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Abstract 

Semi-distributed hydrological models are often used for streamflow forecasting, 

hydrological climate change impact assessments, and other applications. In such models, 

basins are broken up into hydrologic response units (HRUs), which are assumed to have a 

relatively homogenous response to precipitation. HRUs are delineated in a variety of 

ways, and the procedure used may impact model performance. HRU delineation 

procedures have been researched, but it is still not clear how important these subdivision 

schemes are or which delineation methods are most effective. To start addressing this 

knowledge gap, this project investigated whether or not HRU size has a significant effect 

on streamflow simulation at the mouth of a watershed.  

To test this, 30 gaged, relatively unimpaired western U.S. basins were each modeled 

with 6 HRU sets of different sizes using the Precipitation Runoff Modeling System 

(PRMS). To isolate size as a variable, HRUs were delineated using stream catchments. 

For each basin, streams were defined with 6 different threshold levels, producing HRUs 

of differing sizes. Nineteen model parameters were derived for each HRU using 

nationally consistent GIS datasets, and all other model parameters were left at default 

values. Climate inputs were derived from a national 4-km2 gridded daily climate dataset.  

After calibration, 4 goodness-of-fit metrics were calculated for daily streamflow for 

each HRU set. Uncalibrated model performance was generally poor for a variety of 

reasons, but comparison of the models was still informative. Results for the 30 basins 

across the 6 HRU size classes showed that HRU size did not significantly impact model 

performance across all basins. However, in basins that had less total precipitation and 



ii 

higher elevation, sensitivity of model performance to HRU subdivision levels was 

slightly greater, though not significantly so. Findings indicate that, in most basins, little 

subdivision may be required for good model performance, allowing for desirable 

simplicity and fewer degrees of freedom without sacrificing runoff simulation accuracy. 
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1. Introduction  

Hydrologic models are increasingly used to forecast streamflow, estimate climate 

change impacts, and improve understanding of hydrological processes. These models are 

typically classified on a scale of lumped to distributed; in lumped models, the basin is 

assumed to have a homogenous response to climatic inputs, and computations are 

averaged over the entire basin area. In distributed models, hydrologic calculations are 

made independently for each cell of the model (e.g., each 30-m land cover pixel). Semi-

distributed models are a compromise between these two extremes in which watersheds 

are sub-divided into a set of hydrological response units (HRUs). Many semi-distributed 

models have been developed, including the Precipitation Runoff Modeling System 

(PRMS), Soil and Water Assessment Tool (SWAT),  Semi-distributed Land-Use Runoff 

Process (SLURP), the Hydrologic Engineering Center's Hydrologic Modeling System 

(HEC-HMS), the Cold Regions Hydrologic Model (CRHM), and others (Beckers et al., 

2009). In such models, each HRU is assumed to have a homogenous response to climatic 

inputs. Depending on the method of HRU delineation, the size of these HRUs can vary 

widely, but it is not clear which level of subdivision, if any, is most appropriate for the 

majority of basins. 

The question of optimizing HRU size is of practical importance to hydrological 

modelers as they create or revise watershed models. It also relates to the ongoing 

theoretical debate about the appropriate level of spatial discretization in hydrologic 

modeling (Beven, 1993). By manipulating the number of HRUs in a basin, a modeler 

controls where a model falls on the scale from lumped to fully distributed. Increasing 
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distribution can improve a model’s ability to capture local variability, and thus, at least 

theoretically, enhance overall model performance. It is generally thought that distributed 

models offer the most “realistic” representation of basin physical characteristics (Knight 

et al., 2001), and thus allow for better prediction of how a hydrologic system will behave 

with novel climate inputs (i.e., under climate change) (Beven, 2001). However, 

distributed models are much more complex and have more degrees of freedom. This, as 

Beven (1993, 2006) has observed, increases the model’s equifinality, which is its ability 

to reach a particular end state from many differing sets of initial conditions. In other 

words, many different hydrologic parameter sets can each generate a similar, successful 

model performance. Distributed models also require more data, validation, and 

processing power (Jung et al., 2012; Surfleet et al., 2012). Thus, depending on the 

application, there may be an optimal HRU size that provides a compromise between 

lumped and distributed approaches, and model subdivision experiments could help 

identify it. Semi-distributed models such as PRMS are well suited for investigating these 

questions, because they can mimic a lumped model when a single HRU is used and a 

distributed model when numerous small HRUs are used. 

Many studies have investigated the effects of subdivision level (i.e., number of 

HRUs) on semi-distributed model outcomes, including the simulation of streamflow (Cho 

et al., 2010; Norris and Haan, 1993; Wood et al., 1988), sediment levels (Bingner et al., 

1997; FitzHugh and Mackay, 2000; Muleta et al., 2007), nutrient levels (Arabi et al., 

2006; Jha et al., 2004), and extreme runoff (Kumar and Merwade, 2009). The current 

study focuses on subdivision’s effects on daily streamflow simulation because of this 

variable’s wide usage and practical implications for water resource management. 
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Previous studies that explored this same issue using various semi-distributed watershed 

models have yielded conflicting findings. Many found that model results (as judged by 

various goodness-of-fit measures) improved with increasing subdivision (Lacroix, 1999; 

Norris and Haan, 1993; Wood et al., 1988; Zhang et al., 2004). Mamillapalli et al. (1996) 

divided a 4,300 km2 basin located in Texas into 9 different schemes with average sub-

basin sizes of 717, 538, 307, 215, 179, 148, 123, 108, and 79.6 km2 each. They found that 

smaller sizes yielded better results, but that these improvements plateaued after they 

reached an average size of 215 km2. By contrast, other studies, which modeled basins of 

highly varied sizes, have found that model performance was essentially insensitive to 

changes in the level of basin subdivision (Cho et al., 2010; FitzHugh and Mackay, 2000; 

Jha et al., 2004; Muleta et al., 2007; Nour et al., 2008; Tripathi et al., 2006; Wingfield, 

2008). Also, in a SWAT study by Kumar and Merwade (2009) and in a PRMS study by 

Qi et al. (2009), increases in subdivision led to decreases in model performance. These 

studies and their essential findings are summarized in Table 1. 

As Table 1 illustrates, basins of many different size ranges have been modeled in the 

literature. In these studies, the subdivision schemes, and often the study goals, are not 

consistent. Thus, these studies are not fully comparable, and though much work has been 

done, it is difficult to draw universal conclusions because of the specificity of each 

investigation. Further, various hydrologic models have been used, and these models are 

likely to differ in their sensitivity to subdivision.  

