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Carbon Emissions Reductions in Last Mile and Grocery Deliveries Utilizing 
Autonomous Vehicles 
 
ABSTRACT 
 
New driverless air and ground vehicles are being launched and tested to deliver products or 
services in the areas of retail, groceries, and healthcare. This research focuses on the efficiency 
of autonomous (driverless) delivery vehicles in terms of vehicle-miles, energy consumption, 
and carbon emissions. Drones or UAVs, sidewalk autonomous delivery robots (SADRs), and 
road autonomous delivery robots (RADRs) vehicles carbon emissions are compared against 
emissions from an electric van (e-van), a conventional internal combustion engine van, and 
driving to a store utilizing electric and conventional vehicles. The impacts of vehicle capacity, 
range, and time constraints are analyzed as well as the impacts of number of deliveries, service 
time, area of service, and depot-service area distance. Novel results are found regarding the 
efficiency of each vehicle type and tradeoffs between driving to a store and store delivery as a 
function of order size and type of vehicle driven by consumers.   

KEYWORDS: carbon emissions, autonomous vehicles, ground robot, air drone, energy, travel 
distance, delivery industry, grocery shopping 
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1. Introduction 
 
Autonomous delivery robots (ADRs) that travel on sidewalks and roads are being tested in 
several US cities by startups. Even large delivery companies like FedEx (FedEx, 2019) and 
online retailers like Amazon are also testing this technology (CNBC, 2019). Amazon is also 
testing a drone prototype that can deliver packages under five pounds to customers in less than 
30 minutes; 75% to 90% of Amazon deliveries are less than five pounds (Forbes, 2019). 
Although most deployments are still at the pilot level, air drones and ground ADRs may soon 
be able to meet the growing delivery demands caused by e-commerce, which is growing at a 
double-digit annual rate (USCB, 2020). According to a recent survey, a large majority of people 
in the US believe that delivery robots will be in use within the next five years (USPS, 2018). 
According to this USPS study, customers highly value the ability to receive deliveries when 
and where recipients choose. A significant increase in e-commerce is also expected during the 
current COVID-19 pandemic.  
 
Even modest improvements in delivery efficiency can result in large reductions in carbon 
emissions given the size and growth of the delivery industry. In the US the number of parcels 
delivered in 2018 was approximated 13 billion; worldwide the number of parcels delivered in 
2018 was 87 billion which doubles the worldwide number of parcels delivered in 2014 
(Buchholz, 2019).  E-commerce is also changing consumer habits and shopping trips, for 
example in the US 21% of shoppers are buying groceries online at least once a month or more 
often (FMI, 2019). In the US there are approximately 120 million households with an average 
number of 2.5 grocery trips per week per household (FMI, 2019). A growing share of grocery 
e-commerce and store delivery is going to impact the carbon emissions of billions of annual 
grocery trips.  
 
This research analyses the delivery efficiency of autonomous vehicles in terms of energy 
consumption, carbon emissions, and travel, a topic that has not been studied in previous 
publications. Novel contributions include the comparison of conventional and autonomous 
technologies as well as the impact of electric vehicles (EV) and vehicles with internal 
combustion engines (ICE). A novel approach and formulation to estimate the number of feasible 
deliveries per scenario is developed as well as the introduction of the ratio between grocery 
store order size and delivery order size to analyze the efficiency of in-store vs home delivery. 
 
This research is organized as follows: Section 2 presents a literature review. Section 3 
summarizes vehicle characteristics. Section 4 presents the formulation, the methodology, and 
scenarios utilized in the analysis. Section 5 discusses energy consumption results for delivery 
services by vehicle type, varying delivery area, depot distance, delivery time duration, and 
number of customers served. Section 6 analyzes on-road, sidewalk, and air distance traveled by 
different vehicles. Section 7 presents and discusses CO2 emissions and Section 8 analyzes 
emissions tradeoffs when comparing delivery services and store customer trips. Section 9 ends 
with conclusions and a discussion of future research opportunities.   
 

2. Literature Review  
 
For last mile deliveries, studies have compared the carbon footprints of conventional and online 
retailing (Edwards et al., 2010), the impact of collection and delivery points (Song et al., 2013), 
and the effectiveness of lockers to reduce carbon emissions (Iwan et al., 2016). Vehicle 
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electrification has also been studied as potential and cost-effective way to reduce urban freight 
emissions (Feng and Figliozzi, 2012; Lee et al., 2013; Davis and Figliozzi, 2013).  
 
The potential of autonomous vehicles for passenger transportation has been studied extensively, 
for example in Fagnant and Kockelman (2015). By comparison, significantly less work focuses 
on the potential of autonomous vehicles in the freight sector. The work of Slowik and Sharpe 
(2018) focuses on the potential of autonomous technology to reduce fuel use and emissions for 
heavy-duty freight vehicles. This study focuses on long haul transportation and finds that 
potential benefits of autonomous trucking could be substantial in terms of fuel consumption 
and emissions.  
 
