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ABSTRACT 1 
 2 
Drones are increasingly being utilized to deliver medical supplies, and the COVID-19 pandemic has 3 
accelerated this trend. Drones arrive quickly by taking more direct paths and avoiding ground-based 4 
obstructions. However, drones are not completely reliable and may also experience failures and delays. For 5 
consumer products, delivery delays are an inconvenience, but for some medical supplies, delays may be 6 
fatal. This research focuses on the drone reliability of one particular type of supply and event: automatic 7 
defibrillators for out-of-hospital cardiac arrests (OHCA). A modeling framework is developed to analyze 8 
drone delivery reliability with stochastic demands and meteorological conditions. Using probability 9 
distributions based on real data from Portland, OR, this research quantifies the failure rates as a function of 10 
drone range and meteorological conditions that include temperature, precipitation, and wind. Tradeoffs 11 
among drone reliability, fleet size, population size, and meteorological conditions are analyzed. 12 

 13 
 14 

Keywords: Drone Deliveries, Reliability, Stochastic Modeling, Time-sensitive, Case Study, Defibrillators  15 
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INTRODUCTION AND MOTIVATION 1 
Drone deliveries are being tested across the globe to meet not only parcel delivery demands but 2 

also to open new service models and opportunities where traditional ground delivery methods are relatively 3 
slow and unreliable. The delivery of medical supplies is an area that has sparked high interest because such 4 
supplies are often subject to strict temporal constraints. For example, drones have already been employed 5 
for the delivery of medical supplies in Rwanda, a country that experiences heavy rains that often lead to 6 
road impassibility [1]. Hospital supply chains in Rwanda now utilize drones for the delivery of blood from 7 
central storage facilities [2] [3]. While blood deliveries are time-sensitive, some medical supplies are 8 
subject to even more stringent time considerations.  9 

The COVID-19 and the consequent lockdown have temporality remove some regulatory barriers 10 
for the deployment of drones. Drones are now being tested in several states such as Florida, North Carolina, 11 
North Dakota and Virginia to deliver prescriptions, and there is a promising trial in Baltimore to deliver 12 
kidneys for transplants [4].  Even though there is a wide range of drone applications in the health sector, 13 
this research and case study focuses on time-sensitive cardiac arrests.  14 

Cardiac defibrillation [5] needs to be administered minutes after diagnosis to avoid patient death, 15 
but a majority (63%) of cardiac arrest cases occur outside of hospitals where defibrillators are not readily 16 
available. The survival rate for out-of-hospital cardiac arrest (OHCA) in 2016 was 12%, almost half that of 17 
the in-hospital rate (25%) [6]. Currently, automatic external defibrillators (AED) are 1.1 kg (2.4 lb), take 18 
just 1.77 L (108 in3) of space, and come with instructions to guide non-medical persons through the 19 
machine’s use [7]. This makes AEDs an ideal candidate for drone delivery. However, the seriousness of 20 
cardiac arrest puts tight constraints on adequate arrival times. Even in hospitals, defibrillation survival rates 21 
after 3 minutes are reduced from 39% to 22%, and each additional minute reduces the chance of survival 22 
by approximately 4% [8]. Currently, the average ground-based (ambulance) emergency response time in 23 
the United States is much longer than three minutes, with a mean of 7.0, 7.7, and 14.5 minutes for urban, 24 
suburban, and rural areas, respectively [9]. As drones are not subject to the typical ground road 25 
infrastructure restrictions, they may have a higher probability of timely response.  26 

Pilots for medical supply deliveries using drones have begun in the United States [10], and recent 27 
research into drone deliveries of AEDs has attempted to quantify delivery times, estimate mortality rates, 28 
and optimize delivery networks through theoretical models [11] [12] [13]. These studies have provided 29 
useful tools for AED delivery but have ignored key factors, such as weather. Such exclusions and the lack 30 
of real-world data means the viability of drone deliveries for time-sensitive supplies remains an open 31 
question.  32 

This research focuses on drone deliveries of AEDs for OHCA and fills a gap in recent research by 33 
using real-world data to model and assess the impact of weather on drone delivery reliability and to quantify 34 
the impact of fleet size and population on failure rates. Determining the number of drones required to service 35 
an area is a difficult challenge as the rate of cardiac events for an area is dependent on population size and 36 
time of day [5]. 37 

This research: first, models demand and estimates failure rates as a function of drone fleet size and 38 
population for two types of drone operations: battery recharging and battery swapping; second, model 39 
temperature, precipitation, and wind using historical data from Portland, OR; and third, quantifies the 40 
impact of temperature, precipitation, and wind on the range and drone delivery failure. Conclusions, based 41 
on results, are discussed with recommendations for future studies.  42 

 43 
 44 

MODELING DEMAND, FLEET SIZE, AND FAILURE RATE 45 
The American Heart Association (AHA) provides a population mean (𝜇!) and confidence intervals 46 

(CI) for the number of OHCA events in a year [6]. From the CI, a population variance (𝜎!") may be 47 
calculated. 𝜇! and 𝜎!" are for the US population as a whole (𝑁), not for a selected sample of 𝑛 people. For 48 
a sample population over a year, the mean and standard deviation for the number of OHCA may be 49 
calculated as: 50 
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𝜇! =	356,461

𝜇# =	0
#
!
1 𝜇!

