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A Study of the Competitiveness of Autonomous Delivery Vehicles in 

Urban Areas  
  

Miguel Figliozzi 1, Dylan Jennings 2  

1 Professor of Civil & Environmental Engineering, Portland State University, Portland, OR, USA  
2 Research Assistant, Portland State University, OR, USA 

{figliozzi@pdx.edu, dwj@pdx.edu}  

Abstract. The rapid growth of e-commerce and package deliveries across the globe is demanding new 

solutions to meet customers’ desire for more and faster deliveries. This research focuses on the cost 

competitiveness of autonomous air and ground delivery vehicles. Three types of autonomous vehicle 

are analyzed: drones, sidewalk autonomous delivery robots (SADRs), and road autonomous delivery 

robots (RADRs). Autonomous vehicles are compared against a typical delivery van. The impact of 

capacity, range and time constraints are analyzed. Results show that each type of autonomous delivery 

vehicle is suitable in different scenarios and can therefore complement each other to reduce costs or on-

road distance traveled.  

Keywords: Last mile, delivery, drone, robot, cost, time  

1. Motivation and Literature Review  

Autonomous delivery robots (ADRs) that travel on sidewalks and roads are being tested in several US cities 

by startups. Even large delivery companies like FedEx are also testing this technology [1]. Online retailers 

like Amazon are also testing a drone prototype that can deliver packages under five pounds to customers in 

less than 30 minutes; this is noteworthy because 75% to 90% of Amazon deliveries weigh less than five 

pounds [2].  

The potential of autonomous vehicles for passenger transportation has been studied extensively. In 

comparison, significantly less work focuses on the potential of autonomous vehicles in the logistics and 

parcel delivery sector. Some researchers have studied the implications of autonomous vehicles for long-

haul freight. For example, Short and Murray [3] discuss the impact of long-haul autonomous trucks on 

hours-of-service, safety, driver shortage and driver retention, truck parking, driver health and wellness, and 

the economy. The work of Slowik and Sharpe [4] focuses on the potential of autonomous technology to 

reduce fuel use and emissions for heavy-duty freight vehicles.  

There are even less studies focusing on urban deliveries or short-haul freight trips. Jennings and Figliozzi 

[5] recently studied the potential of sidewalk autonomous delivery robots (SADRs). Given the relatively 

short range of SADRs, these small robots are usually complemented by a “mothership” van that can 

transport SADRs near the delivery zone or service area. The work of Jennings and Figliozzi (2019) analyzed 

current SADR regulation in the US, their characteristics, and their potential to reduce delivery times or 

costs. Jennings and Figliozzi (2020) analyzed the competitiveness of road autonomous delivery robots 

(RADR) when compared to conventional vans [6]. Results show that RADRs can provide substantial cost 

savings in many scenarios but in all cases, at the expense of substantially higher vehicle miles per customer 

served.  The novel contribution of this research is to evaluate both air and ground (SADR and RADR) 

autonomous vehicles potential to reduce delivery times and costs in urban areas. To the best of our 
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knowledge there is no publication comparing the costs of both air and both types of ground autonomous 

vehicles.    

2. Vehicle Characteristics 

A conventional van is defined as a delivery van in the traditional sense, with rear storage for parcels and a 

human driver and delivery person. A mothership for the purposes of our analysis is defined as a van which 

has been outfitted to transport SADRs, with a human driver who drops off or picks up SADRs. Finally, 

RADRs are defined as vehicles which operate autonomously to deliver parcels. See Figure 1 to find an 

illustration of the mothership-SADR and RADR vehicles analyzed in this research.  

 

 

Figure 1:Mothership Van with Starship SADRs (left) and NURO (right) 

A Starship Technologies’ SADR in conjunction with a Daimler SADR Van, or “mothership”, is utilized in 

the numerical analysis. Each Starship SADR weighs 40 lbs (18.1 kgs), has a speed of 4 mph (6.4 kph), and 

a range of 4 miles (6.4 kms). As discussed in [5] it is assumed that a Starship can deliver to up to six 

customers. A uDelv RADR is utilized in the numerical analysis. The uDelv is a modified Ford Transit 

Connect that has 32 individual compartments to store delivery items [6]. The Ford Transit Connect can 

travel at up to 60 mph, with a range of 60 miles before recharging, and a carrying capacity of 1,300 pounds 

[6]. The uDelv has individual compartments that can be opened one at a time, which would prevent theft 

of other delivery parcels. The drone analyzed is a cargo multicopter MD4-3000 that was already utilized to 

analyzed the comparative advantages of drones regarding CO2 emissions against a Dodge RAM 

conventional van [7]. Key vehicle characteristics are provided in Table 1.  