For example, most of the SWAT studies (5 out of 7) found that flow simulation was 

not sensitive to subdivision, but only approximately half of the non-SWAT studies shared  



 

 

Table 1. Summary of studies on HRU size effects on streamflow simulation 

Study Hydrologic 
Model 

No. of 
Basin
s 

Study Area 
Basin 
Size 
(km2) 

Levels 
of sub-
division 

Subdivision scheme (avg. HRU size in  km2) 
Did increased 
subdivision lead to better 
streamflow simulation? 

Wood et al., 1988 TOPMODEL 1 North 
Carolina, USA 17 4 5.67, 0.89, 0.46, 0.20 yes 

Norris and Haan, 
1993 HEC-1 1 Oklahoma, 

USA 152.3 4 76.2, 30.5, 15.2, 10.2 yes 

Mamillapalli, 1996 SWAT 1 Texas, USA 4,3004 9 716.7, 537.5, 307.1, 215.0, 179.2, 148.3, 122.9, 
107.5, 79.6 yes, up to 215 km2 

Lacroix, 1999 SLURP 1 Yukon, 
Canada 183.3 21 

183.3, 61.1, 36.7, 26.2, 16.7, 12.2, 10.8, 9.65, 5.55, 
2.38, 1.13, 0.60, 0.44, 0.41, 0.35, 0.32, 0.30, 0.27, 
0.25, 0.22, 0.12 

yes 

Fitzhugh and 
Mackay, 2000 SWAT 1 Wisconsin, 

USA 47.1 8 15.7, 9.42, 4.28, 2.05, 1.00, 0.65, 0.49, 0.26 insensitive to subdivision 

Jha et al., 2004 SWAT 4 Iowa, USA 
1,929; 
4,776; 
10,829; 
17,941 

5 to 7 
385.8, 175.4, 113.5, 71.4, 55.1, 41.0, 36.4; 
1592.0, 434.2, 280.9, 176.9, 129.1, 101.6; 
3609.7, 1203.2, 637.0, 401.0, 292.7, 230.4; 
5980.3, 1993.4, 1196.1, 780.0, 512.6 

insensitive to subdivision 

Zhang et al., 2004 SAC-SMA 1 Oklahoma, 
USA 1,227 2 1227.0, 153.4 yes 

Tripathi et al., 
2006 SWAT 1 India 90.2 3 90.2, 7.52, 4.10 insensitive to subdivision 

Muleta et al., 2007 SWAT 1 Illinois, USA 133 6 14.8, 6.05, 1.77, 1.13, 0.61, 0.38 insensitive to subdivision 

Nour et al., 2008 ANN 1 Alberta, 
Canada 15.62 4 15.6, 3.12, 2.23, 1.42 insensitive to subdivision 

Wingfield, 2008 

HEC-HMS 5 Texas, USA 

68.6; 
9.9; 
60.3; 
18.4; 
119.4 

6 

22.9, 13.7, 9.80, 6.86, 4.57, 2.29; 
6.63, 3.98, 2.84, 1.99, 1.33, 0.66; 
20.1, 12.1, 8.61, 6.03, 4.02, 2.01; 
6.13, 3.68, 2.63, 1.84, 1.23, 0.61; 
39.8, 23.9, 17.1, 11.9, 7.96, 3.98 

insensitive to subdivision 

 4 



 

 

Study Hydrologic 
Model 

No. of 
Basin
s 

Study Area 
Basin 
Size 
(km2) 

Levels 
of sub-
division 

Subdivision scheme (avg. HRU size in  km2) 
Did increased 
subdivision lead to better 
streamflow simulation? 

Kumar and 
Merwade, 2009 SWAT 2 

Indiana, 
Michigan, 
Ohio; USA 

2,800; 
700 6 

280.0, 233.3, 116.7, 77.8, 48.3, 28.9; 
100.0, 77.8, 46.7, 41.2, 30.4, 17.1 
sub-basins, each with 2 HRU schemes 

no - increasing subdivision 
decreased performance 

Qi et al., 2009 PRMS 1 North 
Carolina, USA 377 4 17.1, 5.31, 3.19, 1.68 no - increasing subdivision 

decreased performance 

Cho et al., 2010 SWAT 1 Georgia, USA 15.7 9 5.23, 1.43, 0.92, 0.54, 0.45, 0.29, 0.16, 0.09 insensitive to subdivision 

5 
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this finding. This is a very small sample size, but if it is true that SWAT has less 

sensitivity, it may relate to its unique, two-tiered subdivision scheme. In SWAT, a basin 

is first divided into sub-basins based on a critical source area (CSA). CSA is the 

minimum upstream drainage area required to define a stream channel; these channels are 

then used to create sub-basins. CSA is specified as a percentage of the total drainage area. 

Each sub-basin is further divided into HRUs based on land cover and soil types (Kumar 

and Merwade, 2009). Given this structure, a SWAT basin with few sub-basins can 

actually have many HRUs that capture spatial variability; this could make SWAT results 

of limited comparability to other semi-distributed models. SWAT also differs from other 

models in its general level of complexity; SWAT includes more parameters and input and 

output variables than many other semi-distributed models because it also models in-

stream processes, water quality, and sediment transport (Daniel et al., 2011).  

Thus, though SWAT is one of the most well studied models, its unique HRU structure 

and higher degree of complexity imply that findings from these studies may be of limited 

applicability to other semi-distributed models. This includes PRMS, which is the focus of 

the current investigation. PRMS was selected because it is commonly used for 

hydrological modeling around the world (Bae et al., 2008; Burlando and Rosso, 2002; 

Chang and Jung, 2010; Legesse et al., 2003; Qi et al., 2009), but there is a lack of clarity 

about how best to delineate HRUs for this model.  To the author’s knowledge, only Qi et 

al. (2009) has evaluated how HRU size affects model performance in PRMS. This study 

used four versions of a 377-km2 basin in North Carolina. The versions had average HRU 

sizes of 17.1, 5.3, 3.2, 1.7 km2, and were all parameterized using the GIS Weasel (Viger 

and Leavesley, 2007). The researchers evaluated each model using Nash-Sutcliffe 
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Efficiency (NSE) and relative error (Er) at daily and monthly scales. They found that the 

version with an average HRU size of 17.1 km2 best simulated daily streamflow at the 

mouth of the basin. These results are interesting, but may only be relevant in that humid, 

temperate climatic region. A more thorough, multi-basin investigation of the impacts of 

HRU size in PRMS could provide more general results. 

