.5-1.0 degrees (Oregon State University 2011). The participant’s gaze was calculated based on 127 

the correlation between the participant’s pupil position and the reflection of three infrared lights 128 

on the eyeball. The system records a fixation when the participant’s eyes pause in a certain 129 

position for more than 100 milliseconds.  130 

Eye-Fixation Data Reduction 131 

The eye fixation data analysis process was performed on 25 second video clips capturing each 132 

participant’s approach to an intersection preparing to and completing a right turn. Each video 133 

clip started from the point when the participant approached the intersection and ended when the 134 

participant completed the right-turn maneuver. The participant’s eye movement data was 135 

analyzed with ASL Results Plus software. For this process, researchers watched each collected 136 

approach video (20 per participant) and drew AOI (area of interest) polygons on individual video 137 

frames in a sequence separated by intervals of approximately 5-10 frames. Once the researcher 138 

manually situated each AOI, the Results Plus software automatically identified the fixations 139 

inside each AOI (i.e., traffic signals (overhead and post-mounted), pedestrians, bicyclists, 140 

mirrors (rear and driver’s right side), and oncoming left turning vehicles) (See Fig. 4). At the end 141 



of the process a data set was exported from the Results Plus software that summarizes the 142 

fixations data during a single 25-second intersection approach video for further statistical 143 

analysis. The data included: the number of fixations, total fixation durations (secs), average 144 

fixation durations (secs), and time of the first fixation within each AOI created during an 145 

intersection approach and right-turn maneuver. Fixations outside of coded AOIs were universally 146 

defined as OUTSIDE and were not analyzed further. 147 

Driving scenarios 148 

Twenty-one different right-turning road scenarios within seven different driving tracks were 149 

constructed in a typical suburban-like virtual environment where shops and housing buildings are 150 

placed along the sides of the road. In each, a cross section of the roadway included three 3.6 151 

meters traffic lanes with 1.7 meters bicycle lanes in each direction was presented. In the driver’s 152 

direction of travel, the intersection approach was a single shared through and turning lane.  In the 153 

opposing direction, there were two lanes. No exclusive left-turn or right-turn bay was provided at 154 

the intersection. The receiving roadway for the right turn had a single receiving lane.  The 155 

intersection approaches had a posted speed limit of 15.65 meter/second (m/s) (35 miles/hour 156 

(mph)) (see Fig. 5). The scenarios introduced a combination of four independent variables 157 

resulted in 20 right-turning scenarios that were presented to the participant. The scenarios 158 

introduced a variation of on-coming traffic, crossing pedestrian, and traveling bicyclist’s position 159 

and speed (see study design). The movements of the other dynamic actors in the scene were 160 

initiated with proximity sensors coded in the simulation in response to the position and speed of 161 

the subject vehicle. The oncoming left-turning vehicles start their movement on the green light, 162 

while the driver is waiting at the red light at the intersection. As the driver approached the 163 

signalized intersection, the pedestrian entered the conflicting crosswalk to cross the road. The 164 



movement of the bicycle ahead was synced with the movement of the vehicle, so, when the 165 

driver was approaching the intersection the bicyclist ahead of him was also moving toward the 166 

intersection. The bicyclists from behind condition was designed in a way that they were visible 167 

in drivers’ rear view or side mirror while the drivers were approaching the intersection. The 168 

simulated environment was designed in a way that drivers could not see the bicyclists pulling 169 

onto the bike lane from the adjacent lane behind them (though they would have passed other 170 

bicyclists in the tangent sections so were aware bicycles were present in the simulation).  171 

The design and sequencing of the 20 scenarios was influenced by a need to minimize the 172 

occurrence of simulator sickness. Therefore, the experimental driving was divided into seven 173 

individual driving tracks of intersections and each included 2-4 right-turning scenarios. Each 174 

scenario was assigned a position on a grid based on the assignment of random number 175 

generation. The order of presentation of driving tracks 1 to 6 was partly counterbalanced (i.e. 176 

there were four possible sequences of presentation to the driving tracks) to minimize the practice 177 

effect on driver performance and made it more difficult for participants to predict when the 178 

simulation would stop. Each participant was randomly assigned to drive the tracks in one of 179 

those orders. To provide more variability in the sequence of right turning scenario presentations, 180 

the start and finish locations of these driving tracks were not consistent. Also, the scenarios were 181 

interrupted by through movements at intersections that were not experimental scenarios to 182 

prevent participants anticipating the motivation for the study and to reduce simulator sickness. 183 

