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A B S T R A C T

Real‐time information about traffic conditions is becoming widely available through various media and
connected‐vehicle technology. In such conditions, travelers have better knowledge about the system and adapt
as the system evolves dynamically during their travel. Drivers may change routes during their travel in order to
optimize their own objective of travel. Various travel objectives are captured in mathematical models via disu-
tility functions. The focus of this research was to study the behavior of travelers with multiple trip objectives
when they are provided real‐time information, and assess their ability to determine “optimal” routing policies,
compared to exact solutions based on the online shortest path problem. A web‐based experiment was carried
out to simulate a traffic network with limited information provision. The decision strategies of participants
were analyzed and compared to a variety of decision policies established in the literature – optimal, greedy,
and a priori – and a general model to describe the observed travelers’ decision strategies was calibrated from
over 40,000 decision points extracted from the collected data. Apart from trip objective, other factors such as
relative position in the network and experience gained were found to influence user decisions. This research is
a step towards calibrating equilibrium models for adaptive behavior with multiple user classes.

1. Introduction

Uncertainty is inherent in every transportation network in the form
of variable congestion levels, traffic incidents, and network closures
due to bad weather conditions or road work. This stochasticity is a hin-
drance both to the users – who try to choose the best route within a
transportation network – and to the planners – who try to develop
an efficient transportation system. Recently, much effort has been
devoted toward mitigating the effects of such uncertainties by provid-
ing users with real‐time information about the network. This informa-
tion may be provided through various media including, but not limited
to, variable message signs (VMS), smartphones, GPS devices, or the
radio.

Travelers respond to uncertainty and travel time information in dif-
ferent ways. Some drivers may stick with their initial, a priori route
selection, while others may change their route online. This behavior
partially depends on risk attitudes and trip purpose. One way of incor-
porating such considerations into route choice is through the use of
disutility functions expressing arrival‐time preferences. We specifically
focus on disutility functions capturing different trip purposes. In this

study, users’ reactions were observed under uncertain network condi-
tions and real‐time information. This class of problems, where infor-
mation is revealed en route and the user can make a series of
adaptive decisions, is called online shortest path (OSP) problems.

The specific objectives of this study were twofold. The first objec-
tive was to study the behavior of individual travelers in a simulated
environment with real‐time local congestion information under multi-
ple travel objectives. The travel objectives included a shopping trip (no
target arrival time with lateness disincentive), work trip (fixed target
time with early/late disincentive), social trip (fixed arrival time with
less harsh disincentives), and airport trip (fixed target time with harsh
lateness disincentive). The second objective was to validate, through
comparisons, the use of adaptive routing policies in practice. Given
that the behavioral routing policies executed by participants were
observed to not match those detailed in the literature, this research
developed a “hybrid” policy from over 40,000 collected decision points
that is more consistent with user behavior.

This study compared several disutility functions, corresponding to
decision rules, that have embedded non‐linear preferences of travelers.
Driver routing behavior is known to be complex in the face of
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uncertain travel times, and disutility functions are a flexible way to
capture a range of behaviors that have been proposed in the literature,
including the scenarios described in the previous paragraph. We
describe several other proposed behaviors in the literature review.

This study also compared observed user behavior strategies to rout-
ing policies detailed in the literature for different travel conditions.
Multinomial logit models were developed to understand user decision
making as a function of network characteristics, current location, trip
type, and uncertainty characteristics. Identifying appropriate specifica-
tions for disutility functions under uncertainty and information provi-
sion is critical as a better understanding of traveler decision making
will help academics, planners, and engineers to develop better plan-
ning models that can more accurately predict flows and travel times.
As such, the results of this study are a step towards calibrating equilib-
rium models with adaptive routing and heterogeneous routing
policies.

Our study complements existing experiments involving route
choice behavior. In particular, while there have been several recent
studies using field data from driving observations, from driving simu-
lators, or with multiple participants interacting simultaneously, we
chose to conduct our experiments in a simpler, asynchronous web‐
based simulation. While the former setups are likely more realistic,
our choice of experimental setting (1) allowed the collection of a very
large data set, involving over 40,000 observations of route choice deci-
sions; and (2) allowed us to specify a utility function directly (through
the use of a numerical scoring mechanism and monetary incentives for
performance). This allows us to measure drivers’ ability to route adap-
tively under different utility functions without having to first estimate
a utility function from field observations (which introduces confound-
ing factors). Further, since our focus is on the ability of drivers to
assimilate real‐time information, and not on the emergence of equilib-
rium in multi‐user settings, we do not believe an asynchronous exper-
iment limits our analysis.

The remainder of this paper is organized as follows. Section 2
details literature important to the development of this experiment.
Section 3 details the theoretical framework that is being used to model
users’ response to information. The theoretical framework is divided
into two pieces: the traveler scenarios—which are the disutility func-
tions used to encourage certain travel behaviors throughout the net-
work through the use of a competitive incentive structure—and the
policies—which are the mechanisms through which the results are
being interpreted. Section 4 details the experimental framework
designed to test this framework through the development of an inter-
active game called SmartDrive. Section 5 provides the results of the
SmartDrive study segmented by trip purpose, user experience level,
and policy. Section 6 details the comparison of the results of the study
with existing routing policies and the creation of two new multinomial
logit models that best match the behavior observed during SmartDrive
play. Section 7 discusses limitations of our approach, and Section 8
provides conclusions and recommendations for future research.

2. Literature review

Ng et al. (1995) were among the earliest to emphasize the impor-
tance of travel information dissemination and analyzed the impact of
various factors such as accuracy, cost, and type of information for
the success of such systems. Srinivasan and Mahmassani (2000) mod-
eled the route choice behavior under information provision as either
complying with the active traffic information system (ATIS) informa-
tion or using the same path as before. From their experiments, they
found that tendency to comply with ATIS information increases with
congestion levels and travel time savings. Mahmassani et al. (2003)
analyze the factors impacting en‐route switching to alternate destina-
tions and routes for shopping trips using a stated‐preference internet‐
based survey and develop a framework to account for the hierarchical

nature of observed choices. They observe and corroborate route and
destination switching phenomena as well as analyze the difference
in behavior between providing full information as opposed to partial
information. Peeta and Yu (2004) and Peeta and Yu (2005) propose
a hybrid probabilistic‐possibilistic model framework to incorporate
the day‐to‐day and within‐day dynamics of driver route choice given
real‐time information, as well as another hybrid route choice model
using quantitative and fuzzy modeling. Both models are compared to
traditional multinomial logit models and demonstrate better predic-
tive power, showing potential for practical application. These studies
propose advanced models to analyze this behavior, but are limited
by the lack of generalization to different networks and in some cases,
difficulty of intuitive interpretation. The standard MNL model is there-
fore chosen for its applicability and ease of interpretation.

