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Abstract: The Saleh behavioral model exhibits high prediction accuracy for nonlinearity of 
traveling-wave tube power amplifers (TWT-PAs). However, the accuracy of the Saleh model 
degrades when modeling solid-state power amplifers (SSPAs) technology. In addition, the polynomial 
expansion of the Saleh model consists of only odd-order terms as analyzed in this work. This paper 
proposes a novel model accuracy enhancement for the Saleh amplitude-to-amplitude (AM/AM) 
model when applied to radio frequency (RF) SSPAs. The proposed model enhancement accounts 
for the second-order intermodulation distortion, which is an important nonlinearity challenge in 
wideband wireless communications. The proposed static AM/AM model is a three-parameter rational 
function, which exhibits low complexity compared to the state-of-the-art behavioral models. A 
transpose architecture of fnite-impulse digital flter is used to quantify the memory effect in SSPAs. 
A least-squares method is used for extracting all the model parameters. A linearization technique 
using a three-parameter digital predistortion model is also calculated to compensate for the AM/AM 
nonlinear distortion in SSPAs. Finally, the identifcation and evaluation of the enhanced Saleh model 
is presented based on measurements of RF SSPAs. 

Keywords: solid-state power amplifers; behavioral models; digital predistortion; nonlinear distortion; 
memory estimation 

1. Introduction 

The rapid evolution of wireless communications requires high dynamic range RF power amplifers 
(PAs) to efficiently operate on high-amplitude fuctuations in modern digital modulation [1]. Solid-state 
power amplifers (SSPAs) are intensively deployed devices in the front ends of mobile systems [2–4]. 
Therefore, empirical models for SSPAs have been utilized for decades to study the distortion effects on 
wireless communications systems. 

Accurate and low-complexity behavioral models for SSPAs have become important techniques 
in simulating and linearizing communication systems [5–7]. In particular, an accurate estimation 
of the model smoothness in the amplitude-to-amplitude (AM/AM) transition from the linear to the 
saturation regions has been a topic of interest in the state-of-the-art PA modeling [8–12]. This is because 
operating SSPAs near the compression region is often required for achieving high power efficiency and 
transmitting signals of high peak-to-average power ratio (PAPR) [13]. 

Rapp, Ghorbani, and Cann behavioral models are popular mathematical functions that match 
well the AM/AM characteristics of SSPAs. However, these models often consist of complicated rational 
functions; therefore, starting points and iterative estimation methods are typically required for such 
model estimation. In addition, these models exhibit a lack of relevance in modeling digital predistortion 
(DPD) for linearizing SSPAs. 
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The polynomial-based models are commonly used for SSPAs, because polynomials provide 
sufficient modeling fexibility in estimating the parameters and adjusting the model accuracy. However, 
polynomial models are subject to estimation errors such as curve under-ftting and over-ftting model 
prediction when truncated nonlinear coefficients are employed. 

The AM/AM characteristics of traveling-wave tube power amplifers (TWT-PAs) exhibit high 
nonlinearity and roll-over effects near the saturation region. Thus, the accuracy of the Saleh model 
signifcantly degrades when modeling the compression smoothness of the SSPAs. The proposed 
modifed Saleh model by O’Droma achieves substantial accuracy improvement for modeling the 
AM/AM nonlinearity for laterally-diffused metal-oxide semiconductor (LDMOS) SSPAs [9]. However, 
O’Droma proposed a six-parameter rational formula, which is computationally expensive. In addition, 
the direct inversion of the O’Droma model is mathematically difficult for calculating the predistortion 
model. Hence, this paper presents a simplifed behavioral model with an adequate AM/AM accuracy 
improvement for SSPA technologies. 

The amplitude-to-phase distortion is often minor in SSPAs and is assumed insignifcant in this 
simplifed modeling approach [10]. The presented modeling approach consists of three parameters, 
which allows better nonlinearity modeling for a large signal amplitude beyond the 1-dB compression 
point. In addition, the presented expression is convenient to characterize the even-order intermodulation 
distortion (IMD) for wideband and multiband communications. 