Participants were given the instruction to turn right at an intersection through an automated voice 184 

command saying: “Turn Right at the Next Intersection”, 100 meters upstream of the intersection. 185 

This voice command was automatically generated on the vehicle approach to the intersection. 186 

Fig. 6 shows an example driving track layout of three right-turning scenarios (e.g., tracks 1, 2 187 



and 7). The “Path” in the figure indicates the sequence of maneuvers participants were asked to 188 

perform. 189 

Experimental procedure 190 

Upon arrival, the participant was presented with an informed consent document that provided a 191 

general description of the entire experiment and the opportunity to ask clarifying questions. 192 

Participants were informed that they could stop the experiment at any time for any reason and 193 

still receive full compensation. Participants were not told of the specific research objective or the 194 

associated hypotheses. Participants completed a prescreening demographic survey, including 195 

questions related to: age, gender, driving experience, highest level of education, use of corrective 196 

glasses or contact lenses, as well as their prior experience with both driving simulators and 197 

motion sickness. 198 

At this stage, participants were required to perform a 3- to 5-minute practice drive to 199 

acclimate to the operational characteristics of the driving simulator, and to confirm if they 200 

experienced simulator sickness at any point during the practice drive. Once seated in the vehicle, 201 

participants were allowed to adjust the seat, rear-view mirror, and steering wheel to maximize 202 

comfort and performance while driving in the experiment. Participants were also instructed to 203 

drive and follow all traffic laws as they normally would. The calibration drive was conducted in 204 

a generic city environment, as previously described, and drivers were required to make several 205 

right turns. If a participant reported simulation sickness during or after the calibration drive, their 206 

experimental work was stopped, they were fully compensated, and any recorded data was 207 

excluded from further analysis.  208 

Before starting the experimental drive, participants were instrumented with a head-209 

mounted eye tracker and performed a short calibration process. After that, participants received a 210 



brief instruction about the test environment and the tasks they were required to perform. 211 

Participants were asked to perform right-turning maneuvers at signalized intersections. As noted 212 

in the introduction, all participants approaching the intersection were presented a green signal 213 

and were in motion. Participant’s eye movements were collected while driving through 20 214 

typical right-turning intersections in the simulated environment. As previously stated, the entire 215 

experiment was divided into seven driving tracks that were presented in a random order and 216 

random starting and ending points within each track. The virtual driving course took participants 217 

20 to 30 minutes to complete. The entire experiment, including the consent process, eye tracker 218 

calibration and post-drive questionnaire, lasted approximately 50 minutes.  219 

Study design 220 

To measure participant’s visual attention during the course of the right-turn maneuver, the 221 

average total (summed) fixation duration (ATFD) was documented for each predefined dynamic 222 

area of interest (AOI) in each scenario. Fig. 7 shows examples of different AOIs that drivers 223 

fixated on during the experiment. 224 

Analysis of fixations was conducted to investigate the percentage of drivers who fixated 225 

on the bicyclist before turning right at the intersection. The determination of the fixation on a 226 

bicyclist was limited to when a driver fixated directly on the bicyclist AOI. For example, a driver 227 

who fixated on the rear view or side mirror, but did not fixate directly on the bicyclist coming 228 

from behind and then turned-right without yielding to the bicyclist - these cases indicated that 229 

driver failed to detect the bicyclist and were coded as “not fixated” in the analysis. 230 

Independent variables 231 



The relative position and speed of bicyclist, presence of oncoming left-turning vehicular traffic, 232 

and conflicting pedestrian in the crosswalk may influence drivers’ visual attention while turning 233 

right. Therefore, all these factors were included as independent variables. 234 

The first independent variable “relative position of bicyclist” had three levels – 1) no 235 

bicyclist, 2) bicyclist approaching from behind the driver, and 3) bicyclist riding ahead of the 236 

driver. The second independent variable, bicyclist’s speed had two levels – 1) lower (5.36 m/s 237 

