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Abstract: Due to elevated runoff stormwater temperatures from impervious areas, one management
strategy to reduce stormwater temperature is the use of underground flow through rock media
termed a cooling trench. This paper examines the governing equations for the liquid phase and media
phases for modeling the temperature leaving a cooling trench assuming that changes in temperature
occurred longitudinally through the cooling trench. This model is dependent on parameters such as
the media type, porosity, media initial temperature, inflow rate, and inflow temperature. Several
approaches were explored mathematically for evaluating the change in temperature of the water and
the cooling trench media. Typical soil–water heat transfer coefficients were summarized. Examples
of predictions of outflow temperatures were shown for different modeling assumptions, such as well-
mixed conditions, batch mixing and subsequent release, and steady-state and dynamic conditions.
Several of these examples evaluated how long rock media would cool following a stormwater event
and how the cooling trench would respond to multiple stormwater events.

Keywords: stormwater; stormwater temperature; temperature modeling; cooling trench; rock crib;
stormwater cooling

1. Introduction

One of the problems of stormwater runoff from impervious surfaces is the heat
absorbed in the stormwater and its effect on receiving water streams [1]. Excessive heat
loads from stormwater runoff into natural water bodies impact fish and aquatic organism
survivability [2,3]. Particularly sensitive are urban areas with their large impervious areas
creating elevated stormwater temperatures after a runoff event. Impervious areas absorb
heat and then transfer it to stormwater during runoff events [4]. Gulliver et al. [5] showed
that the largest runoff temperatures occur for smaller storm events or at the beginning
of larger storm events and that this runoff temperature is affected by (1) the rainwater
temperature and (2) the heating and cooling processes between the runoff and the land
surface.

To reduce the impact of this elevated temperature on receiving streams, DiGennaro [6]
studied temperature-related stormwater Best Management Practices (BMPs) and showed
that infiltration of stormwater was more advantageous than surface stormwater BMPs
such as ponds. This occurred since infiltration into the subsurface eliminated surface
heat transfer and took advantage of the cooling with the underground substrate. Some
have termed these infiltration BMPs cooling trenches or rock cribs. Hathaway et al. [7]
showed that subsurface drainage infrastructure in urban areas tended to moderate elevated
stormwater runoff temperatures.

Sabouri [8] evaluated data from cooling trenches or rock cribs ranging in size from
50 to 100 m. Sabouri found that the cooling trench effectiveness was very dependent on
the initial media or rock temperature and the temperature of the stormwater and that
increasing the length of the cooling trench also led to improved cooling.

Roseen et al. [3] reviewed temperature field data from stormwater infiltration systems
and showed that these systems can reduce runoff temperatures by thermal exchange with

Water 2021, 13, 373. https://doi.org/10.3390/w13030373 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-8711-1018
https://doi.org/10.3390/w13030373
https://doi.org/10.3390/w13030373
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13030373
https://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/13/3/373?type=check_update&version=1


Water 2021, 13, 373 2 of 18

subsurface media in contrast to surface systems for treating stormwater that can continue
to elevate runoff temperatures.

Thompson et al. [9] modeled the effect of a rock crib on stormwater runoff temper-
atures. They also evaluated the cooling effectiveness of a rock crib in laboratory studies.
They assumed in their modeling approach that the influent water was immediately mixed
with the water in the crib and that heat conduction occurred between the water and rock.
They mixed a fraction of new incoming water with the exiting water in the crib to account
for the temporal variation of water temperature inside the crib. This modeling approach
did not consider any longitudinal variation in temperature of the water nor of the rock.

The objective of this paper is to develop a mathematical model for heat transfer in
a cooling trench accounting for longitudinal variation of the temperature of the water
and cooling trench media or rock. Several different solutions and examples are shown
illustrating the use of the mathematical solutions.