Although this brief review does not include all published investigations of the effect 

of model subdivision on streamflow simulation performance, it demonstrates that the 

relationship between HRU size and model performance is still unclear. Also, as Table 1 

shows, most of these studies were conducted on only one basin each. Results from such 

studies may be strongly influenced by local variables, and it is not clear that their findings 

can be broadly applied. Further, each study used a unique combination of models, data 

inputs, HRU delineation methods, and calibration techniques, and direct comparison 

among them may not always be appropriate. Thus, the following questions remain 

unanswered: 1) Does HRU size impact PRMS performance? 2) If so, does one HRU size 

class perform better than others across a range of basins? 3) If not, how does the 

relationship between HRU size and model performance vary according to basin location 

and characteristics? 

In order to answer these questions, thirty gaged western basins with essentially 

unimpaired flow conditions and of comparable size were modeled using PRMS. These 

basins were selected to maximize comparability while also obtaining a sample that was 

large enough to support statistical analysis. For each basin, HRUs were delineated at six 

size classes (including a fully lumped version), and model parameterization was 
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automated and consistent for all models. The goodness of fit for each model was then 

computed for daily streamflow simulation. These goodness-of-fit metrics were then 

compared to basin characteristics that might mediate the relationships between HRU size 

and PRMS performance. The results will be most obviously relevant to PRMS, but 

should also be informative for researchers using other semi-distributed hydrological 

models, and can contribute to the longstanding debate about the level of discretization of 

hydrologic models. 
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2. Data and Methods 

2.1. Study basin selection 

The study basins were selected from the GAGES (Geospatial Attributes of Gages for 

Evaluating Streamflow) II dataset, created by the U.S. Geological Survey (USGS). This 

is an update to the original GAGES dataset, described in Falcone et al. (2010). GAGES II 

includes GIS (Geographic Information System) data and classifications for 9,322 USGS 

stream gages throughout the U.S. The dataset was created to provide users with a detailed 

set of traits for a large number of gaged watersheds, and to identify basins in which the 

hydrologic system has been least disturbed by humans. 

 These relatively unimpaired basins, or “reference gages,” were selected based on: (1) 

an index of anthropogenic influence in a basin derived from seven variables: density of 

major dams in the basin; basin change in reservoir storage from 1950-2009; basin 

percentage of streams that were coded artificial (canals, pipes, etc.); basin road density; 

distance from stream gage to closest significant pollution discharge site, county-level 

estimates of water withdrawals; and fragmentation of the basin’s undeveloped land; (2) 

visual inspection of gage sites and their basins in Google Earth and topographic maps; 

and (3) information from Annual USGS Water Data Reports about human influences for 

the basin (Falcone et al., 2010). Basins for the current study were selected from these 

reference gages, because variability in model performance stemming from different 

levels of human interference would have made the basins less comparable. 

From these reference datasets, only basins in the western U.S. were selected. This 

was done in part because the climate dataset utilized (described below) was only 

validated over the western U.S., though it covers all of the contiguous U.S. (Abatzoglou, 
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2011). Focusing on the western states is also useful because these areas tend to be more 

sensitive to climate change due to the importance of the snowpack to spring and summer 

flows (Barnett et al., 2008), and thus good hydrological models are key in these areas. 

Excluding eastern basins also constrained the total number of basins to a manageable 

number. The basins were further constrained to a size range of 700 to 3,000 km2. Basins 

smaller than this were omitted because the minimum HRU size was identified as 4 km2 

(as explained in the HRU delineation section below), and using small basins would not 

allow for multiple levels of increasing subdivision before reaching this HRU size limit. 

From these, any basins without a continuous flow record of at least 20 years were 

eliminated, leaving 30 total basins. The selected basins are shown in Figure 1, and are 

labeled with their USGS gage ID numbers. 
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Figure 1. Basins modeled in this study, labeled with their USGS gage ID numbers. 

 

According to the GAGES II classifications, 28 of the basins are in the “Western 

Mountains” aggregated ecoregion. That ecoregion was selected because its mountainous 

areas are more likely to be unimpaired than other ecoregions. The common ecoregion 

helps to make the basins more comparable. The two other basins, Bonita Creek near 

Morenci, AZ (09447800) and Bruneau River at Rowland, NV (13161500) were classified 

as “Xeric West.” Table 2 reports gage numbers and names for the 30 basins, and provides 

select metrics for each. To maximize comparability, this study uses the longest possible 

period of recorded flow that is common to all 30 of these basins, which is 10/1/1985 

through 9/30/2010.  



 

 

Table 2. Gages used in this study, and statistics about their basins from GAGES II dataset (Falcone et al., 2010) 

Gage ID Gage Station Name 
Basin 
area 
(km2) 

Basin mean 
annual 
precipitation 
(cm) 

Basin mean 
annual 
temperature 
(C°) 

Basins 
base 
flow 
index 

Basin 
median 
elevation 
(m) 

Basin 
mean 
percent 
slope 

Average 
runoff 
(mm/year) 

06043500 Gallatin River near Gallatin Gateway, MT 2120.4 87.6 2.1 77.4 2409 28.2 230.6 
06280300 SF Shoshone River near Valley, WY 794.0 82.8 0.0 65.8 2953 44.7 245.7 
08324000 Jemez River near Jemez, NM 1208.0 63.5 6.3 54.3 2613 18.3 23.3 
09447800 Bonita Creek near Morenci, AZ 782.0 44.2 13.2 52.7 1575 15.9 41.0 
09494000 White River near Fort Apache, AZ 1628.2 73.9 8.4 56.1 2180 14.3 118.0 
09497800 Cibecue Creek near Chysotile, AZ 750.9 58.8 11.8 37.1 1715 19.4 55.9 
10308200 EF Carson River below Markleeville C near Markleeville, CA 716.4 98.0 4.8 68.4 2425 29.6 301.4 
11266500 Merced River above Pohono Bridge near Yosemite, CA 833.1 121.3 7.0 59.6 2561 30.0 692.6 
11473900 MF Eel River near Dos Rios, CA 1925.0 143.4 11.6 32.5 1104 26.4 710.6 
11482500 Redwood Creek above Orick, CA 718.0 212.9 11.1 42.7 525 28.1 1079.5 
11522500 Salmon River above Somes Bar, CA 1943.1 157.4 10.0 58.1 1292 44.1 863.0 
11528700 SF Trinity River below Hyampom, CA 1980.1 147.0 10.8 47.5 1125 28.2 631.2 
11532500 Smith River near Crescent City, CA 1578.0 282.6 11.0 46.3 731 36.9 2140.7 
12035000 Satsop River near Satsop, WA 769.9 305.2 9.7 51.2 136 16.1 2777.8 
12040500 Queets River near Clearwater, WA 1153.4 363.5 8.9 51.7 359 30.6 3733.1 
12189500 Sauk River near Sauk, WA 1855.3 276.6 6.2 59.2 1183 47.3 2134.5 
12358500 MF Flathead River near West Glacier, MT 2939.2 127.1 2.6 68.1 1751 40.4 876.8 
12411000 NF Coeur D Alene River above Shoshone Ck near Prichard, ID 867.5 122.6 5.7 65.8 1195 33.1 722.3 
12413000 NF  Coeur D Alene River at Enaville, ID 2325.2 120.6 6.3 66.1 1155 34.8 721.4 
12414500 St. Joe River at Calder, ID 2679.0 127.7 5.7 67.2 1384 35.1 722.1 
12451000 Stehekin River at Stehekin, WA 830.6 173.2 5.2 64.2 1588 55.8 791.5 12 