ATIS systems aim to manage traffic better, enhance driving opera-
tions, and improve traveler safety (Adler and Blue, 1998). They have
great potential for influencing user route choice (Abdel‐Aty et al.,
1997; Levinson, 2003). However, Avineri and Prashker (2006) noted
that the provision of information does not always result in lower
expected travel time, possibly because the nature of users’ choices tends
to be more heterogeneous when provided with information. The users
either adopted a strategy to minimize expected travel time or became
risk‐averse by choosing the most reliable route. This corroborates the
claims of travel time reliability for route choice made by Abdel‐Aty
et al. (1997). ATIS accuracy reduction has also been shown to shift driver
choices towards reliable travel time routes (Ben‐Elia et al., 2013). Dia
and Panwai (2007) collected data from users and developed neural net-
work models to ascertain the types of information provided in VMSs that
are most influential. Prescriptive information provides the largest impact
compared to descriptive and experiential information (Ben‐Elia et al.,
2013). Sawik et al. (2017) and Sawik et al. (2017) present two multi‐
criteria problem instances set in Spain and observe tradeoffs between
various objectives. These experiments provide more insight on equilib-
rium and reaction to information systems than individual behavior.

Algorithms have been developed to describe routing behavior
under uncertain travel times, incorporating different assumptions
about risk preferences and how drivers choose routes in stochastic
environments. As a few examples, researchers have proposed that dri-
vers aim to minimize the probability of late arrival (Fan et al., 2005), a
function of expected arrival time before and after a target (Gao,
2005a), exponential or quadratic utility functions (Eiger et al., 1985;
Murthy and Sarkar, 1996), and linear combinations of mean and stan-
dard deviation (Khani and Boyles, 2015; Shahabi et al., 2015). Disutil-
ity functions can represent all of these behaviors exactly or nearly‐
exactly (the standard deviation can be approximated using the
deviance metric we describe in the following section), allowing us to
compare multiple proposed behaviors in a consistent framework.

Congestion experiments dealing with route choices under the pro-
vision of information have also been well documented in the literature
(Chen and Mahmassani, 1993; Rapoport et al., 2014; Tang et al., 2017;
Lu et al., 2011). Many of these studies have been carried out with the
objective of assessing multiplayer interaction and convergence to equi-
librium to assess the influence of information on driving behavior.
Ramadurai and Ukkusuri (2007) conducted an online multiplayer net-
work game to check the conversion to a steady state in a dynamic net-
work with a single bottleneck. They also studied the impact of online
information on users’ payoff. The decisions in the experiment were to
choose departure time to arrive at the destination to maximize payoff.
In addition to observing no convergence to equilibrium, they also
observed paradoxical behavior where providing information yielded
smaller overall payoffs. However, the small sample size, in terms of
players and number of rounds played, warrants further analysis.
Morgan et al. (2009) tested for change in traffic flows in a multiplayer
setting when changes were made to a network; they observed that
flows did shift on changing network conditions, but more towards user
equilibrium rather than system equilibrium.
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The details of ATIS information reception and usage are not fully
understood (Chorus et al., 2013; Ben‐Elia and Avineri, 2015; Zhao
et al., 2019), prompting theoretical and experimental studies. Liu
et al. (2020) provide a comparative review of recent studies focusing
on experimental studies about travelers’ day‐to‐day route choices.
They also explore the effect of ATIS penetration, and results show that
flow patterns tend to converge to user equilibrium despite certain fluc-
tuations. Additionally, they note that their system instance was most
stable at about 75% ATIS penetration, implying that full ATIS avail-
ability might not best for system performance. Earlier studies have
tried to analyze the impact of ATIS in the form of variable message
signs (VMSs) and have found that around one‐fifth of the drivers
change their routes based on VMS information, as well as speed dips
to compensate for information processing (Erke et al., 2007; Lee and
Abdel‐Aty, 2008; Harms et al., 2019).

Multiple recent studies have focused on experimental analysis of
ATIS impact on various facets of traffic assignment. Ringhand and
Vollrath (2018) study the impact of ATIS on moving the system
towards a system optimal configuration and conclude that around
one‐tenth of the drivers accept the system optimal alternatives.
Wijayaratna et al. (2017) investigated the empirical presence of the
online information paradox in an experimental computerized setting
and concluded that provision of online information can indeed deteri-
orate travel conditions for all users. Additionally, they conclude that
information availability trades off system performance for a reduction
in travel time volatility. Wijayaratna and Dixit (2016) test user risk
preferences in the presence of online information using expected util-
ity theory and indicate that information availability leads to a reduc-
tion of risk aversion.as well as Fechner error (behavioral error).

Delle Site (2018) study route choice in a multi‐class setting where
classes are differentiated by access to ATIS and experiential data. They
observe the higher travel times experienced by ATIS users, as well as
higher total system travel time savings for greater ATIS market pene-
tration. Ramos et al. (2018) use reinforcement learning with regret‐
minimization for the route choice problem and show significant
improvements over Q‐learning approach as well as regret‐
minimization without ATIS. More importantly, the system is shown
to converge to approximate user equilibrium under the influence of
ATIS. Ma and Di Pace (2017) aim to model travelers’ day‐to‐day route
choice for ATIS using four strategy learning models, viz., reinforce-
ment learning, extended reinforcement learning, joint strategy ficti-
tious play, and Bayesian learning. The joint strategy fictitious play
model outperforms the other proposed models for intermediate and
high accuracy information scenarios, with low accuracy information
reading to random behavior. However, this study does not incorporate
traveler risk attitudes.

Ramos et al. (2020) present recursive route choice models based
on both static and dynamic travel time representations and a case
study based in the Netherlands with multiple information sources.
They conclude that the parameter interpretations are drastically dif-
ferent depending on non‐additive utility inclusion, and correlation
inclusion, as well as dynamic representation, provides better predic-
tive power. Lastly, Jiang et al. (2020) present a rational inattention
model for the stochastic route choice problem. Inspired from their
prior work showing the lack of real‐time information usage, this
model assumes that information is costly and users acquire limited
information before choosing an alternative, incorporating driver
information strategy endogenously. The single‐user model shows
the reduction in alternatives under consideration with information
increase, and the model with multiple heterogeneous users has a
unique equilibrium. However, the model is path‐based, raising
tractability questions, as well as requiring empirical information
for calibration.

In summary, multiple routing behaviors have been proposed in the
past literature. We hypothesize that a MNL model can represent the
“choice” drivers (subconsciously) make as to what type of routing

behavior they follow in given situations, and explore this further in
the remainder of the paper.

2.1. Current study

This research looked at a more fundamental behavior at the indi-
vidual level. Route choice behavior was analyzed assuming complete
access to real‐time information with non‐linear preferences. This study
analyzed multiple trip purposes (multiple payoff functions). Identify-
ing the policy followed by users to make en route decisions was the ulti-
mate goal of this effort; thus, multiplayer interaction was not
considered. The focus of this project was more on individual behavior,
not the presence, or lack thereof, of equilibrium.

