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ABSTRACT 18 

This study employs a random parameters binary logistic regression (LR) to characterize the impact 19 

of environmental and structural parameters on concrete highway bridge deck deterioration 20 

nationwide. Two specific gaps in the literature are addressed: the use of a nationwide dataset for 21 

analysis and the implementation of a methodology to account for unobserved heterogeneity. A 22 

total of 3,262 bridge deck deterioration observations derived from the authors’ Nationwide 23 
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Concrete Highway Bridge Deck Performance Inventory (NCBDPI) database were used in this 24 

study. Deterioration rate (DR) was computed as the decrease in the concrete bridge deck condition 25 

rating (CR) over time. Bridge decks with deterioration rates (DR) below a certain threshold were 26 

categorized as the lowest deteriorated bridge decks (“lowest DR”) and decks with DR above a 27 

certain threshold were considered among the highest deteriorated (“highest DR”). The following 28 

variables were found to be significant in the final model: average daily truck traffic (ADTT), 29 

climatic region, distance from seawater, bridge deck area, age of bridge, type of design and/or 30 

construction, structural material design, deck protection, type of membrane, type of wearing 31 

surface, and maintenance responsibility. The results show that bridge decks with a high ADTT, 32 

age of bridge, bridge decks located in cold regions, and those that are close to seawater are 33 

associated with the “highest DR” group of bridge decks. Furthermore, type of design and/or 34 

construction and maintenance responsibility play a role in deck being associated with “highest 35 

DR”. 36 

 37 

Keywords: Highway bridge deck, concrete, performance, deterioration, National Bridge 38 

Inventory, database, random parameters binary logistic regression. 39 

 40 

INTRODUCTION AND BACKGROUND 41 

Over 600,000 bridges across all states represent critical components of the US transportation 42 

system, ensuring network continuity. The highest costs in bridge superstructure repair and 43 

rehabilitation are incurred through maintenance, repair, and replacement of concrete bridge decks 44 

(Li and Zhang, 2001). Understanding the causes of bridge deck deterioration is therefore central 45 

to asset management. Bridge decks, which are exposed to freeze and thaw cycles, deicers, and 46 



 

heavy traffic loads, are a bridge’s most susceptible element. Concrete bridge deck deterioration is 47 

also a leading cause for structural deficiency (Russell 2004). According to the Federal Highway 48 

Administration (FHWA), two billion dollars are spent annually for maintenance and capital costs 49 

for concrete bridge decks (ASCE, 2013). As a direct consequence, Departments of Transportation 50 

(DOT) and the FHWA are interested to determine the reasons behind concrete bridge deck 51 

deterioration. 52 

 53 

Previous work has attempted to model bridge condition ratings (CR) by using various deterministic 54 

and stochastic models, such as simple regression (Morcous and Hatami, 2011), multiple regression 55 

(Reardon, 2015, Tae-Hoon et al., 2006; Bolukbasi et al., 2004), Markov models (Agrawal et al., 56 

2010; Morcous, 2006, Madanat, 1995), and Bayesian models (Attoh-Okine and Bowers, 2006). 57 

Although these methods have been used to model bridge CR, the most commonly used and widely 58 

accepted method across civil engineering disciplines is logistic regression (LR). In the 59 

transportation field, LR has been widely used to model injury severity of crashes (Dissanayake 60 

and Lu, 2002; Harb et al., 2008; Donnell and Mason, 2004; Al-Ghamdi, 2002; Mannering and 61 

Bhat, 2014; Anderson and Hernandez, 2017; Al-Bdairi et al., 2018) and route/mode choice (Abdel-62 

Aty and Abdalla 2004; Bierlaire et al. 2010; Dalumpines and Scott 2017; Mai et al. 2015; Mishra 63 

et al. 2013; Tan et al. 2015; Vidana-Bencomo et al. 2018; Washington et al. 2009). In construction 64 

management, LR has been used to model contractors’ bids and worker safety (Lowe and Parvar, 65 

2004; Hwang and Kim, 2016; Alomari et al., 2017), disputes (Diekmann and Girard, 1995; Cheung 66 

et al., 2010), contractors performance (Wong, 2004), and risk analysis (Ozdemir, 2016; Mwesige 67 

et al., 2016; Smith and McCarty, 2009). Lastly, in structural engineering, LR models have been 68 

used to study the performance of beam-column connections (Mitra et al., 2011; Kang and Mitra, 69 



 

2012) and failure mode of reinforced concrete interior beam column joints under seismic loading 70 

(Vandana and Bindhu 2017).  71 

 72 

More closely related to this study, Ariaratnam et al. (2001) used LR to study the performance of 73 

local sewer systems in Edmonton, Canada. Age, diameter, material, waste type, and average depth 74 

of cover were modeled as the independent variable. Salman and Salem (2012) applied three 75 

different regression models, including multinomial and binary logistic regression to establish 76 

deterioration models for wastewater collection lines. Shan and Lewis (2016) used a binary LR to 77 

characterize deficient steel bridges with concrete cast-in-place deck and multibeam/girder designs 78 

based on the NBI data. The best model consisted of eight independent variables (average daily 79 

traffic (ADT), structure length, length of maximum span, bridge roadway width, state code, owner, 80 

and age), two of which, owner and state code, were insignificant. In addition to these studies, there 81 

have been recent works that use LR to study material behavior. This has included evaluating the 82 

splitting tensile strength in plain and steel fiber-reinforced concrete based on compressive strength 83 

(Behnood et al. 2015), reproducing the stiffness degradation curve of asphalt specimens during 84 

fatigue testing (Mateos et al. 2017), analysis of asphalt fatigue test results (Mateos et al. 2015), 85 

and comparing low-temperature crack intensity on pavements with high modulus asphalt concrete 86 

and conventional asphalt concrete (Rys et al. 2017). 87 

 88 

Directly related to the current study, statistical analysis and modeling of concrete bridge deck 89 

condition data has been performed by several researchers. For example, Madanat, et al. (1995) 90 

used an ordered probit model to estimate Markovian transition probabilities from deck condition 91 

ratings contained in the Indiana Bridge Inventory (IBI), a subset of the NBI. Using the same data 92 



 

set, Mauch and Madanat (2001) introduced a semiparametric hazard rate model and stochastic 93 

duration models (Mishalani and Madanat, 2002) to study bridge deck condition transition 94 

probabilities. Using NBI data for the State of Wisconsin, Tabatabai, et al. (2011) evaluated 95 

different distributions for analysis of condition rating data. More, a number of published studies 96 

have specifically investigated the effects of chloride penetration on deck performance (e.g., 97 

Williamson, 2007; Lounis, 2000; Wedding et al., 1983). 98 

 99 

While some published work has focused on concrete bridge deck CR, no attempts have been made 100 

to use a nationwide dataset. Some studies have used subsets of a nationwide dataset, but focus on 101 

a disaggregated picture (i.e., state or region). In addition, since these works have been completed, 102 

the NBI dataset has substantially grown and provides researchers with more information for 103 

analysis. A nationwide model can provide a holistic view of variables that impact bride deck 104 

deterioration. More, using region-specific indicators (i.e., climatic characteristics), the nationwide 105 

model can potentially help in identifying problematic regions regarding bridge deck deterioration. 106 

