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Introduction

Online translation is akin to a game of telephone. Although useful for individual words, it results
in absurd nonsense when used to translate significant blocks of text. This is why human translators are
vital. The word-by-word translation offered online will not result in an understandable text; not only do
many words lack equivalents across languages, but a proper translation depends as much on an
understanding of language, semantics, topic, and culture, as it does on the definitions of words. In this
work, the contrast between human and digital translation will be demonstrated with a translation of a
Russian text on graph theory, with commentary highlighting the nuances of language that a machine
misses.

This opening introduces the author of the translated work and briefly summarizes the text to be
translated. Next, a commentary on the translation method and decisions precedes the full translation of
the text, which is followed by select line-specific examples of translation. Finally, the translation is used
to demonstrate the importance of human translation as opposed to digital services, and a final argument
is presented.

Victor Alexandrovich Melentiev is a senior researcher at the Semiconductor Physics
Research Institute, part of the Siberian Department of the Russian Academy of Sciences (CO PAH for its
acronym in Russian) in Novosibirsk, Russia. His research focuses on the theory of fault tolerance and
survivability, modeling of architectures, and investigation into and construction of optimal fault-tolerant
computer systems (JlabopaTopun [apanyienbHEX MHOOPMALMOHHLX TexHOJoTMi HUBI MIY).
This paper provides a translation of Melentiev’s text Ananmmrruecku nonxon K CUHTESY
perynapHeIX T'padboB C 3aTaHHBIMM SBHAUEHUSAMM IHOpsSOKa, CTeneHu M obxBaTa
(MenentneB 2010), translated here by Volkova as “An Analytical Approach to the Construction and

Representation of Regular Graphs From a Given Order, Degree, and Girth”. In it, Melentiev describes a



new way to represent graphs in graph theory, one that maintains all the information of a visual

representation, but does not rely on a geometric image.

1. The Choices, the Reasons, the Methods

I provide this section before my translation because I was inspired, somewhat ironically, by
Shiltsev’s 2012 translation of Lomonosov’s' “Discovery of Venus Atmosphere in 1761”. Shiltsev is a
physicist, and most of his bibliography includes other scientists, not linguists. The translation itself reads
very mechanically, and is full of grammatical errors which take away from the text’s meaning.
Furthermore, he introduces very little of the topic, the author, and his own translation methods, instead
simply throwing the reader into the fray. Having experienced this, I wish to save my own audience such
an adventure.

Since this is a paper, first and foremost, for mathematicians, I will define a number of linguistic
terms. Then I will provide some examples of online translation errors, which I will use to explain some
word choices [ make in my translation. Finally, I will discuss my formatting decisions, before allowing
the reader to step into Melentiev’s world. Note that all examples of online translations provided come
from Google translate, and reference the first translation Google offers. Each is accurate as of the date
following the translation.

This project is a technical translation. “Broadly speaking, technical translation is the translation
of materials dealing with scientific and technical subjects and using the specialized terminology of the
scientific or technical field involved,” (Shiftar 2016). That is, unlike a literary translation, which requires
knowledge of both languages, a technical translation also requires extensive knowledge of the topic

being discussed (in this case: graph theory). To avoid redundancy, I will be using the linguistic

' Mikhail V. Lomonosov (1711 - 1765): Russian poet and scientist, who made “substantial contributions to the natural
sciences” (Langevin).
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abbreviations L1 and L2 in this text. L1 is the “first language” (in this case, Russian) and L2 is the
“second language” (English) (Davies 2007, 15).

Most languages have words with multiple meanings, where the correct definition must be
derived from context. As an English example, consider the word “lie”: it could mean “to be horizontal”,
or “to tell a falsehood”, and the audience cannot know which meaning the author intended without
context. Translation websites typically translate word by word, and so will often miss such context. For
example, Melentiev uses a geometric figure called the “exuanunsiii ky6” to illustrate his method. Typing
this term into Google Translate grants: “single cube” (2/18/2018). In fact, the figure Melentiev is using
is “Q,”, or the cube in dimension 3. A simpler, but still curious example: Google translates “pe6po” as
“edge” (2/18/2018), but it most commonly means “rib”. Note that for technical translations, this is
especially dangerous. Consider the Russian word “mHokectB0”. Google translates this as “a bunch of”
(2/18/2018), but in mathematics, a “mHOxkecTBO” is a set. Katsberg provides more examples and
numerous arguments for context awareness in “Cultural Issues Facing the Technical Translator”.

This duality of definitions is the reason for some of the specific word choices in this translation.
In his text, Melentiev calls his method “cuntesuc”, which literally translated means “synthesis”.
“Synthesis” is synonymous to “composition”, a term used to describe combining two graphs together. To
spare readers this confusion, I have elected to use “construction” instead of “synthesis”, as Melentiev’s
methods builds, or “constructs” a graph. Furthermore, he often calls his graphs “synthesized”, but as his
process only involves one graph at a time, I often drop the descriptor, and at other times call it “the
graph under construction”.

Similarly, Melentiev calls the model he constructs a system of “projections”, but this term
already has a meaning in English graph theory, relating to topology. Since Melentiev himself likens his
method to solving systems of equations, I call his “projections” - “parenthetical equations”, or just

“equations”. I decided to keep the literal translation of “yposens” - level, which is what Melentiev calls



a vertex’s location in the equation. Although I believe “degree” would be a more fitting term, the paper
also discusses vertex degrees, which would cause confusion.

The translation itself was written first as a text document, and then edited and inserted into a
LaTex engine. LaTex is a coding language which allows for writing and managing non-standard
characters (read: math symbols). This step was necessary, for although the math symbols between L1
and L2 are the same, equations will often use words such as “if, then”, which must also be translated.
An example of this code is for equation (2) in Melentiev’s paper, under “2. Onucanue nogaxona” (“2.
Method Description”): \begin{equation} 1+s\sum\limits_{i=1}"{k e-1}(s-1)"{i-1} <n\leq I +
s\sum_{i=1}"{k e}(s-1)"{i-1}. \end{equation}.