2. Model Assumptions

For a conceptual model shown in Figure 1, the cooling trench is a porous matrix
composed of rock or other media and stormwater. The major processes for heat transfer
shown in Figure 2 are rock–water conduction, advective transport of heat in water, and
diffusive transport of heat in water and sediment. The governing mathematical equations
for the liquid and solid phases are based on the following assumptions:

• There is heat flux between the media and water and between the media and the
surrounding soil as shown in Figure 2. All heat loss/gain for the fluid is through
contact with a solid phase, such as rocks, there are no other sources/sinks such as
groundwater inflow or outflow or radiation;

• There is no vertical or lateral variation in water temperature or solid temperature;
• There is no temporal or longitudinal variation of water diffusivity coefficient (E);
• There is no temporal of spatial variation of the solid–solid heat diffusivity coefficient

(D).
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Figure 2. Temperature conceptual model.

The liquid phase and solid phase governing equations can then be described as
follows:

Liquid Phase
∂T
∂t

= E
∂2T
∂x2 +

Asurfacek(Ts − T)
ρcpVδ

− u
∂T
∂x

(1)

subject to an initial condition and boundary conditions:
Initial condition
T = To(x)
Boundary conditions
x = 0, T = Tin(t)

E
∂T
∂x

∣∣∣∣
x=L

= 0

x = L,
Rock Phase

∂Ts
∂t = k

ρscps
∂2Ts
∂x2 − kAsurface(Ts−T)

ρscpsVsδ

− kAcontact
ρscpsVs

(Ts−Toutside)
δs−o

(2)

subject to an initial condition and boundary conditions:
Initial condition
Ts = Tso(x,z)
Boundary conditions
∂Ts
∂x

∣∣∣
x=0

= 0
∂Ts
∂x

∣∣∣
x=L

= 0

where T: water temperature (◦C);
Ts: rock or sediment temperature (◦C);
To: initial temperature of water in cooling trench (◦C);
Tso: initial temperature of rock in cooling trench (◦C);
Tin: inflow temperature of stormwater (◦C);
Toutside: temperature of surrounding soil outside the cooling trench in contact with the
substrate rock (◦C);
E: longitudinal dispersion coefficient for heat (m2 s−1);
L: length of cooling trench (m);
Asurface: surface area of contact between stormwater and rock (m2);
Acontact: surface area of contact between rock and surrounding soil matrix (m2);
k: thermal conductivity of the rock (Joule m−1s−1 ◦C−1);
δ: length scale for thermal gradient in rock controlling the heat diffusion process (m);
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δs−o: controlling length scale for thermal gradient in rock to the surrounding soil matrix
(outside) (m);
ρ: density of stormwater (kg m−3);
ρs: rock density (kg m−3);
cp: specific heat of water at constant pressure, 4182 J/(kg ◦C). (Joule kg−1 ◦C−1);
cps: specific heat of rock at constant pressure (Joule kg−1 ◦C−1);
V: volume of voids or liquid = Vtotalε (m3);
Vtotal: total volume of trench (m3);
Vs: volume of rocks or sediment = Vtotal(1-ε) (m3);
ε: porosity (-);
u: velocity of stormwater through trench = Q/(Aε) (m s−1);
Q: flow rate (m3 s−1);
A: cross-sectional area of trench (m2);
D: Thermal diffusivity of rock = k/(ρs cps) (m2 s−1).

The following additional assumptions were made to facilitate solution of the governing
equations:

The contact area of the rocks and the water, Asurface, was computed by assuming an
average spherical diameter of the rocks, drock, such that

Asurface =
Vtotal(1 − ε)(

4
3π

d3
rock
8

) πd2
rock

This area was reduced by a factor, f, because the water is not in contact with 100% of
the surface area of the rock.

The contact area between the rocks and surrounding soil was computed as the surface
area of the trench multiplied by the porosity, such as

Acontact = (2LW + 2LH)ε

where L, W, and H are the length, width and depth of the trench, respectively.
The length scale for thermal conductivity in the rock, δ, and the length scale for

thermal gradient in rock to the surrounding soil matrix (outside), δs−o, was approximated
by half the diameter of the rock media.

These equations were solved for T and Ts as a function of t and x given constant inflow
conditions.

