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Sound speed gradients in mud

Charles W. Holland
Portland State University, Portland, Oregon 97201, USA

charles.holland@pdx.edu

Abstract: Various methods have been used to estimate sound speed profiles in mud at the New England Mud Patch. Some of
these methods show large sound speed gradients of order 10 s�1. New measurements of the seabed reflection coefficient
exhibit an angle of intromission over three octaves in frequency; these data constrain the range of possible sound speed gradi-
ent values. The data indicate that sound speed gradients must be quite weak, i.e., much smaller than j10 s�1j. This conclusion
is supported by core data which indicate nearly constant porosity in most of the mud layer. VC 2021 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

[Editor: David R. Barclay] https://doi.org/10.1121/10.0005153
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1. Introduction

The acoustic properties of muddy sediments are poorly understood. For example, there are relatively few shallow-water
measurements of the depth dependence of sound speed in mud layers. The goal of the multi-national Seabed
Characterization Experiment (SBCEX17) was to improve understanding of muddy sediment acoustic properties. A signifi-
cant aspect of the experiment was the large number and variety of experimental and inference methods applied to a
limited region of the New England Mud Patch (NEMP), see Ref. 1. Experimental methods included inference from long-
range acoustic propagation as well as more direct measurements based on in situ probes and cores.

One of the unresolved questions is the depth dependence of the mud in the upper few meters. This has been a
deceptively difficult measurement to tie down. Some SBCEX17 results, including long-range propagation2–4 and a method
using inserted probes5 indicate large mud sound speed gradients, of order 10 s�1. These large gradients are surprising given
that they were an order of magnitude higher than reasonably well-established values in deep-water muds.6 Other NEMP
measurements indicated that much of the mud layer had a small or negligible sound speed gradient, e.g., Refs. 7–9, at vir-
tually the same geographic location. In sum, there is currently a wide range of estimated mud sound speed profiles that
spans rapidly increasing sound speed with depth to nearly iso-speed to decreasing sound speeds (Fig. 8 AC-1 in Ref. 10)
with depth.

This large disparity in mud sound speed profiles from different observations motivated the present work. The
objective is to determine more definitively the NEMP near-surface sound speed gradients. The approach is to use data
with a higher sediment sound speed information content than was previously available, in particular, direct-path seabed
reflection coefficient observations.

The reflection data, windowed to probe the upper �2m of sediment, show a clear angle of intromission across
several octaves of frequency. The frequency-dependence of the angle of intromission contains high information content on
mud sound speed depth dependence, e.g., Refs. 11 and 12. In Ref. 11, the frequency dependence was used to infer the
depth dependence of the sound speed and density via Bayesian inversion. Instead, here, the data provide a useful observa-
tion by which various mud sound speed profiles can be assessed. This assessment is presented in Sec. 2 for various pub-
lished sound speed profiles. Additional evidence for the limits of plausible mud sound speed gradients, both in the upper
2m of sediment and deeper into the sediment column, is presented in Sec. 3 and conclusions are given in the final
section.

2. Measurements

Direct path seabed reflection coefficient measurements were conducted at several locations at the NEMP; two are discussed
here, Fig. 1. These measurements employed a fixed, bottom moored receiver and a towed broadband source towed in a
radial from the receiver. Details on experiment design and data processing can be found in Ref. 13.

One of the advantages of directly measuring the seabed reflection coefficient is that the data can be time (depth)
windowed to a specific layer or interface. Unless the surficial sediment sound speed, cs, is precisely the same as the intersti-
tial seawater, cw, the reflection coefficient from the water-sediment interface will show either a critical angle (if cs> cw) or
an angle of intromission (if cs< cw). Of the two possibilities, measuring the critical angle is far easier than measuring the
angle of intromission. At the angle of intromission, the reflection coefficient drops to near zero. Thus, the challenge of its
measurement is the challenge of measuring the absence of reflection. In addition to requiring a large signal-to-noise ratio,
the experiment and data processing require the removal of all other contaminating paths. The challenge of making these
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measurements can be conveyed in part by noting that despite the considerable value of the angle of intromission for prob-
ing in situ fragile muddy sediments, measurements are quite scarce. To the author’s knowledge, no prior angle of intromis-
sion measurements exist on the continental shelf of North or South America.