Another aspect of formatting to consider is the bibliography: even in the same field, citation
formats are different from country to country. Thus, although I did not translate Melentiev’s sources, |
did reformat them to Chicago style.

At last, I believe I have properly armed my reader to embark upon the journey that is Melentiev’s
“AHanUTUYECKUN MOJAXO] K CUHTE3Y PETYJSPHbIX rpadoB ¢ 3aJaHHBIMU 3HAYEHUSMHU MOPSAJIKA, CTEIICHU

u oOxBara.”



2. Translation

An Analytical Approach to the Construction and Representation of Regular Graphs From a Given Order,
Degree, and Girth

V. A. Melentiev

Semiconductor Physics Research Institute, Siberian Department of the Russian Academy of Sciences
(CO PAH for its acronym in Russian) Novosibirsk , Russia

E-mail: melva@isp.nsc.ru

Original publication: V. A. Melentiev,. AHAJIMTUYECKHWM I10/1X0O/] K CUHTE3Y PEI'VJISIPHBIX
I'PA®OB C 3AJIAHHBIMU 3HAYEHUSAMMU TTOPAJIKA, CTEIIEHU U OBXBATA, IIPUKJIA/[HAA
HUCKPETHAA MATEMATHUKA (transl. Applied Discrete Mathematics) 2 no. 8 (2010) 74--86.

Translated by A. Volkova
Maseeh College of Mathematics and Statistics, Portland State University, Portland, OR, USA

Email: avol2@pdx.edu

Under the Advisement of:

Anna Alsufieva

Abstract

This is a proposed method for analytically constructing a system - a structure with given properties. The
approach is derived from representing a graph using a system of its images. First, the image of a graph is
defined, and its properties are outlined. Then the approach of constructing such a system is explained:
build a base image of the spanning tree of the graph and correct it using images based at different
vertices. This is analogous to solving a system of equations, where the equations are the graph’s multiple
images. Examples of this method are provided, followed by conclusions and the significance of this
construction method.

Keywords: order, diameter, girth, representations of graphs, construction of regular graphs
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Introduction

Constructing computer system structures and network webs out of a list of given properties is a widely
discussed topic in scientific literature. The most common method for solving such problems is generating
random networks and rejecting those which do not fit the given criteria (diameter, connectivity, clustering
factors, etc.). According to research on the stability of computer systems/networks after deletion of ver-
tices from those structures [1], regular structures are extremely stable; the most stable topology of random
graphs is characterized by the distribution of the vertex degrees in a way such that there are at most three
discrepancies. That said, in both the theory of networks and systems, and in the basic context of graph
theory, research on the problem of generating the structure of a graph from given properties and systematic
methods (aside from the necessity of reordering) is severely lacking. This is, first and foremost, due to the
absence of a method of describing graphs which would allow for formal analyses and transformations on the
graph.

In this paper, I first introduce an analytical approach to solving problems of constructing regular graphs
given order n and degree s. My approach is based on those outlined in [2, 3]: for a graph G(V, E) and its
parenthetical equations P(vg) with vy € V, construct a base equation of the spanning tree of G(V, FE) and
use that equation to determine the floor of the diameter d(G) and the ceiling of the girth g(G). Finally,
to find the endpoints of the unknown edges of the graph (missing edges in the underlying spanning graph),
compare the different equations in accordance to the desired properties of the graph, much like solving a
system of equations.

1 Methodology Outline

To avoid discrepancies, I will list some common definitions as provided in [4], as well as some basic facts
about paranthetical equations as I define them in this text.

Regular graph - a connected graph G(V, E), in which all the vertices v; € V' have equal degree; the degree
of each vertex is the degree s(G) of the regular graph.

Eccentricity of a vertex - for the vertex u, eccentricity e(u) = max 0(u,v), where §(u,v) is the distance
ue

between vertices u,v € V.

Diameter - the largest eccentricity of all the vertices of a connected graph: d(G) = max e(u).
ue

Girth - the length of the minimal cycle in a graph.

Paranthetical equation (or just equation) P(v;) of a graph G(V, E) - a parenthetical description of a graph
with its starting point a vertex v; € V.

The method of constructing parenthetical representations of graphs, and the properties of such equations
are explained well in [2, 3]. That said, because the method is a fundamental part of the argument proposed
in this paper, and because it is fairly new (and thus little known), I will lay out a short explanation on
assembling the equation of an undirected connected graph. I will then provide an example using (3, which I
will use to demonstrate that the graphs constructed by this method have the same order and degree as Q3.

Call the equation P(w) of the graph G(V, E) with initial vertex w € V' the w-th equation of this graph,
or the w-th foreshortening. To specify the number of levels in the equation, k, let us add a corresponding
index: Py(w). Then Py(w) = w. For example, for the first level of the equation, we get P;(w) = w™N ().
Here the subset M (w), derived from vertex w, is the neighborhood of vertex w and consists of s(w) vertices,
where s(w) = deg(w), the degree of vertex w.

Thus, the j-th vertex of the (i — 1)-th level of the equation determines the subset of vertices V;; C V on
the i-th level of the equation. Accordingly, the number of such subsets is equal to the number of vertices
in the previous level of the equation. Let subset V; ; C V' map to the set of vertices preceding it, VZ' ; CV
in the path from initial vertex vo to vertex v;_1 ;j, M(vo,vi—1,;). The subset V; ; derives from its immediate
preceding vertex v;—1 ;. Once more using the first level of the equation, Vi ., as example, the subset of its
vertices is derived from the single vertex w of the 0-th level (remember, subset V7, consists of one vertex:
Vi = {w}). Subsets of upper levels, V/,, ;,i > 1, are derived from the corresponding subsets V;; of the

7
previous levels by adding to them the vertex v; ; € Vi ; : V[, ; = V/, Uwv; ;, the immediate predecessor of
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subset V; ;1.