(12 mph)), and 2) high (7.15 m/s (16 mph)). The third independent variable was the “presence of 238 

oncoming left-turning vehicular traffic”, which had two levels – 1) no oncoming (zero) vehicles 239 

and 2) three oncoming vehicles. The last independent variable was the “presence of a conflicting 240 

pedestrian in the crosswalk, which also had two levels – 1) no (zero) pedestrian and 2) one 241 

conflicting pedestrian walking towards the participant. 242 

Research Hypotheses 243 

One of the common features of BMV crashes at intersections includes drivers’ learned routine of 244 

failing to account for an adjacent bicyclist before turning (Räsänen & Summala, 1998). It was 245 

hypothesized that right-turning driver’s visual search would be influenced by the relative 246 

position of bicyclists. It was inferred that the driver would fail to detect the bicyclist when 247 

approaching from behind in the driver’s blind spot as compared to when the bicyclist is riding in 248 

front of the driver in his/her/their focal vision. Two hypotheses were formulated to address this: 249 

H0 (VSP1): Relative positions of adjacent bicyclists’ have no effect on the right-turning drivers’ 250 

mean total fixation duration on areas of interest in the driving environment. 251 

H0 (VSP2): There is no difference in the proportion of drivers who fixate on an adjacent bicyclist 252 

during the right-turn maneuver at signalized intersections as the relative position of the bicyclist 253 

changes.  254 



It has also been suggested that before turning right, drivers tend to focus their attention on the 255 

cars coming from the left and fail to notice bicycles coming from their right early enough to 256 

respond safely (Summala, Pasanen, Räsänen, & Sievänen, 1996). Therefore, it was hypothesized 257 

that driver’s visual attention will be influenced when an oncoming car turns left in front of the 258 

driver. Also, a study on bike boxes in Portland, Oregon suggested that the speed of bicyclists 259 

overtaking the right-turning vehicle was a contributing factor to the occurrence RH crash (Dill, 260 

Monsere, & McNeil, 2012). It was inferred that bicyclist’s speed would have an effect on the 261 

visual attention of drivers while turning right during the latter portion of the green phase. Again, 262 

the Institute of Transportation Engineers (ITE) Transportation Planning Handbook states that one 263 

of the most common pedestrian crashes is the vehicle turn/merge conflict type (Meyer, 2009). 264 

This conflict type occurs when a pedestrian and vehicle collide while the vehicle is conducting, 265 

preparing, or has just completed a turning movement (Hurwitz & Monsere, 2013). Considering 266 

this finding, it was also hypothesized that the presence of a pedestrian in the conflicting 267 

crosswalk might influence the visual attention of a right-turning driver. 268 

H0 (VSP3): The speed of adjacent bicyclists have no effect on right-turning drivers’ mean total 269 

fixation duration on areas of interest in the driving environment.  270 

H0 (VSP4): The presence of oncoming left-turning vehicular traffic has no effect on the right-271 

turning drivers’ mean total fixation duration on areas of interest in the driving environment. 272 

H0 (VSP5): The presence of pedestrian in the conflicting crosswalk have no effect on the right-273 

turning drivers’ mean total fixation duration on areas of interest in the driving environment. 274 

Data Analysis 275 



Fifty-one participants successfully completed the driving simulator experiment. However, due to 276 

eye-tracker calibration issues, completely usable data was only collected from 41 participants 277 

representing a total of 820 (41*20) observable right-turn maneuvers with visual attention data. 278 

To test the five hypotheses stated above, for each of the four independent variables 279 

(bicyclist’s position, bicyclist’s speed, oncoming vehicle presence, and pedestrian’s presence) an 280 

analysis of variance test (ANOVA) was conducted to statistically determine if there was any 281 

difference in the ATFDs. However, when the variances were not equal (determined by Levene’s 282 

test) indicating the violation of the assumption of homogeneity of variance, the Welch's Robust 283 

test or Omnibus F were used to interpret the F-statistic. Finally, pairwise comparisons were 284 

calculated with Tukey’s Honest Significant Difference (HSD) test. 285 

 286 

RESULTS 287 

Forty-one participants (in total of 820 observable right-turn maneuvers with visual 288 

attention data). To detect crashes, the driving task in the simulated environment was observed 289 

continuously from the simulator’s operator station and records were taken at the moment a crash 290 

occurred. Drivers were also asked at the end of the experiment if they were involved in any 291 

crashes during the experiment. The recorded crash data was further validated by checking the 292 

locations of the subject vehicle and bicycle centroid, recorded as a dynamic variable data in the 293 

driving simulator. In most cases, drivers could not notice when a crash occurred due to their 294 

inadequate surveillance behavior and overloaded working memory during turning maneuver. A 295 