The physical properties of the rock or sediment are an important consideration in
modeling the thermal transfer between the water and sediment. There have been many
studies performed on heat transfer between sediment and water in streams. A summary of
several of these studies and their parameter values are shown in Table 1 using the original
units of each study.
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Table 1. Model parameters for sediment heating.

Reference Thermal Diffusivity of
Sediment, D: D = k

ρscps

Bed Thermal Conductivity, k ρscps for Sediment cps for Sediment Description

Fang and Stefan [10] 0.035 m2/d 2.3 × 106 J/m3/◦C
Lake sediment study,

determined by calibration

Fang and Stefan [10] 0.01–0.11 m2/d 1.4 × 106–3.8 × 106 J/m3/◦C
Literature reported range and is a
function of sediment composition

Silliman et al. [11] 0.0046 cm2/s 0.0023 cal/cm/s/◦C 0.5 cal/cm3/◦C
Taken from Carslaw and

Jaeger [12]

Jobson [13]
0.01 cm2/s (range of 0.006 to

0.2 cm2/s not found to be
sensitive to model results)

0.55 cal/cm3/◦C
Concrete lined channel, study

length 16 miles

Jobson [13] 0.0077 cm2/s 0.68 cal/cm3/◦C Sand bed study length 17 miles

Chen et al. [14] 1.18 × 10-6 m2/s or 0.0118
cm2/s 1.491 × 106 J/m3/◦C

Homogeneous rock, study length
9.3 miles

Kim and Chapra [15] 3 × 10-7 m2/s 795.2 J/kg/◦C

Sand–dry, density of dry sand was
1750 kg/m3, study length 8.5 miles,

penetration depth of heat was
about 0.25 m for the diurnal case

Kim and Chapra [15] 9 × 10-7 m2/s 799.8 J/kg/◦C Stone–dry, density of dry sand was
2500 kg/m3

Pluhowski [16] 0.00394 cal/cm/s/◦C Water saturated sands and gravel
mixtures, study length 0.94 miles
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3. Model Simplifications

Oftentimes, planners of stormwater BMPs are using screening tools to evaluate the
effectiveness of a treatment strategy. In that case, further simplifications to those made
in the development of Equations (1) and (2) can be used to evaluate how an alternative
may perform. Table 2 shows a series of simplifying assumptions and governing equations
that could be evaluated to assess the potential for a cooling trench to mitigate stormwater
temperatures.

Table 2. Governing equations for infiltration gallery based on given assumptions.

Governing Water
Temperature Equation

Governing Sediment
Temperature Equation Assumptions Equation

∂T
∂t =

E ∂2T
∂x2 +

Asur f acek(Ts−T)
ρcpVδ − u ∂T

∂x

∂Ts
∂t = − Asur f acek(Ts−T)

ρscpsVsδ

1. No heat transfer between the rock me-
dia longitudinally

2. Rock mass insulted from the surround-
ing soil matrix and hence no flux of heat
to the surrounding soil

(3)

∂T
∂t =

Asur f acek(Ts−T)
ρcpVδ − u ∂T

∂x

∂Ts
∂t =

− Asur f acek(Ts−T)
ρscpsVsδ +

Acontactk(Toutside−Ts)
ρscpsVsδs−o

1. No heat transfer between the rocks lon-
gitudinally

2. No diffusive or dispersive flux in the
water phase

3. Plug flow assumed for the stormwater

(4)

∂T
∂t =

Asur f acek(Ts−T)
ρcpVδ −Q(Tin−T)

V
∂Ts
∂t = − Asur f acek(Ts−T)

ρscpsVsδ

1. No heat transfer between the rocks lon-
gitudinally

2. No diffusive or dispersive flux in the
water phase, i.e., plug flow assumed for
the stormwater

3. No spatial gradients in sediment media
or stormwater, i.e., both rock and fluid
assumed to be well-mixed

4. Rock mass insulted from the surround-
ing soil matrix

(5)

∂T
∂t =

Asur f acek(Ts−T)
ρcpVδ

∂Ts
∂t = − Asur f acek(Ts−T)

ρscpsVsδ

1. Batch reactor with no inflow or outflow
2. Both water and solid phases well-mixed
3. Rock mass insulted from the surround-

ing soil matrix
(6)

∂T
∂t =

Asur f acek(Ts−T)
ρcpVδ − Q(Tin−T)

V
Steady-state solution:

T =
Q
V Tin+

Asur f ace k

ρcpVδ Ts

Q
V +

Asur f acek

ρcpVδ

Ts = constant

1. No spatial gradients in sediment or
stormwater – treated as well mixed ves-
sel with inflow and outflow

2. Rock temperature constant

There are both steady-state and time
dependent solutions for water temperature.