The study was carried out using a web application that simulated
the route choice process while navigating through a network with
stochastic costs. Over 40,000 decision points were obtained and ana-
lyzed after repetitive simulations by users. Initial trial scenarios and
provision of historical data on the network, described in the experi-
mental design section, served as tools for learning network conditions.
The number of data points and learning process enabled us to ensure
the simulation resembles a practical scenario and can therefore draw
statistically sound conclusions. Comparisons were made to the opti-
mal, greedy, and a priori routing policies and multinomial logit
(MNL) models were developed to capture discrepancies between the
documented policies and the observed user behavior. To the authors’
knowledge, no study specifically considers the decision strategy of
users in a stochastic network with non‐linear preferences. We, there-
fore, aim to provide useful insights about individual behavior. These
results may also be a step towards calibrating equilibrium models with
adaptive routing and heterogeneous routing policies.

3. Theoretical framework

Two critical pieces of this work were the use of various traveler sce-
narios – which allow the study of non‐linear user preferences – and
routing policies – which allow the comparative study of the decision
strategies detailed in literature against those observed though SmartD-
rive gameplay. This section details the disutility functions used to cap-
ture users’ routing decisions for various scenarios and the policies in
the literature that are currently used to model travel decisions. The
disutility functions are used to influence user behavior to mimic speci-
fic behavior patterns. Put together, this section describes the theoreti-
cal framework used to model response to information. The next
section, Section 4 describes the experimental framework designed to
test this theoretical framework.

3.1. Traveler scenarios

Traditional travel objectives of minimizing travel time do not cap-
ture non‐linear user behavior (e.g. user preference for a target arrival
time at the destination or the risk preferences of a user when faced
with uncertain travel times). The disutility function, f qðtÞ, of a specific
user class q describes the ‘cost’ of arriving at the destination at time t.
Possible disutility functions, described by Boyles (2009) (linear,
deviance, quadratic, etc.), were modified to represent different
scenarios.

The benefits and improved accuracy of incorporating non‐linear
preferences for traveler choices have been well documented in the lit-
erature for both the third and fourth steps of the planning process
(Mandel et al., 1994; De Lapparent et al., 2002; Small et al., 2005;
Palma and Picard, 2005; Pinjari and Bhat, 2006; Fosgerau and
Karlström, 2010). Non‐linear preferences have also been incorporated
in routing decisions in the context of reliability and preference for
robust paths (Gao, 2005b; Boyles and Waller, 2007). The following list
provides a brief description of the possible disutility functions:
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• Linear: Linear disutility functions describe the standard shortest
path objective, that is, we wish to minimize E½t�. Arriving at the
destination as soon as possible is the primary concern, and the trav-
eler is risk‐neutral.

• Deviance: The deviance disutility is defined as f ðtÞ ¼ ðt � t�Þ2,
where t� is the desired arrival time. The optimal policy now mini-
mizes E½ðt � t�Þ2�. In this case, the ‘penalty’ for an early or late arri-
val is the same i.e. there is no difference between arriving early by
Δt units or late by Δt units. In some cases, late arrival may be a
heavier burden than an earlier arrival, or vice versa. A simple mod-
ification to account for such a case would be a disutility function
given below:

f ðtÞ ¼ ðt � t�Þ2; if t ⩽ t�

bðt � t�Þ2; if t ⩾ t�

�
where b > 1 if the penalty for late

arrival is greater than early arrival, 0 ⩽ b < 1 if the penalty for early
arrival is greater.

• Quadratic: A quadratic disutility function captures the risk‐taking
characteristics of a user class. Boyles and Waller (2007) parameter-
ize this behavior using a single parameter k, representing the
change in derivative of f between a range of possible arrival times.
For the same value of disutility, a convex function allows for a later
arrival time than a concave function. A user class with such behav-
ior will be less prone to taking risks to arrive earlier. k > 0 yields a
convex function, and represents a risk‐averse behavior, whereas
k < 0 yields a concave function representing a risk‐prone behavior.

• Arrival on time: Nie and Fan (2006) and Nie and Wu (2009)
address the problem of maximizing the probability of arriving at
or before a specified time. The arrival on time disutility is used
to represent the scenario of a traveler wishing to arrive at the des-
tination no later than a threshold time t�. The function is repre-
sented by an indicator function:

f ðtÞ ¼ 1; if t ⩽ t�

0; if t > t�

�
since the expectation of this function is

exactly the probability of late arrival (which, as a disutility, should
be minimized).

The common travel objectives used in the SmartDrive web applica-
tion were shopping, work, social, and airport trips. The corresponding
disutility functions are shown in Fig. 1. The following bullets detail
why each disutility function was selected for its respective travel sce-
nario. Scores in the game were taken to be the negative of disutility (so
higher scores correspond to lower disutility).

Shopping Trip : The disutility of users traveling for a shopping trip is
modeled via a linear function with the behavioral
assumption that the user wants to arrive at the destina-
tion as soon as possible with no particular target time.

Work Trip : Work trips are used to describe a scenario with a tar-
get arrival time. The user certainly does not wish to
arrive late to the workplace because there is a high pen-
alty associated with tardiness. Furthermore, one may
argue that it is not beneficial to arrive early to work
either (e.g. arriving early for collaborative meetings
has no incentives and can be seen as unproductive time
for fixed working hours). Note that the slope after the
target arrival time is steeper than the slope before the
arrival time. This scenario is an example of “schedule
delay”, which is a measure of the difference between
a target arrival time and actual arrival time. This trip
purpose corresponds to a deviance disutility function.

Social Trip : The social trip scenario assumed the user was trav-
eling to a party, event, game, or something of the
like. The user may not want to arrive too early for
a social occasion, nor may he/she want to arrive late
and miss the event. The target arrival times and
penalties for late or early arrival are more relaxed
than those for the work trip. This trip purpose also
corresponds to a deviance disutility function.

Airport Trip : A user traveling to the airport to catch a flight needs
to be on time at the airport. There is no extra incen-
tive if he/she arrives before the target time. How-
ever, if the arrival time is later than the target time

Fig. 1. Game scoring Rules.
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by any amount, the flight is missed. This is repre-
sented by the step function in the web application,
with no incentive beyond the target arrival time.
Specifically, the airport trip corresponds to the ’ar-
rival on time’ disutility function.

The users were encouraged to follow the presented travel scenario
—shopping trip, work trip, social trip, or airport trip—through the use
of the scoring rules in Fig. 1 and a competitive incentive structure. The
top 100 scoring players all received a monetary award for participating
in the experiment; the exact value of that award was tiered such that
higher scoring players received more than lower scoring players.

3.2. Routing policies

The disutility function of user class affects the routing policy that
the user belonging to a particular class follows. A policy is defined
as a decision‐making rule followed by a user, which may depend on
factors like the current location of node i, current time t, the current
state of the node θ, and target travel objective, which is represented
in the disutility function. Such a policy may not lead to a fixed a priori
path; instead, they will describe a hyperpath, or a path based on deci-
sion rules dependent on the current location, time, and information.
Part of this research’s contribution to the literature is the comparison
of observed route choice behavior to policies well detailed in the liter-
ature. The following sections offer a brief summary of optimal, greedy,
and a priori policies for routing decisions.