Here, we present and discuss reflection coefficient data collected in the central region of the experiment area
where the mud layer is �10m thick (SWAMI site, see Fig. 1). The reflection time series were processed to obtain
the reflection coefficient, R, from the upper 1.7m of mud. The data are presented as bottom loss (–20 log10jRj), Fig. 2.
The notable feature is the bottom loss peak, �8�, which is the angle of intromission. These data were shown at a single
frequency in Ref. 13, along with inferences made assuming depth-independent geoacoustic properties. Here, we exploit the
frequency-dependence of the angle of intromission, which contains information on the sound speed depth dependence.

If sediment sound speed is not constant with depth, the angle of intromission will be a function of frequency.
This relationship is discussed in some detail, e.g., in Refs. 11 and 12. Nevertheless, in order to develop some intuition, it
can be noted that if the mud sound speed increases with sediment depth, lower frequencies will be most sensitive to the
deeper and higher sound speeds (which result in a lower angle of intromission) and higher frequencies will be sensitive to
the near sediment-interface values with lower sound speeds (which result in a higher angle of intromission). Thus, when
sound speed increases with depth, the angle of intromission increases with frequency up to a certain frequency above
which it remains constant (associated with the sound speed at the water-sediment interface). In brief, the frequency depen-
dence of the angle of intromission is highly sensitive to and thus contains information about the depth dependence of the
mud sound speed profile.

The bottom loss data, Fig. 2(a), are therefore used to assess inferred mud sound speed profiles with large gra-
dients.2,3,5 Each of the sound speed profiles are used to predict bottom loss, assuming a constant density 1600 kg/m3 and
attenuation 0.3 dB/m/kHz over the upper 1.7m. The assumed attenuation is inconsequential for the comparisons, inas-
much as it primarily affects the bottom loss at the angle of intromission, but not the angle of intromission itself (which is
the quantity that is highly sensitive to the sound speed profile). We also make the assumption that the mud sound speed

Fig. 1. Map of experiment area with bathymetry (m), cores (dots), seabed reflection coefficient measurements (open circles). The ARL-UT
receive array location (blue triangle) and propagation track radius (blue dashed-dotted line) indicates the region probed by one of the propa-
gation experiments (Ref. 2). Another propagation experiment track (Ref. 3) is also shown (cyan line).

Fig. 2. Measured reflection data (bottom loss, in dB) in 1/15th octave bands at the SWAMI site, (a) across frequency (b) for selected frequen-
cies where the angle of intromission is nearly frequency independent.
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is constant over the frequency range of interest; see Refs. 5 and 7. The bottom loss is calculated from the spherical wave
reflection coefficient, which is the exact solution for this geometry [see Eq. (2) in Ref. 14].

The frequency dependencies of the angle of intromission predicted by the sound speed profiles in Refs. 2 and 3 are
shown in Figs. 3(a) and 3(b). Each result is compared with the measurements, Fig. 3(d), and discussed in the following.

Maximum entropy statistical analysis was applied to 25–275Hz long-range propagation data2 averaged in a 6.5 km
radius around an array near the SWAMI site (blue triangle in Fig. 1). The analyses resulted in effective sound speed gra-
dients of order 10 s�1 with a sound speed ratio at the water-mud interface of 0.977, see Fig. 3(c). Our bottom loss predic-
tions, Fig. 3(a), from the mud sound speed profile in Ref. 2 show that below �1 kHz, the angle of intromission decreases
due to the gradient. However, the measured data [Fig. 3(d)] show the opposite trend. This indicates that the sound speed
gradient is too large. Secondarily and of less importance to the central topic here, the data show an angle of intromission of
8� above 1 kHz, whereas Ref. 2 predicts 12�, in other words, the sound speed ratio in Ref. 2 is somewhat too low.