 

 

Gage ID Gage Station Name 
Basin 
area 
(km2) 

Basin mean 
annual 
precipitation 
(cm) 

Basin mean 
annual 
temperature 
(C°) 

Basins 
base 
flow 
index 

Basin 
median 
elevation 
(m) 

Basin 
mean 
percent 
slope 

Average 
runoff 
(mm/year) 

13010065 Snake River above Jackson Lake at Flagg Ranch, WY 1222.3 109.5 0.4 78.4 2492 13.7 615.7 
13011900 Buffalo Fork above Lava Creek near Moran, WY 851.8 96.0 0.4 70.1 2753 24.0 612.8 
13023000 Greys River above Reservoir near Alpine, WY 1161.9 81.1 1.4 77.1 2452 30.4 509.4 
13161500 Bruneau River at Rowland, NV 986.1 44.5 4.5 66.8 2010 20.2 48.8 
13185000 Boise River near Twin Springs, ID 2154.4 92.8 4.6 74.3 1905 36.5 290.5 
13235000 SF Payette River at Lowman, ID 1163.2 101.2 3.6 74.6 2115 39.9 664.6 
14301000 Nehalem River near Foss, OR 1743.5 242.7 9.4 49.5 322 19.5 1394.2 
14306500 Alsea River near Tidewater, OR 857.2 210.9 11.6 43.3 290 27.4 1511.5 

13 
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2.2. The Hydrologic Model – PRMS 

PRMS is a semi-distributed, deterministic, physically-based surface runoff model 

developed and regularly improved by the USGS (Leavesley et al., 1983; Leavesley and 

Stannard, 1995; Markstrom et al., 2005). This model has been used in climate change 

impact assessments around the world (Bae et al., 2008; Burlando and Rosso, 2002; Chang 

and Jung, 2010; Jung and Chang, 2011; Qi et al., 2009), for groundwater recharge 

estimation (Hart et al., 2009; Smerdon et al., 2009), for simulating natural discharge in a 

dammed basin (Ely and Risley, 2001), and more. PRMS computes a daily water balance 

for each HRU and then sums the water and energy balances, weighted by each HRU’s 

relative area, to derive daily basin output values for flow, soil moisture, 

evapotranspiration (ET), and other variables (Hay et al., 2009). PRMS was recently 

modified to accept individual climate input files for each HRU (USGS, 2012). 

Previously, distribution of climate inputs (typically weather station data) to HRUs 

occurred within the model using one of several available modules. This new functionality 

makes it simpler to force PRMS with gridded climate datasets like the one used in this 

study (described below). 

2.3. HRU Delineation Methods 

In PRMS, HRUs can be delineated in a wide variety of ways. The primary objectives 

in delineation for this study were to keep basins comparable, and to isolate HRU size as a 

variable as much as was possible. To accomplish this, a simple catchment-based 

delineation approach was conducted with a custom ArcPy script (ESRI, 2012). Soil, Land 

Use/Land Cover (LULC), and other GIS datasets are often used in HRU delineation (e.g., 

Chang and Jung, 2010), but such methods would produce HRUs of widely varying size, 
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depending on the variability of each layer in each basin. Thus, only topography was 

considered when delineating HRUs in the current study. 

First, for each basin, multiple sets of stream networks of increasing complexity were 

generated from a 10-m DEM. Complexity of the stream networks was controlled by 

manipulating the number of cells that must be upstream of a given cell for it to be 

classified as a stream cell. This stream threshold is equivalent to the CSA  parameter that 

has been used to control HRU size in similar studies with SWAT (Cho et al., 2010; 

FitzHugh and Mackay, 2000; Kumar and Merwade, 2009; Muleta et al., 2007).  

Once these stream networks were defined, an HRU was created for each unique 

stream segment, and HRUs smaller than 4 km2 were merged into the neighboring HRU 

with which they shared the longest border. Four km2 was the cutoff because that was the 

resolution of the climate input grid. Given that climatic inputs are a major, if not the 

primary, determinant of model outputs, little would be gained by adding subdivisions 

finer than the resolution of climatic inputs. This is a larger cutoff than was used in some 

previous research; a few studies identified an optimal HRU size of as small as 1 km2 

(Lacroix, 1999; Song and James, 1992; Wood et al., 1988). This study did not consider 

HRUs this small, which may be a limitation. 

From the various stream threshold values, five final values were selected because 

they provided a satisfactory range of HRU sizes across all 30 basins. These threshold 

values were 80,000, 100,000, 200,000, 400,000, and 600,000 upstream cells. 

Additionally, a fully lumped model (1 HRU) was prepared for each basin, giving a total 

of six models of varying HRU size per basin, for a total of 150 models. Table 3 provides 
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a summary of the HRU size classes, as well as the size class numbering scheme that will 

be used in the remainder of this paper. Figure 2 depicts the 6 HRU sets for an example 

basin. 

Table 3. HRU characteristics by size classes  

HRU Size Class 
Number 

Stream Definition 
Threshold 

Median no. 
HRUs 

Mean no. 
HRUs 

Std. dev. 
no. HRUs 

Avg. HRU size 
(km2) 

1 Dissolve (1 HRU) 1 1 0.0 1374.7 
2 600,000 10 10.9 6.0 144.2 
3 400,000 13 16.1 8.9 100.1 
4 200,000 25 31.6 18.1 46.7 
5 100,000 48.5 58.1 30.1 24.8 
6 80,000 78 85.2 45.2 16.9 

 

 

 

Figure 2. Example basin with six levels of HRU subdivision (North Fork Coeur d'Alene River at 
Enaville, ID, Gage No. 12413000) 
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2.4. Climate Inputs 

In order to model the basins as consistently as possible, this study employed a high 

resolution, gridded surface meteorological dataset prepared by Dr. John Abatzoglou of 

the University of Idaho (Abatzoglou, 2011). This dataset combines the spatial 

completeness of 4 km2 gridded climatic data with the temporal resolution of regional-

scale analysis and daily measurements from NLDAS-2 (North American Land Data 

Assimilation System) for the contiguous U.S. from 1979-2011.  