3.2.1. Online shortest path review
Networks with stochastic costs have been of interest to researchers

for a long time. One of the first attempts at finding paths with mini-
mum expected travel time in a stochastic and time‐dependent network
was by Hall (1986), who discussed the need for an adaptive decision
strategy rather than an a priori path. More recently, considerable
emphasis has been placed on the provision of real‐time information
through ITS technologies, leading to research on OSP problems
(Boyles and Rambha, 2016; Cheung, 1998; Provan, 2003). Waller
and Ziliaskopoulos (2002) studied two versions of the OSP problems,
one with spatial dependence – where downstream arc travel time
probabilities were conditioned on the travel times of upstream arcs –
and temporal dependence –where the cost of the arc was learned upon
arrival at the tail of the arc. OSP problems can also be cast as Markov
decision processes (Boyles and Rambha, 2016). Unnikrishnan and
Waller (2009) developed a convex programming formulation for user
equilibrium when users follow a adaptive routing strategy. Boyles and
Waller (2011) built on this and found the optimal locations for provid-
ing information by constructing contracted networks. While there
have been many advances in this area, a few notable works are cited
here for a general overview (Szeto et al., 2011; Wu, 2015; Khani and
Boyles, 2015; Khani, 2019).

3.2.2. Optimal policy
The optimal strategy minimizes the expected disutility of the user

class. With local information on the downstream arcs, the problem is
similar to the one step temporal dependence in online shortest path
(TD‐OSP) problems considered by Waller and Ziliaskopoulos (2002).
The TD‐OSP algorithm suggested is based on the label correcting algo-
rithm (Ahuja et al., 1993). Essentially, the algorithm starts at the des-
tination node and works backward until the optimal labels are known
for all nodes and time periods. This work uses an adaptive policy algo-
rithm, suggested by Boyles (2009), that computes the optimal labels
Lði; tÞ, and policy πði; t; θÞ for the network. For the exact algorithmic
specification used in this work, see Algorithm1.

Algorithm1: AdaptivePolicy(t, f, v)

The algorithm AdaptivePolicy runs in OððnþmÞTjΘjÞ time, where
jΘj is the maximum number of node states examined for a node. Note
that jΘj can be OðSmÞ. However, a reduction proposed by Waller and
Ziliaskopoulos (2002) reduces the number of states scanned to
OðSMÞ. For a node with A downstream arcs with S states each, we
can reduce the node states from SA to SA. While this reduction is not
used for our implementation due to relatively small computational
expense, it is useful for experiments on larger networks.

3.2.3. A priori policy
Another policy that might be observed is following an a priori path

that yields the least expected disutility. Miller‐Hooks (2001) proposed
an algorithm to compute least expected travel time (LET) paths in
uncertain networks with links whose probability distributions vary
with time. A user with this strategy does not make use of local infor-
mation but instead relies on past experiences.

TheLETalgorithmcomputesminp∈PE½tðpÞ�,whereP is the setof all paths
from the origin to the destination, and tðpÞ denotes the travel time of path p.
Irrespective of correlation between link travel times and distributions,
E½tðpÞ� ¼ ∑ði;jÞ∈ pE½tij�. In this case, the probability distributions of a link
do not vary with time, hence E½tij� does not depend on arrival time. Thus,
the same adaptive policy algorithm stated above is used to calculate least
expected disutility paths by replacing the multiple states of each arc with
a single statewith travel timeE½tij�. Note that jΘj=1and thealgorithmruns
in OðnTÞ time. The termination and correctness of this algorithm are guar-
anteed as this is a special case of the optimal policy algorithm.

3.2.4. Greedy policy
The greedy policy, similar to the traditional definition, represents a

myopic user behavior. Though the local information readily available
is used, the broader objective of minimizing expected disutility
through route decisions is not taken into consideration.
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Algorithm2: GreedyPolicy(t, v)

The greedy strategy involves choosing a link adjacent to the current
node with the least congestion level to create a route to the destina-
tion; additionally, the algorithm implements two behavioral con-
straints: the user does not traverse in a direction opposite to the
destination and spiral paths through the network are avoided. An
example network is shown in Fig. 2. Assume a user traveling using
the greedy strategy from node 1 to node 8. The double‐sided arrows
indicate the presence of two separate links in each direction.

• The user does not move away from the destination. For example, if
the user is currently at node 5, the user can travel to nodes 4,6 and
8, but not to node 2, which is a direction opposite to the destina-
tion. This also includes directions (or vectors) that have a compo-
nent in the opposite direction. For example, the user cannot
travel from node 5 to nodes 3 or 1 (if links 5‐3, 5‐1 existed), since
the vector 5‐3 (or 5‐1) has a component along 5‐2. Dial (1971) con-
siders ‘reasonable paths’ for logit based traffic assignment, and
bases the criteria on shortest path distance of a node to (and from)
the destination (source). Our criterion is based on the geographical
direction of travel with respect to the destination, while allowing
shortest path distances to the destination to increase on traversal.

As a result, the user still moves in the general direction of the des-
tination, but in a myopic manner not considering the remainder of
the path.

• Spiral paths are avoided. Consider a hypothetical line joining the
origin and destination, node 1 and 8 in 3.6. A spiral is a path that
crosses this line more than once. For example, a path 1‐2‐3‐6‐5‐4‐7‐
8 is a spiral since it crosses the hypothetical line twice, once at 1‐2
and again at 5‐4.

To avoid this behavior, we define a set of restricted nodes from each
node i, which consist of nodes that should not be traversed to from the
current location. This set can be initialized a priori, but additions may
be made during traversal. For example, to avoid a spiral path, once the
path 1‐2‐3‐6 has been traversed, nodes 4 and 7 may be added to the
set of restricted nodes from node 5, if they were not already present in
the set. This strategy does not consider nonlinear user behavior, the
objective is to reach the destination minimizing the travel time.

The exact algorithmic specification of the greedy algorithm can be
found in Algorithm2. GreedyPolicy runs in OðmjΘjÞ time. The termina-
tion and correctness of this algorithm are trivial.

3.2.5. Policy simulation
Simulation of all the policies is carried out on the network used for

the application. The objective of carrying out simulations are
threefold:

1. Verify the optimal and a priori labels
2. Compare route choices in each of the above policies
3. Use results to develop other policies that match user behavior clo-

sely and compare these with other definite policies.

We iteratively simulate each of the policies for each specified disu-
tility function, as shown in Algorithm3.Fig. 2. Greedy policy example network.
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Algorithm3: SimulatePolicy(t, f, startTime, s, v)

3.2.6. Example
A simple example is demonstrated to compare and contrast the

three policies stated previously. Consider the familiar 4‐node Braess
network. The network, associated states and their costs are shown in
Fig. 3 and Table 1 respectively. The probabilities are hypothetical
for this example but can be gathered from historical data for real world
networks, with states representing different roadway conditions. Con-
sider a user class with a linear disutility function traveling from node 1
to node 4, i.e. the objective is to minimize expected travel time. We
evaluate different policies and demonstrate an instance using the
same.

