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Tide‐Storm Surge Interactions in Highly Altered
Estuaries: How Channel Deepening Increases
Surge Vulnerability
R. Familkhalili1 , S. A. Talke2 , and D. A. Jay1

1Department of Civil and Environmental Engineering, Portland State University, Portland, OR, USA, 2Department of
Civil and Environmental Engineering, California Polytechnic State University, San Luis Obispo, CA, USA

Abstract We develop idealized analytical and numerical models to study how storm surge amplitudes
vary within frictional, weakly convergent, nonreflective estuaries. Friction is treated using Chebyshev
polynomials. Storm surge is represented as the sum of two sinusoidal components, and a third constituent
represents the semidiurnal tide (D2). An empirical fit of storm surge shows that two sinusoidal
components adequately represent storm surge above a baseline value (R2 = 0.97). We find that the spatial
transformation of surge amplitudes depends on the depth of the estuary, and characteristics of the
surge wave including time scale, amplitude, asymmetry, and surge‐tide relative phase. Analytical model
results indicate that surge amplitude decays more slowly (larger e‐folding) in a deeper channel for all
surge time scales (12–72 hr). Deepening of an estuary results in larger surge amplitudes. Sensitivity
studies show that surges with larger primary amplitudes (or shorter time scales) damp faster than those
with smaller amplitudes (or larger time scales). Moreover, results imply that there is a location with
maximum sensitivity to altered depth, offshore surge amplitude, and time scale and that the location of
observed maximum change in surge amplitude along an estuary of simple form moves upstream when
depth is increased. Further, the relative phase of surge to tide and surge asymmetry can change the
spatial location of maximum change in surge. The largest change due to increased depth occurs for a
large surge with a short time scale. The results suggest that both sea level rise and channel deepening
may also alter surge amplitudes.

Plain Language Summary Many estuaries around the world are heavily altered from their
natural state. Wetlands have been reclaimed, and shipping channels widened and deepened to
accommodate large container ships. The effects on storm surge and flood risk are just beginning to be
explored. In this paper we employ a theoretical approach to understand how the characteristics of a storm
surge—such as how fast it is moving, how big it is, and whether it happens on flood or ebb tide—change how
it behaves in an estuary. Our results show that storm surge generally gets larger when channels are dredged
and deepened; the largest amplification is observed for fast‐moving storms with a short time scale, within
estuaries that are highly frictional. Other characteristics—such as the timing relative to the tide and the
shape of the estuary—also impact the amplitude and the amount of sensitivity to changing conditions. We
find that channel deepening effects are negligible at the coast and far upstream. In between, a region of
maximum sensitivity to dredging occurs. Thus, changes in flood risk due to channel deepening and sea level
rise can be spatially variable, even within a single estuary.

1. Introduction

As global sea level rises, there is increasing concern that increased depth may amplify tide amplitudes and
alter tidal phases at the estuary scale (Cai et al., 2012; Holleman & Stacey, 2014; Lee et al., 2017; Talke &
Jay, 2020). Similarly, there is a growing recognition that local bathymetric changes such as channel deepen-
ing can significantly alter tide, circulation, and transport patterns within estuaries (e.g., Chant et al., 2018;
Chernetsky et al., 2010; de Jonge et al., 2014; Jay et al., 2011; van Rijn et al., 2018). Since coastal storm surge
caused by wind occurs over a similar time scale and with similar amplitude as a tide wave, changes in estuary
bathymetry also affect surge magnitudes and flood risk (e.g., Orton et al., 2015; Talke et al., 2014). Most dra-
matically, a doubling of channel depth in the Cape Fear Estuary (NC) since 1880s resulted in a doubling of
tide range and a large (1.8 m) increase in the modeled surge due to the worst‐case scenario hurricane
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(Familkhalili & Talke, 2016). In the Hudson River, tides at Albany (NY) have approximately doubled since
1930 due to dredging (Ralston et al., 2019; Schureman, 1934) and were shown through modeling to produce
a significant increase in storm surge magnitudes (Ralston et al., 2019). On the other hand, the tide range in
New York harbor has changed only slightly since the midnineteenth century (Talke et al., 2014), and mod-
eling suggested that historical channel deepening only altered tide range within the harbor by 0.1 m (~7%)
(Ralston et al., 2019).

Hence, longwave amplitudes at some locations within estuaries appear to be quite sensitive to changing con-
ditions, while others seem relatively impervious to change. Since altered tide and storm surges have implica-
tions for flood hazard, a better understanding of how and why storm surge magnitudes vary within an
estuary has obvious practical importance. Here, we use a well‐known analytical approach that has pre-
viously been used for tides (e.g., Jay, 1991; Jay & Flinchem, 1997) and apply the tools and lessons of tide ana-
lysis to gain new insights into how and why storm surge magnitudes change within an estuary.

Storm surge is a meteorologically forced longwave generated by storm winds and interacts with storm waves
and astronomical tides in coastal regions to produce flood waters (e.g., McRobie et al., 2005; Wolf &
Flather, 2005). The magnitude and time scale of a storm surge within an estuary depend on the intensity,
size, and path of the storm (Orton et al., 2016; Peng et al., 2004; Rego & Li, 2010; Xia et al., 2008), the geo-
metric properties of the estuary (Familkhalili & Talke, 2016; Orton et al., 2015), and nonlinear frictional
interactions with other hydrodynamic processes, including river flow, astronomical tides, and wind waves
(Maskell et al., 2013). At the same time, the storm surge modifies the hydrodynamic processes with which
it interacts, for example, shifting the phase (Horsburgh & Wilson, 2007) and altering the amplitude (Arns
et al., 2017) of the tide wave. Quantifying such effects, however, remains challenging and is typically
assessed by simulating storm surge in a numerical model that is run with and without tides (e.g., Lyddon
et al., 2018; Shen et al., 2006). The difference between the modeled storm surge waves is then attributed
to nonlinear tide‐surge interaction. However, this approach cannot determine how much each tide (or
surge) wave has been altered.

We suggest that new insights can be gained into the behavior of surge in estuaries—and its nonlinear inter-
action with tides—by approximating its behavior using analytical models developed for tides. Tides and
surge have similar time scales, are longwaves described by the shallow‐water equations, and may, therefore,
be amenable to similar solution methodologies. Extensive studies have analytically investigated the influ-
ence of geometrical variations of estuaries (e.g., depth, cross‐sectional area, and convergence) on tidal pro-
pagation (e.g., Dronkers, 1964; Friedrichs & Aubrey, 1994; Godin, 1999; Jay, 1991; Kukulka & Jay, 2003;
Lanzoni & Seminara, 1998). Moreover, a subset of analytical models have investigated the interaction
between two or three tidal constituents or between tides and river flow (e.g., Giese & Jay, 1989;
Godin, 1999; Jay & Flinchem, 1997; Toffolon & Savenije, 2011). Here, we argue that insights into
tide‐surge interactions can be obtained by using an analytical model with three sinusoidal waves. Two of
the sinusoidal waves simulate the effects of surge and the third models the semidiurnal (D2) tidal frequency.