There are scant studies focusing on urban deliveries or short-haul freight trips. Vleeshouwer et 
al. (2017) simulated bakery deliveries utilizing a robot but the occupation of the robot was low 
and not feasible from an economic viewpoint. These authors suggest that robots can be feasible 
if companies scale up or cooperate to increase robot utilization. The other studies (Jennings and 
Figliozzi, 2019 and 2020) analyzed the regulation and characteristics of sidewalk and road 
ADRs (respectively) in the USA and studied potential time and cost savings. When compared 
to a conventional human-driven delivery van, sidewalk ADRs can reduce cost, time, and vehicle 
travel in some instances. Road delivery robots are also more economical when delivery routes 
are relatively short. However, due to their limited range, vehicle miles tend to increase in most 
scenarios. Other researchers have analyzed the shortcomings of current regulations for delivery 
robots (Hoffman and Prause, 2018). There are still many uncertainties related to ADRs’ 
regulation and technological evolution. The rate and speed of adoption of RADRs will greatly 
depend on costs and ease of entry into the delivery market as discussed by studies focusing on 
the adoption of autonomous trucks by freight organizations (Talebian and Mishra, 2018; 
Simpson et al. 2019).  
 
Drone deliveries have also been compared against van or truck delivery systems in terms of 
carbon emissions. Goodchild and Toy (2017) using GIS-based simulations suggest that distance 
from depot and customers per route have a major impact on CO2 emission levels when 
comparing trucks and drones.  Figliozzi (2017) derives analytical formulas to compare 
operational and lifecycle emissions and energy consumptions of drones, diesel van, electric 
vans, and tricycles. Figliozzi (2017) shows that it is possible to find emissions breakeven points 
as a function of customers in a route, efficiency of the vehicles, distance to customers, density 
of delivery area, and drone size/payload. Air drones are more CO2 efficient for small payloads 
and single deliveries in rural areas but less efficient for large payloads or when many customers 
are grouped in dense urban areas. Drones consume less energy and emissions per package-km 
than delivery vans. Kirschstein (2020) provide a more detailed energy consumption model 
including takeoff, level flight, hovering, and landing; similar results were obtained, i.e. drones 
requires more energy in urban areas with high customer density and less energy in rural settings 
low customer density that trucks.  Park et al. (2018) in South Korea concluded that the global 
warming potential (GWP) per 1 km delivery by drone was one-sixth that of motorcycle 
delivery; it is also found that drones are more efficient (i.e. have less environmental impact) in 
rural areas. Stolaroff et al. (2018) analyzed emissions of short-range multi-copters that require 
a network of intermediary support waystations.  It was estimated that warehouses contribute 
significantly to life-cycle emissions and also agreed with previous research regarding the 
relative efficiency of drones when delivering small packages. Other researchers have also 
studied how wind and temperature affect drone range and operations (Chauhan et al. 2020; 
Glick et al., 2020; Kirschstein, 2020). Drone logistics is a fast-evolving field; an up-to-date 
overview of logistic issues associated to drone deliveries and modelling opportunities is 
presented by Roca-Riu and Menendez (2019).  
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3. Vehicle Characteristics 
 
ADRs are electric powered ground vehicles that can deliver items or packages to customers 
without the intervention of a delivery person. ADRs can be divided into two types. Sidewalk 
autonomous delivery robots (SADRs) are pedestrian sized robots that only utilize sidewalks or 
pedestrian paths. On-road or simply road autonomous delivery robots (RADRs) are vehicles 
that travel on roadways shared with conventional vehicles. ADRs use sensors and navigation 
technology that allow them to travel on roads and sidewalks without a driver or on-site delivery 
staff. The ground vehicles studied in this research have already been utilized in previous studies. 
Starship Technologies is producing the SADR that has been deployed in most locations and 
have received ample media coverage (Jennings and Figliozzi, 2019). Among the companies 
prototyping RADRs there are two that stand out: NURO and uDelv (Jennings and Figliozzi, 
2020). The chosen high-performance drone, MD4-3000, has already been analyzed by Figliozzi 
(2017) where it was compared against the performance of tricycles, a typical delivery diesel 
van (Dodge RAM) utilized in the US, and an electric van (Renault Kangoo) utilized in Europe. 
The Dogde RAM is the only internal combustion engine (ICE) vehicle in Table 1.  
 
Table 1 presents a summary of vehicle characteristics. The drone has the lowest tare and 
payload but the SADR has the lowest range and speed. The RADRs have less limitations 
regarding payload and range but these are still substantially lower than the payload and range 
of a conventional van. The electric van has relatively low energy consumption but reasonable 
performance in terms of payload and range for short and medium route lengths.  
 
SADRs have limited range and can be complemented by specialized vans (see Figure 1, left), 
usually called “mothership” vans, that can be utilized to drop off and pick up several SADRs. 
The mothership van is not an autonomous vehicle and requires a driver. Henceforward 
specialized vans that carry SADRs will be denoted simply as motherships. If SADRs are serving 
customers nearby, i.e. the service area is not far away, a mothership is not necessary which 
simplifies the operation of the sidewalk deliver robot and considerably reduces road distance 
traveled, energy consumption, and emissions. Unlike SADRs, even small RADRs are designed 
to share roadways with conventional motorized vehicles. Hence RADRs are not dependent on 
a mothership; a NURO RADR is shown in Figure 1 (right). 
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 1 
TABLE 1 - Key Vehicle Characteristics 2 

Vehicle Tare (kg) 
Max. 
Speed 
(kph) 

Payload 
(kg) 

Range 
(km) 

Energy 
consumption 

(wh/km) 
Starship 18.1 6.4 18.1 6.4 24.7 

Nuro 680 56 110 16.1 139.6 

uDelv 1890 97 590 97 193.9 

MD4-3000 10.2 72 5.0 36 21.6 

Renault Kangoo 
EV 

1300-1430 160 650-800 120* 205 

Dodge RAM 2170 180 1890 695 1,016 
* 120 km under extreme winter conditions, 199 km under temperate conditions  3 
 4 