Table 1: Key Vehicle Characteristics 

Vehicle 
Tare 

(kg) 

Max. Speed 

(kph) 

Max. Payload 

(kg) 

Range 

(km) 

Starship 18.1 6.4 18.1 3.2 

Nuro 680 56 110 16.1 

uDelv 1890 97 590 97 

MD4-3000 10.2 72 5.0 36 

Dodge RAM 2170 180 1890 695 

2.1. Vehicle Costs 

 While autonomous vehicles are beginning to be tested across the United States, the costs associated with 

manufacturing autonomous vehicle are still significantly higher than the manufacturing cost of conventional 

vehicles. A 2015 estimate indicates that the additional cost of just the Light Detection and Ranging 

(LIDAR) sensors to allow a vehicle to be fully autonomous (level 4+) is $30,000 to $85,000 per vehicle, 

and over $100,000 per vehicle for LIDAR and other sensors and software [6]. Autonomous vehicles could 

eventually cost $25,000 to $50,000 more than typical vehicles with mass production, over time, not less 

than 10 years, reaching prices of around $10,000 per vehicle. Price of automation implementation 20 to 22 
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years after introduction is expected to be $3,000 per vehicle, eventually reaching a low of $1,000 to $1,500 

per vehicle [8].  

The mothership and conventional van require a human driver. We assume a cost of $40 USD per hour for 

motherships and $35 USD per hour for conventional vans. The mothership is a more expensive vehicle 

since it is larger and requires a specialized configuration. We assume a value of $30 USD per hour for 

RADR vans after removing driver costs and adding higher autonomous vehicle costs and accounting for an 

operator monitoring several vehicles. We assume a relatively conservative cost of $1.5 USD per delivery 

for SADRs [5].  

The cost of drone deliveries is estimated utilizing figures provided by Wright et al. [9] and Jenkins et al. 

[10]. The former reference indicates a cost of $0.41 per kg-km or $0.18 per lb-km for a multicopter; 

assuming 2.5 lbs per delivery results in $0.47 per km. The latter reference indicates that drone costs range 

between $0.10 and $0.60 per mile or $0.06 to $0.37 per km. Another report [11] provides a cost of delivery 

assuming different levels of regulation and labor participation. A low and high cost of $15.98 and $67.64 

per hour are estimated. Assuming a 20 m/s operating speed the costs are estimated from $0.22 to $0.94 per 

km. The differences in drone costs are mainly due to different assumptions regarding the number of staff 

necessary to operate a drone delivery system. In this research a compromise value of $0.5 per kilometer is 

assumed which translates into $36 per hour. The drones also incur a fix setup time between flights of 10 

minutes; this setup time is necessary to load the drone and swap the battery if necessary.  

3. Methodology 

The methodology used for comparing travel, time and cost of the studied vehicles is based on continuous 

approximations. As indicated by Daganzo et al. [12] this type of analytical approximation is appropriate to 

address big picture questions because they are parsimonious, tractable, and yet realistic when the main 

tradeoffs and constraints are included. This type of modeling approach has been successfully used in the 

past by many authors to model urban deliveries and logistic problems [13,14]. A circular area of service is 

assumed and capacity, range and tour duration constraints are considered. The range of a drone is 

determined by its weight, flying efficiency, and battery capacity. Drone range calculations are estimated as 

in [7] assuming a 5 pound delivery weight. According to Amazon 75 to 90% of its parcel deliveries are less 

than 5 pounds. The following notation is used throughout the paper.  