A simplifed and low complexity DPD model is also calculated to compensate for the AM/AM 
nonlinearity in SSPAs. This paper is organized as follows: Section 2 describes the proposed enhancement 
approach to the Saleh AM/AM model, followed by an approach to characterize the dynamic memory 
effect in Section 3. Section 4 presents a linearization model for SSPA using DPD. Section 5 includes the 
experiment and modeling results for both the SSPA and DPD model. Finally, conclusions are presented 
in Section 6. 

2. Enhanced Approach for SSPAs 

The Saleh AM/AM model is a two-parameter function. The frst parameter α represents the 
small signal gain, and the second parameter β is used to adjust the transition sharpness (i.e., gain 
compression) from the linear region to saturation region. The AM/AM Saleh model F[u(t)] can be 
expressed as [8]: 

αu(t)
F[u(t)] = �p �2 (1) 

1 + βu(t) 

where u(t) is the envelope of the PA input baseband signal. The Saleh model is an odd function {F[−u(t)] 
= −F[u(t)]}, and the polynomial expansion of the rational function in Equation (1) is given by: 

∞X 
kF[u(t)] = (−1) αβku(2k+1)(t) (2) 

k=0 

where k is an integer number {k = 0, 1, 2, 3, . . . . . . } 

F[u(t)] = αu(t) − αβu3(t) + αβ2u5(t) + . . . . . . (3) 

The polynomial series in Equation (3) consists of the nonlinear coefficients {α, αβ, . . . , αβk , . . . }. 
Equation (3) shows a mathematical relationship of a magnitude-dependency among all the polynomial 
coefficients. In comparison with the typical odd-order Taylor model in Equation (4), the Taylor 
coefficients are often considered statistically and linearly independent parameters. Therefore, the 
Taylor model exhibits a higher degree of freedom for ftting the polynomial coefficients to the observed 
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data. However, the polynomial curve ftting is subject to uncertainty and often exhibits high prediction 
errors beyond the range of the observed data. 

T[u(t)] = c1u(t) + c3u3(t) + c5u5(t) + . . . . . . (4) 

The magnitude of the Taylor coefficients {c1, c3, . . . . . . } are considered device-dependent, but 
the independent coefficients are insufficient for describing the effect of the higher order IMDs on the 
lower order IMDs. For example, the ffth-order IMD affects the third-order IMD and so on [14]. The 
higher order Taylor polynomial can achieve better model accuracy to ft the nonlinear curvature of 
the AM/AM conversion, because using additional independent coefficients increases modeling the 
dimensions of the nonlinear system, but this often leads to a noisy estimate and poor coverage of 
confdence intervals. 

The typical output of the AM/AM Saleh model increases almost linearly in the small signal 
magnitude at the rate α. However, the gain of the Saleh model decreases monotonically after the 
maximum curvature (this occurs at |u| = β−1/2) [15] and approaches zero for very large theoretical 
values of |u|. This is one of the main weaknesses in the Saleh model when applied to SSPAs, because the 
saturation level in SSPAs is almost constant and specifed by the supply voltage on the drain/collector 
of the output transistor. Power amplifers are typically designed to operate over a dynamic range of 
the load-line with the DC quiescent point “Q-point” which is set in the active region of the transistor 
on a small amplitude signal (e.g., Q-point is set to the middle of the load-line in a class-A design). 
However, on a large input amplitude signal, the output signal becomes extensively large and forces 
the output signal to surpass the power supply voltage and becomes fattened. Therefore, the output 
signal is limited by the supply voltage in the saturation region [16]. 

A simple model enhancement is introduced in this work to address the model limitations by 
including an additional quadratic term within the numerator of the Saleh model [17] as illustrated 

αu(t) + λu2(t)
Fes[u(t)] = (5)

1 + βu2(t) 

where Fes[u(t)] is the proposed enhanced Saleh AM/AM model. The parameter λ is a real positive 
number introduced here for adjusting both gain and roll-over near the saturation region. The small 
signal gain α of the model in Equation (5) is approximately equal to the linear gain of the Saleh model 
as depicted: 

∂(Fes[u]) lim = α (6) 
u→0 ∂(u) 