  5 
Figure 1. Mothership Van with Starship SADRs (Daimler, 2017) and NURO (Nuro, 2018) 6 

4. Methodology  7 
 8 
In this section the methodology used for comparing the travel, energy, and emissions 9 
performance is presented. The methodology is based on continuous approximations. As 10 
indicated by Daganzo et al. (2012) these types of analytical approximations are appropriate to 11 
address big picture questions because they are parsimonious, tractable, and yet realistic when 12 
the main tradeoffs are included. This type of modeling approach has been successfully used in 13 
the past by many authors to model urban deliveries and logistic problems (Franceschetti et al., 14 
2017; Ansari et al., 2018).  15 
 16 
4.1 Formulation 17 
 18 
The constraints analyzed in this research include range, duration, capacity, and number of 19 
customers served.  The notation used is presented below. 20 
𝑛 = Number of stops or delivery locations 21 
𝑚 = Number of vehicles required to deliver to 	𝑛 customers 22 
𝑎 = Area (units length squared) of the service area (SA) where 𝑛 customers reside 23 
𝛿 = 	𝑛/𝑎	, customer density  24 
d = Service area to depot distance  25 
R = Effective vehicle range   26 
Q = Vehicle capacity in number of customers   27 
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𝑣 = Average speed of the vehicle in the long haul  1 
𝑣! = Average speed of the vehicle in the local service area   2 
𝑇 = Maximum duration of shift or tour (same for all vehicle types) 3 
𝑡" = Time to deliver at a customer including time to pick up a parcel   4 
𝑡# = Unload time  5 
𝑡 = 𝑡" + 𝑡# = Total time vehicle is idle (i.e. not traveling) during a delivery 6 
𝑘! = Routing parameter  7 
e = Energy consumption per unit distance (wh/km) 8 
𝜅 = Carbon emissions per unit of energy (CO2 kg/wh) 9 
 𝜀 = ratio between store order size and delivery order size 10 
By utilizing continuous approximations to estimate the average distance 𝑙(𝑛,𝑚) traveled by a 11 
fleet of vehicles (Daganzo et al. (2012); Figliozzi, 2008) it is possible to write the following 12 
fleet size and route duration constrains, (1) and (2) respectively: 13 
 14 
𝑚 ≥ 4$!√&'

()	+,	
5 										(1)   15 

 16 

𝑇 ≥ 	7
2𝑑
𝑣 +

𝑘!
𝑚𝑣!

√𝑎𝑛; +
𝑡	𝑛
𝑚 										(2) 17 

 18 
It is assumed that all the vehicles depart the depot at the beginning of the time period 𝑇. Hence, 19 
the fleet size 𝑚	 is equal to the number of tours.   20 
 21 
In some scenarios, the constraint is to serve a maximum number of customers 𝑛 within the 22 
allowed time 𝑇  with a given fleet size. For this purpose, a novel equation is developed. The 23 
equation that provides this number is obtained by solving for 𝑛 in equation (2). The result is the 24 
following expression (3): 25 
 26 

𝑛 = 	 $
!"#	%2𝑑! &"

"
#&'(

𝑘𝑙√𝑎	
#!%	

)
'

!	" "#&
' − &

*	"#	%2𝑑! &"
"
#&(

𝑘𝑙√𝑎	
#!%	

)
'
'(𝑘𝑙√𝑎	#!%	

)
(

*	" "#&
( 	'

+/!

(										(3)     27 

The floor function is used in equation (3) to avoid a fractional number of customers. The 28 
derivation of the formula is presented in the Appendix. The capacity constraint is simply stated 29 
as 𝑚 ≥ ⌈𝑛/𝑄⌉									(4).  30 
 31 
The above formulas (1) to (4) assume that when several vehicles are utilized, 𝑚 > 1, the service 32 
area is partitioned into homogenous areas as described by Daganzo (1984) and illustrated in 33 
Figure 2 assuming 𝑚 = 4.  34 
 35 
The energy consumed 𝐸  and carbon emissions 𝛫  produced by 𝑚  vehicles are calculated 36 
utilizing the travel distance multiplied by the corresponding energy and emission factors for 37 
each vehicle type with 𝑚  that satisfy the range, capacity, time, and number of delivery 38 
constraints in equations (1) to (4).  39 

𝛫 = 𝜅		𝐸	 = 𝜅		𝑒		D2𝑑𝑚 + 𝑘!√𝑎𝑛E						(5) 40 
 41 
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 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
Figure 2. Schematic of service area partition into homogenous subareas, e.g. m = 4.  21 
 22 
 23 
4.2 Data, Assumptions, and Scenario Design 24 
 25 
Vehicle efficiencies are analyzed utilizing two approaches: (a) estimating efficiency of each 26 
vehicle when delivery area size, delivery time, and distance from the depot vary and (b) 27 
estimating the efficiency of the vehicles when customer density or number of deliveries change.  28 
In the latter approach the number of customers served varies from	𝑛 = 25 to 𝑛 = 200 and this 29 
interval includes the average number of package deliveries per conventional vehicle that is 30 
approximately 120. Vehicle specifications are drawn from manufacturer websites or press 31 
releases and parameters are representative of delivery conditions in urban and suburban areas 32 
 33 
The Starship SADR is assumed herein because it complies with US regulation and it is the most 34 
extensively tested SADR at the time of this writing. The Starship SADR range is approximately 35 
4 miles and a Starship is designed to carry up to three grocery bags or up to six small/medium 36 
packages – as a reference most Amazon packages parcels are less than five pounds or 2.3 kg 37 
(Forbes, 2019). SADRs are complemented by a mothership van (see Figure 1).  The mothership 38 
drop-offs or picks-up up to 8  SADRs per tour (Daimler, 2017). The same formulas and 39 
constraints presented earlier in this section can be directly applied to the mothership but 40 
assuming that 𝑛 represents the number of SADRs and that the capacity of the mothership is 41 
eight SADRs. When the depot is at the center of the SA (𝑑 = 0), a mothership is not utilized. 42 
The drone always services one customer at the time hence the calculations of energy and 43 
emissions are straightforward since customers are not grouped in routes and distances are 44 
estimated as the crow flies (i.e. Euclidian). For ground vehicles, the Manhattan metric is 45 
assumed which is reflected in the value of the routing parameter 𝑘!. 46 
 47 
The energy consumption coefficient per unit distance, denoted 𝑒, for each vehicle was estimated 48 
utilizing available battery and range information for the vehicles or manufacturers data. The 49 
values assumed for SADRs and RADRs are reasonable also according to other studies 50 