Notice that in the general case of connected graphs, including cyclic graphs, a single vertex may appear
multiple times on different levels of an equation, or even on the same level (excluding the first), and the
indices do not have to correspond. The lack of repetition of vertices in the first level is explained by the
fact that the objects being studied in this graph are not multigraphs. Graphs with loops will also not be
discussed in this work (so v;—1; # v; ;). The total number of vertices in level 4, call it C;, is equal to the
sum of the cardinalities of the subsets of that level V; ;: C; = >~ |V; ;|. Call the union of the subsets V; ; set

j
M; located on level 7 of the equation; that is, M; = JV; ; and C; > |M;].

J
Vertices belonging to the subset V; ; can be identified by subtracting the set of its preceding vertices, VZ’ j
from the neighborhood of vertex v;_; ; from which the subset was derived. That is, V; ; = N(vi,l’j)\Vi”j.
This prevents repetition of vertices in paths defined by an equation by excluding those that have already
appeared.
Thus, the equation for the three-level equation described in the above examples and in terms of only one
vertex for one subset per level is:

SEEEN (VG Vg =Vg  U{u}={w,u}}

{ WEN O\VE V=01 e A ()}

Ps(w) = wi*

Here the set of vertices in the first level consists of one subset: Vi ,, = N (w) with cardinality |V; .| =
deg(w). The set of vertices in the second level includes deg(w) subsets, each of which has, as an immediate
predecessor, every vertex of level 1. In general, vertex v is a part of the subset V5, with the immediate
predecessor u : v € Vo, Vo, = N(u)\V{ ,,V{,, = w. Thus the vertex set in any n-th level of the equation
Py(w), where n < k, unifies in itself the subsets derived by subtracting from the neighborhood of each vertex
in level (n — 1) all of its predecessors in the given equation. Note that the number of such subsets is equal
to the number of vertices in level (n — 1). Let us demonstrate the above method on the simple example of

Qs (fig. 1).

@ €

Figure 1: Q3

Choose vertex vg = 0 as the initial vertex of the equation Pj). The set of vertices adjacent to this
vertex, M(0) = 1,2,3 also make up the set of vertices in the first level: M; = {1,2,3}, |[M1| = C; = 3. The
set of vertices in the second level My unifies in itself C; = 3 subsets, which are the neighborhoods of three
vertices of level 1 (sans vertex 0, the immediate predecessor to these subsets): Ms = M1 U Myo U M3 =
{4,5}U{4,6}U{5,6} = {4,5,6} while C; = 6 and |M>| = 3. Notice that M; UM # V, and so the equation
must be expanded with another level.

The set of vertices in level 3, M3 consists of 6 subsets, each of which consists of vertices adjacent to the
corresponding 6 vertices in level 2. Each subset was modified by subtracting the sets preceding this vertex set:
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Mz = M3 .UM 5UMZ,UM;sUM: 5 UM; . Note: The first value in the bottom index identifies the level
of the equation, and the second identifies the vertex of the graph, while the top index allows to differentiate
multiple examples of the same vertex on the level in consideration. Thus, the constructed equation is:
Py(0) = (15T PET T 0BT s 47 62Ty
Notice that vertex 7 only appears on level 3, as it has not been included in any of the subsets of the
previous levels: M3 = {2, 7} U {3,7} U{Ll, 7} U{3, 7} U{1,7} U{2,7} = {1,2,3,7}, C3 = 12, |M3]| = 4. We
can similarly write the same equation P;(0) in one line:

P5(0) = 0{1{4{2,7},{5{3, 7}},2{4{1,7},6{3,7}},3{5{1,7},6{2, 7} }}.

The open brackets in front of any subset point to it belonging to the previous set. At any point in the
equation, the number of open brackets unpaired with a closed bracket describes how many levels deep the
subset is nested into the set of preceding vertices. In sources [2, 3] it is shown that the nesting level of
a subset in a set of descendants of an initial point (what we are calling the level of the equation) defines
the distance from the initial point to those in the corresponding subset. Furthermore, the k-th level, which
initially defines the set of all the lower level vertices in the equatlon of graph G(V, E) up to V defines the

eccentricity of the initial vertex: e(vy) = k, for which U M, #V, U M, =V.
=0
The equation of the graph Py(vo) is considered full if it deﬁnes every vertex and every edge of the

graph. Then the necessary conditions of fullness of an equation can be described thus: U M; =V and
i=0

k

U E; = E. Here, E; = {u,v : u € M;_1,v € M;} is the set of edges which coincide to pairs of vertices

i=0

from adjacent levels in the equation. Notice that the second condition of fullness (for edges) includes in

itself the first condition (for vertices). Looklng at P3(0) above, it is clear that both conditions are satisfied

only on the third level: UM —Vand|UM|—|V| =38; Ey =0, E1 = {{0,1},{0,2},{0,3}}, F> =
{1.4}, {1, 5} {2,432, 6}{3 5}, {3.6}}, Es = {{4 2},{4,71,{5,3}, {5, 7}, {4, 1}, {6, 3}, {6, 7}, {5, 1}, {6, 2} },

and so F = U E; ={{0,1},{0,2},{0,3},{1,4},{1,5},{2,4},{2,6},{3,5},{3,6},{4,7},{5,7},{6,7}}, |E| =
12. =

We will now combine the definition of equations provided here with their properties, proven in [2, 3].
Above it was shown that a vertex of the equation Py (vg) not equal to the initial vertex, call it v; # v, can
be found on any of the £ > 0 levels of the equation with a multiplicity 0 < m; ; < C}. For vertices in V; ;
on levels 0 < ¢ < k, there exist ordered vertex sets of the form W (v; ;) = vo,v1,0,. .., , which form simple
chains from vy into v; ; with length 6(vg), v; ; = .

Let us notice and prove another property of graph equations: The number of levels kuyin (v) in a minimal
full projection Pp,in(vo) of a simple connected graph G(V, E) is no less than the eccentricity of the initial
vertex e(vp) and is no greater than that eccentricity plus 1.