The a priori path can be obtained by simply enumerating the three
possible paths and choosing the one with least expected travel time.
The a priori path is path 1‐2‐4 with expected travel time of 8. The opti-
mal policy is a set of decisions to minimize expected travel time, using
the observed downstream information. The labels with least expected
values of travel time are shown in Fig. 4, and the corresponding policy
is constructed in Table 2.

We construct an instance of this problem and demonstrate the pro-
gression using the three policies. The simulation, as outlined in Algo-
rithm3, is shown in Fig. 5. The highlighted nodes for each stage
represent the current location. At node 1, information regarding travel
times of downstream links to nodes 2 and 3 are obtained, as 4 and 3,
respectively. The a priori strategy follows the least expected path and
chooses node 2. The greedy strategy chooses node 3 since the immedi-
ate travel time node 3 is less than node 4, without any information

regarding the travel time distributions of arcs downstream of 2 and
3. The optimal strategy is to observe the current information, and
choose the node which minimizes the expected travel time from node
2 or 3 i.e. choosing node 2 would yield an expected travel time of 9 (=
5 + 4), whereas choosing node 3 would yield an expected travel time
of 7 (= 3 + 4).

At the next stage, the a priori strategy continues from node 2 to the
destination 4, yielding a travel time of 7 (less than the expected travel
time of 8). At node 3, the deterministic link to 2 with travel time of 2 is
observed, and the link to 4 is observed with travel time 3. Now, the
optimal policy chooses the minimum of paths 3‐2‐4 (with expected tra-
vel time 6) and 3‐4 (with deterministic travel time 3), and chooses to
reach the destination. The total travel time in this case is 6 (less than
the initial expected travel time of 10). However, the greedy policy
chooses to reach node 2, since the travel time on link 3‐2 is less than
that of 3‐4. At the next stage, the observed travel time on link 2‐4 is 6,
and the same is followed. The total travel time for this strategy is 11. In
this specific instance, we have Toptimal < Tapriori < Tgreedy .

4. Experiment design

A web application was created to assess the route choice decisions
of users under the presence of local information and multiple travel
objectives. In order to make the experience of using the interface
enjoyable, the study was designed as a game with the objective of max-
imizing a score; based on their relative scores, the top 80 performers
were eligible for an incentive ranging from $10–$50. These incentives
were used to motivate people to use the application with a clear goal of
achieving the stated objectives. The study was publicized through the
web, university mailing lists, social networks, and fliers. The details of
game design and the process of conducting the experiments are
explained further in this section.

Fig. 3. Policy illustration: Braess’ network.

Table 1
Travel time distribution: Braess’ network.

Arc State 1 State 1

Cost Probability Cost Probability

1–2 3 0.5 5 0.5
1–3 3 0.5 9 0.5
2–4 2 0.5 6 0.5
3–2 2 1.0 – 0.0
3–4 3 0.5 5 0.5
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4.1. SmartDrive scenarios

Users repeated the game many times, with different travel objec-
tives. These objectives are defined by the disutility functions listed
in Fig. 1. In order to make it more comprehensible to the users, the
disutility minimization objective was converted to a score maximiza-
tion objective. Hence, the scoring scheme was defined as
scoreðtÞ ¼ �f ðtÞ þ scoremax, where scoremax is the maximum achievable
score and was set to 100. The revised scoring graphs are shown in
Fig. 1, with t� being the target time of arrival, if any, and tM being
the latest allowable time of arrival, beyond which there is no loss of
incentive to arrive at the destination. The average score for a user is
the average score obtained over all the scenarios. Section 5.2 presents
analysis of average user score as a function of experience with the
game.

4.2. SmartDrive navigation

The network used for the application was the Sioux Falls network
with 24 nodes and 76 links. The origin and destination for each sce-
nario were held constant. Fig. 6 shows an instance in the game in
the ‘airport’ scenario.

Navigating the network was straightforward. The white circle indi-
cated the user’s current position; the objective was to get to the desti-
nation, marked by ‘X’, while maximizing the score. The user could
choose his/her route at every intersection by clicking on the respective
downstream arc. The current time, target arrival time, and the score
were also displayed on the screen.

As the user proceeded through the network, real‐time traffic infor-
mation was provided. Congestion levels on all the downstream links

Fig. 4. Expected value labels.

Table 2
Optimal policy: Braess’ network.

Node Downstream Arc State/Cost Optimal Policy

1 1-2 3 2
1-3 3
1-2 3 2
1-3 9
1-2 5 3
1-3 3
1-2 5 2
1-3 9

2 2-4 2 4
2-4 6 4

3 3-2 2 4
3-4 3
3-2 2 4
3-4 5

Fig. 5. Policy comparisons.
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was shown through color codes, which were an indication of the aver-
age speed on that road. The distance scale was also displayed, high-
lighted in Fig. 6. Thus, users could use the scale and the immediate
downstream congestion level to approximate travel time. When the
destination was reached, users were given the option to end the trip
or continue driving, which may have been the more optimal decision
in cases with a target arrival time. If the user chose to end the trip, the
path they followed was highlighted temporarily before beginning the
next round in order to give them a recap of their trip and reassess
the travel conditions.

To get familiarized with the navigation procedures, users were
given three trial runs before beginning the simulations. Live informa-
tion was only available on all the immediate downstream links. Using
a drop‐down menu, users were allowed to see the daily congestion
levels on the entire network for the past 30 days. Each day’s congestion
level was formed by sampling the link travel time distribution, with
each link’s state drawn independently of any other state. This tool
was designed to help users navigate through the network and enhance
the process of learning the network conditions, simulating their expe-
rience on a real network they might travel daily. The next section dis-
cusses the score findings of the web application and its implications.

5. Analysis

The application was circulated through the web for a period of
2 months from November 2012 until December 2012. Users were eli-
gible to compete for incentives if they played a minimum of 10 rounds,
but were allowed to play up to 100. Upon conclusion, the game had
131 registered users who played a total of 5203 scenarios and pro-
vided over 40,000 individual decision points. Of the 131 respondents
to the game, 67% were male. 57% were aged 18–25, 26% were aged
26–32, and the rest (17%) reported ages older than 32. 45% of the
respondents were students and 40% were working in full‐time posi-

tions. The numbers show that this sample does not represent the gen-
eral US population; because the application was web‐based and
propagation was through web referrals, our control over the sample
composition was minimal. Our intention was to study the decision‐
making process of users in a stochastic network with access to real‐
time information, subject to parameters specific to the transportation
network (trip purpose, information observed, learning trends, etc.)
and not trends dependent on demographics of the population. Demo-
graphic and socio‐economic characteristics may certainly impact the
decision‐making process, but the main motive of this research focuses
on a different set of parameters, thus eliminating the need for a repre-
sentative sample to obtain meaningful results.