If surge can be approximated as the sum of sinusoidal waves, the tidal literature can guide analysis of surge
propagation within estuaries and help explain the effects of changing geometry (such as depth). Tidal theory
explains wave dynamics in estuaries as a balance between inertia (acceleration and deceleration effects),
amplification (due to the convergence), damping (due to bottom friction), and energy exchange between fre-
quencies. Tidal amplitudes decrease in the upstream direction when frictional effects dominate over the fun-
neling effect caused by decreasing width; by contrast, strong convergence can produce increasing amplitude
when friction is relatively weak. Therefore, changing the balance between bed friction, convergence, and
river flow helps determine whether tidal amplitudes reduce, increase, or remain constant along a convergent
estuary (e.g., Jay, 1991; Talke & Jay, 2020).

In this paper, we develop an analytical model of surge based on previous multiconstituent models (e.g.,
Buschman et al., 2009; Giese & Jay, 1989; Jay & Flinchem, 1997; Parker, 1991). We first use empirical data
to justify the use of two sinusoidal components to model surge effects and quantify the range of time scales
and amplitudes of surge that is typically observed in a representative coastal plain estuary on the U.S. East
Coast, the Delaware Bay. Since a significant portion of Delaware Bay is funnel shaped, and the increase in
tide magnitudes due to channel dredging is well established (DiLorenzo et al., 1993), our modeling approach
is well suited for understanding whether surge amplitudes have changed over time due to altered
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bathymetry. Next, we develop our analytical model by semilinearizing friction using the Godin (1991a, 1999)
approach, which involves using Chebyshev polynomials and trigonometric identities to derive terms with
combinations of frequencies. We employ a multisection approach and determine the friction term iteratively
to account for along‐channel variation of width and effective friction. To show that results are reasonable,
the analytical model is then validated against an idealized numerical model that is run using the same con-
figuration. The resulting analytical model is fast, simple, and enables the quick sampling of a large para-
meter space. We demonstrate the explanatory power of the model by showing how important parameters
—such as the estuary depth, the surge amplitude and time scale, and the relative phasing of surge with
the tide—affect the spatial damping (or amplification) of the surge wave.

2. Methods
2.1. Analytical Model

Computer simulations are widely used to model storm surge in specific coastal areas (e.g., Orton et al., 2012)
or in idealized geometry (e.g., Familkhalili & Talke, 2016), but analytical models are transparent, quick to
run, and enable the investigation of both individual parameters and their nonlinear interaction (e.g.,
Chernetsky et al., 2010). Using these models, the analytical effects of changing parameters (e.g., depth)
can be found for different types of systems and different boundary forcing.

Here we outline the theoretical basis of a three‐component wave model, closely following the approach of
Jay (1991) and Giese and Jay (1989). One‐dimensional longwave propagation along a channel in an idealized
estuary is described by the cross‐sectionally integrated equations for conservation of mass and momentum
(e.g., Jay, 1991):

∂Q
∂t|{z}

Local

acceleration

þ ∂
∂x

Q2

A

� �
|fflfflfflfflffl{zfflfflfflfflffl}
Convective

acceleration

þ gA
∂ξ
∂x|fflffl{zfflffl}

Pressure

gradient

þ bT|{z}
Friction

¼ 0 (1)

∂Q
∂x|{z}

Water

transport

þ b
∂ξ
∂t|{z}

Temporal water

surface elevation

¼ 0 (2)

where Q is cross‐sectionally integrated flow, t is time, x is the longitudinal coordinate measured in landward
direction (x = 0 at the mouth, see Figure 1), b is width, g is acceleration due to gravity, A is channel cross
section, ξ is elevation of the tide water level, and T is the bed stress divided by water density.
Cross‐sectionally integrated flow (Q) is equal to (QR+QT) (i.e., the summation of river flow QR, invariant
in time and space, and tidal transport QT(x,t)). The conceptual plan of the model of tidal wave is shown in
Figure 1. We consider a constant depth and assume that the width of the channel is an exponentially
decreasing function of the longitudinal coordinate x, which approximates a typical midlatitude coastal plain
estuary:

b xð Þ ¼ Bc þ B0−Bcð Þe − x
Leð Þ (3)

where B0is the width at the estuary mouth, Bc is a constant that models the river width in the landward part
of the domain, and Leis the convergence length scale (i.e., the length over which the width decreases by a
factor of e).

We assume that the tidal amplitude to depth ratio (ξh) is small and river flow (QR) is constant, since variability

from a storm‐driven river freshet typically occurs a day or more after the storm (e.g., Divoky et al., 2005),
depending on watershed characteristics. Subtracting the time derivative of the momentum equation (equa-
tion 1) from the spatial derivative of the continuity equation (equation 2), and using Q =QR+QT, results in a
wave equation that describes the wave propagation along a channel without tidal flats (Kukulka &
Jay, 2003):
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where h is the depth and UR is the river flow velocity. The nonlinear frictional interaction is represented by
T ¼ τ

ρ ¼ Cd uj ju, where the velocity u is the summation of river flow UR and the tidal flow UT, and Cdis the

drag coefficient. To compare the results of the analytical model with an idealized numerical model (see

section 2.2), the drag coefficient is converted to a Chezy coefficient Ch(m
1=2
s ) using Cd ¼ g

Ch
2

�
. Scaling shows

that convective acceleration is small or negligible in our smooth geometry. An analytical solution for equa-
tion 4 is possible after assuming a sinusoidal solution and linearizing the quadratic friction term (see the sup-
porting information for details).

Although the width of the continental shelf and the propagation speed, width, and storm‐track influence
storm surge time scale andmagnitudes (e.g., Orton et al., 2016), we neglect such complexity. Instead, we con-
sider coastal‐generated surge as a boundary condition and investigate how surge behaves in the estuary,
once generated. We also neglect the effect of Coriolis acceleration and other factors that produce
cross‐channel tidal variability, since empirical and modeling observations (e.g., in Delaware Bay; see Lee
et al., 2017) show that cross‐sectional tidal amplitude variation is small in large estuaries and negligible in
the narrow (<~10 km) reaches we consider. Furthermore, we assume no overland flooding and consider that
tidal transport is one dimensional. Such additional processes are left for future study.
2.1.1. Modeling the Frictional Term
We treat the nonlinear bed stress term following the Godin (1991a, 1991b, 1999) approach, in which the fric-
tional term, u|u|, is represented analytically with Chebyshev polynomials (Dronkers, 1964). The expansion is
expressed as follows:

u uj j
U2

xð Þ
≈Au

0 þ Bu
03 þ Cu

05 þ … (5)

whereU(x) is the maximum value of the current at point x (i.e., the sum of the amplitudes of all waves) and u′

is a nondimensionalized velocity that is defined as u
U xð Þj j (Doodson, 1956; Godin, 1991a, 1991b). For a

three‐component model with river flow, we first assume a solution of the form (see also the supporting
information):

u′ ¼ u′0 þ u′1cos ω1t þ ϕ1ð Þ þ u′2cos ω2t þ ϕ2ð Þ þ u′3cos ω3t þ ϕ3ð Þ (6)

where u′0; u
′

1 , u
′

2, and u′3 are dimensionless velocity amplitudes, ω1, ω2, and ω3are frequencies, and ϕ1, ϕ2,
and ϕ3 are phases. We substitute equation 6 into the expansion Au′+Bu′3, which results in an expansion