 

𝑛 = Total number of customers served  

𝑘𝑙 = Routing constraint (constant value), representing non-Euclidean travel on sidewalks and roads 

𝑎 = Area (units length squared) of the service area, where 𝑛 customers reside 

𝛿 =  𝑛/𝑎 , customer density   

d = Distance between the depot and the geometric center of the service area 

𝑇 = Maximum duration of shift or tour (same for all vehicle types) 

𝑙𝑖(𝑛) = Average distance a vehicle travels to serve 𝑛 customers for vehicle type 𝑖 
𝑚𝑖 = Minimum number of vans for vehicle type 𝑖  
𝑅𝑖 = Range of a vehicle for vehicle type 𝑖 
𝑄𝑖 = Capacity (number of parcels for vans or number of SADRs for motherships) for vehicle type 𝑖 
𝜏𝑖 =  Total van time necessary to make 𝑛 deliveries for vehicle type 𝑖 
𝜙𝑖 = Stop percentage (percent of the time a vehicle is stopped due to traffic control) 

𝑠𝑖
′ Average speed of the vehicle on urban streets, not including 𝜙 

𝑠𝑖,ℎ
′ = Average speed of the vehicle while on a highway, not including 𝜙 

𝑠𝑖 = 𝑠𝑖
′𝜙𝑖 = Average speed of the vehicle on urban streets 

𝑠𝑖,ℎ = 𝑠𝑖,ℎ
′ 𝜙𝑖 = Average speed of the vehicle while on a highway 

𝑡0 = Time it takes to wait for the customer to pick up their order from the vehicle or delivery person 

𝑡𝑢 = Time it takes the vehicle and/or driver to unload the delivery 

𝑡 = 𝑡0 + 𝑡𝑢 = Total time vehicle is idle (i.e., not traveling) during a delivery 

𝑐ℎ,𝑖 = Cost per hour of operating vehicle type 𝑖, including cost of a driver if applicable 

𝑐𝑑,𝑖 = Cost per delivery for vehicle type 𝑖 
 

The average distance 𝑙(𝑛) to serve 𝑛 customers can be estimated as a function of customer density, number 

of vehicles, network characteristics and route constraint coefficients, and the distance between the depot 
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and the delivery area [15]. In this paper, the equation used to calculate the distance traveled to visit 𝑛 

customers by a ground vehicle is: 

 

𝑙𝑖(𝑛) = 2𝑑𝑚𝑖 + 𝑘𝑙√𝑎𝑛/𝑚𝑖  (1) 

 
In equation (1), 𝑑 represents the average distance from the depot or distribution center (DC) to the 

customer(s). The parameter 𝑑 is multiplied by two, the number of times the vehicle goes to and from the 

service or delivery area (SA). The parameter 𝑘𝑙 is a constant value representing network characteristics and 

routing constraints in the SA [15]. The average area of the SA where customers are located is represented 

by 𝑎. The number of parcels or stops is represented by 𝑛. The following formula is used to calculate the 

route duration constraint of a ground vehicle accounting not only for driving time but also waiting for the 

customer and unloading the parcels: 

 

 
2𝑑

𝑠ℎ,𝑖
+

𝑘𝑙√𝑎𝑛

𝑠𝑖 √𝑚𝑖
+ (𝑡0 + 𝑡𝑢)

𝑛

𝑚𝑖
< 𝑇 (2) 

3.1. Baseline  

In equation (2), the first term represents the driving time and the second term represents the time it takes to 

park, wait for or go to the customer and unload the parcels. To determine the maximum number of deliveries 

that can be made by the conventional van within a shift of duration 𝑇, equation (2) is solved for 𝑛 when the 

available time is 𝑇 (to ease notation the sub index for conventional van 𝑖 is dropped). The resulting equation 

for the maximum number of customers that one conventional van can deliver is: 

 

𝑛 = ⌊
𝑘𝑙

2𝑎+2𝑠2𝑇𝑡 − 
4𝑑𝑠2𝑡

𝑠ℎ
 − 𝑘𝑙

2√(
4𝑑𝑠2𝑡

𝑘𝑙
2𝑠ℎ

−
2𝑠2𝑇𝑡

𝑘𝑙
2 −𝑎)