A different long-range propagation data set, 20–100Hz (cyan line in Fig. 1) and analysis technique3 resulted in
sound speed gradients of 20 s�1 with a sound speed ratio at the water-mud interface of 0.948; bottom loss predictions are
shown in Fig. 3(b). At low frequencies, the high sound speed gradient leads to an even stronger increase in the angle of
intromission with frequency; this is because the gradient is twice as large as that in Ref. 2. This behavior does not agree
with the measured angle of intromission data. Also, note that above �500Hz, the sound speed profile from Ref. 3 predicts
an angle of intromission of �17�, more than twice that of the measured data, Fig. 3(d), in other words the sound speed
ratio in Ref. 3 is far too low.

Fig. 3. Bottom loss measured data (d) and predictions from the upper 1.7m of mud from various methods: (a) (Ref. 2), (b) (Ref. 3), (e) iso-
speed, and (f) single 0.53m layer. Sound speed profiles for the various cases normalized to 1470m/s (dotted black line) are given in (c) includ-
ing the exponential profile from Ref. 5, where extrapolated values are shown as a dashed line. The profile from (f) is within a linewidth of
profile (e). The basement sound speed for each profile is identical to the deepest value.
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In both these long-range propagation analyses2,3 the authors made an a priori assumption that the sound speed
profile changes linearly with depth (i.e., a constant gradient) over the mud layer and note that this assumption may not be
correct. It appears that the assumption is not correct; the disagreement in both cases with the bottom loss measurements
indicates that the mud sound speed is not strongly increasing with depth over the upper few meters.

Could the disagreement be explained by sediment sound speed dispersion? It seems very unlikely. In Ref. 7, the
dispersion was shown to be very small in the mud, less than 1m/s per second over the measurement band, 400–1200Hz,
independent of depth in the upper 6m of mud. Viscous Grain Shearing model15 parameters were estimated from the
same data,7 which permits extrapolation in frequency of the sound speed; it shows less than 3m/s dispersion between the
lowest frequency of the propagation data, 20Hz to 1200Hz. Furthermore, in situ probe measurements showed a negligible
dispersion in a higher band 2–10 kHz (Ref. 5) also independent of depth. Thus, there is strong evidence that the dispersion
in this mud is very weak from 0.02–10 kHz over the upper few meters of sediment and that the high sound speed gra-
dients, �10m/s, cannot be explained by dispersion.

In situ probe measurements have an advantage of not requiring any assumptions or parameterization of the
mud sound speed profile. Analyses of the sediment acoustic measurement system (SAMS) 2–10 kHz in situ probe data
were averaged from 18 of the core locations between 1 and 3m sub-bottom. The authors indicate that the measurements
are best fit with an exponential5 sound speed depth dependence, Fig. 3(c), where the continuation of the exponential pro-
file above 1m is shown by a dashed line. This continuation is unsupported by measurement. Bottom loss predictions with
this profile are similar to Fig. 3(b), but with an even steeper decrease in the angle of intromission below 1 kHz, due to the
higher gradient. The decrease in the angle of intromission below 1 kHz is controlled by the estimated gradient from the
SAMS measurements from 1 to 1.7m (solid line). However, this trend disagrees with the angle of intromission data, i.e.,
the sound speed gradient is too high.

Inspection of the reflection data yield clues as to the nature of the in situ sound speed profile. For a homoge-
neous half-space, the angle of intromission is independent of frequency. This is shown in Fig. 3(e), for a sound speed and
density ratio 0.9865 and 1.557, respectively (the small increase in loss at the low frequency angle of intromission is due to
spherical wave effects). The measured data, in fact do show more than an octave in which the angle of intromission, �8�,
is nearly independent of frequency. This suggests that whatever sound speed deviations exist, they are small, especially
when considered in relation to other sound speed profiles considered thus far.

Besides the near constancy of the angle of intromission over a broad frequency range, the data also indicate the
presence of a Bragg interference pattern. Bragg’s law gives the condition for constructive interference and for a sediment
layer j, is kjdj sin(hj)¼ np, where k is the wavenumber, d is layer thickness, h is grazing angle, and n is an integer. The
low-loss interference peak that cuts through near the angle of intromission at �4 kHz is from Bragg constructive interfer-
ence. Solving for layer thickness, Braggs law indicates that the scale of the layer that caused it is �0.5m. This is borne out
by model predictions for a 0.53m layer at the water-mud interface, which leads to bottom loss [Fig. 3(f)] reasonably
similar to the observations. The mud sound speed and density in the 0.53m layer is just 2m/s and 40 kg/m3 lower than
the bottom half-space (which has sound speed and density ratios 0.9865 and 1.557, respectively). These geoacoustic prop-
erties are not intended to be presented as definitive values, but rather to demonstrate that depth-dependent sound speed
changes in the upper few meters must be rather modest.