Finin (20) = e(vp), if P{u,v} € My(5(vo,u) = d(vo,v) = e(vo)  &d(u,v) =1,
min o e(vo) + 1, if I{u,v} € Mp(6(vo,u) = §(vg,v) = e(vo)  &b(u,v) =1

Because of this, a graph equation is always full if it is built up from any vertex up to level n where n is
greater than the diameter.
By combining the above given properties and the offered method we propose:

Lemma 1. If in the equation P(Vy) of graph G(V,E) u € V belongs to two subsets in one or more levels,
then the girth of the graph, g(G) is less than or equal to the sum of the numbers of those levels.

Proof. Consider a graph G(V, E) with equation P(vg) where vg is the initial vertex. Let vertex u € V belong
to the i-th level, where ¢ > 0. We know from the property given above that there exists a simple chain
W (vg, u) with length 6(vg,u) = i. Since we have excluded the existence of multi-edge graphs for this method,
vertex u cannot belong to a subset of vertices derived from a vertex that belongs to a preceding level. We
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135

index the vertices into different subsets. Note that the terminating vertex is one and the same: u; = us = u,
the index simply identifies which path from vy to u it belongs to: Wi (vg, u) or Wa(vg, u). If the intersection
of sets W1 and Ws representing these paths contains only two vertices, that is, W3 N Wa = {vg, u}, then the
length of the simple cycle formed by these chains is maximal, and equal to the sum of the level numbers
containing u: i1 and iy. Otherwise, if [W; N Wy| > 2, then there exist some (specifically |W7 N Wa| —2 > 1)
vertices, not vy, from which there are also simple paths into u; and us, which are segments of the paths Wy
and W5. Then the point of intersection of paths W7 and W — 2, v,, located in a higher level, must be the
initial vertex of two non-intersecting chains from v, into u; and us. Then the length of the cycle formed by
these chains is (i1 — i,) + (ia — i) = 1 + @2 — 24y, and so g(G) < i1 + i3, which is what we were trying to
prove. O

2 Method Description

From the properties of an equation given in part 1, we know that vertex vy of a regular simple graph
with unweighted edges has minimal eccentricity if level ke of the equation Pj(,,) at which the condition
kﬂ
U M; =V is initially satisfied is the lowest possible level for the given order n = |V| and degree s of the
i=0
graph. Given degree s, the largest number of vertices located on the i-th level of the equation is equal to:

Ci(s) =s(s — 1)1, (1)

Then, the minimum number of levels in the equation of a graph with the given conditions {n, s} for order
and degree respectively, can be found using the inequality:

ke—1

ke
1+SZ(5—1)’:_1<n§1+sZ(s—1)i_1. (2)
i=1 i=1

Remember that the definition of the diameter is the largest eccentricity of all vertices in a graph. Then
a graph will contain a minimal diameter if equation (2) is satisfied for all of its equations. In the case of
Qs above, with n = 8, s = 3, the diameter was equal to 3, which is greater than the value k., = 2 given by
equation (2) for a graph with 4 < n < 10 and s = 3. This means that constructing a graph with diameter
d(G) = 2 is less likely than constructing a Q3 cube with the same degree and order.

We should now turn our attention to the fact that the process of constructing a graph using this method
aims to not use its geometric representation, and so from here on out we will only portray the found graph
traditionally as a result of our method of construction.

And so, to generate a two level equation P>(v;) of a graph with n =8, s = 3, and diameter d = 2, all of
its vertices |V| = 8 must be placed among the two levels of the equation; let us number the vertices 0 to 7.
On the 0th level of the equation Py(vg), place vertex vg = 0; this is the root of the spanning tree which we
will use to construct our equation. On the 1st level, we place three arbitrarily chosen vertices (in this case
1, 2, 3). Since these graphs do not have multiple edges, the vertices of the 1st level cannot be repeated.

Equation (1) tells us that the second level of the equation must have 6 vertices: C3(3) = 6. There are
only 4 vertices available to use: 4, 5, 6, 7. Thus, each of these vertices can be arranged on level 2, under the
condition that some of them may be repeated and/or vertices from the previous level may be used in this
level, so that C2(3) = 6. Thus, P»(0) can be written:
pQ(O) _ 0{1{2,3,4,5,6,7}272{1,3,4,5,6,7}2)3{1,2,4,5,6,7}2}. (3)

Here the set {v;, vy, ..., v: }m is & potential subset of the neighborhood of the vertex which directly precedes
this subset in the given equation. The index m identifies the number of desired vertices in the subset. At
the start we include in such a subset every vertex which have fewer known neighbors than the degree s of
the graph. Thus we find every vertex of the graph except for 0, that is, the initial subset is {1,2,3,4,5,6, 7}.
Since no vertex contains itself in its neighborhood, the subsets are corrected in equation P5(0).

It was noted above that the set of vertices in the second level, M must contain the subset {4,5,6,7};
otherwise the eccentricity of vertex 0 is greater than the value derived from (2): e,(0) = k. = 2. The last
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two spaces in the second level can be filled with any two vertices from {1,2,3,4,5,6,7}. Notice also that the
total number of edges in our graph should be |E| = ns/2 = 12, but our equation (3) identifies only 3 edges.
Thus, the 9 unknown edges must be identified, and at most 6 of those can be identified by the second level of
the projection. This shows that two of the levels of the equation are incomplete if we desire a full equation,
and a 3rd level is necessary if we wish to describe the graph using a single equation and not a system of
equations.