2

−
4𝑡2𝑠2

𝑘𝑙
2 (

𝑠2𝑇2

𝑘𝑙
2 +

4𝑑2𝑠2

𝑘𝑙
2𝑠ℎ

2 −
4𝑠2𝑇𝑑

𝑘𝑙
2𝑠ℎ

) 

2𝑠2𝑡2 
⌋  (3) 

  
The floor function is used in equation (3) to avoid a fractional number of customers. In this research, a 

conventional van is utilized as a baseline and equation (3) provides the maximum number of customers that 

can be served with one vehicle.  Vans route duration constraints is given by (2) and capacity and range 

constraints are as follows (4):  

𝑚𝑖 ≥ ⌈
𝑛

𝑄𝑖
⌉                                                                                                                                      (4) 

𝑘𝑙√𝑎𝑛

√𝑚𝑖

+ 2𝑑 < 𝑅𝑖   

  

For the conventional van constraints (2) and (4) are always satisfied in the scenarios analyzed, given the 

high value of 𝑅 (range) and the large capacity of conventional vans when compared to SADRs and RADRs. 

Formulas and constraints for drones are simpler since there is one costumer per delivery [7]. For SADRs 

the range, time, and capacity constraints presented in [5] are utilized.  

3.2. Scenarios 

Table 2 shows a summary of the key scenario parameters by delivery vehicle type. These parameters are 

set to meet vehicle characteristics or reasonable operational values in urban areas. As area size 𝑎 changes, 

following equation (3), the maximum number of customers that can be served by one conventional delivery 

van also changes. Hence, one conventional delivery van is the baseline utilized to create different scenarios 

that are labeled from A to I as the area size 𝑎 increases from 10 to 130 square miles or 26 to 337 square 

kilometers (see Table 3). In all cases it is assumed that the delivery time per customer is 𝑡 = 3 minutes and 

that the depot-SA distance is 𝑑 = 10  miles or approximately 16.1 kilometers. 

Fleet size and utilization for the other vehicles (uDelvs, motherships, SADRs and drones) also changes to 

meet the respective time, range, and capacity constraints as shown in Table 3. More customers can be served 

when the delivery area is smallest (scenario A) than largest (scenario I). Hence the customer delivery 
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density is reduced as the area increases. There are tradeoffs among number of customers served, area size, 

and fleet size; fleet size varies to satisfy range, capacity, and time constraints per vehicle type.   

 

Table 2: Default values for variables used in calculations 

Varia

ble 

Description of variable Units uDelv  SADR Mother.* Conv. 

Van 

Drone 

𝑇 shift time (max)  hours 10 10 10 10 10 

𝑅𝑖 range of vehicle (max) Miles 

(km)   

60   4 

(6.4) 

400 400 22.4 

(36) 

𝑄𝑖  capacity (max)  unitless 32 6 8** 200 1 

𝑐ℎ,𝑖  cost per hour of operation USD 30 n/a 40 32 36 

𝑐𝑑,𝑖  cost per delivery USD n/a 1.5 n/a n/a  

𝑠𝑖
′  full unlimited vehicle 

speed in residential 

mph 

(kph) 

30 

(48.3) 

4 

(6.4) 

30 

(48.3) 

30 

(48.3) 

44.8 

(72) 

𝑠𝑖,ℎ
′  full unlimited vehicle 

speed on highway 

mph 

(kph) 

60 

(96.6) 

n/a 60 

(96.6) 

60 

(96.6) 

44.8 

(72) 

𝑠𝑖 vehicle speed in 

residential 

mph 

(kph) 

21 

(33.8) 

2.8 

(4.5) 

21 

(33.8) 

21 

(33.8) 

44.8 

(72) 

𝑠𝑖,ℎ vehicle speed on highway mph 

(kph) 

42 

(67.6) 

n/a 42 

(67.6) 

42 

(67.6) 

44.8 

(72) 

𝑘𝑙 routing constraints unitless 0.7 0.7 0.7 0.7 n/a 

𝜙 stopping factor unitless 0.3 0.3 0.3 0.3 n/a 

* Motherships can make multiple tours and **  capacity is number of SADRs per mothership instead of parcels 