In summary, reflection data exhibiting an angle of intromission over a wide frequency range, 200–4000Hz, con-
tain significant information on mud sound speed depth-dependence. These data indicate that (1) large sound speed gra-
dients of order 10 s�1 do not represent the in situ sound speed profiles and (2) the in situ sound speed and density of the
mud are nearly constant over the upper 2m at the SWAMI site.

3. Discussion

In this section, additional evidence is presented on the mud sound speed depth dependence in the upper 2m of mud, as
well as deeper in the mud layer. We draw upon additional long-range propagation measurements, the depth dependence
of mud porosity in cores, and reflection coefficient data.

3.1 Inferences from other long-range propagation measurements

In Ref. 16, 10–80Hz long-range propagation data in the thick mud region of NEMP show remarkably clear Airy phase
structure and these data are used to invert for the sound speed ratio and the sound speed gradient, which is assumed to
be constant (as in Refs. 2 and 3). When the Airy phase information is included a gradient of 9 s�1 is obtained, but the
authors observe that there is an ambiguity between the sound speed ratio and the gradient. In a later paper,17 the ambigu-
ity was approximately removed, and the gradient was estimated to be 1.86 1 s�1.

The same assumption of a constant sound speed gradient in the mud layer is used in Ref. 4, where 50–250Hz
long-range propagation data in the NEMP thick mud region yield a sound speed gradient of �10 s�1. In a later study,9

the same authors removed the a priori assumption of a constant gradient and found that the sound speed in the upper
9m of mud is constant, i.e., the sound speed gradient is 0 s�1. Using higher signal-noise-ratio data with a larger
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bandwidth, 10–400Hz, the results indicated a constant mud sound speed over the upper 8m, with a strong gradient below
that to the top of the sand layer.

These studies show that when a constant mud sound speed gradient is assumed, large gradients result, and that
ambiguities between the gradient and other parameters can exist. When the assumption of a constant mud sound speed
gradient is removed, the mud sound speed is nearly constant with depth, at least in the upper 8–9m at the NEMP thick
mud region.

3.2 Porosity depth-dependence: Cores

A strong correlation exists between sediment sound speed and porosity. These correlations are evident, for example, in the
empirical relations of Hamilton-Bachman.18 As another example, the simple Mallock-Wood equation19 has considerable
explanatory power—for mud in particular—where sound speed depends primarily on the porosity (seawater and grain
properties tend to be reasonably well-known). Thus, given that sound speed and porosity are tightly coupled, some insight
into depth-dependent sound speed can be had from depth-dependent porosity measurements.

Extensive coring was undertaken in the NEMP area (see Fig. 1) including piston cores, gravity cores, vibracores,
and acoustic cores.15 Chaytor et al.20 provide analysis from an extensive subset of those cores, identifying three lithostrati-
graphic units. The most pertinent is the uppermost geologic unit, unit 1, which is mud comprised predominantly of silt
with smaller parts clay and sand. In the central part of the experiment area, where mud thickness exceeds 6m, unit 1
extends at least to 3m sub-bottom. The core data show a nearly depth-independent porosity over the upper 4m and often
deeper in the central region of the NEMP, see, e.g., Fig. 15 in Ref. 20. The depth-independent porosity indicates that the
sound speed should also be constant, or nearly so, with depth. The remarkably consistent properties of the unit 1 mud
extends not only in depth but in spatial extend across the SBCEX17 experiment area; the range of porosity values has a
mean of 0.60 and standard deviation of only 0.04.20 In summary, this uniformity strongly suggests that (a) sound speed in
the upper 2m is nearly constant, which independently supports the conclusions drawn from the angle of intromission
observations and (b) that the nearly constant porosity extends much deeper than 2m in the central region of the experi-
ment area.