Chi-square test was conducted for each of the independent variables to reveal significant 296 

differences in the risk of a crash.  297 

Fig. 8 shows the ATFD values and 95% CIs for four AOIs at an intersection scenario 298 

where the driver was presented with no pedestrians, no oncoming vehicles, and no bicyclists. 299 



This particular intersection is the most basic of all intersections shown to the participants. This 300 

scenario presented the simplest driving scenario to the driver. 301 

Fig. 9 shows the ATFDs from all participants at an intersection where the bicyclist was 302 

approaching from behind the driver at 7.15 m/s, oncoming vehicles were present, and a 303 

pedestrian was present in the conflicting crosswalk. This case includes the greatest number of 304 

experimental variables, and is one of the most visually complex scenario. 305 

Bicyclist’s relative position 306 

Three possible conditions existed for the bicyclist’s position, the bicyclist was either riding ahead 307 

of the driver, approaching from behind the driver, or there was no bicyclist. The first two 308 

conditions were included in eight experimental scenarios each and the third level (no bicyclist) 309 

resulted in four experimental scenarios. The dataset was aggregated this way to isolate the 310 

impact of individual variable levels. Fig. 10  shows boxplots of ATFDs on each AOI for the 311 

bicyclist conditions. The boxplots display the distribution of ATFD in quartiles and indicat the 312 

mean and median of those distributions. The results of the ANOVA and pairwise comparisons 313 

presented in Table 1 shows that ATFDs on the bicyclist, pedestrian, right-side mirror, and 314 

oncoming vehicles had statistically significant differences. A two-sided Welch’s two sample t-315 

test indicated a statistically significant difference in ATFDs on bicyclists with respect to 316 

bicyclists’ position. Drivers spent more time fixating on bicyclists when they were riding ahead 317 

as compared to when bicyclists were approaching from behind. The ATFD for the pedestrian 318 

AOIs was different when the bicyclist was riding in front vs when the bicyclist was approaching 319 

from behind with statistical significance. This finding revealed that in the presence of a bicyclist 320 

in the forward field of view, drivers spent less time fixating on the pedestrian compared to when 321 

the bicyclist was approaching from the behind. Similar findings were observed in the case of the 322 



oncoming vehicle AOI. However, a statistically significant difference in the ATFDs on the right-323 

side mirror and corresponding pairwise comparison showed that drivers spent more time fixation 324 

on the right-side mirror when a bicyclist was approaching from behind compared to when there 325 

was no bicyclist present at the intersection. No other significant differences were found with 326 

95% confidence. 327 

Thirteen crashes occurred when the bicyclist approached from behind and in the 328 

remaining two crash incidents the bicyclist was riding ahead of the driver. A Chi-square test 329 

revealed a statistically significant difference between these two bicyclist positions (p<0.01) with 330 

respect to the occurrence of a crash. 331 

Detecting the bicyclist 332 

As summarized in Table 2 there were 328 (41 participants*8 turns) right-turns scenarios for each 333 

bicyclist position. When the bicyclist was riding ahead of the driver in the forward field of view, 334 

in 87% of the cases the drivers fixated on the bicyclist, i.e. actively scanned for the bicyclist 335 

before turning right. However, when a bicyclist was approaching from behind, in only 44% of 336 

the scenarios did a driver fixate on the bicyclist before turning right. A Chi-square test revealed a 337 

statistically significant difference (p-value < 0.001) between the frequencies of driver fixation on 338 

the bicyclist with different bicyclist positions. 339 

Speed of Approaching Bicyclist 340 

A comparison of ATFDs with respect to the bicyclist’s speed was also conducted. Bicyclists 341 

traveled at either 7.15 m/s or 5.36 m/s. These two conditions consisted of eight experimental 342 

scenarios each. The boxplot of ATFDs on AOIs by bicyclists speed is presented in Fig. 11. 343 