5.1. User performance segmented by trip purpose

Aggregated across scenario, the scores for all 5203 scenarios
roughly followed a peaked distribution, with the majority (80%) of
the respondents scoring an average of 60–80, and close to 10% of
respondents each on the higher end – greater than 80 – and lower
end – less than 60 – of the spectrum. Interestingly, the score distribu-
tions disaggregated by scenario are not peaked, as seen in Fig. 7. By
absolute value of score, the ‘social’ trip and ‘work’ trip are the best
and worst among the four, respectively. These two have a similar
piece‐wise disutility function, but the social trip has a smaller penalty
for late arrival. The shopping trip, with a linear disutility, has a more
consistent performance with close to 90% of the users scoring between
70–80. The airport trip, with a threshold arrival time and all or noth-
ing score, has a wider distribution, with a higher composition (63%) of
respondents scoring below 70. However, a decent percentage
(22.90%) of respondents have scored above 80 in this scenario, which
is equivalent to stating that they make the trip on time 8 out of 10
times.

5.2. Average score as a function of experience with game

We also studied the ‘learning’ process of users. Fig. 8 shows the
learning curve with the number of rounds played, along with the
expected score from the optimal policies. (Note: at one point the
observed average score rises above the optimal value; this is because
the optimal value in the Figure is an expected value, and for specific
realizations, higher scores are possible with skillful play.) The scores
of each user were calculated as a moving average with a fixed time
period of 10 rounds. Let SiðnÞ be the score of user i in the nth round
of the specific trip, and let SAi ðnÞ denote the average score of user i

Fig. 6. Game: Network Navigation.

Fig. 7. Score distribution segmented by trip purpose.
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in the nth round. The moving average over a fixed T ¼ ð5Þ periods for
each user was computed as

SAi ðnÞ ¼ ∑
t¼n

t¼n�T
SiðtÞ=minft;Tg ð1Þ

The average score over all users, AvgScoreðnÞ, was computed as

AvgScoreðnÞ ¼ ∑
in
Sin ðnÞ=jinj ð2Þ

where in is the index of a user in the nth round, and jinj is the number of
people who have played n rounds of the specific scenario. Fig. 8 shows
the plot of AvgScoreðnÞ with the number of rounds played.

As seen in Fig. 8, there was a steep increase in average scores with
the number of rounds for the social trip and an indication of a learning
trend for the shopping trip. There was an increasing trend for the air-
port trip as well, with ‘noise’ in the curve. This could be attributed to
the all‐or‐nothing scoring pattern of this trip, which leads to drastic
fluctuations in the average scores. There was no apparent learning
trend demonstrated in the work trip. This might be due to the strict
time constraint and a heavy penalty for tardiness in this scenario.
Additionally, it is possible that users were inhibited from trying out
different strategies in this scenario. However, one must be cautious
while studying these trends, particularly for numbers of rounds played
greater than 25. As the number of rounds increased, the number of
users that participated decreased. Hence, the average scores towards
the end of the curve were based on fewer participants.

5.3. Score results segmented by policy

The three policies discussed in the policies subsection – the opti-
mal, greedy, and a priori path policies – were used for comparison with
users’ observed path decisions. For each of the policies, 10000 Monte
Carlo simulations were run for each of the four disutility functions to
compute an average score for each policy. These are documented in
Table 3. The labels from the optimal policy (‘Expected Disutility’) were

compared with the simulation results and the scores were found to
coincide with each other. Interestingly, the average score from the
greedy strategy was better than following a fixed a priori path for
the social and shopping trips. However, the greedy strategy performed
very poorly for work and airport trips. In these two scenarios, late arri-
val was penalized more heavily than in the other two scenarios; the
greedy strategy was observed to overshoot the target arrival time more
often as there is no foresight while choosing the next node. From this
analysis, it is evident that when embarking on trips with strict time
constraints using a purely myopic decision rule is detrimental.

The users’ average scores were both interesting and encouraging.
For all trips, the user scores were less than the optimal values, as
expected, but higher than the average scores from the other two strate-
gies. This implies users followed a strategy that is not completely myo-
pic nor did they follow a fixed path. Instead, the users’ strategy may be
a combination of the three strategies and may depend on various other
parameters. This possibility is explored in the next section with the
creation of a hybrid policy.

6. Development of new route choice models

One of the research objectives of this study was to determine what
heuristic travelers use when making routing decisions and whether or
not this heuristic is similar to an existing routing policy in the litera-
ture. The three policies discussed earlier – optimal, greedy, and a priori
path policies – were used for comparison with observed user decisions.
Preliminary investigations showed that users tend to follow a decision
strategy that depends on the disutility function. The objective of this
project was to try and capture this decision‐making process into a
new mathematical model. Further examination of the data revealed
trends with respect to other parameters such as the distance from
the destination and number of nodes to choose from (outdegree of
the current node). However, these trends did not justify a single deter-
ministic strategy that captures the decisions of all users or even the
same user at different stages. Hence, a random utility‐based discrete
choice model was developed to determine the policy adopted by the
users.

6.1. Methodology

Nine different multinomial logit alternatives were created for the
model (see Table 4). We considered the alternatives as distinct policies
themselves; hence, there were three immediate alternatives policies:
optimal, greedy, or a priori path policy. Another factor of interest
was to see how much these three policies overlapped with each other.
35–40% of the decisions overlapped for each pair of policies for each
scenario. Out of those, there were significant cases for which all three
overlapped simultaneously. To incorporate the fact that policies were
observed to overlap with each other and that this may increase the
probability of that node being chosen, overlapping policies were intro-
duced as separate alternatives. There were also many instances where
users made decisions that did not coincide with any of the aforemen-
tioned policies. Thus, two alternatives were introduced; they corre-
sponded to choices that do not fall under any of the policies under
consideration. These alternatives are chosen as the nodes j whose

Fig. 8. Average score with #Rounds played.

Table 3
Score Comparison: Users vs. Policies.

Scenario Social Work Airport Shopping

User Average 83.72 54.46 60.54 76.77
Expected Score (from Optimal Policy) 95.78 65.76 73.56 79.85
Average Score (from Optimal Policy) 95.58 64.41 71.26 79.55
Average Score (from Greedy Policy) 79.45 20.79 21.03 73.46

Average Score (from A priori Path Policy) 70.38 61.53 72.20 60.19
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shortest length to the destination (SPj) is least and do not fall under
any of the policies (refer Table 4). The nine alternatives were referred
to by notations indicated in Table 4.

The following independent variables are hypothesized to explain
the data:

• Outdegree (OutDegree): Number of alternative links from which to
choose.

• Distance from destination (distanceDest): Length of the shortest path
to the destination (with respect to arc lengths).

• Experience/Network familiarity (NumScenarios): Number of scenar-
ios played by the user prior to that point.

• Relative arc state (relativeArcState): Parameter which quantifies the
relative congestion level. Each arc ði; jÞ was denoted by their state,
ArcStateij, which takes values 1;2, and 3, with 3 being the highest
congestion level. For any arc ði; jÞ, the relative congestion level
was defined by

relativeArcStateij ¼ ∑
k∈ΓðiÞ

ðArcStateik � ArcStateijÞ ð3Þ

Thus, the higher the relative arc state, the lower the congestion level
on the arc relative to the other downstream arcs.

• Probability distribution of arc states (arcReliability): Arcs were cat-
egorized into three divisions based on their probability distribu-
tion, with category 1 representing a deterministic arc and 3
representing high variability and equal probability of all states.