Depot  

m vehicles  

Service area partition (e.g. m = 4) 

Depot  
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analyzing small ground robot energy consumption, for example Broderick et al. (2014). The 1 
following values are utilized in the numerical analysis: SADRs consume 24.7 wh/km, NUROs 2 
consume 140 wh/km, uDelvs consume 194 wh/km, electric vans (E-vans) consume 205 wh/km, 3 
and the electric mothership consume of 427 wh/km (currently the mothership can use a 4 
conventional internal combustion engine but an electric engine is assumed to facilitate future 5 
comparisons). The E-van and conventional ICE van values were obtained from the performance 6 
of the electric Renault Kangoo van and Dodge RAM (Figliozzi, 2017). The value for the 7 
mothership is obtained from the Mercedes Benz Sprinter cargo van (MBS, 2018) that was 8 
modified to accommodate the SADRs shown in Figure 1 and assuming that the mothership 9 
utilizes an electric engine.  10 

The literature review indicates that urban areas are complex environments for autonomous 11 
vehicles with many deliveries/stops and interactions with pedestrians and cyclists 12 
(Kristoffersson et al., 2018). Hence, it is likely that autonomous vehicles will be designed with 13 
high safety standards and would require extra time to park, unload/load, and avoid conflicts 14 
with pedestrians and/or cyclists. Hence additional minutes and a lower average speed are 15 
assumed for autonomous vehicles. The following average delivery times 𝑡 per customer are 16 
assumed: five minutes for autonomous SADRs, Nuros, Udelvs, and drone; 3 minutes for the E-17 
van and conventional van with a driver. The following average local or service area 18 
speeds	𝑣! 	are assumed: SADR: 2 km/h, Nuro and Udelv 10 km/h, and mothership or E-van 20 19 
km/h. For the long-haul segment connecting the depot and the service area an average speed of 20 
𝑣 = 40 km/h is assumed.  21 
 22 

5. Energy Consumption Results  23 
 24 
There are large differences among SADRs, RADRs, drones and EV/conventional vans in terms 25 
of capabilities. Hence, for a few combinations of parameters some vehicles cannot be feasibly 26 
deployed due to range, capacity, or time constraints. When it is not feasible to deploy a vehicle 27 
a table cell is filled out with “NA” which stands for “Not Available”. It should be noted that 28 
continuous approximations work best when the number of customers per vehicle is four or 29 
higher (Daganzo, 1984). In the scenarios presented only the SADR may serve less than four 30 
customers per vehicle and when this is the case the value has an accompanying asterisk and 31 
note in the corresponding table. However, it is important to point out that when this is the case 32 
the SADR is already not the most efficient vehicle and the value in the table is slightly 33 
underestimating the energy consumed per customer and the general trends and insights are not 34 
affected. 35 
 36 
5.1 One vehicle efficiency 37 
 38 
The first set of results study the efficiency of each vehicle varying key parameters such as 39 
delivery area size, distance to depot, and delivery time window. One vehicle of each type is 40 
deployed and energy consumption efficiencies are compared across vehicles. The baseline 41 
scenario assumes a service area 𝑎 = 1 km2, a depot at the center of the service area (𝑑 = 0), 42 
and a delivery time window 𝑇 = 8 hours. The number of customers is estimated utilizing 43 
equation (3).  44 
 45 
5.1.1 Service Area (SA) 46 
 47 
Table 2 reports the results in terms of energy consumption per customer served as service area 48 
increases from  𝑎 = 1 km2 to 𝑎 = 30 km2. It is assumed that the depot is at the center of the SA 49 
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(𝑑 = 0) and service time is 𝑇 = 8 hours.   A different color and bold are utilized to pinpoint the 1 
lowest value per row. The SADR is most energy efficient option for smaller service areas 2 
because a SADR can serve multiple customers (up to six) and have a low energy consumption 3 
per unit distance. The drone becomes the most energy efficient for large service areas (i.e. low-4 
density scenarios) where the SADR serves less than six customers per vehicle.  5 
TABLE 2. Impact of 𝑎 on Energy Consumption per Customer (wh/customer) 6 
 7 

Service 
Area 𝑎 

(in km2)  

Vehicle Type  
 SADR NURO  Udelv E-van Drone 

1 10 23 22 16 16 
10 38 82 79 56 51 
20 *76 168 120 84 73 
30 *131 247 155 106 89 