𝜎! =	3,067

𝜎# =	40
#
!
1 𝜎!"

  1 

Modeling the number of occurrences in a given time interval is a common application of the Poisson 2 
distribution with parameter 𝜆#. To capture the variation of 𝜆# for a given population, 𝜆# is also simulated 3 
using a Gamma distribution with shape and rate parameters 𝛼 and 𝛽, respectively. In Bayesian statistics, 4 
the Gamma distribution is the conjugate prior for Poisson, and equations for the mean and variance may be 5 
defined as follows [14]. 6 

𝐸[𝜆#] = 𝜇# =
$
%

𝑉𝑎𝑟[𝜆#] = 𝜎#" =
$
%!  7 

Solving for 𝛼 and 𝛽, the parameters of the gamma distribution for 𝜆# are: 8 

𝛼 = &"!

'"!
=

()"#*&#+
!

)"#*'#
! = 0#

!
1 &#

!

'#
! 𝛽 = &"

'"!
=

)"#*&#

)"#*'#
! =

&#
'#
!
  9 

For any population, 𝑛, the number of cardiac events in a year may be simulated using: 10 

𝜆# ∼ 𝐺𝑎𝑚𝑚𝑎 0𝛼 = 0#
!
1 &#

!

'#
! , 𝛽 =

&#
'#
!1   11 

Given this formulation, random OHCA events are simulated using a Poisson distribution with rate 12 
parameter, 𝜆#, defined by AHA data. The above provides estimates for a full year. However, the number 13 
of OHCA is also temporally dependent.  14 

There is no statistically significant variation across months or seasons, but day-of-week and time-15 
of-day do have significant variation. Incidence rate ratios (IRR) with 95% confidence intervals are used for 16 
simulation, where the highest increases are seen on Mondays [1.18, 1.38] and during the 8:00 AM to 9:00 17 
AM hour [1.96, 2.59] [15]. Combined, Monday mornings have an average rate increase of 2.91 over the 18 
yearly average OHCA rate. Normal distributions are assumed for each IRR, based on the Central Limit 19 
Theorem of probability [14], and the time between consecutive OHCA events may be simulated utilizing a 20 
Poisson process of rate 𝜆#. Figure 1 shows the asymmetry of the distribution around the mean for the time 21 
between events as a function of population size. 22 

 23 

      24 
Figure 1 Time between consecutive OHCA events versus population for US average 25 

demand rate (left) and rate on Monday between 8:00 AM and 9:00 AM (right) 26 
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Fleet Size, Drone Repositioning, and Battery Swapping Times 1 
The number of required drones is based on the shortest time between events, given the nearly three-2 

times increase over the average rates for Monday mornings, but also on the time it takes to serve a patient 3 
and reposition a drone. The calculated number of drones is, therefore the minimum required during peak 4 
demand and above the minimum for all other days-of-the-week and times-of-day. Two options are 5 
considered: in-drone battery recharging and battery swapping. For this study, we assume that a high-6 
performance multi-copter MD4-3000 drone is utilized. Drone specifications are given in Table 1 [16]. 7 

The optimal range is assumed to be 50 km (31 mi), which assumes ideal weather conditions and a 8 
cruise speed of 20 m/s (44.7 mph). With a 1.1 kg (2.4 lb) payload, the flight time will be approximately 42 9 
minutes. The battery capacity of drones used in this study has a 21,000mAh [17]. The LiPo battery has a 10 
recommended recharge rate of 2A at greater than 90% charge efficiency [18]. Therefore, the charge time 11 
following a complete drain of the battery for one of these drones is between 10 hours 30 minutes and 11 12 
hours 40 minutes. However, batteries will not experience a full drain each time they are used, and there will 13 
be additional variability in the charge times based on distance traveled.  14 

 15 

Table 1 MD4-3000 drone characteristics 16 

Specification MD4-3000 
Take off / Gross weight 𝑚 11.1 kg (24.5 lb) 
Tare / Curb Weight 𝑚, 10.0 kg (22.1 lb) 
Payload 𝑚- 1.1 kg (2.4 lb) 
Empty weight factor 𝑐. 0.90 
Battery/Fuel Storage Capacity* 777 wh 
Loaded Flight Time (𝑚- = 1.1 kg) 42 minutes 
Range (𝑚- = 1.1 kg) 50 km (31 mi) 