One of the research objectives was to assess the decision‐making
process under multiple trip objectives or disutility functions. Hence,
a model was developed by segmenting the data by trip scenario. The
results of the model are described in the next section. Recall that this
research effort did not consider user characteristics. In a sense, the
individual decision maker is not the user of the game; rather, it is
the current “state” in the network (e.g. location, experience, number
of immediate alternatives)

6.2. Results

The specification of the partially segmented model, including net-
work specific parameters and respective coefficients, is tabulated in
Table 5. The table does not include the constants.

It is interesting to see that many parameters have different and
sometimes opposite impacts on different trip types. Recall the follow-
ing features of the disutility functions. The work and airport trips have
strict time constraints and high penalties for violating the target arrival
time. The shopping trip has a time constraint in the sense that the disu-
tility function is continuously increasing with time and there is no
incentive for a user to delay the arrival time. Relative to other trips,
the social trip has a more lenient time constraint and the penalty for
late arrival is smaller. With this in mind, the impact of each of the
parameters on the decision‐making process is detailed below.

Out‐degree
The out‐degree represents the number of alternatives to choose

from, as complete information is available at all nodes in the experi-
ment. Interestingly, a higher number of alternatives negatively
impacted the preference to choose a greedy policy relative to the case
when all three policies overlap. Intuitively, one would expect an
increase in the number of choices to result in users following a more
myopic strategy. In the case of a higher number of alternatives, users
look at strategies other than a greedy strategy and work towards that.
Moreover, the impact is highest in airport, work, and shopping trips. A
plausible reason for this is that the three scenarios have higher con-
straints on time (strict time constraints or continuously increasing
disutility), therefore users look to optimize their route more effec-
tively. The social trip is more relaxed, which leads users to choose
myopic strategies to explore other routes. When the optimal and
greedy policies coincide, the likelihood of the alternative being chosen

Table 4
MNL alternatives – Notations.

Notation Policy

O≡G≡A optimal, greedy and a priori path policies overlap
O≡G optimal and greedy policies overlap, a priori path policy is different
O≡A optimal and a priori path policies overlap, greedy policy is different

O optimal policy is different from greedy and a priori path policies
G greedy policy is different from optimal and a priori path policies

G≡A greedy and a priori path policies overlap, optimal policy is different
A a priori path policy is different from optimal and greedy policies

Oth1 Neither optimal, greedy or a priori path policy, and
SPj� ¼ minjSPj; j is an adjacent node

Oth2 Neither optimal, greedy or a priori path policy, and
SPj�� ¼ minj–j�SPj; j is an adjacent node

Table 5
MNL results – partially segmented model.

Variables Coeff. t-stat

O≡G≡A
Link Parameters

relativeArcState (Work, Airport) 0.11 3.45
relativeArcState (Shopping) 0.27 4.99

O≡G
Current Location
OutDegree (Work) 0.24 1.88

OutDegree (Airport, Shopping) 0.54 5.25

O≡A
Current Location

distanceDest (Social) −2.18 −5.93
distanceDest (Work) 0.60 1.97

distanceDest (Airport) 1.24 1.99

O
Learning

NumScenarios (Social) 0.13 2.31
NumScenarios (Work, Airport, Shopping 0.09 2.48

Link Parameters
relativeArcState (Work, Airport) 0.11 3.45

relativeArcState (Shopping) 0.27 4.99

G
Current Location
OutDegree (Social) −0.23 −2.14
OutDegree (Work) −2.14 −6.73

OutDegree (Airport, Shopping) −1.72 −8.61
Link Parameters

relativeArcState (Work, Airport) 0.11 3.45
relativeArcState (Shopping) 0.27 4.99

arcReliability (Social, Shopping) 0.35 5.49
arcReliability (Work) 1.38 10.46

arcReliability (Airport) 0.91 7.68

G≡A
Current Location

distanceDest (Social, Shopping) −0.72 −3.63
distanceDest (Work, Airport) −1.12 −5.04

Link Parameters
arcReliability (Social, Shopping) 0.35 5.49

arcReliability (Work) 1.38 10.46
arcReliability (Airport) 0.91 7.68

A
Current Location

distanceDest −1.39 −10.37

Oth1
Current Location

distanceDest (Work, Airport) 0.31 4.65
distanceDest (Shopping) 0.84 6.32

Log-likelihood (constants only) −10105.08
Final log-likelihood −4882.57

ρ2 0.52
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increases with the number of alternatives. This may be because this
alternative is usually the more ‘easy’ or ‘obvious’ choice to minimize
disutility.

Distance from destination
One can see that the distance from the destination has a negative

impact on the greedy and a priori strategies and a positive impact on
the optimal policy alternative when it overlaps with the a priori strat-
egy, relative to the case where all three policies overlap. It is interest-
ing to note the highly positive impact of distance on choosing a policy
(Oth1) that is neither of the policies documented in the literature. One
plausible conclusion is that users are trying to optimize their routes
closer to the origin when they start navigating. As they get closer to
the destination, users prefer greedy strategies as they get them nearer
to the destination in less time. In the process of optimizing their route
when they start, they are neither following a purely myopic strategy or
an optimal strategy, resulting in a choice that is not defined by any of
the three policies. Further, the impact is higher for the work and air-
port trips for the greedy strategy. These trips, with strict time con-
straints and heavier penalties, discourage the user from following a
purely myopic or a priori decision strategy; instead, they try to use
information and experience to optimize their route. Given this out-
come, one would expect the tendency to use an alternative policy in
the work and airport trips to be higher than that for other alternative
policies. However, the results show that distance from destination has
less of an impact on these scenarios than a shopping trip while choos-
ing other policies, Oth1. Interestingly, the location in the network
affects the likelihood to choose an optimal decision (overlapping with
an a priori strategy) in opposite ways depending on the scenario. For
social trips, users are more likely to make optimal decisions closer to
the destination while the trend is opposite for airport and work trips.
One possible explanation is that users tend to follow optimal strategies
with respect to the time‐constrained work and airport scenarios
(which may be similar) and follow the same path for social trips as
well, even though the optimal strategy for the social trip may be to
take a different route.

Experience/network familiarity
A learning process was demonstrated when the optimal policy

was selected even though the optimal decision was different from
other policies. Further, knowledge about the optimal policy was
gained more in the social trip than other trips. This may be due
to a phenomenon discussed previously; it may be that users follow
optimal decisions with respect to the more time‐constrained trips
initially and later learn optimal decisions with respect to social
trips.

Relative arc state
The relative arc state was found to influence the decision of four

alternatives, which can primarily be classified as an optimal strategy
and a greedy strategy. The higher the relative state of the arc – or
the lower its relative congestion level – the higher the likelihood
of it being preferred. The relative state in shopping trips has a
greater influence than in the ‘stricter’ work and airport trips.