(7)

Tmix =
ρscps(1−ε)Ts+ρcp(ε)T

ρscps(1−ε)+ρcp(ε)
Tmix =

ρscps(1−ε)Ts+ρcp(ε)T
ρscps(1−ε)+ρcp(ε)

1. Complete mix of water and sediment
2. Steady-state heat balance
3. The rock mass insulted from the sur-

rounding soil matrix
(8)

∂T
∂t =

Asur f acek(Ts−T)
ρcpVδ − Q(Tin−T)

V

∂Ts
∂t = − Asur f acek(Ts−T)

ρscpsVsδ +

Asur f acek(Toutside−Ts)
ρscpsVsδs−o

1. No longitudinal heat transfer between
the rocks

2. Plug flow through the infiltration gallery
for the stormwater

3. No spatial gradients in stormwater nor
in the rock media, i.e., well-mixed

(9)
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4. Model Examples

To show how these model solutions can be used, a set of physical parameters were
chosen in Table 3 for use in model examples. All the model examples were solved using a
FORTRAN computer code even though they can be computed in a spreadsheet.

Table 3. Input parameters and constants for the cooling trench model.

Parameter Value Units

L, length of infiltration gallery 25 m

H, height or depth of infiltration gallery 4 m

W, width of infiltration gallery 2 m

ε, porosity 0.35 (-)

Vtotal, total volume of infiltration gallery 200 m3

Rock or solid media volume 130 m3

ρcp density times specific heat of fluid 1 cal/cm3/◦C

ρscps density times specific heat for solid media 0.4 cal/cm3/◦C

k, Thermal conductivity of rock 0.004 cal/s/cm/◦C

D, Thermal diffusivity, k/(ρscps), of rock 0.01 cm2/s

drock, Average diameter of stones 0.08 m

δ, B/L thickness (assume 50% of stone diameter) 0.04 m

δs-o, B/L thickness for stone to outside soil heat diffusion (assume 50% of stone diameter) 0.04 m

Asurface, Surface area - contact area 9750 m2

Acontact, Surface area - contact area for rock and surrounding soil 105 m2

f, Factor to decrease contact area between rocks and water 0.5 (-)

fAsurface, Actual surface area used in model 4875 m2

Inflow temperature of water coming into trench 30 ◦C

Initial temperature of stones 10 ◦C

Temperature of surrounding soil Toutside 10 ◦C

Initial temperature of water in trench 10 ◦C

E, dispersion coefficient for water 0.1 m2/s

4.1. Base Case Example

The temperature of the water and solid media as a function of time and longitu-
dinal distance through the domain can be computed using a finite difference form of
Equations (1) and (2). An example of this calculation using the parameters in Table 3 and
an inflow flow rate of 0.03 m3/s is shown in Figure 3 for water temperature and Figure 4
for media temperature. With a water detention time of about 30 min, there was significant
cooling over this period, but the cooling trench exit temperature warmed considerably
within two detention times. This implied that longer stormwater flush events did not
benefit from the underground cooling directly even though they would benefit from being
shielded from solar radiation if this were a daytime event.
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How long does it take to cool the infiltration trench media in contact with the outside
soil? Assuming the outside soil is not affected by the rock media heating up during a storm
water event (which is not conservative), Figure 5 shows the rock media temperature during
a storm event that lasts 60 min and then stops. The rock media gradually cooled to the
surrounding ground temperature very slowly approaching the soil temperature within
about 2 days after the stormwater event.
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storm event ends after 60 min using Equation (2).