3.3 Sound speed and porosity depth-dependence: Reflection data

A Bayesian inversion method was applied to reflection coefficient data at the SWAMI site.7 Those data are independent of
the reflection data in Fig. 2, and used a time window large enough to include multiple sand horizons below the mud layer
(10.3m thick) to a depth of 16m sub-bottom. Thus, there was a critical angle, but no angle of intromission. The results
yielded a porosity nearly independent of depth over the upper 9m, the sound speed is likewise nearly independent of
depth over the upper 9m, see Fig. 4. In the lower 1.3m of the mud layer, the sound speed is observed to increase
extremely rapidly from �1460m/s to �1660m/s. This is termed the sand-mud transition interval, which exhibits rapidly
increasing sand content with depth. It is believed that the sand was entrained in the deposited mud by biologic mixing
during the time period in which the first meter or so of mud was accumulating over top of the sand layer.

Fig. 4. Mud layer structure. From left to right: cartoon illustrating the sand-mud transition interval; porosity profiles at two sites (thin and
thick mud layers) and sound speed profiles (450Hz) at the same two sites. For the sound speed profiles, the thick lines indicate the mean and
thin (dashed) lines indicate the 95% highest probability density credibility intervals from Bayesian inversion. The term “mud layer” is defined
from the water-sediment interface (0m) to the mudbase (lower dashed line). The sand-mud transition interval (between horizontal dashed
lines) exhibits a decreasing porosity and increasing sound speed to the mudbase. Below the mudbase is sand. The plots are aligned at the mud-
base to highlight the similarity of transition interval at two disparate sites. The bottom water sound speed is 1471/1474m/s at the thin/thick
mud site respectively (adapted from Ref. 21).
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It useful to note that while the long-range propagation data inversions [Figs. 3(a) and 3(b)] imposed a constant
gradient on a �10m thick mud layer, the Bayesian inversion7 employed a trans-dimensional framework in which the data
determined the number of layers and the properties of each layer were arbitrary; that is to say that no assumptions were
imposed on the form of the depth dependence. The trans-dimensional results7,9 are in agreement with (but were not
informed by) the core data in the overall depth dependence of both the porosity and the sound speed. Thus, it appears
that the large mud layer sound speed gradients from the long-range propagation inversions were caused by the constant
gradient assumption on the entire mud layer, where the evidence points to strong gradients only in the lower (1.3m) tran-
sition interval.

Although the mud layer, for geologic reasons, was defined to include both homogeneous mud and mud with
large amounts of sand (the transition interval), it is helpful from a sediment acoustics point of view to separate these two
kinds of disparate sediments. Thus, the evidence from both the angle of intromission data and the trans-dimensional
results indicates that in the relatively homogeneous part of the mud layer (the upper 9m at SWAMI site), the sound speed
was nearly independent of depth. That is to say that in the NEMP mud (ignoring the transition interval), the sound speed
gradient is very small or zero.

How do these conclusions depend on location within the SBCEX17 experiment area? Figure 4 also shows results
from reflection coefficient analysis at a site �15 WNW of SWAMI where the mud is quite thin. The salient result is that
the mud above the transition interval, also exhibits a relatively uniform porosity and sound speed. Note that a both sites
there is a �0.5m thick surficial layer with a slight increase in porosity and slight decrease in sound speed and this may
accord with the observed Bragg line in the angle of intromission data presented here. The main point, however, is that the
reflection data results at these two widely separated sites, with markedly different sediment thickness, show (as do the unit
1 core data), that the mud properties above the transition interval are fairly uniform in geographic location and in depth.

4. Conclusions

The mud at the New England Mud Patch exhibits a nearly uniform sound speed in the upper few meters and likely down
to a meter or so above the sand layer. The evidence from the upper few meters comes from broadband angle of intromis-
sion data, confirmed by independent core and other reflection coefficient data. The latter two data sources provide evi-
dence for the relative sound speed uniformity in nearly the entire mud layer. It would be inappropriate to infer that all
shallow-water muds exhibit similar behavior. The NEMP mud is predominantly silt and thus the depth dependence of
sound speed may vary for other mud mixtures. In summary, strong evidence indicates that sound speed gradients in the
NEMP mud above the sand-mud transition layer are small, much less than the order 10 s�1 gradients that have been
suggested.
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