This, in turn, can lead to more focused analyses based on needs, as well as define regions based 107 

on such characteristics. As it pertains to structural and bridge engineering applications, as well as 108 

applications to concrete bridge decks, the LR analyses do not address what has become a prevalent 109 

issue in today’s datasets: unobserved heterogeneity (i.e., unobservables). As such, the current study 110 

distinctively fills these gaps in the literature. To the best of the authors’ knowledge, this is the first 111 

attempt at modeling NBI data on a nationwide scale and the first attempt at overcoming a key 112 

limitation within the NBI data by utilizing a random parameters estimation approach to account 113 

for unobserved heterogeneity.  114 

 115 



 

Objective and Motivation 116 

The objective of this study was to characterize the effect of various environmental, structural, 117 

construction, climatic, and traffic related parameters on concrete bridge deck performance. 118 

Specifically, the focus was on two extreme groups: bridges that have experienced the highest and 119 

lowest levels of deterioration. A random parameters binary LR framework was developed to 120 

quantify the impact of various parameters on the likelihood of a bridge deck being associated with 121 

the group of highest and lowest deterioration rates (DR), while also accounting for a key limitation 122 

within the data: unobserved heterogeneity. This method uniquely fills a gap in literature with its 123 

application to bridge deck deterioration. 124 

 125 

DATASET 126 

The authors have created a Nationwide Concrete Bridge Deck Performance Inventory (NCBDPI) 127 

database (Ghonima et al., 2018) with the specific goal of adopting a more statistical and data 128 

mining approach to understanding concrete highway bridge deck performance. The primary source 129 

of information for the NCBDPI database is the National Bridge Inventory (NBI) database (FHWA, 130 

2017). For this research, a number of NBI items were extracted and complemented with additional 131 

parameters such as climatic region, distance to seawater, bridge age, and deterioration rate (DR). 132 

One of the key performance metrics available in the authors’ NCBDPI database is the DR, which 133 

is defined as follows (Ghonima et al., 2018):  134 

 135 

  DR =  (CR’ –  CR”) 
TICR�   (Eq. 1) 136 

 137 



 

where CR’ and CR” are the bridge deck condition ratings (CR) at the beginning and end of a series 138 

of consecutive CR, and TICR (= time-in-condition rating) is the duration in years, as illustrated in 139 

Fig. 1. Deterioration is referred to as the observed decrease in CR. Also, maintenance is used to 140 

refer to any deck improvement action that increases the CR, similar to many published materials 141 

in the past. Note that the DR could only be calculated when CR’ > CR’’, i.e. when deterioration 142 

occurred. For the sample deck shown in Fig. 1, one fully observable cycle of deterioration occurs. 143 

DR was employed in this analysis as the independent variable because of its ability to capture the 144 

rate of change of CR, which TICR cannot. This emerged from discussions with a number of 145 

stakeholders involved in the overall research (Ghonima et al., 2018), in particular from bridge 146 

inspectors that have found some bridge decks to deteriorate much faster than others. 147 

 148 

 149 

Fig. 1. Sample concrete bridge deck condition rating (CR) with computed independent variables. 150 

Note: A decrease and an increase in the assigned CR is considered deterioration and 151 

maintenance, respectively. Data considered in this analysis include years 1992 to 2014. 152 

 153 



 

This study regarded concrete bridge decks with DR ≤ 0.056 as the group with the lowest 154 

deterioration rate (“lowest DR”) with a total of 1,569 observations. DR = 0.056 means that a bridge 155 

deck was assigned the same CR for approximately 18 years, i.e. TICR = 18, before experiencing 156 

a one-unit CR decrease. Concrete bridge decks assigned a DR ≥ 2 were considered as part of the 157 

group associated with the highest deterioration rate (“highest DR”) with a total of 1,693 158 

observations. DR = 2 means that the bridge was assigned the same CR for one year, i.e. TICR = 1, 159 

before a two-unit CR decrease occurred. The thresholds of 0.056 and 2 were selected after careful 160 

analysis and discussing with practitioners, bridge engineers from two state DOTs, and the FHWA 161 

what might be a reasonable TICR before a bridge deck is assigned a lower CR. While ideally, a 162 

physics-based classification would be applied to select boundaries, this is not possible here given 163 

that the CR are based on qualitative visual inspection results that include a number of deterioration 164 

mechanisms. As can be observed, using this approach produced two groups with similar numbers 165 

of samples. 166 

 167 

The lowest and highest DR groups were coded as binary variables and assigned 0 and 1, 168 

respectively. The reason behind taking these values was to make a clear distinction between the 169 

best and worst performing concrete bridge decks.  170 

 171 

Table 1 presents a summary of the variables included in the study and/or their frequencies. Refer 172 

to Ghonima, et al. (2018) for more details. Following are some observations: The average ADTT 173 

on the bridges in the dataset is nearly 1000. A significant majority of the bridges has cast-in-place 174 

decks. In terms of structural material and/or design, close to 80% of the bridge decks are part of 175 

either a simple or continuous span concrete or prestressed concrete bridge system. Close to 75% 176 



 

of the bridges have no deck protection and more than 75% of the bridges have no membrane. A 177 

majority of the bridge decks captured in the sample were in rural areas. Finally, a state highway 178 

agency was responsible for the maintenance of nearly two-thirds of the bridges. 179 

 180 

Table 1. Summary statistics and counts for the bridge deck variables included in this study. 181 

Continuous variables Minimum Mean Maximum 
Distance from Seawater (km) 0 5,655 16,619 

Deck Area (ft2) – computed from NBI 
Items 49 and 51 2370 74,304 4,080,000 

Average Daily Truck Traffic (ADTT) – 
NBI Item 109 0 983 25,432 

Bridge Age (years) – computed from NBI 
Items 27 or 106 0 39.8 122 

Number of Lanes (-) – NBI Item 28 1 1.45 11 
Categorical variables Categories Frequency Percentage 

Deck Structure Type – NBI Item 107 
Cast-in-Place 2,899 88.0 

Concrete Precast Panels 397 12.0 

Structural Material/Design – NBI Item 43a 

Concrete – simple span 764 23.2 
Concrete – continuous 454 13.8 

Prestressed concrete – simple 872 26.5 
Prestressed concrete – continuous 515 15.6 

Steel – simple span 554 16.8 
Steel – continuous 137 4.2 

Climatic Region (IECC) 