From equation (3) and the lemma proved in part 1, it can be seen that if even one of the vertices of
level 1 is included in level 2, then the length of its minimal cycle (its girth) won’t be more than 3. But if
we use only vertices from {4,5,6,7} in level 2, then the girth of such a graph would be equal to 4. We will
demonstrate this by constructing the corresponding graphs, starting with girth 3. And so, to construct a
graph with g(G) = 3, we connect vertex v; = 1 with vertex vy = 2; the choice of these vertices is arbitrary.
This grants us:

Py(0) = 0{1{2‘{4,5,6,7}1}’2{1,{4,5,6,7}1}73{4‘5,6,7}2}'

Notice that the introduced adjacency between 2 vertices of level 1 takes up two of the six positions
of the 2nd level, and the remaining four positions are barely enough to fit the four vertices of the set:
{4,5,6,7} = Ma\{v1,v2} = V\(M; UMy). Thus, we leave only these vertices in the lists of potential subsets
of vertices in the 2nd level. Two of them must be adjacent to vertex 3, and one must be adjacent to each 1
and 2. The choice of adjacencies can be arbitrary, because vertices of the subset {4,5,6,7} are still isolated
and thus completely equivalent. Let us write down the known and arbitrarily chosen adjacencies in a list of
neighborhoods for each vertex of the graph under construction:

N(O) = {1a273}7 N(Q) - {0’ 175}7 N(4) = {17 {57677}2}a N(G) - {37 {475’7}2}7
N(Q1)=1{0,2,4}, N(@3)={0,6,7}, N(5)=1{2,{4,6,7}2}, N(7)={3,{4,5,6}2}.

The 2 level equation of the graph constructed in accordance to this list is:
P (O) 0{1{14}’2{1«5}73{5‘7}}
2(0) = .

It contains in itself all 8 vertices of the graph, but it is not full, because the set of vertices in the 2nd level
includes vertices with yet unknown adjacencies. The number of known edges has increased from 3 to 8, but
there are still 4 unknown. Let us add a third level to the equation:

Py(0) = 0{1{2{0,5},4{5,6,7}2}72{1{0,4},5{4,6,7}2)’3{6{4,5,7}2,7{4,5,6}2}}.

Using the list of neighborhoods given above, let us construct an equation of the graph with initial vertex
v = 1:

{5} 3(6.7}) (0{3} 5{4.6.7}2
o253 ¥ otof8hs } 4{5:6.7)2
Ps(1) = 1 b

As has already been noted, the diameter of the graph being constructed will be equal to the given diameter
if the eccentricity of any of the graph’s vertices is no greater than the given diameter. That is, if d(G) = d,
then all vertices of the graph must be split amongst no more than k = d levels of any v;-th equation

of the graph Pj(v;) : U M; =V, k < d. Thus, analyzing the equation P3(1) we notice that satisfying

this condition is pos&ble only if vertex 4 is adjacent to 6 and 7. We correct the list of adjacencies thus:
N(4) ={1,{5,6,7}2} = N(5) = {2, {},6,7}2}, which grants us the only possible solution:

N(0) = {1,2,3}, N(2) ={0,1,5}, N(4)={1,6,7}, N(6)={3,4,5},
N(1)={0,2,4}, N(3)=1{0,6,7}, N(5)={2,6,7}, N(7)={34,5}.
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101 As visual proof of this solution, below are given all the minimal full equations and the geometric repre-
102 sentation (fig. 2) of the found graph, built upon these adjacencies:

_ 0{1{2{5} {67}y ’2(1{4} 5{6:7}y ’3{6{4’5} 7{4.5} }}

P5(0)
{2{5}13{67}} 2{0{3},5{67}} 4(6{315},7{315}}
Ps(1) =110 ; ; }
{4} 3{6,7} {3} 4{6,7} {3,4} ,{3,4}
Py(2) = g0 T AT s
{112,4} 2{1,5}4 6{4{117},5{2‘7}} 7{4{1=6},5{2=6}}
P3(3) =31 ; . }
{023} 2{0,5}y 6{3{0’7}’5{2’7}} 7{3{0»6},5{2»6}}
Py(4) = 4{1 ; , }
{0{18) 1004}y ((5{0.T) 4{1.T}} _(5(0:6) 4(1.6}3
Py(5) = 5{2 , ; }
{0{112}Y7{415}} 4{1{02},7{3,5}} 5{2{0»1}77{374)}
Py(6) = 63 ; , }
(011:2} 6{457)  1{0.2} {35}y 12{0.1} 6(3.4},
Py(7) = 7{3 ) ; }

Figure 2: Regular graph withn =8, s =3, g =3

103 Let us now consider the graph constructed via this method that has the same given order n, degree s,
102 and diameter d, but a greater girth, that is, ¢ = 4. Naturally, 3-cycles will be excluded in this case, and
105 equation (3) becomes:

1{4,5,6,7} 5{4,5,6,7} _3{4,5,6.7}}

P5(0) = ot

11



196

197

198

Arbitrarily place the vertices from {4, 5,6, 7} into the second level of the equation. In this case, we make
vertex 1 adjacent to vertices 4 and 5, and vertex 2 with 6 and 7. Here is the equation after these changes,
as well as the list of neighborhoods for each vertex:

Py(0) = 0{1{4,5})2{6,7}’3{4,5,6,7}2}7
N(0) ={1,2,3}, N(1) ={0,4,5},
N(2)=1{0,6,7}, N(3)=1{0,{4,5,6,7}2},
N(4) = {1 {3,5,6,7}2}, N(5) ={1,{3,4,6,7}2},

The number of edges |Ej| assigned by the k-level equation Py(v;) of regular graph G(V, E) with degree s,

k
where k < e(v;), cannot be greater than s Y (s —1)"~!. Thus, a 2 level equation of a regular graph of degree
i=1
s = 3 can assign at most 9 edges from the total |E = 12|. The equation P»(0) contains within itself all 8
vertices of the graph, but identifies only 7 of its edges. Thus, for fullness of the equation, we would add an
extra level; in this case we will be using a system of equations, thus fullness of the equation is guaranteed
notwithstanding that the individual equations do not have this property and contain unknown edges. We
limit ourselves to 2-level equations, which is enough for an analysis of eccentricities of the initial vertices,
and of the girths of the corresponding subgraphs:

4,5} 5{6,7} 3{4,5,6, 7}2}

Py(0) = oft Py(1) = 1{0{2,3}74{3,5,6,7}275{3,4,5,7}2}’
Py(2) = 2{0{1,3},6{3,4,577}2,7{3,4,5,6}2}7 Py(3) = 3001 (45,6712
p2(4) 4{1{0 5},{3567}2} P2(5) 5{1{0 4}’{3467}2}
Py(6) = 6{2{0 7} {3,4,5 7}2} Py(7) = 7{2{0 6} (34,5 6}2}