 17 

Given the random distribution of OHCA events and the combination of service and charge time of 18 
batteries, M/M/c queuing theory may be employed to determine the number of needed drones. For service 19 
times, it is assumed that a drone must stay with a patient until paramedics arrive (an average of 8 minutes) 20 
[9], stabilize the patient (averaging 2 minutes), have the automatic defibrillator repackaged for the return 21 
trip (averaging 5 minutes), and return to base (averaging 5 minutes of flight and landing time). In addition 22 
to these 20 minutes of service times, drones are additionally unavailable to service new patients while their 23 
batteries are recharged (case 1) or swapped for a fully charged battery (case 2).  24 

In case 1, given an average of 10 minutes of active flight time to and from a patient and the available 25 
flight time of 42 minutes, the average recharge time will be about 2 hours 40 minutes. Adding the 20 26 
minutes of service time, the average usage time is 3 hours, which corresponds to an average of 8 possible 27 
services per day. Using an M/M/c queueing model, failure was defined as the probability that there will be 28 
one or more people in the queue (i.e., a person is waiting to be served due to drone unavailability). The rate 29 
of OHCA (𝜆#) used is the worst-case scenario (i.e., 8:00 AM – 9:00 AM on Mondays). Figure 2 shows 30 
failure probability (plotted logarithmically) for case 1, as a function of population and the number of 31 
available drones.  32 

In case 2, after 20 minutes of average service time, each drone is assumed unavailable for an 33 
additional 10 minutes (30 minutes total) to allow for the battery to be swapped with a fully charged battery. 34 
Figure 3 gives failure probabilities for case 2 given M/M/c queuing theory using the Monday morning rate. 35 
By swapping batteries, the number of possible services per day increases by a factor of 6, from 8 (in case 36 
1, battery recharging) to 48 (in case 2, battery swapping).  37 
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 1 
Figure 2 Case 1 (Battery Recharging): Probability of failure versus population and 2 
number of drones given the demand rate on Mondays between 8:00 AM – 9:00 AM 3 

 4 

 5 
Figure 3 Case 2 (Battery Swapping): Probability of failure versus population and 6 

number of drones given the demand rate on Mondays between 8:00 AM – 9:00 AM 7 

 8 

For 100,000 people on Monday mornings, a single drone would fail to provide service 10.9% of 9 
the time in case 1 versus just 1.8% of the time in case 2. Picking an acceptable failure rate for vital medical 10 
supplies of <0.1%, three drones are required in case 1, and two drones are required in case 2. For 300,000 11 
people and a <0.01% failure rate, five and three drones are case 1 and 2, respectively. This difference 12 
corresponds to notable cost savings; each drone can cost between $50,000 – $100,000 [19], but batteries 13 
cost between $300 – $600 [18]. For 300,000 people and a failure rate of <0.01%, consider a theoretical 14 
requirement of one extra drone in both cases; and one or ten spare batteries per drone in cases 1 and 2, 15 
respectively. Equipment costs are 30% less in case 2 than in case 1. Lastly, other extreme conditions, such 16 
as those caused by wildfires, are also a potential issue, but outside the scope of the paper given the lack of 17 
detailed long-term wildfire data, the unique complexity of this topic, and the unusual set of operating 18 
constraints. A further potential issue is maintenance time and mechanical reliability of drones, but this topic 19 
is also outside of the scope of the paper due to the lack of drone reliability data. 20 

 21 
 22 

WEATHER MODELING 23 
 24 

Modeling Temperature Data and Distributions 25 
Historical temperature data for a region typically gives a mean, high, and low temperature for each 26 

daily record. Figure 4 shows a histogram of January and July daily high temperatures from historical tables 27 
from Portland, OR. Given the shape of the temperature histograms, each month’s high and low temperatures 28 
are assumed to follow a normal distribution. Therefore, historical data provides the ability to calculate 29 
means for high and low temperatures and their respective standard deviations for simulation. However, on 30 
a given day, high and low temperatures are highly correlated, and this must be considered for simulations.  31 
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 1 
Figure 4 Histogram, density, and normal approximation of historical high 2 

temperatures for January and July 3 

 4 

To generate a pair of correlated random normal variables, 𝑦/ and 𝑦", with known means, 𝜇/ and 5 
𝜇", variances, 𝜎/" and 𝜎"", and correlation, 𝜌, the following may be used [20]: 6 

𝑥/ =	𝒩(0,1)

𝑥" =	𝒩(0,1)

𝑦/ =	𝜇/ + 𝑥/𝜎/
𝑦" =	𝜇" + 𝜎"(𝑥/𝜌 + 𝑥"H1 − 𝜌")

  7 

𝑦/ and 𝑦" are the simulated low and high temperatures for a given day and will have the desired 8 
means, variances, and correlations. However, it is still possible for the high and low temperature to be 9 
reversed (i.e. 𝑦/ > 𝑦"). Simply swapping the values, such that all smaller values of the pair are in one list 10 
and larger values are in the other, will increase the correlation. Through simulation, this increase in 11 
correlation can be measured, and the ratio of the simulated correlation (𝜌0) and actual correlation (𝜌) maybe 12 
used to correct for the artificial increase.   13 

𝜌1 = 2
)$%$ *

= 𝜌 02
2%
1 = 2!