Very Hot 215 6.5 
Hot 919 27.9 

Average 553 16.8 
Cold 1,045 31.7 

Very Cold (VC) 444 13.5 
Extremely Cold (EC) 33 1.0 
Average Marine (AM) 38 1.2 

Hot Marine (HM) 49 1.5 

Deck Protection – NBI Item 108c 

None 2,421 73.5 
Epoxy-Coated Reinforcing 487 14.8 

Galvanized Reinforcing 16 0.5 
Other Coated Reinforcing 4 0.1 

Cathodic Protection 2 0.1 
Polymer Impregnated 11 0.3 

Internally Sealed 1 0.0 
Unknown 329 10.0 

Other 25 0.8 

Type of Membrane – NBI Item 108b 

None 2,566 77.9 
Built-up 106 3.2 

Preformed Fabric 99 3.0 
Epoxy 23 0.7 

Unknown 403 12.2 
Other 99 3.0 

 182 



 

Table 1. (Continued) 183 

Type of Wearing Surface – NBI Item 108a 

None 207 6.3 
Monolithic Concrete 1,239 37.6 

Integral Concrete 248 7.5 
Latex Concrete or Similar 

Additive 131 4.0 

Low-Slump Concrete 59 1.8 
Epoxy Overlay 36 1.1 

Bituminous 1,160 35.2 
Timber 88 2.7 
Other 128 3.9 

Functional Classification of Inventory 
Route – NBI Item 26 

Rural 2,339 71.0 
Urban 957 29.0 

Type of Design and/or Construction – NBI 
Item 43b 

Slab 664 20.1 
Stringer/multi-beam or girder (SB) 1,628 49.4 

Girder and floor beam system 60 1.8 
Tee beam (TB) 275 8.3 

Box beam or girders – multiple 
(BBM) 387 11.7 

Box beam or girders – single or 
spread (BBS) 36 1.1 

Frame 17 0.5 
Truss – through 60 1.8 

Arch-deck 17 0.5 
Channel beam (CB) 152 4.6 

Maintenance Responsibility – NBI Item 21 

State Highway Agency 2,134 64.7 
County Highway Agency (CHA) 838 25.4 

Town or Township Highway 
Agency 139 4.2 

City of Municipal Highway 
Agency (CMHA) 140 4.2 

State Toll Authority (STA) 45 1.4 
 184 

ANALYSIS 185 

Logistic Regression 186 

Logistic (or logit) regression (LR), a modeling approach that describes the occurrence probability 187 

of an outcome or event, is a method of fitting a regression curve to determine the outcome 188 

probability of said outcome or event as a function of covariates (i.e., independent variables). In the 189 

case of binary logistic regression, in which the outcomes are binary (i.e., 0 or 1), the probability 190 

that the outcome takes on the value 1 is determined through a set, or function, of covariates (Train 191 

2009; Washington et al. 2011; Greene 2018). Covariates can be continuous, categorical, or both. 192 



 

For the current study, the outcome being modeled is bridge deck deterioration rate (DR), where 193 

concrete bridge decks associated with the two groups “lowest DR” and “highest DR” were coded 194 

as 0 and 1, respectively. Because some of the independent variables are categorical, several 195 

indicator variables were created to differentiate the different categories. But, to avoid 196 

multicollinearity issues, only 𝑘𝑘-1 indicators from the same categorical variable could be included 197 

in the final model specifications (Yannis, et al., 2011). For example, the variable category Climatic 198 

Region (Table 1) consists of 8 different sub-categories; therefore, at most, seven indicator variables 199 

indicating climatic region can be included in final model specifications.  200 

 201 

 202 

Fig. 2. S-shape probability function used in binary logistic regression (LR). 203 

 204 

The probability function of a logit model that describes a dependent variable in terms of 205 

independent variables can be represented as an S-shape function (Fig. 2), where the logit 206 

probability is represented as (McFadden 1981; Train 2009): 207 

 208 

𝑃𝑃𝑛𝑛(𝑖𝑖) =
𝑒𝑒(𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖)

∑ 𝑒𝑒(𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖)
∀𝑖𝑖

 (Eq. 2) 



 

where 𝑃𝑃𝑛𝑛(𝑖𝑖) is the probability of observation 𝑛𝑛 having outcome 𝑖𝑖, 𝛽𝛽𝑖𝑖 is a vector of estimable 209 

parameters indexed by outcome 𝑖𝑖, and 𝑋𝑋𝑖𝑖𝑖𝑖 is a vector of explanatory variables (e.g., climatic 210 

region, wearing surface, etc.) used to determine the outcome probability. Now, by satisfying the 211 

alternative-specific-constant rule in logit modeling (see Train (2009) for a full discussion), 212 

normalizing one of the outcomes to utilize a binary logit framework for the current study results 213 

in the following (Train 2009; Washington et al. 2011; Hensher et al. 2015; Greene 2018): 214 

 215 

𝑃𝑃𝑛𝑛(𝑖𝑖) =
𝑒𝑒�𝛽𝛽��

1 + 𝑒𝑒�𝛽𝛽��
 , where 𝛽̂𝛽 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1,𝑛𝑛 + ⋯+ 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖,𝑛𝑛 + 𝜀𝜀𝑖𝑖𝑖𝑖 (Eq. 3) 

 216 

where 𝜀𝜀𝑖𝑖𝑖𝑖 is a Type I Extreme Value distributed error term and all other terms have been defined 217 

previously. The error term attempts to capture unobservables within the data; that is, attributes that 218 

are unobserved by the analyst (variables not included or collected in the data). In the case of the 219 

current study, each and every variable that contributes to the deterioration of a bridge deck is likely 220 

not included in the utilized data. This could be a result of several factors, such as the data is 221 

unavailable or the data is not collected. Therefore, these variables not included in the data are 222 

considered unobservables. These unobservables can result in unobserved heterogeneity, which if 223 

not accounted for, can result in biased estimates, incorrect inferences, and inaccurate 224 

recommendations. In addition, unobserved heterogeneity can be a result of variation within an 225 

existing variable due to unobserved characteristics. For instance, climatic regions are available, 226 

but no information on weather irregularities are included. This unobservable can be “embedded” 227 

in climatic region variables; therefore, resulting in unobserved heterogeneity (the reader is referred 228 

to Mannering et al. (2016) for a full discussion on methods and implications as it pertains to 229 

unobserved heterogeneity in econometric analyses). 230 



 

As such, the current study attempts to account for these unobservables by estimating a model with 231 

random parameters. As opposed to a traditional logit model, in which coefficient estimates are 232 

assumed to have the same sign (or effect) across all observations, a random parameters model 233 

allows beta estimates to vary across observations based on a distribution defined by the analyst 234 

(i.e., beta will be negative for a proportion of observations and positive for the remainder, or vice-235 

versa). To estimate such a model, a mixing distribution is introduced to the binary logit formulation 236 

in Eq. (2) (Greene 2016a; McFadden and Train 2000; Train 2003; Washington et al. 2011): 237 

 238 

𝑃𝑃𝑛𝑛(𝑖𝑖 | 𝜙𝜙) = �
𝑒𝑒�𝛽𝛽��

1 + 𝑒𝑒�𝛽𝛽��𝑥𝑥
 𝑓𝑓�𝛽̂𝛽 | 𝜙𝜙�𝑑𝑑𝛽̂𝛽  (Eq. 4) 