The parameter λ causes the function in Equation (5) to be mathematically non-monotonic and the 
output increases asymptotically toward the saturation for a large signal amplitude (saturation level ≈ 
λ/β). Finally, the polynomial expansion of Equation (5) becomes a mixed nonlinear combination of odd 
and even terms as follows: 

∞X � �
kFes[u(t)] = (−1) βku(2k)(t) αu(t) + λu2(t) (7) 

k=0 

Fes[u(t)] = αu(t) + λu2(t) − αβu3(t) − λβu4(t) + αβ2u5(t) + λβ2u6(t) − αβ3u7(t) + . . . . . . (8) 

Equation (8) illustrates that the magnitude of the second-order IMD is completely characterized 
by the parameter λ. The other higher order even-terms in this model are characterized by the nonlinear 
coefficients {λ, λβ, . . . , λβk, . . . }. In addition, the proposed model enhancement can improve the 
fatness in the saturation region, because the mathematical expression in Equation (8) converges 
asymptotically to the constant value (λ/β) [17]. 

The second-order IMD of SSPAs is an ongoing concern in wideband and multiband 
communications [14,18,19]. Figure 1 shows the typical two-tone IMDs, which illustrates the locations 
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of the second-order distortion (f2 − f1, f2 + f1) with respect to the fundamental tones for wideband 
communications [14]. 
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Figure 1. Wideband output spectrum of RF power amplifer illustrating the two-tone harmonic 
distortion effect. 

Model Estimation 

A least-squares method is used for calculating the parameters of the enhanced Saleh model as 
described in this section. Substituting z(t) = Fes[u(t)] in Equation (5) and re-arranging the equation 
variables results in 

z(t) = αu(t) + λu2(t) − z(t)βu2(t) (9) 

where z(t) is the envelope of the PA baseband output signal. A matrix equation can be formulated 
from Equation (9) by substituting discrete-time samples of both u(t) and z(t) as illustrated ⎡ ⎤⎡ ⎤ ⎡ ⎤ 

z(0) u(0) α 
−z(0)u2(0) u2(0) 
−z(1)u2(1) u2(1) βz(1) u(1)= . . (10). .. . . .. . . .⎢⎣ ⎥⎦ ⎢⎣ −z(n)u2(n) u2(n) ⎥⎦⎢⎣ ⎥⎦z(n) u(n) λ 

For simplicity, a matrix notation is used in representing (10) 

z = Uc (11) 

where z is a column vector of ((n + 1) × 1) elements, c is a column vector of the model parameters (3 × 
1), and U is a matrix consisting of ((n + 1) × 3) elements of the input and output samples. Finally, the 
vector c is calculated as: 

c = (UTU)−1UTz (12) 

where ()T denotes the operator of a matrix transposition [17]. 

3. Memory Modeling 

Memory effect is a popular hysteresis phenomenon in RF PAs which causes dynamic nonlinear 
dispersion in the AM/AM conversion [20,21]. Memory effect is considered device-dependent due 
to the impedances’ variation of both the matching and biasing networks with respect to operating 
frequency, and to the temperature variation in transistors’ junctions as depicted in Figure 2. 
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Figure 2. Simplifed architecture of the memory component elements of the RF power amplifer. 

A digital flter is a straightforward approach for modeling the memory effect in RF PAs. In this 
work a transpose fnite-impulse response (FIR) digital flter is used in cascade with the enhanced Saleh 
model based on Hammerstein modeling theory as depicted in Figure 3. The architecture of the transpose 
FIR flter is computationally less complex than the direct FIR flter in real-time implementation because 
it supports multiple constant multiplication technique. 
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amplitude-to-amplitude (AM/AM) model. 

The FIR flter mimics the output signal dependency on the past samples of the input signal using 
a fnite number of coefficients for controlling the memory depth in the model. 

MX 
j]u(n−m)ẑ(n) = h(m)Fes[u(n − m)]e (13) 

m=0 

where h(m) represents the flter impulse response, M is the memory depth in the model, and ẑ(n) is the 
output signal of the dynamic nonlinear model. 