Figure 1. The conceptual plan view and cross‐section area of the idealized model used in the study.
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with 24 friction terms. We then simplified by applying trigonometric iden-
tities based on the Chebyshev expansion (e.g., cos3x ¼ 1

4 3cosx þ cos3xð Þ;
see the supporting information for a full list and the solution). The result-
ing expansion is a linear sum of sine waves, which includes terms with the
original forcing frequencies but also additional terms that contain higher
harmonics (overtides). A combination of the first (u′) and third (u′3)
expansion terms is typically sufficient to obtain an accurate approxima-
tion (Godin, 1991a, 1999; Figure 2), and we use this approach here. As
an example, Figure 2 shows that the combination of three tidal harmonics
at the diurnal, semidiurnal, and quarter diurnal frequencies (D1,D2,
and D4) produces an asymmetric bed stress u|u| over a tidal period (blue
dashed line) and is well approximated by Chebyshev polynomials (red
line). Note that u|u| ((m/s)2), which is the square of u (m/s, green line),
retains the direction of stress.

For the simple case that u′0 = u′2 = u′3 = 0, we show in the supporting
information that the semilinearization of bed stress produces a harmo-
nic at 3 times the frequency of the original wave; for example, the stan-
dard M2 tide wave produces an M6 harmonic. When a mean flow is
present, the M4 harmonic is produced from M2. When u is a function

of two, three, or more sinusoidal constituents, the same expansion is used and leads to many additional
overtides (harmonics) with frequencies that are sums and differences of the parent (driving) frequencies.
The amount of energy transferred to higher harmonics controls the damping of constituents within a
domain; the more that energy is transferred to overtides, the larger the amount of energy loss to the par-
ent wave. As we show later, the amount of energy loss (i.e., the damping in the estuary) is strongly influ-
enced by parameters such as depth. The nonlinear frictional term in equation 1, (u|u|), has been treated
in a quasi‐linear manner that preserves the harmonic structure of the bed stress, enabling the develop-
ment of analytical or semianalytical solutions, given appropriate boundary conditions and geometry (see,
e.g., Chernetsky et al., 2010).

The novel aspect of our quasi‐linear analytical model is that we represent storm surge as the summation of
two sinusoidal waves while representing tidal forcing with an additional sinusoid. Hence, our approach is
primarily valid in locations with primarily semidiurnal or diurnal forcing (e.g., the U.S. East Coast and U.
S. Gulf Coast, respectively). In section 2.1.3 we investigate the validity of representing storm surge as the
sum of a primary sinusoid (SuPri) and a smaller, typically higher frequency harmonic (SuSec) (section
2.1.3). Hereafter, we employ the notation Su to denote a surge component.
2.1.2. Multisegment Approach
Our method described above is often applied by choosing a representative velocity scale that best approxi-
mates the range of velocity amplitudes found within the entire domain. A better approach, which takes into
account the spatial variation in the representative velocity scale, is to split the model domain into multiple
segments (Dronkers, 1964). Here, we divide up the estuary into 25 segments, where width and depth are esti-
mated by mathematical functions (e.g., constant depth and exponential width) (e.g., Jay, 1991; Prandle &
Rahman, 1980). This approach effectively divides the model domain into N = 25 linear problems, with 2N
boundary conditions. At the seaward boundary, we apply three sinusoids that represent the amplitude
and phase of tides and surge, while at the landward boundary we apply a no‐reflection condition. A constant
discharge of ur = 0 is specified at the landward boundary; hence, we investigate the often‐observed situation
in which river flow exerts a small or negligible influence on estuarine water levels during storm events,
because the flood hydrograph often occurs many days after a storm surge (e.g., Familkhalili &
Talke, 2016; Orton et al., 2012; Ralston et al., 2013; Ross et al., 2017). We leave themore complex case of com-
pound flooding and the effects of river slope to further study. The 2(N − 1) internal boundary conditions are
obtained implicitly from the solution from neighboring segments or from the applied boundary condition
(outer segment). This approach allows the reflection caused by the effect of changing width on wave celerity
to form in the system. To solve the system of 2N linear equations, we apply a Gaussian‐elimination technique
in which the initial value for tidal current (uT(x)) and frictional term is estimated at each segment. Time is
eliminated as an independent variable by the assumption of sinusoidal wave solutions. Substituting a

Figure 2. Example of an approximation to u|u| by Chebyshev polynomials
for the case of three sinusoidal components (6, 12, and 24 hr period), that
is, u(x,t) = u ′ =0.3cos(ωt) + 0.5cos(2ωt) + 0.2cos(4ωt), U(x) = 1. The green
line represents the velocity u (m/s). The Chebyshev approximation (red line)
well represents the square of the velocity, u|u| (dashed blue line).
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sinusoidal solution (Q(x,t) = Re(M(x)e
iωt); see Jay, 1991) into the wave equa-

tion (equation 4) produces a second‐order ordinary differential equation
that is independent of time (see equation (S11) in the supporting informa-
tion). This is used, however, to represent a nonstationary situation in
which amplitudes and phases may vary in time under the assumption that
this variation occurs on a time scale longer than a tidal cycle. The tidal
flow and wave amplitude are matched at the boundaries of N segments
(Gaussian elimination). An iterative solution approach is used to match
the modeled segment velocities with the estimated scale velocity in the
friction term for each segment. Wave elevations (ξ(x)) and currents
(QT(x)) are calculated repeatedly until successive results do not vary by
more than one percent.
2.1.3. Decomposing the Surge Signal
A primary assumption used in our analytical model is that storm surge
can be decomposed into and represented by a limited number of sinusoi-
dal waves.We test whether this is possible by fitting two and three sinusoi-
dal waves with variable amplitude, frequency, and phase to measured
surge waves at Lewes, DE (NOAA Station ID 8557380: 1936–2018). This
station is chosen because of its location at the mouth of the Delaware
River Estuary, the type of coastal plain, convergent estuary that is the
focus of this study (see, e.g., DiLorenzo et al., 1993; Lee et al., 2017; Ross
et al., 2017). We define surge to be the residual that is left after removing

annual mean sea level and the predicted tide (using t‐tide; see Leffler & Jay, 2009; Pawlowicz et al., 2002) out
of the measured hourly water level. To ensure event independence, we required that surge events be at least
4 days apart. Because the tidal propagation speed is altered by the higher water levels during a storm, the
actual astronomical tide arrives slightly before the predicted tide, potentially resulting in a calculated surge
wave that contains a residual tide‐signal (Horsburgh &Wilson, 2007). While unavoidable in this type of ana-
lysis, our choice of a coastal station minimizes this signal, since the proportional depth changes on the con-
tinental shelf are relatively small. As shown below, most of fitted surge waves are not at the D2 frequency,
suggesting that any residual tide energy does not generally dominate our surge signal.