The climate dataset was validated against a large network of weather stations, and 

showed skill similar to datasets derived from interpolation of station observations 

(Abatzoglou, 2011). However, there was geographic variability in this skill. Precipitation, 

a critical variable in hydrological modeling, showed the strongest correlations to test 

datasets (r > 0.85, based on daily values) on the western, windward sides of the Cascades 

and the Sierra Nevada during the cool, rainy season. In these areas, most of the winter 

precipitation is delivered by synoptic-scale frontal systems, which tend to be homogenous 

over large areas. Convective processes, by contrast, are less spatially predictable, and are 

more common in areas east of the Cascades and the Sierra Nevada, especially in the 

Rockies and the Great Basin. These regions had lower correlations to test datasets on 

average (Abatzoglou, 2011).  

Also relevant to the current study is the fact that snow-dominated areas often showed 

strong positive biases when compared to the test datasets. Abatzoglou (2011) argues that 

this may be because the test snow data were gathered by un-winterized automatic gages, 

which under-report solid precipitation.  
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The climate dataset includes daily or sub-daily values for precipitation (PRCP), 

maximum temperature (TMAX), minimum temperature (TMIN), humidity (maximum 

and minimum relative humidity and specific humidity), surface downward shortwave 

radiation (daily mean) (SRAD), and wind velocity (daily mean). Only PRCP, TMAX, 

TMIN, and SRAD were used in the current study, because PRMS does not take humidity 

or wind velocity as climatic inputs. Daily time series for PRCP, TMAX, and TMIN were 

created by intersecting the 180 HRU sets (6 per basin) with the climate grid. Area-

weighted averages of the time series grid cells that intersected each HRU were calculated, 

and then used as climate forcing data for PRMS. 

2.5. Model parameterization data and methods 

 Many PRMS parameters can be derived for each HRU using GIS data layers. All 

parameters derived for the current study are listed in Table 4, and Table 5 provides the 

resolution and source of each GIS dataset. The methods used to derive parameters were 

essentially identical to those used by the GIS Weasel, a program for delineating and 

parameterizing HRUs for PRMS. These methods are fully described in the GIS Weasel’s 

user manual (Viger and Leavesley, 2007). Some minor modifications were necessary 

because this study uses different input datasets than the GIS Weasel. Specifically, the 

LULC remap tables used to calculate parameters such as summer vegetation density 

(Viger and Leavesley, 2007) were altered to work with the National Land Cover 

Database (NLCD) (Homer et al., 2007) dataset by lumping the GIS Weasel’s more 

numerous vegetation classes together. The coefficients for the NLCD classes were 

calculated by averaging the coefficients of all the GIS Weasel classes that were lumped 
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into each one. Also, all methods were translated from Arc Macro Language (AML) into 

ArcGIS ModelBuilder models and ArcPy scripts. 

Table 4. PRMS parameters derived from GIS datasets. Dataset resolutions and sources are provided 
in Table 5. 

Name Description GIS Dataset 
cov_type Vegetation cover type for each HRU (bare, 

grass, shrubs, trees) 
National Land Cover Database (NLCD) 2001 
Land Cover 

covden_sum Summer vegetation cover density for each 
HRU 

NLCD 2001 Land Cover 

covden_win Winter vegetation cover density for each 
HRU 

NLCD 2001 Land Cover 

hru_aspect  Mean aspect of each HRU USGS 10-m DEM 
hru_elev Mean elevation of each HRU USGS 10-m DEM 

hru_lat Latitude of each HRU -- 
hru_percent_imperv Proportion of each HRU area that is 

impervious 
NLCD 2001 Percent Developed Impervious 

hru_slope Mean slope of each HRU USGS 10-m DEM 
jh_coef_hru  Air temperature coefficient used in Jensen-

Haise PET computations for each HRU. 
NLCD 2001 Land Cover 

rad_trncf Transmission coefficient for short-wave 
radiation through the winter vegetation 
canopy 

NLCD 2001 Land Cover 

snow_intcp Snow interception storage capacity for each 
HRU 

NLCD 2001 Land Cover 

snow_intcp  Snow interception storage capacity for the 
major vegetation type in each HRU 

NLCD 2001 Land Cover 

soil_moist_max  Maximum available water holding capacity 
of soil profile for each HRU 

U.S. General Soil Map, GIS Weasel Data Bin, 
NLCD 2001 Land Cover 

soil_rechr_max Maximum value for soil recharge zone for 
each HRU 

U.S. General Soil Map, GIS Weasel Data Bin, 
NLCD 2001 Land Cover 

soil_type HRU soil type (sand, clay, or loam) Interpolated STATSGO 
srain_intcp Summer rain interception storage capacity 

for each HRU 
NLCD 2001 Land Cover 

tmax_adj  Adjustment to max. temp. for each HRU 
based on slope and aspect 

USGS 10-m DEM 

tmin_adj Adjustment to min. temp. for each HRU 
based on slope and aspect 

USGS 10-m DEM 

wrain_intcp Winter rain interception storage capacity for 
each HRU 

NLCD 2001 Land Cover 

 

Most of the GIS datasets used for parameterization have full coverage for the 

contiguous U.S. (e.g., LULC, DEM), but finding spatially complete soil data was more 

challenging. The General Soil Map of the U.S. (USDA, n.d.), also known as STATSGO 
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(State Soil Geographic Database) 2, has national coverage, but not for all variables. To 

obtain soil texture values for all basins, raster layers derived by Kern (2010) that correct 

inconsistencies and fill gaps in STATSGO were used. Rock depth values, used in 

calculating the parameters soil_moist_max and soil_rechr_max, were obtained from the 

GIS Weasel data bin layers. These layers were made by resampling STATSGO data to a 

1-km pixel resolution (Viger and Leavesley, 2007). 

Table 5. GIS Datasets used to parameterize HRUs. 

Data Set Resolution Source 
USGS 10-m DEM 10-m pixels Gesch et al., 2002 
NLCD 2001 Land Cover 30-m pixels Homer et al., 2007  
NLCD 2001 Percent 
Impervious 

30-m pixels Homer et al., 2007 

U.S. General Soil Map Digitized from 1:250,000 topographic quadrangles; 
minimum map unit size of 2,500 acres 

USDA-NRCS, n.d. 