Table 3: Scenario Characteristics 

Measure 
Scenarios 

A B C D E F G H I  

Time per customer [min] 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

Number of customers 163 149 140 133 127 122 118 114 110 

Delivery area [mi2] 10 25 40 55 70 85 100 115 130 

Delivery area [km2] 26 65 104 142 181 220 259 298 337 

Cust. density [cust./ km2] 6.3 2.3 1.4 0.9 0.7 0.6 0.5 0.4 0.3 

Number of uDelvs  6 5 5 5 4 4 4 4 4 

Number of motherships 1 1 1 1 1 1 1 1 1 

Rounds per mothership 4 4 3 3 3 3 3 3 3 

Number of SADRs 28 25 24 23 22 21 20 19 19 

Number of drones 5 5 5 5 5 5 5 5 5 

4. Results 

In this section results obtained for scenarios A to I are analyzed. Table 4 shows the delivery distance per 

customer as a function of vehicle type and delivery scenario. In the case of the drones the distance per 

customer increases considerably as the service area increases.  However, for the other vehicles the change 

is less marked as there is a tradeoff between the efficiency of the vehicle fleet size, the number of customers 

served, and the size of the delivery area. In the case of the conventional van with constant fleet size, it is 

possible to observe a clear trend with an increase in the delivery distance per customer as the customer 

density decreases from scenario A to I.  RADRs can bring about more congestion in scenarios A to I as 

their on the road travel (per customer served ) is substantially higher distance.  
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Table 4:  Delivery distance per customer [km.] by vehicle type  

 

 

Table 5 shows total time spent per customer by vehicle type in each of the different scenarios. Although 

drones are fast and can reach a given customer in a short time, their overall efficiency is heavily penalized 

by two factors: the battery swap time and the numerous trips to the depot since their capacity is just one 

package per delivery. The average drone time per customer increases substantially as the delivery area 

increases. However, for the uDelv and vans the changes are less marked as there is a tradeoff between the 

efficiency of the vehicle fleet size, the number of customers served, and the size of the delivery area. There 

is a large increase in SADRs time per customer as a consequence of longer travel distances and the slow 

speed of the SADRs.   

Table 5: Total delivery time per customer [min.] by vehicle type  

 

 

Regarding costs, Table 6 summarizes the results. Drones are clearly more expensive than the other modes. 

The drone flight time per customer is reduced substantially as the service area decreases but this reduction 

is not enough to compensate for the swap times and low efficiency of the drone routes.  

Table 6: Cost per customer by vehicle type [$/cust.] 

 

Regarding ground vehicles, the RADR is more competitive than the conventional van when the vehicle 

capacity is not binding and the fleet size is four or less vehicles (in bold, scenarios F to I). The conventional 

van is more competitive with higher densities and longer routes that can be served by just one vehicle 

(scenarios A to E).  SADRs are not the most competitive option in any scenario, but they are very 

competitive if the mothership vehicles is not utilized, i.e. for deliveries near the depot. 

Vehicle Type 
Scenario 

A B C D E F G H I  

uDelv Van 1.5 1.5 1.8 1.9 1.9 2.0 2.1 2.3 2.4 

Mothership 1.5 1.7 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

SADR 0.3 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

Conv. Van 0.5 0.7 0.8 1.0 1.1 1.2 1.3 1.4 1.5 

Drone 3.8 6.1 7.7 9.0 10.1 11.2 12.1 13.0 13.8 

Vehicle Type 
Scenario 

A B C D E F G H I  

uDelv Van 4.5 4.8 5.1 5.4 5.4 5.6 5.8 6.0 6.2 

Mothership  2.4 2.7 2.4 2.5 2.6 2.8 2.9 3.0 3.1 

SADRs   6.7 9.1 11.0 12.6 14.1 15.5 16.8 18.1 19.3 

Conv. Van 3.7 4.0 4.3 4.5 4.7 4.9 5.1 5.3 5.4 

Drone 16.2 18.0 19.4 20.5 21.4 22.3 23.1 23.8 24.5 

Vehicle Type 
Scenario 

A B C D E F G H I  

uDelv Van 2.3 2.4 2.6 2.7 2.7 2.8 2.9 3.0 3.1 

SADR +Moths. 3.1 3.3 3.1 3.2 3.2 3.4 3.4 3.5 3.6 

Conv. Van 2.2 2.3 2.5 2.6 2.7 2.9 3.0 3.1 3.2 

Drone 9.7 10.8 11.6 12.3 12.9 13.4 13.9 14.3 14.7 
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5. Discussion and Conclusions 