Since surge is a nonrepeating wave, some approximations regarding the processing are unavoidable. Here,
we limit ourselves to storm surge waves with amplitudes >0.5 m and fit sinusoids to the portion of the wave
that exceeds a threshold of 0.3 m (see Figure 3). We find that this threshold excludes most non‐storm‐related
water level fluctuations, while retaining sufficient data to produce a statistically significant fit. Next, a non-
linear least squares fit is used to estimate the terms in the following equation:

Su ¼ C1 þ SuPriCos ωPrit þ ϕPrið Þ þ SuSecCos ωSect þ ϕSecð Þ (7)

where Su is the surge amplitude,ω is the frequency of the surge wave and is inversely related to time scale T (
ω ¼ 2π

T ), ϕ is the phase, and C1 is an arbitrary offset that we find is ~0.45 m on average, of which 0.3 m is the

arbitrary threshold. The primary and secondary waves are denoted by the pri and sec subscripts, respectively.
Because seven parameters are being estimated, we require that a minimum of 10 points is fit to ensure sta-
tistical validity. A third sinusoidal wave with different frequency, phase, and amplitude was not found to sig-
nificantly improve the fit to data (see the supporting information) and is not included here. Only statistically
significant fits with R2 > 0.85 are retained for our analysis. Of 453 surge events that were > 0.5 m from
between 1936 and 2018, we are able to fit 78% with a two‐wave sine model at a statistically significant level
with an average root‐mean‐square error of 0.045 m and an average R2of 0.91.

An example fit using two sinusoidal waves is shown in Figure 3. As shown, the primary sinusoid (blue line)
approximates the amplitude and time scale of the surge, while the secondary sinusoid represents much of the
higher frequency variability. Fitting a third sinusoid to this particular surge (not shown) results in a slightly
better fit (correlation of R2 = 0.98 vs. R2 = 0.97 and smaller root‐mean‐square error of 0.03 vs. 0.04 m); how-
ever, fitting two waves is still able to approximate the time scale and amplitude of an event. We note that the
fits are only valid for the time period in which surges are over the threshold value of 0.3 m.

Figure 3. Decomposition of surge into different sinusoidal waves. Red cir-
cles represent the measured storm surge. The blue line is the one sine
wave fit (SuPri), and the green line is a two sine wave fit and is the sum of
SuPri and SuSec. The black dashed line shows the 0.3 m threshold. Here, the
periods of SuPri and SuSec are 22.6 and 10.9 hr, respectively.
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Using the statistically significant fits (R2 > 0.85), we extract important
characteristics of storm surge including its typical amplitude, time scale
(wave frequency), and timing relative to tides (Figures 4 and 5). These sta-
tistics are then used to help define the parameter space that we test with
our analytical model (see Table 1). Results show that the time period of
the primary surge wave ranges from 8 to 89 hr (Figure 4), that is, from a
time scale that is comparable to the dominant M2 tidal period of
12.42 hr to one that is >6 times larger (D1/3) (Figure 4). The most common
time scale (the mode) is similar to the semidiurnal tide (Figure 4); approxi-
mately ~60% of surge events have periods from 1–3 times the M2 period
(average surge period is ~29.2 hr). The average period of the secondary
surge wave, SuSec = 16.1 hr, is roughly one half the primary period
(Figure 4). The distribution of time periods is asymmetric, however, and
the median time scale for the primary and secondary surge waves (23.6
and 12.2 hr) is shorter than the average time scale. Analysis further sug-

gests that the ratio of the primary to secondary surge amplitude ( γ

¼ SuPri
�
SuSec

) ranges from 0.8 to 9.5, with a mean value of 2 (Figure 5a).

Thus, the primary surge wave is generally larger than the secondary wave.

Similarly, the time scale of the primary sine wave is generally larger than
the secondary wave, with 80% of secondary waves having a period that
was between 1/2 and 1/7 the time scale of the primary wave (Figure 5b).
Interestingly, the most common ratio—that is, the mode—between the

primary and secondary surge period is two. Hence, the plurality of surge waves follow a pattern also seen
for tides, that is, of a primary wave (e.g.,M2), which is linked to a smaller wave (M4) of exactly twice its fre-
quency, probably through the generation of overtides. Borrowing from the tidal literature (e.g., Chernetsky

Figure 4. The probability distribution of the surge time scalesTpri ¼ 2π
ωpri

, and
Tsec ¼ 2π

ωsec
, obtained by fitting equation 7 to hourly storm surge records from

Lewes, DE (Station ID 8557380: 1936–2018). The bin width is 2 hr. The
semidiurnal D2 (2 cycles per day) to D1/3 (one third cycle per day) time
scales are labeled at the top of graph.

Figure 5. Probability distribution of (a) ratio of primary ( SuPri) and secondary ( Susec) surge wave amplitude; (b) ratio
of SuPri and Susec time periods, (c) relative phase of SuPri and Susec, and (d) ratio of SuPri amplitude to M2 amplitude.
Sinusoidal surge components defined in equation 3. Data as in Figure 4.
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et al., 2010; Friedrichs & Aubrey, 1988), we therefore define a relative phase between the primary surge (fre-
quency ω) and a secondary surge (frequency 2ω) as (2ϕSuPri−ϕSuSec Þ. The more general formula to calculate

the relative phase is (αϕLower freq. − ϕHigherfreq.), where α is the ratio of ( ωHigherfreq: =ωLowerfreq:
). Therefore,

Figure 5c represents the relative phase of primary and secondary surge wave by subtracting the higher fre-
quency from the lower. As described in the tidal literature (e.g., Friedrichs & Aubrey, 1988), the value of the
relative phase determines whether the wave is slow rise (i.e., ebb dominant with a long flood and a short ebb;
largest for relative phase = 270°) or fast rise (short flood and long ebb; largest for relative phase = 90°).
Results for surge (Figure 5c) show that the relative phase of surge waves varies between 0 and 360, that is,
that storm surge can be either fast rise (0–180) or slow rise (180–360). However, close inspection shows a
marked preference for relative phases between 0 and 180, which represents a symmetric wave (Figure 5c).
We use this result in our analytical modeling and test the most common conditions—symmetrical, flood
dominant, and ebb dominant surge waves in which the relative phase is set to 0°, 90°, and 270°, respectively,
and the primary surge frequency is one half the secondary frequency.