4. Modeling of Digital Predistortion 

DPDs have become popular approaches for improving the linearity of RF PAs for a reliable and an 
efficient signal transmission [22,23]. The DPD implementation in the digital domain as in Figure 4 is 
practically more efficient than analog predistortion for compensating the nonlinear distortion in RF PAs. 
The DPD models based on Taylor polynomials are popular linearization techniques to compensate for 
a weak-nonlinear distortion in RF PAs [24]. 



Electronics 2020, 9, 1806 6 of 13 

Electronics 2020, 9, x FOR PEER REVIEW 6 of 13 

 

 
Figure 4. Simplified diagram of a digital predistortion transmitter system. 

The proposed DPD model can be deployed for the PA of strong nonlinearity over a wide 
amplitude range. The mathematical inversion of the enhanced Saleh model is calculated as follows: 

1
es( ) = F [ ( )]u t d t−  (14) 

where d(t) and u(t) are the DPD model input and output magnitudes, respectively, as depicted on the 
simplified transmitter architecture in Figure. 4. Fesି1ሾ ሿ is the proposed enhanced DPD model, which 
is calculated by exchanging the input and output variables of the enhanced Saleh model [11] Fes[u(t)] 
in Equation (5) and simplifying the expression as:  

2( ) = 0dβ λ u αu+d− −  (15) 

Finally, the DPD model is calculated by solving a quadratic formula in Equation (15) with respect 
to the variable u. An equation solution of a negative sign is used in this model, since the DPD input 
and output magnitudes are real and normalized in this work. 

( )
2

1
es

4 4
F [ ] =

2

2α α βd + dλ
d

dβ λ
− − −

−
 (16) 

Equation (16) represents the DPD model, which outputs a magnitude of the predistorted 
baseband signal. The maximum input amplitude of the DPD model is calculated to satisfy a positive 
real value inside the root term of Equation (16) as follows: 

22
max maxα +4d λ 4βd≥  (17) 

The maximum amplitude of the DPD input |dmax| to satisfy Equation (17) is given by: 

2 2+ +
2max

λ λ βα
d

β
=  (18) 

where |dmax| represents a clipping threshold of the DPD baseband input signal. Therefore, a clipping 
model in Equation (19) is required on the input of the DPD model to maintain the condition in 
Equation (17). 

( ) if ( )
( ) =

if ( )

max

max max

d t d t d
d t

d d t d

,
ˆ

,

 <


 ≥

 (19) 

where |𝑑መሺ𝑡ሻ| is a clipped amplitude version of the time domain signal d(t). Figure 5 describes the 
characteristics of the clipping model in Equation (19) for the amplitude relationships between the 
input and output signals. This model forces the large amplitudes of the input signal to a constant 
threshold according to the value of |dmax|, which is specified by the model parameters (α,λ,β). 
Equation (18) illustrates that the level magnitude of the clipping model is directly proportional to the 
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A complex structure of a DPD model is not desired in wireless communication, because this 
requires a complex and high-computational-cost hardware system. Hence, a predistortion model in 
this work is calculated directly from a simplifed rational function of the enhanced Saleh model using 
fewer coefficients. 

The proposed DPD model can be deployed for the PA of strong nonlinearity over a wide amplitude 
range. The mathematical inversion of the enhanced Saleh model is calculated as follows: 

u(t) = F−1[d(t)] (14)es 

where d(t) and u(t) are the DPD model input and output magnitudes, respectively, as depicted on the 
simplifed transmitter architecture in Figure 4. F−1[ ] is the proposed enhanced DPD model, which is es 
calculated by exchanging the input and output variables of the enhanced Saleh model [11] Fes[u(t)] in 
Equation (5) and simplifying the expression as: 

(dβ − λ)u2 
− αu + d = 0 (15) 

Finally, the DPD model is calculated by solving a quadratic formula in Equation (15) with respect 
to the variable u. An equation solution of a negative sign is used in this model, since the DPD input 
and output magnitudes are real and normalized in this work. p

α − α2 − 4βd2 + 4dλ 
F−1[d] = (16)es 2(dβ − λ) 