From P5(0) it can be seen that the eccentricity of the initial vertex e(vg) will not be changed by any
combination of the potential adjacencies. Let’s consider the question of equality between the eccentricities
of all the vertices: Yv; € V, e(v;) = d(G) = 2. This condition can be satisfied by arranging all the vertices in
no more than 2 levels of any projection. Any smaller value for the diameter can not be used because of (2).
Let us also consider all the equations of the graph which ensure the necessary girth g(G): in any equation
in the system, the sum of the levels which contain the same vertex cannot be less than the girth. In this
case, g(G) = 4, and the vertices of the 1st level cannot be a part of the potential subsets of the 2nd level
and vice versa, because 1 + 2 = 3 < 4. We demonstrate this by removing the corresponding vertices from
our equations:

_ 1{0{213}74{3&6,7}2’5{3,5@6,7}2}7

Py(0) = {1+ 2007 gm0y Py(1)
Py(2) = {00 600 X2 7(8.4.5 &}z} Py(3) = 300 45.67)3).
Py(4) = 407386723, Py(5) = 51"V 3107
Py (6) = 627 345,102 Py(7) = 7120 (84541}

12



216

217

219

220

222

231

Let us correct the list of adjacencies as well by removing from it the “forbidden” vertices. (From here on
forward, all corrections will be made without physically scratching out the incorrect values):

N(0) = {1,2,3}, N (1) = {0,4,5},

N(2) = {0,6,7}, N(3) = {0,{4,5,6,7}5},
N(4) ={1,{3,5,6,7}2}, N(5)={1,{3,%,6,7}2},
N(6) ={2,{3,4,5,%}2}, N(7) ={2,{3,4,5,8}2}.

From all the “hanging” vertices in P»(0) (vertices 3 through 7), choose a vertex of the smallest level
(vertex 3). Connect it to one of the vertices from the subset of its potential neighbors: {4,5,6,7}2. The
choice in this case can be arbitrary, as all of these vertices are on level 2, and are at this point hanging (that
is, unconnected); this case is 4. Having connected vertices 3 and 4, correct once again the list of adjacencies:

N(O) = {]‘?253}ﬂ N(]-) = {07435}3 N(Q) = {07677}7
N(@3)=1{0,4,{5,6,7}1}, N(4)={1,3,{6,7}1}, N(5)={1,{3,6,7T}2},
N(6) ={2,{3,4,5}2},  N(7)={2,{3,4,5}2}.

And equations of the graph:

{1145} 2167} 304.(5,6, 7}1}}

P5(0) =0 (1) = {023} 4 (6710 5{367}2}
Py(2) = {0l 6100512 7(0002 ) Py(3) = 0{1'2}74{1’{6’7}1},{5,677}1}7
P2(4) _ 4{ {0,5}73{0,{9,5,7}1}7{677}1}, P2(5) _ 5{1{0 A4} (3.6 7}2}
Py(6) = 6{2{0 T {3,4 5}2} Py(7) = 7{2{0,6}7{374_’5}2}.

Notice that in equation P»(0), vertex 4 is located in two different subsets of the second level, derived from
vertices 1 and 3 in level 1! .Physically, this means that vertex 4 is connected to the initial vertex vy = 0
via two paths of equal length: §(0,4) = 2. It is clear that only one vertex in the subset {5,6,7}; will also
be duplicated at this level. It is then logical to extend this condition (let two vertices appear twice on the
2nd level) to the other equations of the graph. Then, vertex 3, already twice included in the second level
of P5(1) must be excluded from subset {3,6,7}2, derived from vertex 5. This is equivalent to forbidding a
connection between vertices 5 and 3, and instead inserting two edges, which connect vertex 5 to two vertices
in {6,7}2 = {6, 7}. Considering these changes, the list of adjacencies is now:

N(0) ={1,2,3}, N(1) ={0,4,5}, N(2) ={0,6,7},
N@B)=10,4,{6,7h}, N(4)={1,3,{6,7h}, N(5)={1,6,T},
N(6) ={2,{3,4}1,5}, N(7) ={2,{3,4}1,5}.

And the system of equations:

(1049 2067 3taco 7}1}}

Py(0) = Py(1) = 1{0{2,3},4{3,(6,7}}1’5{577}}
P2(2) 0{113}’6{314}115*7{3’4}1’5}} P2(3) 3{0{1 2} 4 {14671} r¢, 7}1}
P2(4) 4{1{0 -5} 310.{6.7}1} {6, 7}1} P2(5) _ 5{ {0’4},{6{243»4}1},7{2:{&4}1}},
Py(6) = 6{2{0'7}7{&4}175{1’7}}’ Py(7) = 20007 (3.4},,5000)

IThis is predetermined by the initial choice of pairing off the vertices in {4,5,6,7} into two subsets derived from vertices 1
and 2 in P2(0). In another ordering it would be possible (but not necessary) for the multiplicity of one of the vertices in the
set {4,5,6,7} to be 3, and that of the others to be 1. Accordingly, the choice of our system of equations with unknown edges
would be different.

13



232

Figure 3: Regular graph withn=8,s=3,¢9g=4

Notice the correspondence of the known vertices and the potential vertices of the neighborhoods A/ (6) and
N(7)} in the new list of adjacencies: N'(6) = N (7) = {2,{3,4}1,5}, which implies that either arrangement
of vertices will work, so add an edge connecting vertices 7 and 32. Having corrected the list of adjacencies
and the equations in accordance to this choice, we get the graph we were searching for (fig. 3); all the
adjacencies in that graph are identified in this list:

N(0)={1,2,3}, N(1)={0,4,5}, N(2)=1{0,6,7},
N(@3)={0,4,7}, N(4)={1,3,6}, N(5)={1,6,7},
N(6) = {27475}7 N(7) = {27335}

And the system of equations that corresponds to this list is:

P (0) 0{1{475)72{617}73{417}} P (1) 1{0{213}74{&5}75{57}}
2 = 3 2 = ;
P2(2) _ 2{0{1’3),6{4’5},7{3’5}} P2(3) _ 3{0{1«2}74{1‘0}77{15}}
P (4) 4{1{0’5},3{0’7},6{2‘5}} P (5) 5{1{0‘4},6{2’4},7{2’3}}

2 = ) 2 = ’
P (6) . 6{2{077},4{1-,3}75{117}} P (7) o 7{2{016}73{0,4}75{1,6}}

2 - 3 2 = .