The parameter space of our three‐sinusoid model (Table 1) differs from traditional 3‐tide models in several
important ways: (1) the time scale of surge is not constrained to tidal bands (Figure 4) and (2)
theM2 amplitude is not necessarily the dominant amplitude. Figure 5d shows that ~60% of the surge waves
in Lewes (DE) have an amplitude greater than M2 = 0.6 m, with 5% more than twice as large. As shown in
the tidal literature (e.g., Godin & Gutierrez, 1986; Jay & Flinchem, 1997), the dominant tidal constituent
typically influences a smaller constituent more than vice versa; for example, M2 produces more damping
in the S2 wave than the other way around. Hence, the ratio of surge to tide amplitude likely influences
the pattern of damping and constituent attenuation within an estuary. The frequency of the wave matters
as well, since lower frequency waves exhibit less damping; hence, the wide range of surge time scales
becomes an important consideration (see section 3). To conclude, Figures 4 and 5 help define a parameter
space that we use to model surge ( SuPri and SuSec) and tides (see Table 1). We consider SuPri over a range
of 12–72 hr and SuSec over a range of 6–36 hr, with the time scale of SuSec always half of SuPri . We further

vary the amplitude ratio of SuPri to SuSec thru a value of 2–12 and test relative phase ϕSuPri−ϕSuSec

� �
of 0°, 90°,

and 270° for symmetric, fast‐rise, and slow‐rise surge, respectively.

2.2. Numerical Model

The multisegment model described in section 2.1 is validated against a depth‐averaged idealized Delft‐3D
(Booij et al., 1999) numerical model that is similar to the one employed in Familkhalili and Talke (2016).
The width profile in equation 3 is used, and represents a weakly convergent estuary
(B0 = 5 km, Le = 80 km, Bc = 400 m). The domain is extended to river kilometer (Rkm) 300, to allow tides

to completely damp and eliminate reflections at the upstream boundary. A Chezy coefficient of 25 (m
1=2
s )

and a depth of 5 m is used. This parameter space corresponds to strongly dissipative and weakly convergent
estuaries (Lanzoni & Seminara, 1998). This simplified geometry, while commonly used (Chernetsky
et al., 2010; DiLorenzo et al., 1993; Friedrichs & Aubrey, 1994), ignores the width expansion often observed
(looking upstream) in the outer portion of estuaries and the effect of large intertidal and subtidal flats.
Hence, the model results are most applicable to the exponentially convergent portion of estuaries

Table 1
Parameter Space Used in Modeling, (B0 = 5 km, Le = 80 km, Bc = 400 m)

Depth (m) 5, 7, 10, 15, 20
SuPri Amp. (m) 0.5, 1, 2, 3
SuPri Time Scale (hr), SuSec Time Scale (hr) (12, 6) (24, 12) (48, 24) (72, 36)
SuSec Amp. (m) 0.25
D2 Time Scale (hr) 12
D2 Amp. (m) 0.5

Relative phase ϕSuPri−ϕSuSec Degð Þ 0 (symmetric surge) 90 (fast rise surge) 270 (slow rise surge)

Relative phase of D2 and SuPri (Deg) 0 (surge happens at high water) 90 (surge happens at midtide)
180 (surge happens at low water)

Note. Each of the parameters is varied “one at a time”, leading to hundreds of scenarios.
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upstream of an outer bay. For testing purposes, we force both the numerical and semianalytical model by
the K1, M2, and M3 tidal constituents at the seaward boundary and employ a spatially constant bottom
friction coefficient. We run the model for 40 days to account for start‐up time and include K1, M2, and
M3 cycles. The results of numerical modeling are analyzed using harmonic analysis (e.g., Leffler &
Jay, 2009).

2.3. Model Calibration and Validation

We validate the performance of our semianalytical tide‐surge model (section 2.1) against other analytical
models of tides (e.g., Jay, 1991; Toffolon & Savenije, 2011) and an idealized Delft‐3D numerical model
(section 2.2). Because the large number of terms (24 terms) in our expansion for friction increases the
probability of introducing a mathematical or programming error, we first check that our analytical tide
model can reproduce the results of simpler, published one‐constituent models and agrees well with the
Delft‐3D model. Two types of analytical model are tested—the simple single‐segment model and a
multisegment model in which the domain is split into 25 segments. As described in section 2.1.2, the use
of multiple segments enables a spatially variable velocity scale (Ux), which improves the local validity of
the Chebyshev expansion.

Using only one constituent (M2) with no river flow, our analytical model agrees well with the Delft‐3D
model, the Jay (1991) approach, and the Toffolon and Savenije (2011) solution (see Figure 6a). In each case,
the multisection model more closely resembles the numerical model than the single section model, demon-
strating that this approach improves the observed spatial variability (Figure 6a). Overall, the one‐constituent
test validates our derivation of geometric and frictional effects in a one tide model but does not yet validate
nonlinear interactions between terms. To validate the three‐wave model, we next compare our analytical
approach to the Delft‐3D model with identical geometry and boundary conditions (Figure 6b).

Figure 6b shows the spatial evolution of the M2wave in our three‐wave model under forcing by the K1, M2,
and M3 constituents at the open ocean boundary at Rkm 0 (see solid red line; note river flow is neglected).
The amplitudes of K1and M3 are made artificially large, so that the test model more closely replicates our
parameter space (the M2tide plus two sinusoids for surge); the coastal amplitudes are 0.25, 0.5, and 0.25 m
for K1, M2, and M3, respectively. As shown, our three‐wave analytical and numerical models closely agree,
particularly for the multisegment model, and validate our approach. Interestingly, the one‐constituent mod-
els (Jay91 and T&S2011), replotted in Figure 6b from Figure 6a, overestimate theM2 amplitude. Effectively,
adding more constituents increases the frictional damping ofM2, resulting in a spatially variable decrease in
M2amplitude that is maximal around Rkm 50. We show below that this same process of constituent

Figure 6. Evolution of dominant tidal constituent (M2) in a 5 m deep convergent estuary for (a) single tide models (ana-
lytical and numerical models) and (b) three tides models (Model MS and Delft3D) and single tide models (T&S2011 MS
and Jay91 MS) with no river flow. A U.S. East Coast estuary coordinate system in which tides move from right (the ocean/
estuary boundary at Rkm 0) to left is used. SS means single segment, and MS refers to multisegment model.
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interaction and enhanced damping will also occur when surge is approximated by a tide constituent, to a
degree that is related to the relative amplitude of the surge wave and M2.

2.4. Parameter Space

We use our validated, semianalytical, three‐sinusoid model to investigate the effects of estuary depth, surge
wave time scale, amplitude, and relative phase on the spatial evolution of water levels in estuaries. We apply
a semidiurnal (D2) wave with a period of 12 hr and amplitude of 0.5 m to represent typical tidal forcing (we
hereafter refer to tidal bands such as D2, rather than individual tidal constituents; this makes our analysis
more general and highlights that the tidal forcing which interacts with storm surge is the sum of M2, S2,
N2, and many other (minor) constituents). A convergence length of 80 km is used, and the effects of river
flow are neglected. The secondary surge amplitude (SuSec) of 0.25 m is held constant to model the primary
to secondary surge amplitude ranges from Figure 5a. The parameters in Table 1 are varied individually, with
other parameters held constant. The semianalytical solution takes ~0.25 min on a desktop computer,
enabling the parameter space to be quickly tested.