Soil texture layers from 
Conservation Biology Institute 

800-m pixels Kern, 2010 

GIS Weasel Data Bin soil 
layers 

1-km pixels Viger and Leavesley, 2007 

 

After parameterization, each model was run with no calibration. All parameters not 

listed in Table 4 were left at PRMS default value. Fifty-six total parameters were left at 

default values. Calibration was a part of the initial study design, but was not conducted 

due largely to time constraints. Each of the 180 models would have taken 1 to 3 days to 

calibrate, and even with multiple instances running at once on a Linux server, this would 

have been a prohibitively slow process. Arguably, however, leaving the models 

uncalibrated ensures consistency, because the Shuffled Complex Evolution (SCE) 

method (Duan et al., 1994) that would have been used would have introduced 

stochasticity to the parameter sets. Thus, for some models, a particular size class might 
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appear to perform better through chance alone due to the near-inevitability of equifinality 

in complex hydrological models (Beven, 2006). Leaving the models uncalibrated makes 

the scores poorer, but may make cross-comparison of scores more robust. It is an untested 

assumption of this study that HRU size sensitivity patterns observed in poorly performing 

uncalibrated basins are relevant to calibrated, better performing models. 

2.6. Model Performance Assessment 

After models were parameterized and run for the period 10/1/1985 to 9/30/2010, the 

resulting daily time series of simulated streamflow were compared to measured 

streamflow using four goodness-of-fit metrics. These were the NSE score (Nash and 

Sutcliffe, 1970), which can range from -∞ to 1, with 1 indicating perfect agreement; the 

Index of Agreement (IoA) (Willmott, 1981), which varies between 0 and 1, with 1 

indicating perfect agreement; Pearson’s Correlation Coefficient (r), which ranges from -1 

to 1, with 1 indicating perfect agreement; and Percent Bias (PB), which has an optimal 

value of 0%. These values were calculated for the period 10/1/1987 to 9/30/2010; the first 

two years were considered as a warm up period and discarded in scoring. 

It is key to stress that this study was not designed to attain the best model 

performance, but rather, to ensure comparability of the models. Since the 6 models for 

each basin differ only in the number of HRUs, if there are differences among the scores, 

even if they are all poor, it is likely caused by HRU size.  

Once all of these scores were calculated, the models were grouped by HRU size 

classes. For each HRU size class group, there were 30 total basins. The statistical 

distributions of these 6 groups of 30 were compared using a Kruskal-Wallis one-way 
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ANOVA (Analysis of Variance) (Kruskal and Wallis, 1952) in SPSS version 21 (IBM 

Corp., 2011). This non-parametric statistic was selected because most of the variables in 

question had non-normal distributions. 

To provide better understanding of the sources of error in various basins, a summary 

water balance was calculated for each basin for the period 10/1/1985 to 9/30/2010. 

Hydrographs were also prepared for six basins with varying total percent bias. A water 

balance table and hydrographs can help indicate whether a model might perform well 

after automatic calibration, or whether there is a more fundamental problem with the 

climate inputs that could not be easily resolved by calibration. This information could be 

used to help select calibration parameters or to eliminate problematic basins in a possible 

extension of this study. 

2.7. Geographic patterns in model performance 

Geographic patterns in model performance were visually inspected by creating a 

series of choropleth maps that showed average performance as well as range in 

performance for each basin. To test whether the patterns suggested by this visual 

inspection were statistically significant, Moran’s I was calculated for the means and 

ranges of the four goodness of fit scores using Open GeoDa (Anselin et al., 2006). 

Moran’s I is a commonly used measure of spatial autocorrelation that can range from -1 

to 1. When its value approaches 1, the data are clustered (positive spatial autocorrelation), 

and when it approaches -1, they are dispersed (negative spatial aucocorrelation). Basin 

centroids were used in the calculations, and the weights file was based on the 5 nearest 

neighbors of each. For each statistic, a pseudo-significance (p-value) was generated by 
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creating 999 random arrangements of the variable values, and comparing the observed 

value to that distribution.  

2.8. Correlations among basin characteristics and range of goodness of fit scores 

To find whether goodness-of-fit scores were related to particular basin attributes, the 

scores were compared to numerous basin statistics included in the GAGES II dataset. 

First, the range for each goodness-of-fit score type (NSE, IoA, PB, r) across all six size 

classes was calculated for each basin. These four goodness-of-fit range numbers provide 

an indication of the sensitivity of a basin to variation in HRU size. These numbers were 

then compared to a large set of GAGES II variables that were judged to be hydrologically 

important in the study basins (listed in Appendix A). This comparison was done by 

finding Spearman’s rank-order correlations between the goodness-of-fit range numbers 

and the basin statistics, pairwise, in SPSS. This non-parametric statistic was used because 

many of the input variables have non-normal distributions, making parametric statistics 

inappropriate with extensive normalization.  

A strong correlation between a certain variable and a goodness-of-fit range score 

could indicate that HRU size was of greater important in certain types of basins. To aid in 

interpretation of these results, the list of basin characteristics was correlated against itself, 

pairwise. For example, the correlation of precipitation and baseflow index was found, as 

was the correlation of median elevation to percent forested.   
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3. Results and Discussion 

3.1. Model goodness-of-fit scores 

As was explained in the introduction, the goal of the study was not to mass-produce 

accurate watershed models, but to create sets of models for each basin that varied only in 

HRU size, and which could be compared. Inter-basin comparability was also a primary 

goal. Model scores could be improved with calibration, or through careful selection of the 

best climate and GIS inputs for each area. However, this study was designed to ensure 

model comparability above other factors; as such, consistency of development was 

considered more important than the performance of individual models. The key 

assumption made here is that variation in these scores is meaningful, not random, though 

they are poor, and that it can provide information that is relevant to more accurate, 

calibrated, individually prepared models. 

Figures 3 through 6 display the model performance results for the total modeled 

period as boxplots. In these figures, each boxplot represents 30 performance scores (one 

per basin) for one of the HRU size classes described in Table 4. All scores are provided 

in Appendix B. The figures clearly indicate that the distribution of model performance 

scores is remarkably similar across all 6 HRU size classes, for all 4 goodness of fit 

metrics. This indicates that no HRU size class leads to generally better model 

performance than any other. 

To confirm this, Kruskal-Wallis one-way ANOVA non-parametric statistical tests 

were used to compare the distributions of each size class. For all 4 goodness of fit 

metrics, the null hypothesis, which was that the distributions were the same across all size 
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classes, could not be rejected. This provides further evidence that, on average, variation 

in model subdivision does not have a significant impact on model performance. These 

results are consistent with those from many other studies (Table 1), and in this study, 

statistical tests confirm these results. The results thus provide further support for the 

contention that model subdivision is not an especially critical aspect of semi-distributed 

model development. Further, when taken with the other studies, these findings suggest 

that there is no clear “one HRU-size fits all” approach to watershed model subdivision.   

These figures also show that the performance of most models was quite poor. These 

uncalibrated models would not be appropriate for forecasting stream flow levels or 

estimating climate change impacts. NSE scores are very poor, and PB scores indicate that 

for most basins, flow was over-predicted, likely due to underestimation of 

evapotranspiration or overestimation of precipitation input data. 