Unlike the little information we get from the geometric representation, the construction of equations
which we have found clearly shows equality between the diameter and the eccentricities of every vertex of
the graph: every vertex of this graph is listed in exactly two levels in any of its equations.

A full description of this graph can also be given using one (any of those composing the system) equation
by growing it to its fullness. For example:

Pyd) = 400C SO 502 Ga0D 5003y

Let us wrap up the process of constructing graphs with a sample graph (fig. 4) of order n = 4, degree

s =3, and girth g = 5, which we find analogously. *

2This is not hard to prove: the addition into a system of equations of an edge, connecting vertices 3 and 6, identifies the
last unknown edge, corresponding to vertices 4 and 7.

3Notice that every graph found here happens to be Hamiltonian. This was unintentional, and so the corresponding demand
into the conditions of generalization was not hypothecated.
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Figure 4: Graph n =16, s=3,9g=5

1. From (2), we find the minimal possible number of levels in an equation Pj(v;) which includes every

vertex of the graph G(V, F). This grants the minimal diameter d(G).

In this case k = e(v;) = d(G) = 3) for each v;) € V. The girth of the graph, g(G) is no greater than
2d(G) — 1 — g(G) =5, is given for this example.

. Construct a k-level equation of the graph, having chosen as the initial any arbitrarily numbered vertex.

The value k is found using step 1. The number of vertices on the i-th level, where i < k, is C;(s), and
is determined using equation (1). The set of vertices on the k-th level is those vertices which complete
the set V' when combined with those in all the preceding levels. This can include subsets of potential
vertices, so that each level has the necessary Cj;(s) vertices. To construct these subsets, add those
vertices whose adjacencies are presently uncertain. When adding a vertex to a subset, remember that
the sum of the level number where the subset is located and the minimal level where the vertex can
be found must be less than or equal to the given girth.

In this example, the arbitrary initial vertex is 0. The last (3rd) level of the equation consists of six
known vertices, which with those in the previous levels makes n = 13. There are also six subsets of
potential vertices, which results in C5(3) = 12. The number of edges in this graph, |E| = ns/2 = 24,
but the equation given by the spanning tree determines only 15 of them, so the other 9 must be
identified via construction.

. Form the initial list of adjacencies between vertices. This includes known adjacencies as well as subsets

of potential neighbors.

. Using the list of adjacencies from step 3, and considering the girth of the graph, built the other

equations of the system. Make any corrections in the subsets of potential adjacencies for each newly
built equation, and keep track of the corresponding changes in the list of adjacencies and previous
equations.

. The desired equation will be found once the list of adjacencies between vertices does not contain any

subsets of potential neighbors. If after the construction of the last of the n equations has a subset of
potential adjacencies which corresponds exactly to the unknown edges in the graph, then an adjustment

15



308

must be made in one of the subsets, and then all the other equations must be corrected in accordance
to step 4. Notice that those substitutions that are incompatible with the given properties are also
incompatible with the system of equations, in that the cardinalities of subsets of potential adjacencies
become smaller than the number of vertices necessary to identify the corresponding adjacencies. If this
happens, return to the previous step and choose and alternative vertex from the subset of potential
adjacencies.

In the example, a step which does not contradict the given conditions is adding an edge between
vertices 4 and 15. It is necessary to repeat this step twice more, connecting vertices 6 and 10, and 5
and 13. That is, to construct the given regular graph, it was necessary to declare three adjacencies
which did not contrading the given conditions. This allowed for the 6 unknown edges to be placed.

Conclusion

Formally speaking, the core of the method proposed in this work is graph representation in parenthetical
form, as an equation. This text explained the basic technique of constructing such equations, and pointed
out an equation’s most useful properties. Equations for finding the minimal possible eccentricity of the initial
vertex, and the minimal value of levels in an equation of a graph with a given degree and order were given.
The analytical associatiations were demonstrated between these parameters and the diameter of the graph,
and between these parameters and the ultimate value for the girth of the graph.

The question of constructing a regular graph with a given order, degree, and girth is reduced to an
abstract method which does not depend on a geometrical representation, but instead builds an equation of
the graph with the corresponding parameters. The core equation contains in itself all the vertices of the
graph, some of which are portrayed in their unaltered state, and others in subsets of potential adjacencies,
which make it possible to choose various neighbors for those vertices which do not have all their adjacencies
identified. The choice of vertices to be included in the subset depends on the given properties corresponding
to the parameters of the graph. A proof was given for the method of excluding certain vertices from the
subsets of potential adjacencies, based on the location of the subset in the equation (which level number)
and the given girth of the graph.

The method of constructing such equations was illustrated by constructing two graphs of the same order
and degree, but with different girths. Arguments were provided for the substitutions made to solve the system
of equations. As a generalized conclusion on the process of constructing such an equation, an example was
given in the form of a graph with the same degree as previous examples, but with a larger order.