4.2. Steady-State Mixing of Stormwater and Media in a Batch Operation

Using Equation (8) in Table 2, the mixed temperature of the rock and water can
be computed. This is comparable to infiltrating stormwater (at 30 ◦C) into rock media
(initially at 10 ◦C) and then letting them reach an equilibrium temperature. The resulting
temperature is shown in Figure 6 as a function of porosity. Note that this result is not a
function of the dimensions of the cooling trench and that the more media available (lower
porosity) the cooler mixed temperature of the water and solid.

4.3. Dynamic Mixing of Stormwater and Media in a Batch Operation

How quickly the water and rock media temperature change if the water and rock were
in a well-mixed (batch) reactor can be described by Equation (6) in Table 2. This equation
can show the ultimate capacity of the rock thermal mass to cool a specific volume of water.
Figure 7 shows a solution using the parameters values in Table 1 where after about 30 min
the rock and water have reached an equilibrium. With a volume of the water of about
70 m3 and a volume of rock of about 130 m3, the mixed temperature approached 21.5 ◦C
based on Equation (8).
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4.4. Dynamic Well-Mixed Stormwater and Media with Inflow and Outflow

Equation (5) in Table 2 was used to explore the impact of dynamic flow through the
cooling trench assuming the media and water were well-mixed. In this case a range of flow
rates were chosen. The flow rates and their detention times are shown in Table 4.

Table 4. Flow rates and detention times of infiltration gallery based on dimensions in Table 2.

Q, m3/s Detention Time, days Detention Time, min

0.03 2.1 × 10−2 30
0.52 1.3 × 10−3 1.8
2.72 2.4 × 10−4 0.3

At the start of the simulation, t = 0 days, the water in the trench was in equilibrium
with the rock, i.e., the water initial temperature was the temperature of the rock media.
Model predictions of exit temperatures for these flow rates are shown in Figure 8 assuming
a constant inflow flow rate and stormwater inflow temperature. These results show that
within about twice the detention time of the flow rate the effectiveness of the cooling trench
was reduced since exit temperatures significantly approach the inflow temperature. Hence,
design volume impacts cooling effectiveness and should be based on the storm event that
is being mitigated.
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4.5. Dynamic Inflow-Outflow Plug Flow with Spatially Variable Water Temperature

Using Equation (4) in Table 2 (except that the soil temperature was assumed equal to
the rock temperature, i.e., no impact of stormwater heating the surrounding soil matrix)
for a flow rate of 0.03 m3/s (about a 30 min detention time), the spatial and temporal
variation of temperature is shown in Figure 9. The change in temperature of the sediment
as a function of position for the same conditions is shown in Figure 10. For both the rock
matrix and water, longitudinal diffusion was assumed to be negligible.
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Figure 9. Variation of stormwater temperature as a function of position through a 25 m long cooling
trench with an inflow flow rate of 0.031 m3/s (Equation (4) in Table 2).

After the detention time of the inflow, the exit temperatures were still well-below
inflow temperatures. However, the cooling effectiveness of half of the cooling trench has
already been depleted.

Using Equation (4) in Table 2 for the case of a flow through the cooling trench of
0.52 m3/s (about a 2 min detention time), the spatial and temporal variation of temperature
is shown in Figure 11. The change in temperature of the sediment as a function of position
for the same conditions is shown in Figure 12. Here, after about two detention times, the
effectiveness of the cooling trench was compromised.
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Figure 12. Variation of rock temperature as a function of position for a stormwater flow of 0.52 m3/s through a 25 m long
infiltration trench (Equation (4) in Table 2).