 239 

where 𝑃𝑃𝑛𝑛(𝑖𝑖 | 𝜙𝜙) is now the weighted outcome probability of 𝑃𝑃𝑛𝑛(𝑖𝑖) taking on the value 1 conditional 240 

on 𝑓𝑓�𝛽̂𝛽 | 𝜙𝜙�. In particular, 𝑓𝑓�𝛽̂𝛽 | 𝜙𝜙� is the density function of 𝛽̂𝛽 with distributional parameter 𝜙𝜙. 241 

The density function, 𝑓𝑓�𝛽̂𝛽 | 𝜙𝜙�, is what allows parameter estimates to vary across observations so 242 

as to permit 𝛽̂𝛽 to account for observation-specific variations of the effect of 𝑋𝑋 on 𝑃𝑃𝑛𝑛(𝑖𝑖 | 𝜙𝜙) 243 

(Washington et al. 2011). In general, the density function is specified to be normally distributed 244 

and is the distribution assigned to 𝑓𝑓�𝛽̂𝛽 | 𝜙𝜙� in the present study (Greene 2016b; Hensher et al. 245 

2015). 246 

 247 

Due to difficulties in computing the probabilities in such a model, a simulation-based approach is 248 

applied to estimate parameters. To simulate, previous work has shown that Halton draws provide 249 

a preferred alternative to merely random draws; therefore, Halton draws are used in the current 250 

study (Bhat 2003; Halton 1960; Train 2000). Using Halton draws, the simulated probabilities are 251 



 

inserted into the log-likelihood function of the logit model, thus providing a simulated log-252 

likelihood (Train 2009; Washington et al. 2011): 253 

 254 

𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝛿𝛿𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖=1

𝑁𝑁

𝑛𝑛=1

ln[𝑃𝑃𝑛𝑛(𝑖𝑖 | 𝜙𝜙)]  (Eq. 5) 

 255 

where 𝑁𝑁 is the total number of observations, 𝐼𝐼 is the total number of outcomes, 𝛿𝛿𝑖𝑖𝑖𝑖 is equal to 1 if 256 

the observed outcome for observation 𝑛𝑛 is 𝑖𝑖 and zero otherwise, and all other terms have been 257 

defined previously. Using Halton draws, 𝑃𝑃𝑛𝑛(𝑖𝑖 | 𝜙𝜙) are approximated by drawing values of 𝛽𝛽 from 258 

the density function (given values of the distribution parameter 𝜙𝜙) and used to estimate the logit 259 

probability shown in Eq. (2). This is done many times and the computed logit probabilities are 260 

then summed and averaged to obtained the simulated probability, 𝑃𝑃𝑛𝑛(𝑖𝑖 | 𝜙𝜙). 261 

 262 

LR differs from multiple linear regression with respect to the interpretation of the coefficients of 263 

the independent variables. In multiple linear regression, the beta estimates can be interpreted as a 264 

marginal effect (i.e., the effect on a dependent variable due to a one-unit increase in explanatory 265 

variable, 𝑋𝑋). However, this is not the case with LR models. In some cases, LR coefficients are 266 

interpreted using the log of the odds (i.e., odds ratios). However, odds ratios are most often seen 267 

in the statistics literature (Ramsey and Schafer 2012), whereas pure econometrics analyses almost 268 

exclusively consist of marginal effects to interpret parameter estimates (Greene 2018; Greene and 269 

Hensher 2010; Hensher et al. 2015). Therefore, the current study uses marginal effects to interpret 270 

estimates from the LR model. 271 

 272 



 

As described previously, marginal effects measure the impact of an explanatory variable, due to a 273 

one-unit increase, on the probability that the outcome takes on the value 1. For continuous 274 

explanatory variables, marginal effects are computed as (Greene 2016a, 2018): 275 

 276 

𝜕𝜕𝑃𝑃𝑛𝑛(𝑖𝑖)
𝜕𝜕𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

= [1 − 𝑃𝑃𝑛𝑛(𝑖𝑖)]𝑃𝑃𝑛𝑛(𝑖𝑖)𝛽𝛽𝑛𝑛(𝑖𝑖)  (Eq. 6) 

 277 

where 𝜕𝜕𝑃𝑃𝑛𝑛(𝑖𝑖)
𝜕𝜕𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

 is the derivative of the probability of observation 𝑛𝑛 having deterioration outcome 𝑖𝑖. 278 

However, for indicator variables, marginal effects are computed differently. For indicator variables 279 

(the majority of variables used in the present study), marginal effects are defined as the difference 280 

of the estimated probabilities when indicator variable 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 changes from zero to one while all other 281 

variables remain equal to their means (remain constant) (Greene 2018): 282 

 283 

𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑃𝑃𝑛𝑛(𝑖𝑖) = Pr�𝑃𝑃𝑛𝑛(𝑖𝑖) = 1|X(𝑋𝑋𝑖𝑖𝑛𝑛𝑛𝑛),𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 1� − Pr�𝑃𝑃𝑛𝑛(𝑖𝑖) = 1|X(𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖),𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 0�  (Eq. 6) 

 284 

where X(𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖) is the mean of all other variables (the variables that are being held constant) while 285 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 changes from zero to one. 286 

 287 

Logistic Regression Coefficients 288 

This study began by generating several indicators from the categorical variables and creating 289 

natural logarithm variables from variables that had large values, as this would result in marginal 290 

effects of essentially zero (marginal effects are discussed in the coming sections) (i.e., ADTT, deck 291 

area, distance from seawater, etc.). Using a stepwise procedure, in which the model was built-up 292 



 

from just the constant, Table 2 shows that 25 variables were found to have a statistically significant 293 

impact on bridge deck deterioration. In addition, as anticipated, model estimates show that the data 294 

is susceptible to large amounts of heterogeneity (i.e., unobservables). This is observed by the 9 295 

variables with normally distributed estimated random parameters. That is, these 9 variables have 296 

heterogeneous effects on bridge deck deterioration.  297 

 298 

Table 2. Random parameters binary logit model specifications. 299 

Variable Coefficient Std. 
Error t-statistic Marginal 

Effects 
Constant 4.660 0.686 6.79  

Natural Logarithm of Deck Area [DA] -0.472 0.064 -7.42 -0.117 
Natural Logarithm of ADTT [ADTT] 0.320 0.025 12.58 0.079 
Natural Logarithm of Distance to Seawater [SW] -0.255 0.028 -9.23 -0.063 
Age of Bridge [AGE] -0.028 0.003 -9.62 -0.007 
(Std. Dev. Of Normally Distributed Random Parameter) (0.038) (0.002) (17.89)  

Structural Material Design     

1 if Continuous Concrete, 0 Otherwise [CONCR] 0.545 0.184 2.97 0.135 
(Std. Dev. Of Normally Distributed Random Parameter) (3.266) (0.269) (12.13)  

1 if Simple Prestressed Concrete, 0 Otherwise [SMPCR] 1.856 0.164 11.33 0.459 
1 if Continuous Prestressed Concrete, 0 Otherwise 
[CONPCR] 1.045 0.200 5.23 0.258 