Equation (16) represents the DPD model, which outputs a magnitude of the predistorted baseband 
signal. The maximum input amplitude of the DPD model is calculated to satisfy a positive real value 
inside the root term of Equation (16) as follows: 

α2 + 4dmaxλ ≥ 4βd2 (17)max 

The maximum amplitude of the DPD input |dmax| to satisfy Equation (17) is given by: p
λ + λ2 + βα2 

|dmax| = (18)
2β 

where |dmax| represents a clipping threshold of the DPD baseband input signal. Therefore, a clipping 
model in Equation (19) is required on the input of the DPD model to maintain the condition in 
Equation (17). 
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⎧ 
d(t) , if d(t) < |dmax|⎪⎨d̂(t) = ⎪ 

(19)⎩ 
|dmax|, if d(t) ≥ |dmax| 

where d̂(t) is a clipped amplitude version of the time domain signal d(t). Figure 5 describes the 
characteristics of the clipping model in Equation (19) for the amplitude relationships between the 
input and output signals. This model forces the large amplitudes of the input signal to a constant 
threshold according to the value of |dmax|, which is specifed by the model parameters (α,λ,β). Equation 
(18) illustrates that the level magnitude of the clipping model is directly proportional to the power 
amplifer gain (α,λ) and inversely proportional to the parameter β. Although the model in Figure 5 
is linear with unit gain in the amplitude range (0 to dmax), the clipping model is another nonlinear 
function required on the input of the DPD model. The model clipping characteristics are depicted in 
Figure 6, which describe the variation in the input signal PAPR with respect to the clipping level |dmax| 
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equal to a non-clipped amplitude for a large clipping level as illustrated. 
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The impact of the clipping nonlinearity on the distortion effects is not severe, because the large 
peaks typically occur with low probability. Therefore, different clipping approaches have been widely 
used in wireless communication to reduce the signal PAPR, and they are considered an important 
design aspect when operating RF PAs on OFDM signals. In addition, reducing the signal PAPR can 
improve the power efficiency in RF PAs, because the maximum power efficiency is obtained when 
operating RF PAs near the compression region [14]. Therefore, applying signal clipping in combination 
with DPD often leads to performance improvement in power efficiency and linearity [13,25–27]. 
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5. Evaluation Results 

Two different SSPA technologies, gallium arsenide (GaAs) (ZFL-1000LN from Mini-Circuits, 
Brooklyn, NY, USA) and gallium nitride (GaN) (ZX60-8008E from Mini-Circuits) devices under test 
(DUT) are used in this experiment for model evaluation and linearity enhancement of the DUT PA. 
The experiment set-up consists of a signal generator (E4438C from Keysight Technologies, Santa 
Rosa, CA, USA), a spectrum analyzer (RSA6120A from Tektronix, Beaverton, OR, USA), a high-power 
attenuator, and a computer (Dell computer with Intel Xeon CPU E3-1241 v3 @ 3.50 GHz and 16 GB of 
ram) with MATLAB (R2018a from MathWorks, Natick, MA, USA) as shown in Figure 7. A 64-QAM 
dual-band modulated OFDM signal was applied on the input of the SSPA, and the output signal is RF 
down-converted, demodulated, and acquired by the spectrum analyzer. 
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5.1. SSPA Modeling Performance 

The AM/AM conversion of a GaAs RF PA is measured by sweeping the input amplitude of a 
two-tone signal from the signal generator at a 1 GHz center frequency and a 10 KHz tone spacing. The 
AM/AM nonlinear conversion of the SSPA measurements as well as the model estimation using both 
the Saleh and enhanced Saleh models is illustrated in Figure 8. The enhanced Saleh model shows 
improved curve-ftting results in the linear and compression regions compared to the original Saleh 
model. In addition, the residual square errors between the measured and model conversions (|zmeas| − 
|zmode|)2 clearly show lower fuctuation errors and accuracy improvement of the enhanced Saleh model 
with respect to the input amplitude. 