2%
  14 

Using 𝜌′ in place of 𝜌 and swapping paired values, as described above, results in a paired list of 15 
high and low temperatures with correlation 𝜌. Monthly trends from Portland’s historical data are shown in 16 
Table 2, with both the observed correlation from the data (𝜌) and corrected correlation (𝜌1) used for 17 
simulation. Unfortunately, these calculated means would be low if used for future predictions. Within the 18 
data set used in this analysis, there is a statistically significant positive slope for average high and average 19 
low temperatures of 0.01591 and 0.0228, respectively. For standard deviations, the slopes are statistically 20 
insignificant. Equations for the increase in mean highs and lows, compared to the aggregated historical 21 
averages, are given below, where 𝑦 is the current year.  22 

Δ,&' = 0.0228𝑦 − 45.1480 Δ,() = 0.0159𝑦 − 31.4535  23 

  24 
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Table 2 Historical monthly high and low temperatures (°C) and correlation factors 1 

Month High Temperature Low Temperature Correlation 
Mean Std. Dev. Mean Std. Dev. Observed Corrected 

January 7.41 4.04 1.19 4.12 0.788 0.782 
February 10.34 3.61 2.31 3.52 0.534 0.523 
March 13.08 3.76 3.70 2.98 0.243 0.225 
April 16.09 4.36 5.64 2.77 0.285 0.271 
May 19.80 4.99 8.76 2.70 0.390 0.377 
June 22.82 4.82 11.68 2.31 0.418 0.409 
July 26.70 4.64 13.84 2.11 0.422 0.420 
August 26.69 4.53 13.95 2.21 0.286 0.282 
September 23.92 4.79 11.26 2.82 0.169 0.158 
October 17.61 4.10 7.59 3.23 0.286 0.269 
November 11.40 3.50 4.25 3.84 0.639 0.629 
December 7.80 3.65 1.90 3.77 0.775 0.769 

 2 

The probabilities that the average daily and 8:00 AM temperatures are less than 0°C is important 3 
to the calculations of precipitation; as such, the increases are also important for future predictions. For any 4 
normally distributed variable, 𝑋, multiplied by a constant, 𝑐, the resulting distribution 𝑐𝑋 is also normal 5 
with mean, 𝑐𝜇, and variance, 𝑐"𝜎" [21]. 6 

𝑋 ∼ 𝒩(𝜇, 𝜎") 𝑐𝑋 ∼ 𝒩(𝑐𝜇, 𝑐"𝜎")  7 

In addition, the sum of any two normally distributed variables, 𝑋 and 𝑌, with means, 𝜇/ and 𝜇", 8 
variances, 𝜎/" and 𝜎"", and correlation, 𝜌, will also be normal [22].  9 

𝑋 + 𝑌 ∼ 𝒩(𝜇/ + 𝜇", 𝜎/" + 𝜎"" + 2𝜌𝜎/𝜎")  10 

For average daily temperature, the distribution of average temperature may be found by averaging 11 
the distributions of high and low temperatures. Given means, 𝜇/ and 𝜇", variances, 𝜎/" and 𝜎"", and 12 
correlation, 𝜌, the distribution of the average daily temperature will be: 13 

𝒩R&*
"
+ &!

"
, '*

!

"!
+ '!!

"!
+ 2𝜌 0'*

"
1 0'!

"
1S = 𝒩 0&*3&!

"
, '*

!3'!!

"!
+ 2'*'!

"
1   14 

The probability that the average daily temperature is less than 0°C may be directly calculated for 15 
this normal distribution. This section presents the general statistical framework to analyze temperatures. In 16 
the specific application and case study, at 8:00 AM (worst case scenario), the probability is based only on 17 
the distribution of low temperatures.  18 

 19 
 20 

Modeling Precipitation (Rain and Snow) Data and Distributions 21 
Many regions have systems to measure rainfall. Often, the amount of rain per day and the amount 22 

of snow per day are included. For precipitation generally in the US, 13 inches (33 cm) of snow equals one 23 
inch of precipitation. This conversion allows for total precipitation per day to be calculated. The same data 24 
weather data set for Portland, OR, provided historical rain and snow measurements, which were combined.  25 
Table 3 shows the estimates for the mean and variance of precipitation on days with rainfall, and the 26 
calculated percent of days without rainfall for each month. 27 

 28 
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Table 3 Probability of zero rain on a given day, and daily means and variances of 1 
precipitation for each month.  2 

 
Probability of  

Zero Precip. on 
a Given Day 

Daily Precip. Rate 
[Rate > 𝟎 mm] 