(Std. Dev. Of Normally Distributed Random Parameter) (3.417) (0.268) (12.77)  

1 if Simple Span Steel, 0 Otherwise [SMSTL] 0.923 0.167 5.54 0.228 
(Std. Dev. Of Normally Distributed Random Parameter) (1.357) (0.165) (8.25)  

1 if Continuous Steel, 0 Otherwise [CONSTL] 0.525 0.254 2.07 0.130 
Climatic Region     

1 if Very Hot, 0 Otherwise [VH] -1.694 0.238 -7.13 -0.419 
1 if Average, 0 Otherwise [AVG] -0.778 0.133 -5.84 -0.193 
(Std. Dev. Of Normally Distributed Random Parameter) (0.886) (0.169) (5.23)  

1 if Extremely Cold, 0 Otherwise [EXCLD] 4.252 0.571 7.44 1.052 
1 if Hot Marine, 0 Otherwise [HMAR] 1.252 0.482 2.60 0.310 
Deck Protection     

1 if Epoxy-Coated Reinforcing, 0 Otherwise [EPOX] 2.273 0.254 8.94 0.563 
(Std. Dev. Of Normally Distributed Random Parameter) (6.187) (0.488) (12.67)  

1 if Polymer Impregnated, 0 Otherwise [POLY] 3.444 1.213 2.84 0.852 
 300 

 301 



 

Table 2. (continued) 302 

Type of Membrane     

1 if Built-Up Membrane, 0 Otherwise [BUM] 0.911 0.219 4.16 0.226 
Type of Wearing Surface     

1 if No Wearing Surface, 0 Otherwise [NOSUR] 1.735 0.241 7.18 0.429 
(Std. Dev. Of Normally Distributed Random Parameter) (2.218) (0.345) (6.42)  

1 if Integral Concrete, 0 Otherwise [ICON] 1.947 0.250 7.79 0.482 
1 if Latex Concrete or Similar Additive, 0 Otherwise 
[LATEX] 0.730 0.232 3.14 0.181 

1 if Low-Slump Concrete, 0 Otherwise [LSLMP] 1.866 0.306 6.10 0.462 
Type of Design and Construction     

1 if Girder and Floor Beam System, 0 Otherwise 
[GFBS] 2.307 0.410 5.62 0.571 

1 if Tee Beam, 0 Otherwise [TB] 1.346 0.198 6.80 0.333 
1 if Truss (Through), 0 Otherwise [TRS] 1.991 0.381 5.22 0.493 
Maintenance Responsibility     

1 if County Highway Agency, 0 Otherwise [CNTY] 1.089 0.150 7.26 0.270 
(Std. Dev. Of Normally Distributed Random Parameter) (3.393) (0.215) (15.76)  

1 if City of Municipal Highway Agency, 0 Otherwise 
[CITY] 0.404 0.259 1.56 0.100 

(Std. Dev. Of Normally Distributed Random Parameter) (2.183) (0.384) (5.68)  

Model Statistics     

Number of Observations 3,262    

Log-Likelihood at Zero -1,953.98    

Log-Likelihood at Convergence -1,484.24    

McFadden Pseudo R-Squared 0.24    

 303 

Referring to Table 2, final model specifications show that significant variables were found in the 304 

following categories: Maintenance Responsibility, Type of Design and/or Construction, ADTT, 305 

Climatic Region, Distance to Seawater, Deck Area, Age of Bridge, Structural Material Design, 306 

Deck Protection, Type of Membrane, and Type of Wearing Surface. Those variables were chosen 307 

through a stepwise procedure based on (1) their statistical significance and (2) were assumed to 308 

play a role in bridge deck performance. 309 

 310 

The beta estimates and independent variables from the final model specifications can now be 311 

substituted into the right-hand side of Eq. 3 to give: 312 



 

log � 𝑃𝑃𝑛𝑛(𝑖𝑖)
1−𝑃𝑃𝑛𝑛(𝑖𝑖)

� = 4.660 − 0.472 ∙ ln(DA) + 0.320 ∙ ln(ADTT) − 0.255 ∙ ln(SW) − 0.028 ∙ AGE +313 

0.545 ∙ CONCR + 1.856 ∙ SMPCR + 1.045 ∙ CONPCR + 0.923 ∙ SMSTL + 0.525 ∙ CONSTL −314 

1.694 ∙ VH − 0.778 ∙ AVG + 4.252 ∙ EXCLD + 1.252 ∙ HMAR + 2.273 ∙ EPOX + 3.444 ∙315 

POLY + 0.911 ∙ BUM + 1.735 ∙ NOSUR + 1.947 ∙ ICON + 0.730 ∙ LATEX + 1.866 ∙ LSLMP +316 

2.307 ∙ GFBS + 1.346 ∙ TB + 1.991 ∙ TRS + 1.089 ∙ CNTY + 0.404 ∙ CITY  (Eq. 7) 317 

 318 

As mentioned previously, the more common way to interpret parameter estimates in an 319 

econometric analysis is to look at marginal effects (see Table 2). Taking the natural log of ADTT 320 

(continuous variable) as an example, and holding all other variables equal to their means (held 321 

constant), increasing the natural logarithm of ADTT by unity significantly increases the probability 322 

of high bridge deck deterioration by 7.9%. Interpretation of marginal effects on log-transformed 323 

variables follows that of Haleem and Abdel-Aty (2010). While the interpretations are similar for 324 

the indicator variables, they are relative to “otherwise.” This indicates that inference can be made 325 

relative to all other categories, or inference can be made directly on the indicator variable. A full 326 

discussion of significant variables and their effects on bridge deck deterioration probability is 327 

provided in the discussion of significant variables. 328 

 329 

Variable Importance 330 

To assess the relative importance of the individual predictors in the model, the absolute value of 331 

the 𝑡𝑡-statistic for each model variable can be used to obtain variable importance. All measures of 332 

importance were scaled to have a maximum value of 100. As can be seen in Fig. 3, ADTT, simple 333 

prestressed concrete, age of the bridge, and distance to seawater are the most influential variables.  334 

 335 



 

 336 

Fig. 3. Relative importance of model parameters based on t-statistic (scaled to 100). 337 

 338 

Variable Elasticities for Continuous Variables 339 

In addition to interpreting estimates through marginal effects, an alternate method consists of using 340 

elasticities to interpret parameter estimates. In cases where the explanatory variables have large 341 

values (e.g., ADTT, deck area, distance to seawater), the effect of a 1% increase on the probability 342 

of the outcome taking on the value 1 may be more intuitive (Ulfarsson and Mannering, 2004). 343 

Consider a one-unit increase in ADTT to a 1% increase in ADTT, for example. Using elasticities 344 

can provide a unit-less measure to choice sensitivity to each independent variable (Yannis et al., 345 

2011; Broach, 2012). However, the calculations for elasticities is different. In NLOGIT, elasticities 346 

of the probability are computed as (Greene 2016b): 347 

 348 



 