* Three or less customers per SADR 8 
 9 
 10 
5.1.2 Depot - Service Area Distance 11 
 12 
Table 3 reports the results in terms of energy consumption per customer served as depot-SA 13 
distance increases from	𝑑 = 0 km to 𝑑 = 10 kms. It is assumed that the service area is constant 14 
and equal to 𝑎 = 1 km2 and service time is 𝑇 = 8 hours.  The E-van is the most efficient vehicle 15 
when the depot is not at the center of the service area. Since SADRs are severely range 16 
constrained they must be complemented by a mothership even for relatively low 𝑑	 values. 17 
Hence, the SADR is less efficient than all the other ground delivery vehicles when a mothership 18 
must be utilized (even assuming an electric powered mothership).   19 
 20 
TABLE 3. Impact of 𝑑 on Energy Consumption per Customer   21 
  22 

Distance 
Depot – SA 
𝑑    (in kms) 

Vehicle Type  

SADR+
MS* 

NURO  Udelv E-van Drone 

0.0 3 23 22 16 16 
2.5 72 42 36 24 124 
5.0 117 61 51 31 232 
7.5 161 NA 66 39 340 

10.0 206 NA 81 47 448 
* Mothership not utilized when 𝑑 = 0.0 23 
 24 
5.1.3 Delivery Time Duration 25 
 26 
Table 4 reports the results in terms of energy consumption per customer served as delivery time 27 
duration decreases from	𝑇 = 8 hours to 𝑇 = 1/2 hour. It is assumed that the service area is 28 
constant and equal to 𝑎 = 1 km2 and distance 𝑑 = 0 km.  A different pattern emerges from 29 
Table 4. The SADR is the most efficient vehicle until the duration of the delivery time window 30 
is 𝑇 = 2 hours. For smaller values of  𝑇  the SADR is too slow to feasibly deliver in a limited 31 
time frame. Given the low average travel speed of SADRs, 2 km/h in sidewalks, it is not 32 
possible to deliver to customers in a ½ time frame taking into account travel time and service 33 
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time. The other ground vehicles also see a reduction of efficiency as the delivery duration 1 
decreases since it reduces the number of feasible deliveries according to equation (3). The drone 2 
becomes most efficient when delivery durations are short and fewer customers can be grouped 3 
in the route of a ground vehicle.    4 
 5 
TABLE 4. Impact of 𝑇 on Energy Consumption per Customer   6 

Time to 
deliver 𝑇 (in 

hours) 

Vehicle Type  

SADR  NURO  Udelv E-van Drone 

8 10 23 22 16 16 
4 10 23 32 24 16 
2 10 34 47 34 16 
1 *17 51 71 50 16 

0.5 NA 78 109 75 16 
* Three or less customers per SADR 7 
 8 
 9 
5.2 Fleet Efficiency to Serve 	𝑛 Customers 10 
 11 
The second set of results study the efficiency a fleet of vehicles that must service 𝑛 customers.  12 
More than one vehicle of each type may be deployed to meet capacity, time, or range 13 
constraints.   The baseline scenario assumes a service area 𝑎 = 1 km2, a depot service area 14 
distance  𝑑 = 2.5 kms, and a delivery time window 𝑇 = 8 hours.  15 
Table 5 reports the results in terms of energy consumption per customer served as the number 16 
of customers served increases from	𝑛 = 25 to 𝑛 = 200. More than one vehicle of each type may 17 
be deployed to satisfy the range, capacity, or time constraints (see Table 6). The energy 18 
efficiency of all the ground vehicles increases when the number of deliveries or the delivery 19 
density increases as routes become more efficient by including more customers per vehicle. 20 
However, efficiency is reduced when more vehicles are required. For 𝑛 =  25 to 𝑛 =  100 21 
NURO and Udelv are most efficient but the electric van is the most efficient vehicle for 𝑛 = 22 
200.  23 
 24 
 25 
 26 
TABLE 5. Impact of 𝑛 on Energy Consumption per Customer   27 

Customers 
Served (𝑛) 

Vehicle Type  

SADR+
MS  

NURO  Udelv E-van Drone 

25 127 55 76 81 124 
50 114 47 46 49 124 

100 84 34 29 30 124 
200 67 31 23 19 124 

  28 
 29 
 30 
 31 
 32 
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TABLE 6.  Required Fleet Size Varying 𝑛    1 

Customers 
Served (𝑛) 