 For NSE (Figure 4), the boxplots show that there were two basins where model 

performance is particularly poor. For PB (Figure 6), however, the worst performance is in 

another basin. This illustrates that hydrological model performance assessments are 

sensitive to the goodness-of-fit metrics employed. 
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3.2. Model water balance 

To provide some insight into why the goodness-of-fit scores were so poor on average, 

and to guide calibration efforts in a possible extension of this study, the average annual 

water balance from 10/1/1987 to 9/30/2010 was calculated for each model. Table 6 shows 

these average annual water balances for only one HRU size class (size class 4) for each 

basin. In each basin, balances were very similar for each of the 6 classes, and so 

displaying one size class is adequate. As shown in Table 6, precipitation is the sum of the 

climate grid time series inputs, and measured runoff is the depth sum from the USGS 

gage flow record. Evapotranspiration and simulated runoff are calculated in PRMS. 

Percent Bias is the percent error between measured and simulated runoff, and the last 

column shows measured runoff divided by precipitation (runoff ratio).  



 

 

Table 6. Water balance summaries for 30 basins. These are based on HRU size class 4 for each basin.  

Gage ID Precipitation 
(mm) 

Evapotranspiration 
(mm) 

Simulated Runoff 
(mm) 

Measured Runoff 
(mm) Percent Bias Runoff Ratio 

6043500 1,276.4 507.6 769.6 364.3 111.2% 0.29 
6280300 860.9 428.0 434.4 467.1 -7.0% 0.54 
8324000 409.2 410.3 1.8 59.3 -97.0% 0.14 
9447800 440.8 424.0 19.3 13.0 48.9% 0.03 
9494000 746.3 617.4 130.9 103.8 26.2% 0.14 
9497800 532.1 485.4 49.4 52.6 -6.2% 0.10 
10308200 1,104.2 414.6 690.6 452.0 52.8% 0.41 
11266500 1,278.0 371.0 907.0 749.1 21.1% 0.59 
11473900 1,191.4 364.1 829.8 716.9 15.8% 0.60 
11482500 2,682.5 587.8 2,093.8 1,218.8 71.8% 0.45 
11522500 1,776.1 559.8 1,215.3 843.5 44.1% 0.47 
11528700 1,836.5 457.6 1,380.1 613.3 125.0% 0.33 
11532500 3,379.6 716.5 2,660.0 2,131.5 24.8% 0.63 
12035000 2,337.0 564.7 1,768.0 2,624.0 -32.6% 1.12 
12040500 5,918.6 727.0 3,697.7 3,804.6 -2.8% 0.64 
12189500 1,768.3 510.3 1,254.4 2,349.7 -46.6% 1.33 
12358500 1,198.5 477.3 720.9 916.8 -21.4% 0.76 
12411000 1,076.9 477.3 600.9 738.4 -18.6% 0.69 
12413000 1,345.9 459.1 887.7 762.6 16.4% 0.57 
12414500 1,815.6 560.4 1,255.2 794.8 57.9% 0.44 
12451000 976.7 294.5 682.2 1,628.5 -58.1% 1.67 
13010065 1,169.7 453.4 717.5 703.0 2.1% 0.60 
13011900 626.1 414.1 214.4 575.1 -62.7% 0.92 29 



 

 

Gage ID Precipitation 
(mm) 

Evapotranspiration 
(mm) 

Simulated Runoff 
(mm) 

Measured Runoff 
(mm) Percent Bias Runoff Ratio 

13023000 1,076.6 462.0 616.0 498.9 23.5% 0.46 
13161500 287.5 269.8 20.8 89.2 -76.7% 0.31 
13185000 834.0 238.7 595.1 501.5 18.7% 0.60 
13235000 1,234.5 439.6 794.7 646.6 22.9% 0.52 
14301000 1,510.4 489.2 1,022.5 1,401.8 -27.1% 0.93 
14306500 1,667.7 517.8 1,151.4 1,502.0 -23.3% 0.90 
14400000 3,587.9 782.0 2,802.4 2,988.6 -6.2% 0.83 
 

30 
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Table 6 contains several basins that have problematic water balance numbers. For 

example, basins 12035000 (Satsop River near Satsop, WA), 12189500 (Sauk River near 

Sauk, WA), and 12451000 (Stehekin River at Stehekin, WA) all show a runoff ratio that 

is greater than 1. That is, the mean annual depth of measured flow over the study period 

was greater than the mean annual precipitation inputs for the study period. In these 

basins, the climate grid is clearly underestimating total precipitation, and no amount of 

calibration would lead to a good performance. The underestimation may stem from 

under-catch in the weather stations used to derive the climate dataset; Legates and 

Deliberty (1993) estimate precipitation under-catch due to wind at more than 18 mm per 

winter month in the coastal northwest. Also, fog drip, or occult precipitation, has been 

estimated at 30% of total precipitation in a Douglas Fir forest in the Oregon cascades 

(Harr, 1982), and could be important in these Washington basins as well. Regardless of 

the cause of the under-estimation, it might be better to drop these basins from subsequent 

analyses due to a poor fit between climate inputs and observed flow, and other basins 

with high runoff ratios (the last column of Table 6) may also be suspicious. 

Table 6 also shows that many models have large biases (also apparent in Figure 6). 

Basins with such poor water balances may not respond well to calibration. 

3.3. Monthly hydrographs for representative basins 

Hydrographs are another key tool used in hydrologic model interpretation. To better 

understand the behavior of the uncalibrated models, hydrographs were prepared for 6 

basins (Figures 7 through 12). These basins, representing a range of geographic areas, 

have large percent bias values (both positive and negative). One basin with a very small 
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percent bias was also included (12040500, Figure 11). Locations of the selected basins 

are shown in Figure 7. In this map, the basins with hydrographs are labeled with their 

percent bias over the period 10/1/1987 to 9/30/2010. 

 

Figure 7. Basins with hydrographs shown below (Figures 8 through 13). Basins with hydrographs are 
red, and are labeled with their percent bias over the modeled period. 

 

Figures 8 through 13 portray simulated and measured monthly streamflow for each basin 

over the 20 year period from October 1988 to September 2007. 



 

 

 

Figure 8. Monthly hydrograph for basin 06043500 (Gallatin River near Gallatin Gateway, MT, median elevation 2,409 m) for Oct. 1988 to Sept. 
2007.  