Table 3 presents the results of two-sample, two-sided t-tests that were conducted to 344 

determine the difference in the ATFDs with respect to bicyclist’s speed. A statistically 345 



significant difference was found only in the ATFDs on the rear-view mirror with changes in the 346 

bicyclist’s speed. When bicyclist’s speed was lower (5.36 m/s), drivers spent more time scanning 347 

the rear-view mirror compared to higher (7.15 m/s) speed scenarios. This was likely because the 348 

bicyclist required more time to travel the same distance before reaching the intersection in the 349 

lower speed condition compared to the higher speed condition, while the driver yielded for the 350 

bicyclist to pass. 351 

In 12 out of the 15 crashes occurred when the bicyclist approached at 7.15 m/s speed and 352 

in the remaining three crashes had bicyclists approaching at 5.36 m/s speed. A Chi-square test 353 

revealed a statistically significant difference between bicyclist speeds (p-value<0.05).  354 

Presence of oncoming left turning vehicle 355 

There were two levels of oncoming left turn vehicular traffic in the experiment (No vehicles and 356 

3 vehicles). These two conditions consisted of 10 experimental scenarios each. Fig. 12 shows the 357 

boxplot of ATFDs on AOIs by the presence of oncoming left turn vehicular traffic. Table 4 358 

presents the results of two-sample, two-sided t-tests that were conducted to determine the 359 

difference in the ATFDs with respect to presence of oncoming vehicle. Statistically significant 360 

differences indicated that drivers spent less time fixating on pedestrians, bicyclists riding ahead 361 

of the driver, and the side signal when there were oncoming left-turn vehicles as compared 362 

to when there was no oncoming left-turn vehicle present. 363 

 Eight crashes occurred when oncoming left-turning vehicles were present, and seven 364 

crashes occurred when no oncoming vehicle was present. No statistically significant difference 365 

was found for the presence of oncoming vehicles with respect to crash outcome. 366 

Presence of pedestrian 367 



Ten experimental scenarios presented a single pedestrian in the crosswalk and ten experimental 368 

scenarios had no pedestrian present on the crosswalk. Fig. 13 shows the boxplot of ATFDs on 369 

AOIs by the presence of a conflicting pedestrian. 370 

From the result of two-sample, two-sided Students or Welch’s t-tests, the only statistical 371 

significant different in ATFD was found in the bicyclist behind AOI with the presence of a 372 

pedestrian (Table 5). Results indicated that drivers spent more time fixating on the bicyclist 373 

approaching from behind when a conflicting pedestrian was present in the crosswalk as 374 

compared to when no pedestrian present. No statistically significant difference was found for the 375 

presence of pedestrian with respect to crash outcomes. 376 

DISCUSSION 377 

This study investigated driver’s visual attention and the risk of crash in a simulated virtual 378 

environment while performing a right turn at a signalized intersection when a bicyclist is present 379 

and in different circumstances (i.e. a pedestrian in the conflicting crosswalk and oncoming left 380 

turn vehicles) that might affect the driver’s visual attention. The aim of this study was to identify 381 

scenarios in the driver’s visual search that increase the risk of a RH crash with the bicyclist. The 382 

ATFD within a prescribed AOI was used to measure driver’s visual attention on different targets. 383 

Findings related to each research question on driver’s visual attention are summarized below. 384 

Aligned with the study hypothesis, a statistically significant difference (p-value < 0.001) 385 

was found in the ATFDs on adjacent bicyclist between when a bicyclist was approaching from 386 

behind and when a bicyclist was riding ahead of the driver. This circumstance also increases the 387 

crash risk. This finding is consistent with the finding of Falzetta (Falzetta, M. (2004). A 388 

Comparison of driving performance for individuals with and without Attention-Deficit-389 

Hyperactivity Disorder. Unpublished Masters Thesis, Clemson University, Psychology 390 



Department, Clemson, SC.), where it was found that participants detected forward events more 391 

successfully than rear events, and the location effect was consistent with an attention allocation 392 

strategy that gave higher priority to the road ahead. A statistically significant difference (p-value 393 

< 0.001) was observed between the frequencies of driver fixations on the bicyclist when the 394 

bicyclist was approaching from behind (44%) vs. when bicyclist was riding ahead (87%). Such 395 

scanning behavior places bicyclists approaching from behind in a more vulnerable situation 396 

where they are not detected by a driver at an intersection, contributing to the occurrence of RH 397 

crashes.  398 

Statistically significant differences were also observed in the visual attention allocated to 399 

conflicting pedestrians and oncoming left turn vehicles with respect to bicyclist's position. This 400 

finding might suggest that when a bicyclist was riding ahead in the driver’s visual field, drivers 401 

anticipated a potential risk of collision with them more so than when they were approaching 402 

from behind. However, when the bicyclist was approaching from behind, drivers spent more time 403 

fixating on other traffic elements immediately relevant to the safe operation of the vehicle. 404 