The parameters in Table 1 are presented in dimensional form, for ease of interpreting results relative to real
estuaries and tide/surge scenarios. However, we note that varying each of these parameters also traces
out a nondimensional parameter space; in our figures we use both dimensional and nondimensional
parameters, where appropriate. Independent nondimensional variables include the ratio of surge

amplitude to D2 tide (γ ¼ Amp:SuPri
Amp:D2

), the ratio of SuPri time scale to D2 period (Ω ¼ Period SuPri
Period D2

), and the friction

scale ( ψ ¼ Cdξω2L3e
gh3

) (see the supporting information for more information). Parameter ψ suggests that

increasing depth and wave time scale (1 ω= ), or decreasing amplitude ξ, has a similar effect as decreasing
the drag coefficient (see section 3). Other parameters that are varied include the surge/surge amplitude

ratio Amp:SuPri
Amp:SuSec

� 	
, the tide amplitude to channel depth ratio Tide Amp:

Channel Depth

� 	
ratio, the relative phase of storm

surge (which drives the surge asymmetry), and the relative phase of surge and tide (which drives the
timing of surge relative to high water/low water). For plotting purposes, we also define the following

nondimensional numbers: a normalized amplitude δ ¼ Amp:SuPri
Max: Surge Amp:

� 	
and a dimensionless coordinate

system ( L* = x/Le), where L* is normalized length.

3. Results

The parameter space described above (section 2.4) is used to investigate the amplitude of the primary
surge component (SuPri) along the channel for different conditions (Table 1). This approximates the
first‐order behavior of the surge wave (we leave detailed analysis of the smaller secondary surge compo-
nent and harmonics generated by wave interaction to future study; see the supporting information for
full model and additional information). Figure 7 shows the spatial pattern of damping that occurs when
the amplitude of a surge wave with a time scale of 12 hr is varied from 0.5 to 3 m (γ=1 to 6). These
results reflect conditions in which the frictional interaction is likely to be largest: a symmetric surge with
a phase lag of 0° relative to the D2wave (such that the surge comes in with the flood tide and leaves with
the ebb).

For the chosen parameters, the spatial progression in surge amplitude SuPri closely follows the pattern of the
D2 tide between the ocean (L*=0) and the landward boundary (Figure 7). The e‐folding scale for damping of
surge amplitudes ranges from 0.4L*to 0.25L* with the smallest values (quickest damping) occurring for the
largest amplitude wave (Figure 7b). (Note that an e‐folding scale is the length required to decay to 1/e of

the boundary value.) The slope of the amplitude decay (dδ dL*= ) progressively decreases in the landward direc-
tion (Figure 7b) for all surge amplitudes, but the rate of decay remains largest (and the ratio of amplitude to
the boundary amplitude is smallest) for the largest surge (γ=6). Physically, the larger velocity in a big surge
event induces more damping, and the rate of surge amplitude reduction within the estuary increases for lar-
ger surge (Figure 7c). As a result, about 75% of modeled damping for 0.5 m surge occurs seaward of 0.5L* but
~90% for the largest surge (γ = 6). As surge‐induced damping increases, the relative importance of astro-
nomic forcing on energy dissipation is reduced.
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The influence of storm surge period on nonlinear tide‐surge interaction is tested by modeling a set of surge
primary waves with periods from 12 hr to 72 hr (Table 1 Figure 8). As theory predicts, increasing the time
scale (decreasing the frequency) of a surge wave produces a progressively lower rate of spatial decay and
therefore larger upstream amplitudes (Figure 8a). For the same boundary amplitude, in other words,
long‐period surges produce the largest estuary and fluvial amplitudes. The largest difference in amplitude
between a 12 hr (Ω=1) and 72 hr (Ω=6) surge occurs at ~0.5L*, that is, at roughly half the e‐folding length
scale for geometric convergence and similar to the e‐folding length scale for damping (Figure 8a). Hence,
there exists in the estuary a region which is muchmore vulnerable to flooding from a long‐period surge than
a short‐period surge, everything else being equal. These considerations have implications for flood hazard
(see also Orton et al., 2015).

Similarly, the amplitude ratio of the primary surge component to D2 (set equal to 1 at the ocean boundary in
Figure 8) increases in the upstream direction for a slowmoving storm (Figure 8b). Specifically, the 72 hr time
scale surge becomesmore than a factor of 4 larger thanM2 between the normalized length L*= 0 and L*= 1.5,
while smaller time scale surges (48 and 24 hr time scale) amplify by 3.4 and 1.8 ratio relative to D2 tide
(Figure 8b). The physical reason for the slower decay of long‐period surges is suggested by the friction num-
ber ψ (see Table 2) but also found by examining our solution, which shows that longer time scale surges have
a lower velocity, leading to less frictional damping. For example, the ratio of SuPri velocity to D2 velocity at
the ocean boundary (L*= 0) ranges from 1 to 0.44 for Ω =1 to 6, respectively.

Idealized surge‐tide model runs also suggest that the primary surge amplitude decays less quickly in a deeper
channel as it moves upstream (Figure 9), with an effect that depends on surge time scale. Hence, a 12 hr
surge wave in a 5 m deep estuary under default parameters (Table 1) decays to 1/e its boundary value at
L* = 0.35; by contrast, a long time scale surge wave with a 72 hr time scale decays to 1/e at L* = 0.85 (see
dotted lines in Figures 9a and 9d). Effectively, the long time scale wave propagates twice as far. For larger
depth, the e‐folding scale for damping (shown by dotted line) moves upstream (to the left). The e‐folding
scale for a 20 m depth is 1.40 L* and > 2.5 L* for the 12 and 72 hr case, respectively. Therefore, fast‐pulse
storms remain pinned closer to the coast, while slow period waves can propagate far upstream (e.g.,
Ralston et al., 2019 modeled hurricane Sandy effects, a slow storm, more than 250 km from the coast).
Effectively, the larger friction in a fast surge wave (ψ = 1 to 70 in Figure 9a) damps the wave more. The

Figure 7. Spatial variation of SuPri amplitude along an idealized estuary for four different surge amplitudes at the ocean
boundary (right‐hand side): (a) surge amplitude (m), (b) normalized amplitudeδ ¼ Amp:SuPri

Max: surge Amp:, and (c) the ratio of surge

amplitudes relative overD2 tidal amplitude, that is,γ ¼ Amp:SuPri
Amp: D2

¼1, 2, 4, and 6. The x axis is the estuary length normalized

by the convergence length scale; that is, L* = x/Le.
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more common 24 and 48 hr times scales (see Figure 4) show an intermediate behavior (Figure 9). Since
channel deepening reduces the hydraulic drag on incoming longwaves (tides and surge; effectively, a
decreased friction parameter), Figure 9 is consistent with the hypothesis that both tides and storm surge
can increase due to channel deepening over decadal and secular time scales (e.g., Talke et al., 2014;
Winterwerp et al., 2013). Moreover, as depth increases, surge propagates further upstream. As an
example, Figure 9a shows that a 12 hr surge wave with Ω = 1 decays to 50% of its boundary value by
L*50 = 0.23 for ψ = 70 (5 m depth) but at L*50 = 1 for ψ = 1 (20 m depth).