𝜕𝜕log𝐸𝐸[𝑦𝑦 | 𝑋𝑋]
𝜕𝜕log𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

=
𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

𝐸𝐸[𝑦𝑦 | 𝑋𝑋]  × 𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑃𝑃𝑛𝑛(𝑖𝑖) (Eq. 8) 

 349 

A naïve pooling method was used where elasticities for each observation were calculated and the 350 

mean of all cases was taken as the elasticity (Hensher et al., 2015) (Table 3). 351 

 352 

Table 3. Elasticities for continuous variables. 353 

   354 

 355 

  356 

 357 

As can be seen in Table 3, following the interpretation from Wooldridge (2010) and Greene (2018), 358 

the elasticity of the natural log of ADTT means that a 1% increase in the natural log of ADTT 359 

results in an increase of bridge deck deterioration probability by 73.1%. On the other hand, a 1% 360 

increase in deck area and a 1% increase in distance to seawater (their natural logarithms) result in 361 

a decrease in bridge deck deterioration probability by 272% and 109%, respectively. These results 362 

suggest that bridge deck area and distance to seawater have a significant impact on bridge deck 363 

deterioration.   364 

 365 

Statistical Evaluation of the Final Model 366 

To evaluate the statistical fit of the LR model, a log-likelihood ratio test was performed. In a binary 367 

LR, a model having more predictors is expected to provide a better fit to the data than a model 368 

having fewer predictors. A log-likelihood ratio test estimates the overall explanatory power of a 369 

model to determine if the independent variables chosen for the model improve the overall model 370 

Continuous Variable Elasticity 
Natural Logarithm of ADTT 0.731 

Natural Logarithm of Deck Area -2.724 
Natural Logarithm of Distance to Seawater -1.089 



 

fit. In the case of the current study, being that a model with random parameters was estimated, the 371 

log-likelihood ratio test determines if the log-likelihood of the random parameters model is of 372 

more significance than the log-likelihood with fixed parameters (model not accounting for data 373 

unobservables). Therefore, the log-likelihood ratio test is computed as follows (Washington et al. 374 

2011): 375 

 376 

𝜒𝜒2 = −2[𝐿𝐿𝐿𝐿(𝛽𝛽Fixed) − 𝐿𝐿𝐿𝐿(𝛽𝛽Random)] (Eq. 9) 

  

where 𝐿𝐿𝐿𝐿(𝛽𝛽Fixed) is the log-likelihood at convergence of the fixed parameters model, 𝐿𝐿𝐿𝐿(𝛽𝛽Random) 377 

is the log-likelihood at convergence of the random parameters model, and 𝜒𝜒2 is a chi-square 378 

statistic with degrees of freedom equal to the number of estimated random parameters in 𝛽𝛽Random. 379 

In the log-likelihood ratio test, the null hypothesis is that the fixed parameters model is true and 380 

the alternative hypothesis is that the random parameters model is true. Thus, if the 𝑝𝑝-value for the 381 

log-likelihood ratio test is statistically significant, there is evidence that the random parameters 382 

model is preferred and the null hypothesis can be rejected (Washington et al. 2011) (Table 4). 383 

 384 

Table 4. Likelihood ratio test results. 385 

Model Parameters Log-Likelihood Degrees of Freedom 𝜒𝜒2 𝑝𝑝-value 

Fixed 28 -1,953.98 - - - 

Random 28 -1,484.24 9 (Estimated Random 

Parameters) 

939.48 0.000 

 386 

As seen from Table 4, the null hypothesis that the fixed parameters model is preferred is rejected. 387 

In particular, the overall model fit of the random parameters model is of more significance with 388 



 

well over 99% confidence. Moreover, when comparing the log-likelihood at zero (estimated with 389 

only the constant) to the log-likelihood at convergence of the random parameters model, a 390 

McFadden Pseudo R-Squared value of 0.24 is obtained. A model with a McFadden Pseudo R-391 

Squared value of this magnitude is considered to have an “exceptional” fit (McFadden 1973, 1977, 392 

1981). 393 

 394 

DISCUSSION OF SIGNIFICANT VARIABLES 395 

To ease discussion, a synthesis of significant variables will be done by variable category as defined 396 

in Table 2. To begin, the variables not related to a specific category will be discussed (ADTT, 397 

distance to seawater, and deck area have been discussed previously): age of bridge. Both of these 398 

variables are significant and have heterogeneous effects (i.e., they have normally distributed 399 

random parameters). As it pertains to the age of the bridge, model estimations show an estimated 400 

parameter mean of -0.028 and an estimated standard deviation of 0.038. Based on these 401 

estimations, the normal distribution curve indicates that the estimated parameter mean is greater 402 

than zero for 23.1% of bridge decks and less than zero for 76.9% of bridge decks. In other words, 403 

as bridge age increases, 23.1% are more likely to have high deterioration and 76.9% are less likely. 404 

The heterogeneous effects here may be attributed to corrosion. In regards to corrosion, it has been 405 

proposed that corrosion rate decreases with age (Tabatabai and Lee 2006; Vu and Stewart 2000). 406 

Therefore, as age increases, it may be less likely to observe high deterioration. However, some 407 

environments are more severe than others and the natural protection from corrosion due to the high 408 

alkalinity of cement-based materials can be reduced (Bien et al. 2007; Gucunski et al. 2011). For 409 

the latter, this occurs due to chloride ingress, which upon reaching the rebar will destroy the 410 



 

passivity layer. In such a case, corrosion as a result of age can lead to an increase in likelihood of 411 

high deterioration.  412 

 413 

Structural Material/Design (NBI Item 43A) 414 

Five variables related to structural material/design, which describes the bridge superstructure 415 

material and whether it is simple-span or continuous, are found to be significant. The assumption 416 

here is that when the bridge is considered continuous, so is the deck, and vice versa. Of these five 417 

variables, three have heterogeneous effects on deterioration probability. The first structural 418 

material/design variable with heterogeneous effects is: concrete continuous. Referring to model 419 

estimations, this parameter has an estimated mean of 0.545 and an estimated standard deviation of 420 

3.266. Using the normal distribution curve, these estimates indicate that 43.4% of concrete 421 

continuous decks are less likely to have high deterioration and 56.7% are more likely. Being that 422 

cracking can lead to bridge deck deterioration by allowing water and chemicals to penetrate the 423 

deck, this random parameter may be attempting to capture unobservables related to cracking 424 

(Schmitt and Darwin 1995). Specifically, cracking is greater in continuous span decks due to the 425 

negative bending moment regions at the interior supports (Grace et al. 2004). In addition, it has 426 

been shown that the severity of cracking is directly correlated with the severity of vibrations 427 

(Alampalli et al. 2002). Therefore, the proportion of continuous concrete bridge decks that are less 428 

likely to have high deterioration may be experiencing fewer vibrations at a lesser severity, in 429 

addition to less cracking (the bridges have shorter spans that result in less cracking). Also with a 430 

normally distributed estimated random parameter is the indicator for continuous prestressed 431 

concrete. Referring to model estimations, the estimated parameter mean of 1.045 and estimated 432 

standard deviation of 3.417 indicate that 38% of bridge decks supported by a continuous 433 