Month Mean Variance 
January 32.6% 7.7 77.1 
February 36.6% 6.4 59.2 
March 35.3% 5.6 35.5 
April 42.0% 4.2 21.7 
May 54.0% 4.7 30.1 
June 64.6% 4.4 28.8 
July 86.6% 3.7 22.8 
August 83.8% 4.6 34.7 
September 72.8% 5.6 55.9 
October 52.7% 6.5 61.6 
November 32.7% 7.7 83.2 
December 31.4% 8.0 81.9 

 3 

As with temperature, precipitation may be aggregated by month to account for monthly variation 4 
and sub-divided into two distributions: Bernoulli probability of precipitation versus no precipitation, and a 5 
Gamma distribution for the quantity of rain, given some rainfall [23]. Given the daily average, 𝜇, and daily 6 
variation, 𝜎", of rainfall, the gamma parameters, 𝛼 and 𝛽 may be calculated directly.  7 

𝛼 = &!

'!
𝛽 = &

'!
  8 

A scalar constant applied to a Gamma distribution is still Gamma [24]. For an hourly distribution, 9 
𝛼 would remain the same, but the rate parameter, 𝛽, would be multiplied by 24. To separate precipitation 10 
into rainfall and snow, the current temperature is needed. The correlated pair of high and low temperatures 11 
for the study period are used in combination with the mean correction factor.  12 

For example, there is a 9.2% probability that the average daily temperature in January 2020 will be 13 
less than 0°C and a 32.6% probability of no rain. As such, the probability of snow is 6.2%, which 14 
corresponds to an average of 1.9 snowy days in January. However, during 8:00 AM, there is a 30.5% 15 
probability temperatures are below 0°C in 2020. Given the same probability of some rain, there is a 20.6% 16 
probability of snow during that hour, which corresponds to 6.4 mornings with some snow.  17 

 18 
 19 

Modeling Wind Data and Distributions 20 
A key factor that influences aviation performance is wind, and drones are highly susceptible due to 21 

their limited power and weight. The distribution of wind speeds may be modeled using a variety of known 22 
probability distributions with the Weibull ranking among the best [25]; however, many models have been 23 
shown to be adequate. The creation of wind models is dependent on both the amount of historical data and 24 
the temporal granularity. For example, the inclusion of only a daily mean will not be enough to define most 25 
parametric models. A generalized understanding of wind effects does not require the accuracy of many 26 
climate models. As such, the choice of a probability distribution should be based on what can provide a 27 
reasonable approximation based on available data [26].   28 

There are long time series for Portland wind data, including historical average speeds, maximum 29 
gusts, percent calm, and direction. Gradient descent optimization was employed to find distribution 30 
parameters that provided reasonable approximations of historical trends. In Portland, different times of the 31 
year have different distributions of wind, which will directly influence failure odds. The distribution of 32 
wind speeds over a year is given in Figure 5. 33 
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 1 
Figure 5 Simulated mean and confidence interval of wind speed in Portland, OR 2 

 3 

Wind direction is also important. In Portland, winds mostly blow in the ESE direction during the 4 
winter months and the NW direction during the summer months (see Figure 6). This factor is important for 5 
determining a drone’s range at different times of the year. In January, areas to the NW of a depot will be 6 
restricted by a headwind, while the opposite is true in July. 7 

 8 

    9 

    10 

    11 
 Figure 6 Probability of wind direction for each month in Portland, OR 12 
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RANGE RELIABILITY MODELING 1 
The range of a drone is determined by its weight, flying efficiency, and battery capacity. For 2 

applications with a central hub, this range is half of the distance a drone can travel, as a return trip must be 3 
accommodated. The following gives the energy necessary for level flight [16]: 4 

 𝑝-(𝑡) =
(.+3	.,3	.&	)7

8(0)9-
	𝑑 [unitless < 1] (1) 5 

where: 6 
𝑝- =	power	required	for	level	flight	[watts],
𝑡 =	travel	time	[seconds] = (𝑑 𝑠⁄ ),

𝑚: =	drone	battery	mass	[kg],
𝑚- =	drone	load	(defibrillator)	mass	[kg],
𝑚, =	drone	mass	tare	(i. e. without	battery	and	load)	[kg]
𝑑 =	travel	distance	[m],

𝜗(𝑠) =	lift ∶ to ∶ drag	ratio, or	(𝐿 𝐷⁄ )	[unitless],
𝑠 =	travel	speed	[m], and
𝜂; =	total	drone	power	transfer	efficiency.