Vehicle Type  

SADR   NURO  Udelv E-van Drone 

25 5 1 1 1 2 
50 9 2 1 1 3 

100 17 3 1 1 5 
200 34 6 2 1 9 

  2 

6. Distance Traveled 3 
 4 
Changes in commercial vehicle on-road distance traveled are important to analyze autonomous 5 
delivery vehicles potential safety impacts and congestion relief. Table 7 shows the distance 6 
traveled by the different vehicles per customer served as the number of customers served 7 
increases from	𝑛 = 25 to 𝑛 = 200. The baseline scenario assumes area size 𝑎 = 1 km2, distance 8 
𝑑 = 2.5 km, and 𝑇 = 8 hours. 9 
 10 
When comparing values, it is important to highlight that drones do not share the roads used by 11 
all the other ground vehicles. However, even for relatively short distances between the depot 12 
and the service area, drones travel a significantly longer distance and this is related to the 13 
inefficiency of their routes that only accommodate one customer per round trip from the depot.  14 
 15 
SADRs travel on the sidewalk and the mothership travels on the road, hence, the distance for 16 
these two complementary vehicles are disaggregated. It was shown that SADRs can be energy 17 
efficient when delivering from the depot and without a mothership. Table 7 shows that when a 18 
mothership is utilized to carry the SADRs there could be an increase of both on-road and 19 
sidewalk travel when comparing against the other ground vehicles. There is a clear increase of 20 
MS on-road vehicle travel for 𝑛 ≥ 50.  RADRs and the E-van have the same on-road distance 21 
traveled as long as the necessary fleets have the same size. RADRs could be more energy 22 
efficient for lower values of 𝑛 but generate more miles and potentially more congestion when 23 
more vehicles are needed. Regarding safety and crashes, the NURO is smaller and designed to 24 
collapse and reduce damage in case of crashes (Verger, 2018). Future research efforts should 25 
analyze in detail potential externalities and conflicts with pedestrians caused by SADR travel 26 
on sidewalks.    27 
 28 
Potential congestion impacts of RADRs are also a function of their size, the uDelv is similar in 29 
size to the E-van; however, the NURO is considerably smaller, roughly ½ the size of a small 30 
E-van and likely to contribute less to congestion on a per unit distance traveled basis. Regarding 31 
motherships, it is important to highlight that the Mercedes Benz Sprinter van, which is used as 32 
a prototype to carry the eight SADRs, is 70% and 130% longer than the Udelv and NURO 33 
vehicles respectively. Regarding vehicle width, which is important for parking in congested 34 
areas, two and ½ NUROs can potentially occupy the same parking space utilized by one 35 
mothership van. Considering that the mothership van may require additional space to unload 36 
and load the SADRs, SADRs may not be efficient in terms of curb utilization if a mothership 37 
is required.  38 
 39 
 40 
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 TABLE 7. Per Customer Distance Traveled Varying 𝑛 1 

Customer
s Served 
(𝑛)  

Vehicle Type  

SADR* MS NURO  Udelv E-van Drone** 

25 0.19  0.29 0.39 0.39  0.39 
              

0.39  

5.75  
50 0.14  0.26 0.34  0.24  0.24        

0.24  
5.75  

100 0.10  0.19 0.25  0.15  0.15 
              

0.15  

5.75  
200 0.07  0.15 0.22 

                
0.22  

0.12  0.09              
0.09  

5.75  
* sidewalk travel, ** air travel 2 
 3 

7. Carbon Emissions  4 
 5 
Relative emissions by vehicle type can be easily estimated by taking into account that each unit 6 
of energy used by an ICE diesel vehicle generates 22.5 more CO2 equivalent emissions than the 7 
emissions generated by using a similar unit of energy sourced from the electric grid in Oregon 8 
(Figliozzi, 2017). The 22.5 value may change with the electricity generation profile of each city 9 
or country, i.e. it is a function of the percentage of clean or dirty sources used, and the previous 10 
value is applicable to the state of Oregon in the US. The 22.5 value used in this research 11 
accounts for diesel vehicle emissions including well-to-tank (WTT) and tank-to-wheel (TTW) 12 
emissions.  13 
 14 
The E-van consumes almost five times less energy per unit distance than the conventional ICE 15 
van (205 wh/km vs. 1016 wh/km) and including emissions then the E-van generates 16 
approximately 112 times less CO2 emissions per unit distance traveled. Table 8 shows the 17 
carbon emissions of the electric vehicles as a percentage of the carbon emissions generated by 18 
the ICE Dodge RAM. It is clear that, regardless of the autonomous vehicle type utilized, the 19 
reduction in carbon emissions is always likely to be highly significant. On average, any 20 
autonomous vehicle emits less than 2% of the emissions emitted by utilizing an ICE diesel van. 21 
But as shown by the 0.9% emissions of the E-van, the main cause of this impressive reduction 22 
in emissions is the electrification of the engines. 23 
 24 
TABLE 8. Per Customer CO2 Emissions Varying 𝑛 – baseline ICE Van 25 

Customers 
Served (𝑛) 

Vehicle Type  

SADR+
MS  

NURO  Udelv E-van Drone 

25 1.4% 0.6% 0.8% 0.9% 1.4% 
50 2.1% 0.9% 0.8% 0.9% 2.3% 

100 2.5% 1.0% 0.8% 0.9% 3.7% 
200 3.1% 1.4% 1.1% 0.9% 5.8% 

 26 
The numbers in Table 8 will be affected by the energy sources utilized to generate electricity. 27 
For example, in the US the national average CO2 rate is 947.2 lbs/MWh but there is a high 28 
degree of variability across regions. The lowest rate is found in New York and upstate region 29 
(NYUP) with an average CO2 rate of 253.1 lbs/MWh and the highest rate in the Mid-west region 30 
(MROE) with an average CO2 rate of 1,678 lbs/MWh. In the NYUP region the main sources of 31 
electricity generation are hydro and nuclear (account for 66% of the total) whereas in the MROE 32 
region the main energy source is coal that accounts for 64% of the total generation (EPA, 2020). 33 
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In the Pacific Norwest region, where Oregon is located, the average CO2 rate of 639 lbs/MWh 1 
(EPA, 2020). Even assuming the dirtiest electricity generation profile in the US, CO2 emissions 2 
from a conventional van are several times higher than operational emissions from electric 3 
vehicles.  4 