Another statistically significant finding was observed in the ATFDs on the right-side mirror 405 

when the bicyclist was approaching from the behind compared to when there was no bicyclist. 406 

This suggests that when drivers detected a bicyclist approaching from behind in the right-side 407 

mirror, they spent more time fixating on the right-side mirror while waiting for the bicyclist to 408 

pass through the intersection compared to when there was no bicyclist present. Bicyclist's speed 409 

when approaching from behind had a statistically significant effect only on the visual attention 410 

allocated to the rear-view mirror. A bicyclist that was detected in the rear-view mirror would 411 

require more time to travel the same distance before reaching the intersection at the lower speed. 412 



Therefore, it can be assumed that the total fixation duration on checking the rear-view mirror in 413 

search of the bicyclist was higher when the bicyclist traveled at a lower speed.  414 

Oncoming left-turning traffic had a meaningful effect on the driver’s visual attention 415 

spread, demonstrated in the ATFDs on the side traffic signal, crossing pedestrian, and a bicyclist 416 

riding ahead. Results suggest that in the presence of oncoming traffic, drivers spent less time 417 

checking on other traffic elements in their focal vision, such as scanning for the pedestrian, 418 

checking for the traffic signal status, or fixating on the bicyclist ahead. In the presence of 419 

oncoming vehicular traffic, drivers spent a significant part of their time fixating on the oncoming 420 

traffic, to the expense of the other traffic elements. The preferential visual attention oncoming 421 

traffic gets from the driver over other road users and elements was observed in other 422 

circumstances. In previous laboratory experiment it was observed that drivers’ visual attention 423 

was drawn to the oncoming traffic on the expense of pedestrians (Hurwitz & Monsere, 2013), 424 

and left turning drivers at signalized intersections were less likely to seek out for additional cues 425 

from the road environment in the presence of opposing traffic (Knodler and Noyce 2005). In the 426 

analysis of bicycle-car collisions at non-signalized intersections in the Helsinki City area, 427 

Finland, by assessing the visual scanning behavior of drivers, researchers had found that drivers 428 

develop a visual scanning strategy which concentrates on detection of more frequent and major 429 

dangers, such as conflicting vehicles but ignores and may even mask visual information on less 430 

frequent dangers, such as bicyclists (Summala et al. 1996). The driver possesses only a limited 431 

capacity for visual attention, and so in accordance with the results from the current and previous 432 

studies (Hurwitz S and Monsere 2013; Knodler and Noyce 2005; Summala et al. 1996) the 433 

presence of oncoming vehicles perceived by the driver as posing more of a collision risk as 434 



compared to other objects in the road environment (like the bicyclists), and as a result of that the 435 

driver consistently spends more time fixating on the oncoming vehicles. 436 

The presence of pedestrians also affected the driver’s visual attention to the bicyclist 437 

approaching behind him, yet not the risk of a crash. Results were suggestive that when drivers 438 

were waiting for the conflicting pedestrian to pass through the intersection, they spent more time 439 

on fixating on the bicyclists approaching from behind compared to when there was no 440 

pedestrian, but not on the bicyclist that ride ahead from the driver. This was likely because while 441 

drivers were waiting for the pedestrian to pass through the intersection, they had more time to 442 

fixate on the bicyclist approaching from behind compared to when there was no crossing 443 

pedestrian. 444 

Overall, this research provides valuable insights on the causal factors of RH crashes after 445 

the start-up period at a signalized intersection with no dedicated turning lane. These findings can 446 

help roadway engineers and planners while designing roadway sections and locations where 447 

bicycles are likely to be routinely overtaking motor vehicles on the right, especially at higher 448 

speeds. This can occur either in congested vehicle traffic or when bicycles have the advantage of 449 

a downgrade, as found in earlier studies. Findings from this study emphasizes the need for other 450 

design considerations to reduce RH crashes, for example additional pavement markings or signs 451 

may increase driver awareness. Other designs, such bending out the bicycle lane at the 452 

intersection or separating the bicycle movement with a separate signal phase may be feasible 453 

options. In bicycle-lane markings or minor speed humps may be effective at slowing bicycle 454 