 

prestressed concrete bridge superstructure are less likely to have high deterioration and 62% are 434 

more likely. The non-homogenous nature in this variable may also be attributed to cracking. That 435 

is, prestressed concrete without longitudinal cracks reduces the likelihood of deterioration due to 436 

corrosion and/or freeze-thaw cycles. However, if transverse cracking takes place (i.e., parallel to 437 

the transverse prestressing), there is a high likelihood of early deck deterioration, as well as 438 

exposed tendons that can be prone to corrosion (Poston et al. 1989). This random parameter may 439 

be capturing these differences in cracking among decks supported by prestressed concrete bridge 440 

superstructures. 441 

 442 

The third variable, also with a normally distributed random parameter, is the indicator for concrete 443 

bridge decks supported by simple-span steel bridge superstructures. With an estimated parameter 444 

mean of 0.923 and a standard deviation of 1.357, 24.8% of bridge decks supported by simple span 445 

steel bridge superstructures are less likely to experience high deterioration and 75.2% are more 446 

likely to experience high deterioration relative to decks supported by simple span concrete 447 

superstructures. The heterogeneous nature of this variable may be linked to end restraints of steel 448 

superstructures and shrinkage (Russell 2004). In addition, concrete deck cracking is observed more 449 

in curved bridges than in straight bridges and more cracking is observed as restraint increases, steel 450 

configuration, girder depth, or close girder spacing (Russell 2004). These attributes impacting 451 

bridge deck deterioration are unobserved in the NBI data; therefore, the randomness in this 452 

parameter may be accounting for these unobservables that can result in varying effects across 453 

bridge decks.  454 

 455 



 

Deck Protection (NBI Item 108C) 456 

For deck protection variables, two are found to be significant. Of the two variables, the first with 457 

a normally distributed random parameter is epoxy-coated reinforcing bars. Therefore, with an 458 

estimated parameter mean of 2.273 and a standard deviation of 6.187, 35.7% of decks protected 459 

by epoxy-coated reinforcing bars are less likely to experience high deterioration and 64.3% of 460 

decks are more likely to experience high deterioration. The heterogeneous nature of this variable 461 

is likely related to the location of deck deterioration. For instance, Lawler et al. (2011) found that 462 

bridge decks with epoxy-coated reinforcing bars have less than 0.15% corrosion-induced 463 

deterioration. However, Lawler et al. (2011) also observed deterioration in bridge decks with 464 

epoxy-coated reinforcing bars, specifically at cracks or construction joints. This finding shows that 465 

a large proportion of bridge decks with epoxy-coated reinforcing may have considerable 466 

deterioration stemming from cracks and/or construction joints, suggesting that these locations be 467 

investigated further for such bridge decks. 468 

 469 

Type of Membrane (NBI Item 108B) 470 

Of the several variable categories, type of membrane is the only category to have just one 471 

significant variable. In particular, bridge decks with a built-up membrane have a 22.6 percentage 472 

point increase in probability of suffering from high deterioration, according to marginal effects. 473 

This finding may be attributed to this type of membrane being popular in the 1960s and, in nearly 474 

all cases, having been discontinued (Manning 1995). For built-up membranes, two layers are used: 475 

glass fabric and coats of coal-tar pitch emulsion (Hagenbuch 1971; Manning 1995). However, over 476 

time, condition surveys showed that the glass fabric being used in built-up membranes was rotting 477 

(Manning 1995). These findings suggest that built-up membranes increase the probability of being 478 



 

associated with high deterioration as a result of built-up membrane characteristics being prone to 479 

rotting, specifically the glass fabric. 480 

 481 

Type of Wearing Surface (NBI Item 108A) 482 

Four wearing surfaces have significant impacts on high deck deterioration probability, including 483 

integral concrete, latex concrete, low-slump concrete, and no wearing surface. Of the four 484 

significant wearing surfaces, one is found to have deck-specific variation based on a normal 485 

distribution: bridge decks with no wearing surface. Specifically, with a mean of 1.735 and a 486 

standard deviation of 2.218, 21.7% of bridge decks with no wearing surface are less likely to be 487 

associated with high deterioration and 78.3% of bridge decks with no wearing surface are more 488 

likely. A plausible explanation for no wearing surface decreasing the likelihood of deterioration 489 

on some decks may be linked to limit states or specific climatic regions. Another plausible reason 490 

may by attributed to the use, or non-use, of de-icers on bridge decks with no wearing surface (this 491 

would also correspond to climate regions).  492 

 493 

Type of Design and/or Construction (NBI Item 43B) 494 

Three variables related to design and/or construction are found to significantly affect the 495 

probability of high deck deterioration. For these variables, there are no heterogeneous effects 496 

across bridge decks. Although, each of these variables have considerable impacts on deck 497 

deterioration according to marginal effects, with one having larger effects on deck deterioration 498 

compared to the others. To be specific, based on marginal effects, girder and floor beam systems 499 

increase the probability of deck deterioration by 57.1 percentage points. A plausible explanation 500 

for the increase in probability may be attributed to the type of bridge. For example, tied arch 501 



 

bridges experience web-gap fatigue in the connections of girder and floor beam systems (National 502 

Academies of Sciences, Engineering, and Medicine 2013). Another plausible explanation may be 503 

linked to bridges that have not been retrofitted or repaired in regards to web-gap fatigue cracks 504 

(Dexter and Ocel 2013). 505 

 506 

Maintenance Responsibility (NBI Item 22) 507 

For this category, just two variables are found to be significant, both of which have non-508 

homogenous effects on bridge deck deterioration. The first of these variables is the indicator for 509 

county highway agency (i.e., maintenance responsibility is that of a county highway agency). 510 

Turning to model estimates, the indicator for county highway agency has an estimated parameter 511 

mean of 1.089 and an estimated parameter standard deviation of 3.393. Based on a normal 512 

distribution, these estimates indicate that 37.4% of bridge decks under the maintenance 513 

responsibility of a county highway agency are less likely to have high deterioration. On the other 514 

hand, however, 62.6% of bridge decks under the maintenance responsibility of a county highway 515 

agency are more likely to have high deterioration. The second variable, also with a normally 516 

distributed random parameter, is city or municipal highway agency being responsible for deck 517 

maintenance. With an estimated parameter mean of 0.404 and an estimated standard deviation of 518 

2.183, 42.7% of bridge decks under the maintenance of a city or municipal highway agency are 519 

less likely to have high deterioration and 57.3% of bridge decks are more likely to have high 520 

deterioration. A plausible explanation for the heterogeneous nature in these two variables may be 521 

linked with funding for bridge deck maintenance. For instance, routine maintenance is not eligible 522 

for federal funds (FHWA 2018). Therefore, the varying effects of these two variables could be a 523 

result of limited or available funding at the county-specific level or the city- and municipal-specific 524 



 

level. With the Highway Bridge Program giving state DOTs discretion in regards to funding bridge 525 

rehabilitation, replacement, and several preservation activities (FHWA 2018), Strategic Highway 526 