8. Grocery Store Delivery vs Customer Driving 5 
 6 
Since electrification is a key factor to reduce carbon emissions, a question arises regarding the 7 
benefit of autonomous delivery vehicles when compared to the emissions of an electric and/or 8 
ICE passenger car. The issue of traffic generated when delivering from the supermarket or 9 
driving from home has been studied in the past (Cairns, 2005;  Halldórsson et al., 2010) as well 10 
as the emissions reductions (Wygonik and Goodchild, 2012). It was concluded that with enough 11 
customers per route, supermarket delivery is more efficient than individuals driving to the store. 12 
However, previous research efforts did not include several key factors that affect the relative 13 
efficiency of store delivery vs customer driving to a store: (a) the growth of passenger EVs, (b) 14 
logistics sprawl, and (c) the number of items purchased and delivered.  15 
 16 
In recent years there has been a growth of passenger electric vehicles in the US, mainly driven 17 
by the advent of the Tesla Model 3 (TM3). According to the EPA the energy efficiency of the 18 
TM3 is 28 kwh/100 miles or 174 wh per km (EPA, 2018); the TM3 is one of the most energy 19 
efficient passenger vehicles in the market. The Tesla Model 3 is now the most popular EV in 20 
the US and the third best-selling car in the state of California where the TM3 accounts for 21 
almost 60% of EV sales (Dow, 2020).  22 
 23 
Urban logistics sprawl refers to increases in depot-service area distances, i.e. the relocation of 24 
depots away from customer locations. This phenomenon has been observed in many urban areas 25 
in different continents (Dablanc and Rakotonarivo, 2010; Aljohani and Thompson, 2016). 26 
Furthermore, the advent of e-grocery home delivery may increase distance delivery distances 27 
because delivery areas are not necessarily distributed around traditional industrial or wholesale 28 
land use areas (Keeling, 2019). In this paper, higher levels of logistics sprawl are represented 29 
by higher values of  𝑑, the depot-service area distance. Next subsections analyze driving to 30 
store efficiency of ICE and EV vehicles with different levels of customer delivery density and 31 
logistics sprawl.   32 
 33 
Research have shown that consumers have a strong preference for nearby grocery stores. 34 
Utilizing 1-week trip data from GPS devices and travel diaries, Liu et al. (2015) found that 64% 35 
of the grocery store trips are in the 0-1 mile range. In this section it is assumed that a store is at 36 
the center of a circular delivery region of 1 km2 and that customers can be served by an 37 
autonomous vehicle, E-van, conventional van, or drive to the store. Customers are distributed 38 
uniformly across the circular region. The delivery depot can be located at the store (𝑑 = 0) or 39 
at a distance 𝑑 = 2.5 or  𝑑 = 10 kms to simulate logistics sprawl.  40 
 41 
The relative efficiency of driving to the store vs store delivery is a function of the number of 42 
products purchased at the store or delivered to each customer. Previous studies in multiple 43 
countries have shown that the mean number of products purchased in grocery trips is 44 
approximately nine with a long right tail that reaches up to 60 products (Sorensen et al., 2017). 45 
The average number of items in an online grocery basket is likely to have a similar value (Suel 46 
et al., 2015) but the number of products purchased online is influenced by the structure of 47 
shipping fees (Lewis, 2006). When free shipping is available after reaching a minimum 48 
shopping cart value, customers tend to take advantage of this pricing feature which increases 49 
average order size. Subscription services like Amazon prime incentivize more frequent and 50 
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smaller orders since shipping is free (Belavine et al., 2017). To facilitate comparisons between 1 
customer store shopping and store delivery, the ratio 𝜀 between store order size and delivery 2 
order size for carbon emissions breakeven condition is estimated.   3 
 4 
8.1 Breakeven Results for ICE Vehicles   5 
 6 
The 2016 average fuel efficiency of vehicles in the US was approximately 24.7 miles per gallon 7 
according to an EPA report (2017). Utilizing this ICE efficiency, the numbers in Table 9 can 8 
be interpreted as follows: to generate the same level of carbon emissions the store order size of 9 
a customer driving an ICE is 4,064  (𝜀 =	4064) times larger than the order size delivered by a 10 
SADR when the depot is at the store (𝑑 = 	0 ) and the SADR fleet delivers to 𝑛 = 	25  11 
customers.  12 
 13 
Given that the mean number of products purchased in grocery trips is approximately nine with 14 
a right tail of up to 60 products (Sorensen et al., 2017), deliveries utilizing any autonomous 15 
vehicle generate less emissions even with a long depot-delivery area distance. On the other 16 
hand, delivering with a conventional van could be more environmentally friendly only when 17 
the depot is at or close to the store and many customers are served (large 𝑛). Bold and a different 18 
color are utilized in Table 9 to highlight when delivering from the store is more efficient 19 
assuming an average order size of nine products.  20 
 21 
TABLE 9.   ICE Order Size Ratio 𝜺 for CO2 Breakeven Condition 22 

Distance 
Depot – SA  

(in kms) 

Customers 
Served (n)  

Vehicle Type  

SADR 
+MS*  NURO  Udelv E-van Drone 

Conv. 
Van 

𝑑 = 	0 

25 4,064 
4,064 

718 517 489 1,197 4.4 
50 5,748 1,016 731 692 1,197 6.2 
100 8,129 1,436 1,034 978 1,197 8.8 
200 11,496 2,031 1,462 1,383 1,197 12.4 

𝑑 = 	2.5 

25 153 354 255 241 157 2.2 
50 171 413 423 400 157 3.6 
100 233 564 682 645 157 5.8 
200 290 637 846 1,014 157 9.1 

𝑑 = 	10 

25 51 140 101 95 43 0.9 
50 53 149 187 177 43 1.6 
100 71 200 338 319 43 2.9 
200 86 208 373 563 43 5.0 