speeds if other solutions are not feasible.  To some degree, interactions at closely spaced 455 

signalized intersections in urban areas can be managed with careful thought of the bicycle and 456 

vehicle progression in platoons from upstream signals. This could be accomplished with a 457 



leading bicycle interval at the upstream signal that allows the majority of the bicycle platoon to 458 

arrive ahead of vehicles (Kothuri et al. 2018). 459 

CONCLUSIONS 460 

The results indicate that bicyclist approaching from behind the driver in the blind spot is the most 461 

vulnerable situation for a right-turning driver to fail to detect the bicyclist, potentially leading to 462 

a RH crash. The presence of oncoming left-turning traffic and pedestrian at the crosswalk are 463 

likely to increase the risk of RH crash, as they draw the driver’s visual attention away from other 464 

objects (e.g. the bicyclist). Results also indicate that higher speed bicyclists are likely to 465 

contribute to the risk of RH crash.  466 

As with any driving simulator experiment, while the various driver performance metrics 467 

are measured robustly, it is not yet clear how to map the magnitudes of the differences to 468 

expected crash outcomes. More work is needed to connect visual attention metrics and crash 469 

outcomes. Additional variables could be included in the experiment to determine their effects on 470 

the occurrence of right-hook crashes, for example the conspicuity of bicyclist, and time of day. 471 

The assumption of constant speed of the approaching bicyclist is also limiting; in reality some 472 

people on bicycles would slow down to avoid a collision or near collision. A study that included 473 

dynamic bicycle approach speeds would be an improvement. Finally, one of the fundamental 474 

limitations of within-subject design is fatigue effects that can cause participant’s performance to 475 

decline over time during the experiment. To mitigate this a larger sample of shorter drives might 476 

reduce the risk of fatigue effect and simulator sickness, the experiment could be conducted in 477 

two trials on two different days. Finally, the design of the experiment could be modified with 478 

navigation tasks or other workloads enhancements so that the driver workload is more 479 

representative of actual conditions. 480 



DATA AVAILABILITY 481 

Some or all data, models, and code generated or used during the study are proprietary or 482 

confidential in nature and may only be provided with restrictions (e.g. anonymized data). 483 

Specifically, driver’s visual attention data (number of fixations and durations) for each scenario 484 

aggregated by area of interest is available.   485 
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Table 1. ANOVA analysis of difference in ATFDs by bicyclist position. 552 

Area of Interest 

Relative position of 

bicyclist 

ANOV

A 

Tukey’s HSD for pairwise comparisons of means w.r.t 

bicyclist positions 

Ahead Behind None All Ahead vs Behind Ahead vs None Behind vs None 

ATFD p-value p-value Sig Diff p-value Sig Diff 
p-

value 
Sig Diff 

Bicyclist 
1.40 0.25 N/A N/A <0.001 + Yes 1.15 N/A N/A 

Pedestrian 
3.28 4.02 3.85 0.03 * 0.039 Yes -0.74 0.28 No -0.57 0.89 No 0.17 

Signal (overhead) 
0.13 0.16 0.18 0.16 * 0.4 No -0.03 0.17 No -0.06 0.74 No -0.02 

Signal (side) 
0.14 0.13 0.14 0.83 0.82 No 0.014 0.99 No 0 0.95 No -0.01 

Rear view mirror 
0.43 0.40 0.43 0.82 0.83 No 0.03 0.99 No 0 0.9 No -0.03 

Side mirror 
0.39 0.45 0.29 0.03 * 0.53 No -0.06 0.302 No 0.1 0.049 Yes 0.16 

Oncoming veh 
1.42 2.01 1.48 0.002 * 0.002 Yes -0.59 0.95 No -0.06 0.53 No -0.03 

+ No multiple comparisons required. P-value reflects a two-sided Welch’s two sample t-test. 553 