The increased intrusion of surge as depth is increased is shown by the contours in Figure 9, which all slant
left. The amount of leftward tilt indicates the degree of sensitivity of surge to increased depth. When con-
tours are nearly vertical, a change in depth h has little effect on surge magnitudes. Near the ocean boundary
(L*= 0), modeled storm surge (and tidal) amplitudes are little affected by channel deepening, primarily
because boundary forcing is held constant and changes aggregate in the upstream direction (note that chan-
ging tidal amplitudes in an estuary can theoretically affect continental shelf or basin tides (e.g., Arbic
et al., 2009; Godin, 1993); however, trends in coastal tidal amplitudes are generally much smaller than
within estuaries (see review by Talke & Jay, 2020), and we neglect this factor). By contrast, the largest per-
centage change in amplitude is observed far upstream (L* > 1) where the contours are most tilted. However,

because magnitudes are small, the absolute change is small.

Figure 9 therefore shows that the increase in surge amplitude for an incre-
mental increase in depth is a function of location. At L* = 0 there is no
change, since we assume that continental shelf tides are stationary.
Within the estuary, the sensitivity at a given L* to a depth change h is
given by the width of the contours; a small contour width in the y direc-
tion indicates a large increase in magnitude as depth is increased.
Careful examination shows that the contour spacing decreases as L*
increases from L* = 0, up to a location of maximum sensitivity to h (black
dashed line). Further upstream, the sensitivity to a h diminishes (in an
absolute sense), given the smaller amplitudes in the upstream domain.
The largest‐amplitude change therefore typically occurs in the

Figure 8. The influence of surge period on surge‐tide decay along for four different time periodsΩ ¼ Period SuPri
Period D2

¼ 1, 2, 4,
and 6, (a) normalized amplitude and (b) amplitude ratio of surge (SuPri) to D2. The x axis is the estuary length normalized

by the convergence length scale; that is, L* = x/Le

Table 2
Nondimensional Parameter Space, Based on the Range of Dimensional
Parameters in Table 1

Minimum Maximum

γ (Amp:SuPri
Amp:D2

Þ 1 6

Ω Period SuPri
Period D2

� 	
1 6

δ Amp: SuPri
Max:Surge Amp:

� 	
0 1

ψ(Cdξω2L3e
gh3

Þ ~0.03 ~70
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midestuary region. This location of maximum change typically varies between L* = 0.5 and L* = 1 (the
convergence length scale) and moves landward as surge time scale Ω increases (see Figures 9 and 10).

Figure 10 shows that the location of maximum sensitivity to channel deepening (L*max= Lmax/Le) is a strong
function of depth, surge time scale, and the phasing of the surge relative to the tide. When the wave is
strongly affected by friction (large ψ, i.e., small depth and small time scale), the location of maximum change
occurs relatively near the coast L*max ~ 0.3–0.6, shown by the blue coloring in Figure 10. For waves less
impacted by friction (larger depth and low frequency), the location of maximum changemoves far upstream,
sometimes exceeding the e‐folding length scale for width convergence (red coloring, Figure 10). Some

Figure 10. Location of maximum change of surge waves (L*max, that occurs for depths of 7 to 20 m relative to an original
depth of h = 5 m) for symmetric surge (relative phase of SuPri and SuSec is set to 0) at (a) high water, (b) midtide, and (c)
low water as a function of channel depth and (Ω ¼ Period SuPri

Period D2
).

Figure 9. The influence of surge time scale and channel depth on surge‐tide propagation along an idealized estuary. The
color scaling represents the normalized amplitude δ and equals one at the ocean boundary, L* = 0. Each plot represents a
different time scale for the primary surge component, from 12 to 72 hr. For a configuration with no reflection effects, δ
decreases into the estuary (left direction). The black, dashed line represents location of maximum change relative to the
5m depth condition, and the black dotted line represents the location of the e‐folding scale of damping, that is, the location
where the primary surge wave is 1/e its boundary value. Note that the friction number ψ associated with each depth is
plotted on the right‐hand side of each plot
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variation in L*max also occurs depending on whether the peak surge occurs at the same time as high water
(Figure 10a), occurs during the midtide (Figure 10b), or occurs at low water (Figure 10c). In general,
L*max occurs more seaward in Figure 10a than it does in Figure 10c, due to greater friction. When surge
and tides come in at the same time, the total velocity (ut+us) is maximal and frictional effects are larger
(Figure 10a). When tide and surge velocity are more opposed, as when the ebb tide opposes the incoming
surge (peak surge at low water; Figure 10c), frictional effects are less. Hence, altering tide/surge phase has
similar effects as changing the friction parameter ψ.

The region of maximum sensitivity to change moves upstream as an estuary is deepened. As an example,
Figure 10a shows that L*max of a 12 hr surge wave (Ω =1) increases from L*max~0.25 for a 7 m depth to
0.58 for a 20 m depth. As discussed in Talke and Jay (2020), the upstream movement occurs because the
e‐folding damping length scale (the length scale at which amplitudes are 1/e the boundary value) increases
as the friction parameter ψ decreases. For a simple, tide‐only model, it can be shown that the peak change
occurs at approximately the damping length scale. While the inclusion of multiple wave frequencies and
phases alters the actual location of L*max, the general rule that L*max is related to the damping
length‐scale holds.

The shape of the storm surge wave, as captured by the relative phase of the primary and secondary surge
component, can also alter the time history of frictional effects. This also results in a different spatial pattern
of surge amplitude change as an estuary is deepened. Figure 11 shows the effect of changing depth from 5 m
to 7–20 m for fast‐rise and slow‐rise storm surge for the case that the secondary surge frequency is twice the
primary (in analogy toM2–M4 flood and ebb‐tide asymmetry, as previously discussed in section 2.1.3). In a
fast‐rise storm surge, the relative phase of SuPri and SuSec equals 90° and the incoming surge rises faster than
it falls, leading to the greatest currents before peak surge; in a slow‐rise surge, the relative phase of SuPri and
SuSec = 270°, the rise is slower than the fall, and the greatest currents occur after peak surge. Note that, con-
sistent with previous cases, we have kept the relative phase ofM2 and SuPri equal to 0. Results show that the
location of maximum change (L*max) is more variable for a fast‐rise wave than a slow‐rise surge wave, due to
larger changes in total velocity (ut+us) as a channel is deepened. Figure 11a shows that for a 12 hr, fast‐rise
surge (Ω = 1), L*max varies from ~0.35 (7 m depth) to 0.68 (20 m depth); for a slow‐rise surge, L*max varies
from ~0.55 (7 m depth) to 0.8 (20 m depth) (Figure 11b). Essentially, as intuition might suggest, Figure 11
shows that larger velocities during the rising surge are effective at moving the location of maximum change
seaward, due to larger damping. By comparison, velocities after peak surge matter less to the spatial pattern
of peak surge amplitude, and therefore the spatial pattern of change.