The model evaluation for predicting the nonlinear distortion in a frequency domain is shown in 
Figure 9, using the power spectrum density of a dual-band long-term evolution (LTE) signal. Table 1 
presents the obtained accuracy improvement in the enhanced Saleh model using the normalized mean 
square-errors (NMSE) based on GaAs and GaN DUT PA technologies. These results show a model 
improvement of around 4dB NMSE compared to the original Saleh model. In addition, the enhanced 
model achieved better model accuracy compared to the ffth-order Taylor model. 
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Table 1. Accuracy comparison in normalized mean square-errors (NMSE) of the model evaluation 
using gallium arsenide (GaAs) and gallium nitride (GaN) technologies. 

Model Number of Coeff. 
Intermodulation Distortion 

(IMD) 
NMSE (dB) 

GaAs PA GaN PA 

Saleh 2 odd terms −27.12 −28.54 

Enhanced Saleh 3 odd and even terms −31.37 −32.71 

5th order Polynomial 5 odd and even terms −22.16 −21.47 

The overall accuracy in NMSE of the enhanced Saleh model in cascade with FIR flter is depicted 
in Figure 10, with respect to the FIR flter number of coefficients (i.e., memory depth). This shows 
the obtained optimal model accuracy and the required flter number of coefficients to quantify the 
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memory effect of the SSPA. The FIR flter in this modeling approach reaches the optimal accuracy at a 
memory depth around 15 for practical implementation, and the accuracy in NMSE changes slightly and 
becomes almost fat after in the higher order memory depth as illustrated in Figure 10. The dynamic 
enhanced model achieves a NMSE below −47dB. Electronics 2020, 9, x FOR PEER REVIEW 10 of 13 
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5.2. Results of Digital Predistortion 

The static AM/AM conversion causes most the nonlinear distortion in RF PAs. Therefore, the 
efficiency of the DPD to compensate for the AM/AM distortion is a signifcant factor in linearizing 
the nonlinearity in communication systems. The DPD model based on the enhanced Saleh model is 
evaluated in the time and frequency domains using a dual-band LTE signal. The AM/AM conversion 
of the DPD model exhibits signifcant gain expansion characteristics over a wide range of the PA input 
amplitude as shown in Figure 11. In addition, the DPD model compensated for the gain compression 
behavior of the SSPA and improved the balance between in-phase and quadrature-phase in the signal 
constellation diagram, as shown in Figure 12. 
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The linearization capability of the DPD model in a frequency domain shows signifcant mitigation 
of the spectrum regrowth in the adjacent channels of the dual-band spectrum as depicted in Figure 13. 
The numerical evaluation results of this linearization approach is depicted in Table 2 using the adjacent 
channel power ratio (ACPR) and error vector magnitude (EVM) for GaAs and GaN SSPA. Finally, the 
obtained linearization performance of the enhanced DPD model achieved an adequate improvement 
in time and frequency domains. 
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Table 2. DPD model performance in adjacent channel power ratio (ACPR) and error vector magnitude 
(EVM) for linearizing both GaAs and GaN power amplifers (PAs). 

Evaluation Measure 
GaAs 

without DPD with DPD 
GaN 

without DPD with DPD 

ACPR in Upper 
band/Lower band (dBc) −38.73/−39.35 −52.10/−52.81 −41.86/−42.55 −56.13/−57.41 

EVM (%) 9.12 1.86 8.76 1.54 
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6. Conclusions 

This paper analyzed the Saleh model mathematically using polynomial expansion for modeling 
the odd-order IMD and described the Saleh weakness for modeling SSPAs. Therefore, a new model 
enhancement was proposed to improve the model accuracy for the Saleh AM/AM model when 
deployed for SSPA technologies in communication systems. In addition, the polynomial expansion of 
the enhanced Saleh model consists of both odd-order and even-order nonlinear terms for characterizing 
the PA nonlinearities in the AM/AM conversion. The Hammerstein-based model structure was adopted 
to quantify the dynamic effect in the AM/AM conversion. A least-squares approach was employed for 
calculating all the parameters of the enhanced Saleh model. The evaluation results showed an accuracy 
improvement of the enhanced Saleh model to refect the measured AM/AM characteristics of SSPAs 
over a wide range of the PA input magnitude. A linearization approach using DPD was developed 
and evaluated for mitigating the nonlinear distortion in SSPAs. 
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