,  7 

From (1) it is possible to observe that energy consumption is directly proportional to drone mass 8 
and travel time and distance. The range estimations of this research consider the defibrillator 1.1 kg (2.4 9 
lb) payload. 10 

 11 
 12 

Modeling the Impact of Temperature 13 
Temperature can have a significant impact on drone performance because drone lithium-ion 14 

batteries show optimal performance at approximately 20°C (68°F) but perform significantly worse at lower 15 
temperatures (see Figure 7). For lithium batteries, the output voltage is dependent on its operating 16 
temperature [27]. In this study, battery available energy or capacity is assumed to decrease following a 17 
parabolic curve. The maximum (100%) will be at 20°C (68°F) and the minimum (50%) at -20°C (-4°F). At 18 
higher temperatures, the capacity decreases linearly from 100% to 95% from 20°C (68°F) to 55°C (131°F). 19 
Battery makers recommend no operation outside this temperature range [18]. 20 

 21 

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = x
−0.0003125𝑡" + 0.0125𝑡 + 0.875 −20 < 𝑡 < 20

1 − .05 0 ,<"=
>><"=

1 			20 ≤ 𝑡 < 55
0 			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  22 

 23 
Figure 7 Battery capacity versus temperature and equations 24 

 25 
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In addition, battery capacity degrades linearly with the number of cycles up to a point. Often, the 1 
degradation accelerates when a battery reaches 80% of optimal capacity. At this point, the battery is 2 
considered unreliable and no longer used. Prior to this point, the battery will have above 80% optimal 3 
capacity, but the exact amount will be unknown for any specific trip. As such, a random uniform distribution 4 
from 0.8 to 1.0 may be used in association with temperature for simulation to define the initial condition of 5 
the battery with an assumption that faulty or unreliable batteries will not be used. 6 

OHCA events are more frequent during the 8:00 AM hour, which is typically the coldest hour of 7 
the day. As such, only the distribution of low temperatures is needed in this study. Figure 8 shows the means 8 
and confidence intervals for daily high and low temperatures.  9 

 10 

 11 
Figure 8 Means and confidence intervals for high and low temperatures by month 12 

 13 

Figure 9 shows the probability of failure as a function of the total distance traveled, assuming an 14 
ideal 42-minute flight time. The left and right edges of the shaded regions are defined using distributions 15 
of the low and high temperatures, respectively. The purple area is based on the yearly average highs and 16 
lows, while the blue region represents the worst-case (i.e., coldest) temperatures in January. The potential 17 
range of a drone will be half of the total available flight distance, as return trips must be accommodated. 18 
The probability of failure is the percent of simulated trips that failed to reach a given range.  19 

 20 

 21 
Figure 9 Probability of failure due to temperature and available battery charge 22 

versus flight distance 23 

 24 

Winter will have worst-case flight ranges as compared to the yearly averages. Yet, the range in the 25 
worst case is still larger than the maximum allowable due to time constraints for urgent medical deliveries. 26 
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Even allowing for 14.5 minutes of flight time, the average ambulance arrival time in rural areas, more than 1 
95% of drones will have enough battery for the 35 km (22 mi) trip, 17.5 km (11 mi) in each direction. 2 

In addition, the available range corresponds to a large service area. The 3-minute delivery area 3 
covers 40 km2 (15.7 mi2), while 7 minutes (the urban ambulance average response time) allow for an area 4 
of 222 km2 (86 mi2). This is functionally the size of many cities. Based on Portland weather conditions, 5 
large cities would require just a few drone hubs for full coverage.  6 

 7 
 8 

Modeling the Impact of Precipitation  9 
Many modern drones advertise some resistance to rain. As such, not all precipitations events would 10 

be considered failures. Considering rain alone (i.e., no snow), defining a specific cutoff for the permitted 11 
amount of rain would result in different failure odds. Figure 10 shows probability failure (plotted 12 
logarithmically) as a function of the maximum allowable precipitation rate. As an example, if drones are 13 
not sent during heavy rain, then drones will be unavailable (a failure condition) 4% of the time in January 14 
and <0.1% of the time in July. 15 

 16 

 17 
Figure 10 Probability of failure as a function of rainfall rate cutoff  18 

 19 

Most drone manufacturers recommend not to fly drones during snowfalls. As such, all snowy 20 
weather would cause a failure condition. However, if the amount of snow is considered such that some 21 
snowfall is acceptable, the failure rates are also dependent on the precipitation cutoff (see Figure 11).  22 

 23 

 24 
 Figure 11 Probability of failure as a function of snowfall rate cutoff. 25 

 26 

The cutoff points for snow and rain do not need to be equal. For example, if drones are permitted 27 
to fly in snow up to 10mm/day (light snow) and rain up to 25mm/day (light and moderate rain), then drones 28 
in January will be unavailable about 2% of the time due to snow and about 4% of the time due to rain.  29 
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Modeling the Impact of Wind 1 
For winds, the worst case is a headwind where the flight path is directly against the wind’s direction 2 

of travel. In the best case, the drone has an increased speed due to a tailwind. Given a wind bearing, its 3 
speed, and a drone’s flight speed, an angle-side-side triangle is formed (Figure 12). This arrangement 4 
requires an algorithm to solve as there may be 0, 1, or 2 possible answers. The following algorithm may be 5 
used to solve for the fastest feasible flight path, if possible. It combines the law of cosines and solves for 6 
the unknown using the quadratic formula. 𝑠? is wind speed, 𝑠@ is drone speed, and 𝑟? is the angle between 7 
wind bearing and destination bearing. 8 