4.6. Dynamic Well-Mixed Stormwater and Media with Inflow and Outflow with Soil Cooling

This case is similar to that in Section 4.4 but with soil cooling between storm events. A
storm event was assumed to occur every 2 days, and the first 10 minutes of the summer
storm was directed into the cooling trench. Once the trench was filled, the stormwater
bypassed the cooling trench. Equation (9) from Table 2 was used for this analysis. This
simulation includes the cooling potential of the surrounding soil lowering the temperature
of the rock between summer storms. Figure 13 shows the temperature over a period of
10 days for both the water and the rock media. This shows that the storm with 30 ◦C water
approached equilibrium with the rock media but cooled over time due to the effect of
the surrounding soil. After each successive storm, the maximum rock media temperature
increased from 17.7 ◦C (for the first storm) to 19.9 ◦C (for the last storm) as the impact of
successive storms on the rock media did not allow it to reach its initial temperature of 10 ◦C
at the beginning of each storm. The stormwater release temperature also increased from
21.7 to 23.5 ◦C at the end of the successive storms. In both the rock media and water, the
maximum temperatures after a storm event did not continue to increase but reached an
equilibrium.
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Figure 13. Water and rock temperature within cooling trench with a flow rate of about 10,080 m3/day over a 10 min period
every 2 days assuming cooling by soil in contact with the cooling trench (Equation (9) Table 2).

Considering that the volume of stormwater placed in the cooling trench is 70 m3 over
10 minutes (0.12 m3/s), if this water (at 30 ◦C) bypassed the cooling trench and was mixed
directly with a stream flow with a flow rate of 4 m3/s with a temperature of 15 ◦C, the final
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mixed temperature would be only 15.4 ◦C. With the average release temperature from the
cooling trench over the 10 min period of release of 17 ◦C (for the first storm event), the
average stream temperature with the stormwater input would be 15.1 ◦C. Hence, bypassing
this flow provided a 0.3 ◦C improvement in stream temperatures for this event.

To illustrate how long the surrounding soil would take to equilibrate with the temper-
ature of the rocks in the cooling trench, Figure 14 shows that after about 5 days the soil and
rock in the trench reach the same equilibrium temperature.
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Additionally, this analysis assumed that the surrounding soil stayed at a constant
temperature and did not heat up because of the heat introduced from the storm water.

5. Summary

The mathematical basis for evaluating a cooling trench was explored. Physical con-
stants necessary to determine properties to model the impacts of rock heating in a cooling
trench were obtained from references based on sediment temperature heating.

A series of computations were made to evaluate typical heating impacts of the cooling
trench for the following conditions:

• Dynamic changes in water and rock media temperatures along the axis of the cooling
trench with cooling from surrounding soil;

• Equilibrium temperature of a batch reactor of rock and stormwater as a function of
porosity;

• Dynamic temperature change of rock and stormwater in a batch reactor;
• dynamic changes in temperature of stormwater and rock in cooling trench conceptual-

ized as a complete-mix, continuous flow reactor;
• Dynamic changes in temperature of stormwater and rock in cooling trench conceptu-

alized as a plug-flow, continuous flow reactor;
• Dynamic changes in temperature of stormwater and rock in cooling trench conceptu-

alized as a complete-mix, continuous flow reactor with cooling from the surrounding
soil.

In several of these simulations, the primary conservative assumption was that the
cooling trench was insulated from the surrounding soil. The models did not consider
changes in the cross-section of the cooling trench assuming that these were negligible. This
assumption is largely based on assuming that the longitudinal length scale is much larger
than the cross-sectional length scale.

The time scale for cooling due to conduction between the rock media and the warm
stormwater is based on Equation (1) and is

Tcooling ∼
( Asur f acek

ρcpVδ

)−1

This gives a time scale for how long significant cooling can occur between the rock
media and the stormwater. For the parameters of Table 3 the time scale is computed to be
about 24 min. Hence, this gives planners an idea of how long the cooling due to conduction
may be effective during a stormwater event.

To compare the temperature impact of a cooling trench or rock crib, one needs to
compare the heating/cooling potential of ponds and other stormwater BMPs. A pond
during the day will be subjected to surface heat transfer including solar radiation, long-
wave atmospheric radiation, conduction with the air temperature, evaporation, and long-
wave back radiation. During a first stormwater flush from an impervious area, a cooling
trench may result in cooler temperatures not only from the cooling from the rock media
but also from being shielded from the solar radiation during the day.

To further advance this research topic, comparison of field data to the mathemati-
cal framework presented in this paper and exploring the impact of water loss from the
infiltration system into the groundwater would prove useful.
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