RADRs can be more competitive than conventional vans but they are limited by their relatively short range 

and limited storage capacity. The short range can be addressed by more and better batteries. Though this 

would be at the expense of additional vehicle weight and cost, batteries are one of the major barriers to the 

electrification of freight [16]. SADRs can be more than conventional vans when delivery time per customer 

is relatively high. They can also be very competitive if they can operate from a depot and without the 

support of a mothership [5]. However, this type of operation is only feasible in dense delivery areas near a 

depot and not in the scenarios discussed in this research where the depot-delivery area distance is 10 miles 

or 16.1 kilometers. Drones have many potential advantages over ground vehicles, for example they can 

arrive quickly to a customer by taking more direct paths and avoiding ground-based obstructions. However, 

drones underperform in terms of payload capacity and delivery costs.  

The largest uncertainties related to drone, SADRs, and RADRs are perhaps their cost and future regulatory 

barriers. The rate and speed of adoption of air and ground autonomous delivery vehicles will greatly depend 

on their operational costs and ease of regulation and entry into the delivery market, as discussed by previous 

studies focusing on the adoption of autonomous trucks by freight organizations [17,18]. 

5.1. Non-monetary considerations 

Large-scale introduction of autonomous air and ground vehicles can bring about new business and service 

models that are made possible by 24-hour operations since autonomous vehicles are not subject to 

limitations like driver fatigue as well as lunch and rest breaks. On the other hand, RADRs can bring about 

more congestion unless they become more efficient than conventional vans in terms of vehicle-distance 

traveled per customer. Although most deployments are still at the pilot level, air drones and ground ADRs 

may soon be able to complement traditional delivery methods to meet the growing delivery demands caused 

by e-commerce, which is growing at a double-digit annual rate [19].  

According to a recent survey, a large majority of people in the US believe that delivery robots will be in 

use within the next five years [20]. According to this USPS study, customers highly value the ability to 

receive deliveries when and where recipients choose. Since RADRs deliver freight, they can prioritize 

safety of pedestrians and other road users over the safety of the freight being carried by the RADR. Hence, 

RADRs are not faced with potential ethical issues that passenger autonomous vehicles are likely to face 

regarding tradeoffs between the safety of passengers and other vulnerable road users such as pedestrians 

and/or cyclists. Because of this advantage, it is likely that RADRs may be widely used before autonomously 

driven passenger vehicles. On the other hand, urban freight is complex and the tasks associated to parking, 

unloading, and delivering may be more difficult to automate than is currently expected. High safety 

standards for RADRs may result in high delivery times per customer, which in turn decreases RADRs 

economic appeal as shown in the previous section.  

From a public policy perspective, the utilization of RADRs may significantly increase the number of 

vehicle-miles related to package delivery. The scenarios analyzed indicate that RADRs generate more 

vehicle-miles per delivery than conventional vans (substantially more in many scenarios). As a secondary 

effect, new delivery/service models (anytime/anywhere) plus a reduction in delivery costs brought about 

by a large-scale introduction of RADRs may further increase the already high growth of ecommerce.  The 

combination of higher vehicle-miles per delivery plus the growth of ecommerce can compound congestion 

and high curb utilization problems in many urban areas.   

5.2. Limitations and future research opportunities 

This research is a first step towards understanding the key tradeoffs between air and ground automated 

delivery vehicles and conventional vans. A few scenarios have been analyzed but more research is 

necessary to analyze specific case studies, future vehicle capabilities and cost figures, and how these new 

technologies can be integrated into efficient supply chains in urban areas and to optimize their joint 

deployment [21]. Future research can also study the broader impacts of urban freight autonomous vehicles 

on urban sustainability as well as future distribution networks and land use patterns.  
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