 9 

 10 
Figure 12 Setup and notation to solve an angle-side-side triangle.  11 

 12 

Beginning with the law of cosines, where side 𝐴, side 𝐵, and angle 𝛽 are known, but 𝐶 is unknown. 13 
Solve for 0, then put in the quadratic form with 𝐶 as the unknown.  14 

𝐵"	=	𝐴" + 𝐶" − 2𝐴𝐶 cos(𝛽)

0	=	𝐴" + 𝐶" − 2𝐴𝐶 cos(𝛽) − 𝐵"

											=	(1)𝐶" + (−2𝐴 cos(𝛽))𝐶 + (𝐴" − 𝐵")

   15 

Solve for 𝐶 using the quadratic formula and simplify. 16 

𝐶	=	<(<"A BCD(%))±F(<"A BCD(%))
!<G(/)(A!<H!)

"(/)

		=	"A BCD(%)±"FA
! BCD!(%)<(A!<H!)
"

		=	𝐴 cos(𝛽) ± H𝐵" + 𝐴"(cos"(𝛽) − 1)

		=	𝐴 cos(𝛽) ± H𝐵" − 𝐴" sin"(𝛽)

   17 

Mathematically, there are potentially two solutions, 𝐶/ and 𝐶".  18 

𝐶/	=	𝐴 cos(𝛽) + H𝐵" − 𝐴" sin"(𝛽)

						𝐶"	=	𝐴 cos(𝛽) − H𝐵" − 𝐴" sin"(𝛽)
   19 

However, in the context of flight speed triangles, negative and imaginary solutions are not 20 
applicable, and the fastest speed is preferred. Given that 𝐶/ ≥ 𝐶" for real solutions, 𝐶/ is used, given that 21 
the quantity under the square root is greater than 0.	22 

As an example, assume a drone speed of 20mps, wind speed of 30mps, and a wind direction 30° 23 
away from the travel direction, both triangles in Figure 13 are valid solutions where the drone flies at a 24 
20mps and is able to reach the destination. The key factor is the effective travel speeds and initial flight 25 
bearings. A drone using the initial travel bearing from the second triangle would reach its destination three 26 
times faster than a drone using the initial bearing from the first. 27 
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 1 
  Figure 13 Two valid solutions to an angle-side-side triangle problem 2 

 3 

For headwind and tailwind simulations, flight times are held constant for arbitrarily selected two-4 
minute and ten-minute cases. For each trial, distance traveled within the time-limit is recorded. The 5 
probability of delivery failures due to wind was calculated based on the percent of trips that fail to reach a 6 
given distance within the allowable time. The shaded regions of Figure 14 and Figure 15 show a range of 7 
failure probabilities between a simulated headwind versus simulated tailwind and the result using a random 8 
bearing as the central line. As the flight time increases, the probability of failure also increases. In Figure 9 
15, the y-axis of Figure 14 is transformed from linear to logarithmic. 10 

At a 20% acceptable fail rate for 2-minute deliveries, the worst case for the range has decreased 11 
from 2.4 km (1.5 mi) to about 2 km (1.2 mi); a reduction of 16%. At a 5% acceptable failure rate, the range 12 
is further reduced to about 1.3 km (0.8 mi). While the theoretical range of drones is large (see Figure 9), 13 
the practical range for timely deliveries is a limiting factor. In Figure 15, the y-axis of Figure 14 is 14 
transformed from linear to logarithmic. 15 

 16 

 17 
Figure 14 Probability of failure versus radius due to wind with linear y-axis 18 

 19 

 20 
Figure 15 Probability of failure versus radius due to wind with logarithmic y-axis 21 
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Figure 15 shows that the average potential failure from wind is above 0.1% for a 2 minute or a 10-1 
minute trip. Wind plays a key role in determining acceptable failure rates and for determining a potential 2 
range for drone deliveries. Notably, having multiple hubs will reduce failure rates from the wind as different 3 
hubs may be employed depending on wind direction. Headwinds and potential failure from one direction 4 
may be tailwinds and success from another. 5 

 6 
 7 

CONCLUSIONS  8 
For the delivery of time-sensitive supplies, drones may provide the means to bypass many obstacles 9 

experienced by ground transportation. However, drones are subject to their own set of constraints that limit 10 
the likelihood of successful deliveries. While packages from an online retailer can be delayed by hours 11 
without substantial ill effect, even short delays, in the context of medical supplies, can be fatal. This research 12 
utilized real-world data to examine the impact of stochastic demand and weather conditions on drone 13 
delivery reliability.  14 