Probability distribution of arc states
A higher value for this parameter indicates more variability in the arc

states. Thus, the parameter positively impacted the greedy strategy. Less
arc reliability increases the possibility of a greedy strategy being adopted.
That is, given an option between two greedy strategies at different
instances, users preferred a greedy strategy when the arc reliability
was lower. This may be due to a behavioral instinct to explore a new
route when it has a lower travel time than typically observed, but an
intuitive explanation is not clear. Further, the influence was higher on
the work and airport trips than on social and shopping trips. This result
indicates that it may be more insightful to study this simultaneously with
the experience gained in a network (number of scenarios played) and to
examine reliability at the path level rather than at the link level.

6.3. Validation

The model was developed using a random sample of 9,000 data
points drawn from the dataset collected (close to 43,000). The model
was validated using the remaining data points. For each observation i,
the probability of choosing policy π;PiðπÞ, was calculated as
eVπ=∑je

Vj �avj , where avj indicated if alternative j was available. Vj

was the utility of the alternative computed using the specification
mentioned in Table 5. The total estimates over all observations,
∑iPiðπÞ are reported in Table 6 for the developed model and the model
with constants only; note, the model with constants only was omitted
for brevity and can be found in Venkatraman (2013). The model with
constants only gives estimates of policy preferences when they overlap
with each other. The model with specifications further builds on these
preferences with network parameters. The results show that the model
estimated trends in the entire dataset fairly accurately, given the num-
ber of uncertainties in user decisions. Specifically, all the estimates
involving the optimal policy have estimates within 13% (except
O≡A). In the estimate of the alternative being chosen when G≡A,
the model with specifications overestimated the preference – a high
transfer of alternative preferences from the underestimated count in
the model with constants only. Drastic improvement in forecasts in
the policy Oth1 and O≡A alternatives are also observed. Note that
the three alternatives discussed now have distanceDest in their specifi-
cation. Traveler’s relative location along their path seems to be a factor
that strongly influenced their driving behavior. Overall, the model
gives a good description of the drivers’ route choices.

7. Limitations

While our experimental setup yielded a large number of observa-
tions, allowing us to estimate the discrete choice models above with
a high level of significance, it nevertheless also has significant limita-
tions. This section discusses these issues.

First, and most significantly, web‐based experiments can only cap-
ture parts of actual driver decision making process. There are major

Table 6
Model Validation.

Policy Data Constants only model Full specification

Estimate %age difference Estimate %age difference

O≡G≡A 11144 8694 21.98 9743 12.58
O≡G 12905 11531 10.65 13761 6.63
O≡A 1051 235 77.62 829 21.17
O 8405 7150 14.93 7587 9.73
G 2266 1611 28.9 1908 15.79
G≡A 947 393 58.54 1353 42.86
A 725 910 15.48 852 17.55
Oth1 4801 11455 138.59 6018 25.34
Oth2 717 983 37.03 911 27.02
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questions about the extent to which routing behavior in a “web game”
format corresponds to routing behavior in actual driving environ-
ments, and our ability to control for external factors, such as distrac-
tions while participants are engaging in the experiment. It would be
valuable to see whether the trends observed in our experiments can
be replicated in more immersive settings, such as virtual reality exper-
iments (Bowman and McMahan, 2007) or driving simulators (Blaauw,
1982; Nilsson, 1993; Godley et al., 2002).

A second major limitation is our assumption of independent link
states. It is well‐known that travel times exhibit spatial and temporal
correlation. At the same time, many different models have been pro-
posed for representing such correlations (for the purposes of routing
algorithms and sampling), and the choice of correlation model signif-
icantly affects the ability to obtain benchmark policies. For example,
with limited spatial dependency, for any constant “history” length
the problem can still be solved in polynomial time (Waller and
Ziliaskopoulos, 2002). By contrast, if revisited links are constrained
to have the same cost as when first visited (“no reset”), the problem
is either NP‐complete or NP‐hard, depending on additional choices
of correlation structure (Provan, 2003). Repeating our experiments
with correlations could be a highly valuable exercise, but choosing a
particular correlation structure is nontrivial, from the standpoint of
identifying a “realistic” structure, from the standpoint of implementa-
tion, and from the standpoint of interpretation (distinguishing the
effect of correlation from other effects). We therefore chose to leave
such investigations to future work as well.

An additional limitation is the use of our disutility functions and
monetary incentives to simulate risk preferences under different sce-
narios. This experimental choice allowed us to represent scenarios
with different levels of urgency and risk in a standardized way for
all users of the web game, but participants’ risk preferences regarding
the monetary incentive are unknown. Presuming risk neutrality
regarding the monetary incentive, optimal behavior in the game corre-
sponds exactly to maximizing expected score with the given disutility
functions, which was our intent. Essentially, we assumed risk neutral-
ity towards the monetary incentive in order to standardize and evalu-
ate risk preferences regarding routing in the experiment. We believe
this to be reasonable, given our experimental setup, but nevertheless
an implicit assumption in our analysis.

8. Conclusions

This research effort studied individual travel behavior in response
to real‐time information under multiple travel objectives. The class
of problems studied for this purpose was the online shortest path prob-
lems, where one can observe and adapt to the information gained en
route. Different functional forms were used to represent disutility for
the travel objectives. A web‐based application was developed to study
the behavior of travelers in such conditions via the simulation of an
environment with multiple travel objectives and real‐time informa-
tion. Responses from 131 participants—from which over 40,000 deci-
sion points were extracted—were analyzed in detail. In order to
compare user decision strategies to well defined mathematical policies
(or decision rules), the observed user behavior was compared to the
optimal, greedy, and a priori path policies.

The decisions have a common trend with respect to location in the
network, specific information on downstream congestion levels
gained, and familiarity gained with the network. In order to incorpo-
rate all such possibilities and uncertainty in strategy followed, an
MNL model was developed to determine the preference for each pol-
icy. The results show that users’ decision strategies vary with travel
objectives. Previously proposed policies were not observed in our
experimental data, therefore this study proposes a random utility‐
based discrete choice model to determine the policy adopted by the
users. For each policy and objective, we observe the significant vari-

ables from the following set: outdegree, distance to destination, net-
work familiarity, congestion levels, and probability distribution of
arc states. We observe that these factors also affect the chosen policy
dependant on the trip objective. This new model demonstrates higher
predictive power and provides better understanding of driver decision
making.

Hence, the outcome of this research is an insight into the traveler
decision strategy in response to real‐time information under multiple
travel objectives. With connected and autonomous vehicles (CAVs)
on the horizon, optimal policy adoption and processing for large net-
works can become a reality. However, till human drivers remain
active, the insights into human choice making under the influence of
real‐time information are valuable for network planning.

Future research includes extending these individual routing strate-
gies towards equilibrium while accounting for dynamic flow evolution
of the system by representing the extent of temporal and spatial depen-
dence of arcs. Another potential extension involves risk profiling of the
users, then separate analysis of learning patterns for risk averse and
risk seeking individuals. Link correlations can also be considered in
the optimal policy formulation, requiring solution for OSP with link
correlations sub‐problem. While a harder sub‐problem, solution meth-
ods have been developed in the literature allowing optimal policy for-
mulation for the correlations case.
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