One practical implication of Figures 10 and 11 is that channel deepening likely exerts a different effect
on each storm surge, since each occurs with a different time scale and different tide and surge ampli-
tudes and phases. Maximal effects are observed much closer to the coast on fast surge (small Ω) than
slow surge (Figure 10). Since the average storm surge time scale is between Ω=2 and Ω=3 (Figure 4),

Figure 11. The effects of surge asymmetry for (a) fast‐rise and (b) slow‐rise surge on the location of maximum change of
surge (L*max) for different channel depths and (Ω ¼ Period: SuPri

Period: D2
) with γ ¼ Amp:SuPri

Amp: D2
¼ 1 and SuSec Amp.of 0.25 m.
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and many estuaries have changed from 5–6 m to roughly 10–12 m depth (e.g., Cape Fear Estuary;
Familkhalili & Talke, 2016), there is a zone from L*max~0.5 to L*max~0.9 within a weakly convergent
estuary (with no reflection effects), which is most prone to altered storm surge (see also Figure 11).
Maximal M2tide change occurs somewhat closer to the coast than surge, since its time period (Ω=1) is
slightly less, on average.

4. Discussion and Conclusion

We have developed a conceptual numerical model and a novel analytical modeling approach to assess the
effects of different storm surge types on idealized estuarine geometries, using an approach previously applied
to tides. The semianalytical model for surge‐tide propagation, based on a three‐sinusoidal wave model,
agrees well with the one‐constituent analytical models of Jay (1991) and Toffolon and Savenije (2011) and
is able to reproduce constituent interaction found in a 2‐D numerical model. We also show that a surge mod-
eled by two sinusoidal components provides a reasonable approximation for measured storm surges. We
then use these results to estimate typical magnitudes, time scales, and phasing of surge waves (Figures 4
and 5). Future improvements might include using more realistic waveforms to model surge, applying more
realistic depth and width variations and in general considering other environmental variability and atmo-
spheric forcing, both neglected here. Nonetheless, the advantage of our relatively simple tide model is that
we can use insights from the tide literature to improve our understanding of how other longwaves such as
surge evolve within tidal estuaries.

We gain insights from the analytical model into the effects of estuary configuration (e.g., depth and conver-
gence) and storm characteristics (amplitude, time scale, and relative phase) on the spatial pattern of surge
damping, and how this changes as estuaries are altered. Results suggest that the largest temporal change
due to anthropogenic channel deepening will occur in situations with: (a) a large surge toD2 amplitude ratio
(i.e., larger γ); (b) small time scale (high frequency) surge waves (i.e., smaller Ω), and (c) a large percentage
depth change. Future sea level rise may also alter storm surge amplitudes, to an extent that our results sug-
gest is related to the percent depth change. Recent literature suggests that tidal amplitudes in some estuaries
are sensitive to sea level rise (Holleman & Stacey, 2014; Ross et al., 2017; Lee et al., 2017; Garel & Cai, 2018;
see review by Talke & Jay, 2020); our results are consistent with the predictions of these studies. As shown by
Ensing et al. (2015), sea level rise effects on tides can exceed dredging effects, since geometric changes caused
by dredging are confined to the shipping channel but sea level rise also affects subtidal and intertidal regions.
Since we apply depth changes across a constant‐depth cross‐section (for simplicity), rather than just in the
dredged channel, our results are indicative, rather than predictive, of the types of changes that dredging
or sea level rise causes in real estuaries. We note that even the extreme estimate of ~2 m sea level rise over
the next century (e.g., Parris et al., 2012) is much less than historical channel deepening, which has often
doubled the depth of shipping channels (e.g., Chant et al., 2018; Familkhalili & Talke, 2016). Further
research is therefore needed to investigate the types of bathymetries which are most at risk to altered sea
level (Talke & Jay, 2020).

Our results also suggest that weakly convergent estuaries (the parameter space studied here) have a region of
enhanced sensitivity to change that is generally located around the e‐folding length of damping for a parti-
cular wave frequency but is modified by frictional interaction with other waves (e.g., the D2 tide), which in
turn are set in part by the amplitude ratio and surge timing (phase) and asymmetry. While storm surges may
respond in a variety of ways to a perturbation in depth caused by dredging or sea level rise, surge magni-
tudes, time scales, and relative phases have a quantifiable distribution (Figures 4 and 5). Thus, a given storm
climate is likely to produce a determinable distribution of responses in any particular estuary while indivi-
duality of storm events also complicate empirical studies (see, e.g., Familkhalili, 2019; Familkhalili
& Talke, 2016).

The presence of a region of maximum change of surge wave suggests that the estuarine storm surge response
to deepening will vary spatially due to effects of dredging, surge time scale, sea level rise (Figure 9), the phas-
ing of the surge relative to the tide (Figure 10), and surge asymmetry (Figure 11). Thus, future modeling stu-
dies of surge should assess spatially varying risk due to sea level rise and bathymetric change, rather than
focusing on the change at a specific location (usually a specific tide gauge).

10.1029/2019JC015286Journal of Geophysical Research: Oceans

FAMILKHALILI ET AL. 15 of 17



A number of future lines of inquiry remain open in the modeling framework we have developed. The effects
of river flow on peak amplitudes during a storm event, particularly the changes in river slope caused by
channel deepening (e.g., Jay et al., 2011; Ralston et al., 2019), form an important part of the parameter space,
particularly upstream of L* = 1, where river flow effects likely increase. Further, we have focused here on
estuaries marked by strong damping; future work will investigate the dynamics of strongly convergent estu-
aries where tides can amplify or conditions in which wave reflection is important. We note also that a num-
ber of processes have been neglected, including cross‐channel bathymetric effects, overland flooding,
stratification effects, the Coriolis acceleration, and the effect of local wind on the surge wave. Finally, some
of the approximations in the model (such as the small‐amplitude approximation) may not be valid in extre-
mely shallow systems, especially for large surge. These, and other more complex factors (such as strong var-
iations in depth and width), are better treated with numerical models.

To conclude, this study provides insights into how tides and surge propagate and interact and how these
interactions change as estuaries are altered. Understanding surge‐tide interactions in estuaries has impor-
tant implications for systemmanagement and flood prediction. The results presented heremay help decision
makers and engineers better interpret the effects of channel deepening on surge hazard and therefore help
mitigate their destructive impacts. More specifically, our idealized model suggests that continued deepening
of shipping channels worldwide, combined with sea level rise, can have a significant effect on storm surge
amplitudes. Deeper channels typically lead to further upstream penetration of storm surge, and amplified
storm surge values at some particular locations. Since effects are spatially variable and depend on
storm/tide characteristics and geometry, we suggest that (a) studies of environmental impact and sea level
rise effects consider an ensemble of events that well represents natural variability (e.g., Orton et al., 2016)
rather than models of the “storm of record”, as is often done; and (b) that entire systems be examined for
their storm‐surge response, not just tide gauge locations.
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