 The number of drones needed is highly dependent on charge times, use of battery swapping, and 15 
population in the service area. The specific application of drones to deliver defibrillators must consider that 16 
the average OHCA demand rate increases 2.91 times Monday morning. This worst-case scenario and 17 
economic considerations should be used to define the required equipment for a service area. Additional 18 
consideration should also be given to potential mechanical failures and maintenance schedules. Given the 19 
equipment costs, one potential solution is a requirement for one extra drone over the calculated minimum, 20 
extra batteries, and equipment to check battery health. Lastly, it is important to note that failure due to 21 
extreme weather conditions cannot be addressed by simply having more available drones. Extreme weather 22 
conditions, which will result in a failed delivery for one drone, will result in a failed delivery for any other 23 
drone because drones cannot operate under extreme weather conditions. Summarizing, proper fleet sizing 24 
can address variability in demand as well as variability in weather conditions but will not eliminate delivery 25 
failures due to extreme weather conditions when drones cannot operate.   26 

In this case study, the wind is a key factor; even the average winds of Portland in January will cause 27 
failures, defined by travel time constraints, more than 1% of the time. The direction of winds also changes 28 
depending on the time of year. The placement of drone hubs should consider ranges defined both by 29 
temporal constraints given by OHCA events survival rates as well as probabilistic failure odds caused by 30 
winds. Studies that examine multiple hubs could also consider potential failure rates and repositioning 31 
strategies considering the seasonality of weather conditions.  32 

The temperature in Portland is not as crucial as wind to have reliable drone deliveries. The large 33 
potential delivery range of high-quality drones combined with strict delivery time limits reduces the 34 
negative effects of temperature and charge cycles. Hence, temperature, as it relates to battery function, may 35 
be ignored for these types of deliveries since the potential for failure remains low. For example, a 14 km 36 
(8.7 mi) trip (28 km or 17.4 mi both ways) would have less than 0.001% failure odds due to temperature 37 
and charge decay in the worst case. While extreme temperatures have limited negative effects on batteries, 38 
wildfires, a cause of such extreme conditions, may potentially limit drone operations due to difficult 39 
operating conditions and “no-fly orders” issued by federal, state, and local wildland fire management 40 
agencies and the FAA [28]. Wildfires are an important issue, but outside of the scope of this paper due to 41 
the lack of detailed historical data required to model and predict wildfire intensity, winds, location, etc. 42 
These issues are compounded by a dynamic problem due to greenhouse gas emissions and their effect on 43 
wildfire characteristics and seasonality.  44 

Precipitation failures are highly dependent on the level of precipitation considered too high to send 45 
a drone. The rate of failures, defined by the probability of not sending a drone, changes throughout the year 46 
and by the time of day. If a drone is rated for higher water resistance, the failure rate will be lower. 47 
Furthermore, temperature also is important as it relates to precipitation, as snow has larger adverse effects 48 
on drone operations as compared to rain.  49 

This paper examined several of the mechanical and meteorological impacts on drone deliveries to 50 
examine which factors are most important and to define limits. Results indicate that successful drone 51 
deliveries of AEDs are highly influenced by wind speeds, wind direction, and precipitation rates; however, 52 
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the ambient temperature may mostly be ignored for short and strict delivery times limits. Additionally, 1 
battery swapping may be highly effective at reducing equipment requirements given worst-case demand.  2 

Given adequate historical data about weather and demand, drone delivery operators should be able 3 
to plan efficiently to meet peak demand periods without unacceptable failure rates or excessive costs. Winds 4 
will remain an obstacle in some parts of the year unless drone speeds can be improved. While drones may 5 
provide fast delivery times for the vast majority of cases, some failures will be difficult to avoid. Ideally, 6 
service areas should remain small enough that travel times are not limited by distance, and overlap of service 7 
hubs will provide alternative delivery routes when wind direction is not ideal.  8 

Future research could also examine the likelihood that the delivery of automatic defibrillators will 9 
be able to be operated, given that only one-third of OHCA are witnessed by another person. This paper 10 
assumes 100% reporting for OHCA events; as such, the rate, 𝜇#, represents a highest-demand condition, 11 
and the time between events will likely be longer than estimated, as not all will be reported. In the event 12 
that someone is able to call emergency services, drone deliveries may be valid but cannot be employed 13 
when another person is not present for operations. 14 

Furthermore, there is an access and equity question associated with a drone’s ability to deliver to 15 
some areas. For example, airports are often restricted flight zones that allow for no drone operations. Such 16 
areas are also areas with higher proportions of lower-income communities. Future research could examine 17 
where a delivery system could be employed and what ground delivery systems are required locally to adjust 18 
for access differences. In addition, future research efforts should analyze how COVID-19 and subsequent 19 
lockdowns have greatly increased opportunities to deploy fleets of drones for time-sensitive deliveries.  20 
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