* MS required when 𝑑 > 	0 23 
Bold when delivering from the store is more efficient 24 
 25 
8.2 Breakeven Results for Tesla 3 EV   26 
 27 
Table 10 shows the breakeven order size 𝜀 when a customer drives to the store utilizing a Tesla 28 
model 3. Given that the mean number of products purchased in grocery trips is approximately 29 
nine with a right tail of up to 60 products (Sorensen et al., 2017), deliveries utilizing a 30 
conventional van are no longer more environmentally friendly.  31 
 32 
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Even electric autonomous vehicles may not be more environmentally friendly than a TM3 when 1 
there is logistics sprawl (𝑑 > 0.0). With free shipping and small order sizes, customers ordering 2 
1 or 2 items per delivery, driving a TM3 to the store is on average more environmentally 3 
friendly than home delivery.  Hence, it is not self-evident anymore that store delivery is more 4 
environmentally friendly than driving to the store unless all the key factors are stated: delivery 5 
vehicle type, customer vehicle type, depot-service area distance, in-store order size, and 6 
delivery order size.  Bold and a different color are utilized in Table 10 to highlight when 7 
delivering from the store is more efficient assuming an average order size of nine products. 8 
 9 
TABLE 10. Tesla 3S Ratio Order Size Ratio 𝜺 for CO2 Breakeven Condition 10 

Distance 
Depot – SA  

(in kms) 

Customers 
Served (n)  

Vehicle Type  
 

SADR 
+MS* NURO  Udelv E-van Drone 

Conv. 
Van 

𝑑 = 	0 

25 35 6 4 4 10 0.04 
50 49 9 6 6 10 0.05 
100 69 12 9 8 10 0.07 
200 98 17 12 12 10 0.11 

𝑑 = 	2.5 

25 1.3 3.0 2.2 2.1 1.3 0.02 
50 1.5 3.5 3.6 3.4 1.3 0.03 
100 2.0 4.8 5.8 5.5 1.3 0.05 
200 2.5 5.4 7.2 8.7 1.3 0.08 

𝑑 = 	10 

25 0.4 1.2 0.9 0.8 0.4 0.01 
50 0.4 1.3 1.6 1.5 0.4 0.01 
100 0.6 1.7 2.9 2.7 0.4 0.02 
200 0.7 1.8 3.2 4.8 0.4 0.04 

* MS required when 𝑑 > 	0 11 
Bold when delivering from the store is more efficient 12 
 13 

9. Conclusions 14 
 15 
This research has evaluated the potential of air and ground autonomous delivery robots to 16 
reduce CO2 emissions in the delivery industry. Results show that these new autonomous vehicle 17 
types have the potential to reduce energy consumption and a vast potential to reduce CO2 18 
emissions when replacing ICE delivery vans. In many instances autonomous delivery vehicles 19 
are even more efficient than E-vans currently in the market.  20 
 21 
In terms of energy and emissions efficiency there is no vehicle type that dominates across the 22 
board. Sidewalk autonomous delivery robots (SADRs) can greatly reduce carbon emissions 23 
with respect to ICE vans and other delivery vehicles when a mothership is not required, i.e. in 24 
scenarios where the delivery area surrounds the depot. Drones are more efficient in time 25 
constrained and low-density delivery scenarios. Road autonomous delivery robots (RADRs) 26 
are more efficient than E-vans when delivering to relatively low number of customers.  27 
 28 
Autonomous delivery technologies can have a major role to reduce the carbon footprint of 29 
package deliveries as well as store deliveries. The analysis of the carbon footprint of grocery 30 
in-store shopping and store delivery showed that many factors must be considered: delivery 31 
vehicle type, customer vehicle type, depot-service area distance, in-store order size, and 32 
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delivery order size. With the advent of passenger EV, it is no longer true that store deliveries 1 
are always more efficient. Delivery density and logistics sprawl, passenger and delivery vehicle 2 
type, and the location of the delivery depot are also key factors.  3 
 4 
New air and ground autonomous vehicle types may reduce carbon emissions significantly but 5 
they may not necessarily reduce on-road travel. For some autonomous vehicles the reduction 6 
of on-road travel is also accompanied by additional travel on sidewalks (SADRs) or air travel 7 
(drones). Pedestrian safety and sidewalk congestion (SADRs) or air safety and congestion 8 
(drones) could be major shortcomings of these new delivery vehicles. Distance traveled may 9 
increase significantly when autonomous vehicles are range and/or time constrained.  10 
 11 
In summary, autonomous electric delivery vehicles can significantly reduce carbon emissions; 12 
policy makers and regulators should seriously consider their benefits. However, policy makers 13 
and freight planners should also consider tradeoffs and potential unintended consequences of 14 
new services utilizing autonomous delivery vehicles. The large-scale adoption of autonomous 15 
delivery vehicles can bring about important changes to the labor market as well as a realignment 16 
of supply chains and the growth of e-commerce fulfillment centers and dark stores (Hübner et 17 
al., 2016). Potential cost savings brought about by driverless technologies can accelerate the 18 
growth of e-commerce as well as package and grocery deliveries. Unintended consequences 19 
may also be positive and include the delivery of products with less human contact and proximity 20 
which is appealing during pandemics. In addition, future research efforts can evaluate the 21 
impact of these new vehicles and technologies on parking and curb utilization, safety, and 22 
congestion. This research focused mainly on operational emissions; future research efforts may 23 
also consider lifecycle emissions.  24 
  25 
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Appendix 1 
 2 
The time constraint is represented by the following equation:  3 
 4 
𝜏 = 	 L+,

-
+ $!

.-!
√𝑎𝑛M + /	'

.
      5 

Rearranging terms 6 
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Squaring both sides  11 
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Introducing the following notation to simplify notation 16 
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Replacing  22 
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Solving the second order equation 33 
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Only the negative root is feasible 5 
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