* P-value reflects a Welch F test. 554 

 555 

Table 2. Detecting of a bicyclist. 556 

 557 

  558 

Frequency 

of fixation 

Bicyclist position 

Ahead Behind 

Total (n) 328 328 

Fixated 284 145 

% 87% 44% 



Table 3. Two-sample t-test of ATFDs by bicyclist speed. 559 

Areas of Interest 

Speed of Bicyclist Two sample two tail t-test 

7.15 m/s 5.36 m/s 7.15 m/s vs 5.36 m/s 

ATFD (sec) p-value Significant 

Pedestrian 3.61 3.68 0.83 No 

Bicyclist ahead 1.43 1.38 0.78 No 

Bicyclist behind 0.20 0.30 0.98 No 

Signal (overhead) 0.14 0.14 1.00 No 

Signal (side) 0.14 0.13 0.91 No 

Rear view mirror 0.36 0.47 0.03 + Yes 

Side view mirror 0.39 0.46 0.23 + No 

Oncoming veh 1.89 1.54 0.06 No/Suggestive 

+ P-value reflects a two-sided Welch’s two sample t-test 

 560 

Table 4. Two-sample t-test of ATFDs comparing AOIs by oncoming left turn vehicles condition. 561 

Areas of Interest 

Oncoming Vehicle Two sample two tail t-test 

3 Veh No Veh 3 Veh vs No Veh 

ATFD (sec) p-value Significant 

Pedestrian 3.11 4.26 <0.001 + Yes 

Bicyclist ahead 1.20 1.61 0.01 + Yes 

Bicyclist behind 0.21 0.29 0.09 + No 

Signal (overhead) 0.16 0.14 0.57 No 

Signal (Side) 0.11 0.16 0.02 + Yes 

Rear view mirror 0.38 0.46 0.11 + No 

Side view mirror 0.39 0.40 0.87 No 

Oncoming veh 1.67 N/A N/A N/A 

+ P-value reflects a two-sided Welch’s two sample t-test 

 562 

  563 



Table 5. Two-sample t-test of ATFDs comparing AOIs by Conflicting Pedestrian. 564 

Areas of Interest 

Pedestrian Two sample two tail t-test 

Ped No Ped Ped vs No Ped 

ATFD (sec) p-value Significant 

Pedestrian 3.69 N/A N/A N/A 

Bicyclist Ahead 1.39 1.42 0.88 No 

Bicyclist Behind 0.38 0.12 <0.001 + Yes 

Signal_Overhead 0.14 0.16 0.35 No 

Signal_Side 0.17 0.10 0.72 No 

RV_Mirror 0.47 0.38 0.06 + Suggestive 

Side_Mirror 0.40 0.39 0.76 No 

Oncoming veh 1.67 1.66 0.99 No 

+ P-value reflects a two-sided Welch’s two sample t-test  565 



Captions and Notes for Figures 566 
Fig. 1. Schematic description of a right-hook crash. 567 

 568 

Fig. 2. The OSU Driving Simulator from inside (a) and outside (b) the vehicle. 569 

 570 

Fig. 3. OSU researcher demonstrating the Mobile Eye XG recording unit (image by David S. 571 

Hurwitz). 572 

 573 

Fig. 4. The ASL Results Plus software. In this frame the driver was fixating on a bicyclist before 574 

turning right. This figure also includes heat maps (shaded circular patterns) for the conflicting 575 

pedestrian AOI crossing the intersection and the side traffic signal AOI with green indication in 576 

driver’s field of view. 577 

 578 

Fig. 5. Screen capture of intersection approach in the simulated environment, this scenario 579 

includes the presence of oncoming left-turning vehicles waiting in the queue, and a bicyclist 580 

riding ahead of the right-turning driver at the latter portion of green phase. 581 

 582 

Fig. 6. Example driving track layout for tracks 1, 2 and 7 with three right-turning scenarios – 583 

path Start-Thru-Right-Thru-Right-Thru-Right-Finish. 584 

 585 

Fig. 7. Examples of Different AOIs Drivers Fixated On During the Experiment 586 

 587 

Fig. 8. ATFDs with 95% CIs for Control Case (No Bicyclists, No Vehicles, No Pedestrians) 588 

 589 



Fig. 9. ATFD with 95% CIs for One of the Most Visually Complex Scenario (Bicyclist 590 

Approaching From Behind at 7.15 m/s, Three Vehicles, One Conflicting Pedestrian) 591 

 592 

Fig. 10. Box plot of ATFDs at all intersections by bicyclist position. 593 

 594 

Fig. 11. Box plot of ATFDs at all intersections, according to bicyclist’s speed. 595 

 596 

Fig. 12. Box plot of ATFDs at all intersections, according to the presence of oncoming left turn 597 

vehicle. 598 

 599 

Fig. 13. Box Plot of ATFDs at all Intersections by the Presence of Pedestrians. 600 
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