Thus, this work introduces an approach to determining a system of regular graphs with given properties,
which is not limited to the examples demonstrated here, which focused on generating regular graphs with
a minimal diameter. This method could instead find systems of graphs which: have a hamiltonian cycle or
chain, have a certain length of alternating noncrossing paths, etc. The use of this method to solve problems of
scaling systems, including irregular systems, also seems doable. Furthermore, developing analytical methods
of solving enumerated problems and introducing such methods into the theory and practice of building
fault-tolerant systems would increase the optimality, reactivity, and predictability of the latter.
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3. Select Line-Specific Commentary

L1 - Original text

L2 - Human translation

Comments

Haubonee pacnpocTpaHeHHbIH

MTOJIXO/ K PEIICHUIO 3TOM MTPOOIeMBI

COCTOUT B I€Hepaluy CIIy4anHbIX

ceTeil ¢ mocieayruen pexeKkiuen

HC OTBCUAOIIHMX 3aJaHHBIM

KpUTEpHUsAM BapuaHTOB. B kauectse

KpUTCPUECB IIPU 3TOM UCITIOJIB3YIOT

The most common method
for solving such problems is
generating 4 random
networks and rejecting
those which do not fit the
given criteria (diameter,
connectivity, clustering 5

Lines 3-5

L1 word count: 38

L2 word count: 29

I chose to combine the two
sentences into one, as the second
one states “As examples of such
criteria they use such things

2

Takue oOIIen3BeCTHBIE TIOKa3areny, | factors, etc.) as...
KaK JUaMeTp, CBA3HOCTD,

KO3(pPHUIMEHT KIIaCTEpU3ALNHU U T.

.

1. OCHOBHBIC ITOJIOKECHUS 1 Methodology Outline Line 21

Google translates this phrase as
“initial regulations™ (2/18/2018),
but “nmonmokenus’ can be defined
as “laying out” something, in
this case the facts, so I chose to
translate it as “outline”.

JUISL BEPIIMHBI U BEIMUKHA e(u) =
max u€V o(u, v)

for the vertex u, eccentricity
e(u) = max u€eV 26 o(u, v)

Line 26

“Bennunna” translates as “size”,
but his definition is describing
the eccentricity of a vertex.

Jlj1s moIMHOKeCcTBa BEPILIUH 1-r0
ypoBHA V, , HOPOKIEHHOTO

€IUHCTBEHHOM BepInHOU W 0-r0
YPOBHS, HOAMHOXECTBO V'~

Iw

COCTOMT U3 OJHOM BEPIIUHBL: V), =

Once more using the first
level of the equation, V, ,
as example, the subset of its
vertices is derived from the
single vertex w of the 0-th

Lines 46-48

I chose to add the starting
statement, as edits made the fact
that the 1st level is being
discussed lost. Melentiev also

w}. level (remember, subset often repeats a statement in math
V’,,, consists of one vertex: | after stating it verbally. To show
Vo= iw}). that this is not new information,
I put the math in parentheses
where needed.
MOILHOCTb cardinalities Line 56

“MormrHocTth” directly translates
to “power” or “potency”, which
could be mistakened for the
power of a graph. By context, it
is actually the cardinality.
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MHOXECTBO BEPIIIHH JIFOOOTO /-TO
YPOBHS IIPOEKIHU OObEINHSET B
ce0Oe MOIMHOXKECTBA. ..

the vertex set in any n-th
level of the equation unifies
in itself the subsets...

Lines 67, 68

“O6sequnsier” typically
translates as “connects”, but
since this is a group of subsets, |
chose “unifies”.

Jist BepuvH U3 V),

PacmoI0KEeHHBIX Ha YPOBHSX
0<i<=k

For vertices in V; on levels
0<i<=k

Lines 104, 105

“U3” translates directly as
“from”, but I chose “in” here, as
there is no movement “from” a
set.

B nononHeHue k npuBeIEHHBIM
BBIIII€ CBOICTBAM, UCIIOJIB3YEMbIM
npearaéMbiM B paboTe MoAX0/10M,
chopMynupyeMm cieayromniee
BCIIOMOI'aTeIbHOE YTBEPKACHHUE.

By combining the above
given properties and the
offered method we propose:

Line 112

Instead of saying “adding to the
above given properties the
offered method”, which is not
only lengthy, but is also clunky
in English, I combine the two. |
have also removed “cnenyroree
BCIIOMOTaTeIbHOE
yTBepKaeHHE”, or “the
following statement”, as it can
be assumed by the colon.

Consider a graph G(V, E)
with equation P(v,) where v,
is the initial vertex.

Line 115

This was a statement I added at
the beginning of the proof to
avoid referencing the names of
the graph, equation and vertex
after each time they are
mentioned.

BBEJIl CMEKHOCTb BEPIIUHEI 1 C
BepIIMHAMU 4 ¥ 5 ¥ BEPIIUHBI 2 C
BeplunHamu 6 u 7

we make vertex 1 adjacent
to vertices 4 and 5, and
vertex 2 with 6 and 7

Line 196, 197

Translating this segment word
for word would result in a very
long-winded statement: “we
introduce an adjacency between
vertex 1 and the vertices 4 and 5,
and between vertex 2 and
vertices 6 and 7”. Not only is it
too long, but the numerous
“and”s make it hard to follow.
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Conclusions

This project introduces Melentiev’s work to English speaking mathematicians. It begins by
summarizing the text to be translated. Then some linguistic terms are defined, as well as the basic
methodology of translation. Finally, the translation itself is presented, followed by some select
line-specific explanations of translation decisions.

From the list in section 3 it is clear that online translation leaves something to be desired. That
said, translating Artificial Intelligence is becoming ever more advanced. Consider, for example, the
“mHOXKecTBO” mentioned above. Although Google does not immediately recognize it as “set” on its own,
if entered in a sentence including other mathematical terms, Google’s software will translate the word
not as “a bunch of” but as “set”. Perhaps my research could motivate software developers to include
more context based algorithms, and to work with translators to develop categories of translations:
literary, technical, and so on.

This is a global world, and yet so much information remains inaccessible due to language
barriers. I hope that my project will begin to lower those barriers, by bringing information from one
language, one culture, to another, and will inspire future projects such as this one. Although translation
itself is a solitary work, the process requires communication: it is a multidisciplinary project, involving
linguists and scientists; furthermore, it is nothing without representatives of multiple cultures. I thank

Melentiev for granting me his work to bring across the world.
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