Research Program et al. (2018) suggest that DOTs must design and build new bridges to have the 527 

longest potential service life. In doing so, this can free up funds for bridge preservation, bridge 528 

maintenance, and repairs (Strategic Highway Research Program et al. 2018).   529 

 530 

IECC Climatic Region 531 

The final set of variables found to be significant on the probability of bridge deck deterioration are 532 

climatic indicators. In this study, climate regions according to the International Energy 533 

Conservation Code (IECC) were adopted (International Code Council 2012). Inherently, these 534 

indicators serve as surrogates for region-specific climates and can help guide future work in 535 

defining specific regions to be considered for region-specific bridge deterioration models. With 536 

that in mind, four climatic indicators are significant, one of which has heterogeneous effects on 537 

bridge deck deterioration: average climate. Referring to model estimations, the indicator for 538 

average climate has an estimated parameter mean of -0.778 and an estimated standard deviation 539 

of 0.886. Therefore, based on the normal distribution curve, 19.0% of bridge decks located in the 540 

average climatic region are more likely to be associated with high deterioration and 81.0% of 541 

bridge decks in the average climatic region are less likely to be associated with high deterioration. 542 

These varying effects may be explained by weather irregularities, such as harsh winters or extreme 543 

summers. Specifically, Kesiraju (2017) found some correlation between bridge deck deterioration 544 

and climate change, where climate change may be a primary source of weather irregularities 545 

(Huybers et al. 2013). 546 

 547 



 

As for the remaining three climatic variables, very hot climates, extremely cold climates, and hot 548 

marine climates impact the probability of bridge deck deterioration. First, according to marginal 549 

effects, there is a 41.9 percentage point decrease in the probability of bridge deck deterioration for 550 

bridge decks in very hot climates. This follows the findings of Ghonima et al. (2018), where as 551 

climate becomes colder bridge decks are more likely to be associated with high deterioration, while 552 

hotter climates are less likely. The next climatic variable is related to extremely cold climates. 553 

Pointedly, marginal effects show that bridge decks in extremely cold climates have a 105.2 554 

percentage point increase in the probability of high deterioration. This finding is in-line with 555 

several previous works, as specific aspects in extremely cold climates can lead to bridge deck 556 

deterioration. Bridge decks in extremely cold climates will be susceptible to a large number of 557 

freeze-thaw cycles that accelerate deterioration (Hema et al. 2004). Specifically, cold climates use 558 

de-icing methods, where chlorides from de-icing salts can penetrate the bridge deck and eventually 559 

“depassivate” the reinforcing steel initiating corrosion (Gong et al. 2013; Njardardottir et al. 2005). 560 

More, de-icers can have negative reactions with the cement paste and/or aggregates in the bridge 561 

deck; therefore, increasing the likelihood of deterioration (Xie and Shi 2015). The final climatic 562 

indicator is for hot marine climates, in which marginal effects show a 31.0 percentage point 563 

increase in the probability of bridge deck deterioration. As it pertains to marine climates, bridge 564 

decks can be exposed to sulfate ions from seawater. These sulfate ions can then attack components 565 

of the cement paste in the bridge deck inducing deterioration (Hema et al. 2004). In addition, 566 

marine climates have other sulfates, such as sodium and magnesium, that can also induce 567 

deterioration (Hema et al. 2004). 568 

 569 

 570 



 

Table 5. Summary of significant variables and effects on deck deterioration probability. 

Category Variable Effect on Probability 
Continuous Variables Deck Area  
 ADTT  
 Distance to Seawater  
 Age of Bridge  
Structural Material Design Continuous Concrete  
 Simple Prestressed Concrete  
 Continuous Prestressed Concrete  
 Simple Span Steel  
 Continuous Steel  
Deck Protection Epoxy-Coated Reinforcing  
 Polymer Impregnated  
Type of Membrane Built-Up Membrane  
Type of Wearing Surface No Wearing Surface  
 Integral Concrete  
 Latex Concrete or Similar Additive  
 Low-Slump Concrete  
Type of Design and Construction Girder and Floor Beam System  
 Tee Beam  
 Truss (Through)  
Maintenance Responsibility County Highway Agency  
 City or Municipal Highway Agency  
Climatic Regions Very Hot  
 Average  
 Extreme Cold  
 Hot Marine  

= Decrease in Bridge Deck Deterioration Probability
= Increase in Bridge Deck Deterioration Probability

= Heterogeneous Effects on Bridge Deck Deterioration Probability
 571 

SUMMARY AND CONCLUSIONS 572 

The objective of this study was to examine how environmental and structural parameters affect the 573 

performance of concrete bridge decks by means of random parameters binary logistic regression 574 

(LR) modeling. The model is used to compute the likelihood for a concrete bridge deck being 575 

associated with the “highest deterioration rate (DR)” group, which is the worst performing set of 576 

bridge decks, while also accounting for unobservables in the data. The random parameters LR 577 

model development is based on 3,262 observations extracted from a nationwide database, which 578 



 

was developed by the authors previously (Ghonima et al., 2018). In the final model, the DR was 579 

used as the dependent variable, while ADTT, Climatic Region, Distance from Seawater, Type of 580 

Design and/or Construction, Bridge Age, Bridge Deck Area, Structural Material Design, Deck 581 

Protection, Type of Membrane, Type of Wearing Surface, and Maintenance Responsibility 582 

characteristics were used as independent variables. A log-likelihood test was performed to show 583 

that the random parameters model is preferred over the traditional binary model, where results 584 

indicated with well over 99% confidence that the random parameters model is statistically 585 

preferred (several variables were found to have statistically significant random parameters). 586 

Significant bridge deck deterioration variables were ranked in order of their relative importance in 587 

the model. Based on marginal effects and elasticities, as presented in Table 5, it was found that 588 

bridge decks 1) with higher ADTT, 2) extremely cold climate, 3) hot marine climate, and 4) with 589 

no wearing surface are all associated with an increase in “highest DR” group probability. On the 590 

other hand, 1) deck area, 2) distance to seawater, 3) age of bridge, and 4) very hot climates are 591 

associated with a decrease in “highest DR” group probability. Some of these variables were also 592 

found to be heterogeneous across observations, as detailed in the discussion. 593 

 594 

In the future, additional variables could be added, such as structural design characteristics (e.g., 595 

minimum deck thickness, reinforcement bar size, bar spacing), construction practice (e.g., concrete 596 

temperature, placement procedure, curing practice), specifications (e.g., water-to-cement ratio and 597 

minimum cementitious material content), and other notable variables (e.g., application of deicers 598 

and freeze-thaw cycles). By adding additional data (i.e., potential bridge deck deterioration 599 

variables), data-heterogeneity is mitigated by reducing the number of unobservables (i.e., there are 600 

more observed characteristics to be used by the analyst). In addition, it is recommended that future 601 



 

studies utilize this methodology to model those additional variables to determine their significance 602 

and impacts on bridge deck deterioration.  603 
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