This basin shows consistent, strong over-prediction in spring and consistent under-prediction in winter, but the timing is better 

than in some of the following basins. Goodness of fit could be improved in this basin by using parameter values that increase ET 

and slow water movement through the system. 
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Figure 9. Monthly hydrograph for basin 08324000 (Jemez River near Jemez, NM, median elevation 2613 m) for Oct. 1988 to Sept. 2007. 

In this southwestern basin, precipitation inputs are reasonable (see Table 6), but are almost all escaping via ET, and runoff is 

drastically under-predicted as a result. This basin’s performance could be improved by calibrating parameters to decrease ET. 

Timing could also be improved, though it is difficult to see timing patterns with simulated flow values so low. The high ET could 

also be caused by overly high SRAD inputs from the climate grid. If this is the case, calibration may not be very effective. 
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Figure 10. Monthly hydrograph for basin 11528700 (South Fork Trinity River below Hyampom, CA) for Oct. 1988 to Sept. 2007. 

This California basin shows high over-prediction as well as problems with timing. In many years, especially the period in the 

late 1990s, measured runoff peaks in late winter/early spring, whereas simulated runoff peaks in late spring/summer. This suggests 

that too much precipitation is being held in snow pack in the model. This model could likely be improved by adjusting parameters 

that affect snow accumulation and snowpack maintenance, and possibly by increasing ET, especially in winter. 
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Figure 11. Monthly hydrograph for basin 12040500 (Queets River near Clearwater, WA, median elevation 359 m) for Oct. 1988 to Sept. 2007. 

This Washington Basins has very low percent bias, but severe problems with runoff timing. Measured flow peaks in winter, 

when most precipitation comes to this region, whereas simulated flow peaks in the dry season, indicating that most precipitation is 

being incorrectly stored in the models snowpack until the warmer months. This could be adjusted with parameters that affect 

precipitation phase and snowpack development and evolution. 
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Figure 12. Monthly hydrograph for basin 12451000 (Stehekin River at Stehekin, WA, median elevation 1,588 m) for Oct. 1988 to Sept. 2007. 

This Washington basin shows under-prediction and timing problems. Simulated flows peak too early in the year, suggesting 

that snow is not accumulating properly. Timing could be improved by manipulating parameters related to snow accumulation. 

However, under-prediction cannot be entirely fixed without directly manipulating the precipitation inputs. In this basin, measured 
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flow/grid precipitation is 1.67 (see Table 6). Climate grid precipitation values are thus too low here. Interbasin groundwater flow 

could be contributing to the measured flows, but is unlikely to account for much of the discrepancy.  

 

Figure 13. Monthly hydrograph for basin 13161500 (Bruneau River at Rowland, NV, median elevation 2,010 m) for Oct. 1988 to Sept. 2007. 

As with the other southwestern basin graphed above (Figure 9), precipitation inputs are reasonable (see Table 6), but are almost 

all escaping via ET, and runoff is drastically under-predicted as a result. Thus, this basin’s performance could be improved by 
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calibrating parameters to decrease ET. Timing is also poor, with measured flows peaking 

months sooner than measured flows. Manipulation of parameters that affect snow pack 

development and melt and flow rates through soils could improve timing.   

Taken together, these six hydrographs show that the models are performing poorly for 

a variety of reasons, including excessive ET, poor timing related to both too much and 

not enough snow, and overestimation. They suggest that automatic calibration should 

include parameters that influence snow pack formation and melt, ET, and rate of 

groundwater movement. Many of these problems could be resolved by such calibration, 

but some may not be adequately responsive to it, especially in those basins where 

precipitation inputs are too low, which were described above. This will inform extension 

of this study, but for the current investigation, the assumption is that score variation 

among the different HRU size classes is informative regardless of model performance, 

and discussion of this variation, both within and between basins, continues below. 

3.4. Geographic patterns in average model performance and range of model 
performances 

The boxplots from section 3.1 (Figures 3 through 6) demonstrate that no single HRU 

size class performs better across basins, but they give no indication as to possible 

geographic variation in goodness of fit. Figures 14 through 16 display that the spatial 

patterns in performance vary for IoA, NSE, and PB. The values shown for each basin in 

these maps were created by averaging performance across all 6 size classes. These 

averaged values, of course, cannot answer the question of how HRU size affects 

performance, but the patterns in performance are interesting, especially when contrasted 

with patterns in range. For r (Figure 14), basins with poorer performance (light yellow) 
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seem to be more common in the west and especially in Washington. The negative r-

values in these Washington basins likely relate to the problems in flow timing illustrated 

in Figure 11. The pattern for NSE (Figure 15) is quite different, with western and 

northwestern basins doing relatively well (darker green). A similar pattern appears for PB 

(Figure 16); basins in Washington and Oregon are closer to the ideal value of 0 than are 

many basins in other regions, and basins that have strong overestimation (e.g., the basin 

in southern Montana) also have poor NSE values. Similarities in the patterns for these 

two metrics are not surprising, as finding the ratio of simulated to measured flow (PB) is 

part of the calculation of NSE (Nash and Sutcliffe, 1970).  

 

Figure 14. Average Correlation Coefficient (r) among 6 HRU size classes by basin for the period 
10/1/1987-9/30/2010. 
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Figure 15. Average Nashe-Sutcliffe Efficiency (NSE) among 6 HRU size classes by basin for the 
period 10/1/1987-9/30/2010. 

 

Figure 16. Average Percent Bias among 6 HRU size classes by basin for the period 10/1/1987-
9/30/2010. 
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Figures 14 through 16 illustrate spatial variability in model performance, but not in 

the effects of HRU size on model performance. This effect is best quantified by the range 

of goodness-of-fit scores across all 6 HRU size classes for each individual basin, which 

provides a rough metric of model sensitivity to HRU size. In the rest of this document, 

the goodness-of-fit range will be treated as synonymous to “HRU size sensitivity.” It 

should be noted, however, that the same range value may reflect different HRU size 

sensitivity, because goodness of fit scores are not truly linear. For example, the NSE 

value pairs of [-1, -3] and [-100, -102] have the same range, but the second pair indicates 

less sensitivity than the first pair. For this reason, range values in IoA and r are probably 

more reliable metrics for HRU size sensitivity than range values in NSE and PB, and so 

the latter should be interpreted with caution. 

Figures 17 and 18 show the range of two goodness-of-fit scores, IoA and NSE. The 

color of each basin indicates the range in its 6 performance metrics. Although the spatial 

patterns were different for r and NSE on average (see Figures 14 and 15), Figures 17 and 

18 seem to have a consistent spatial pattern. In both, the western regions, especially the 

Pacific Northwest, are less affected by HRU size (light yellow represents a smaller 

range). Further east, the ranges are higher, indicating a heightened sensitivity to HRU 

size (darker green). This variation suggests that there may be a geographic pattern in 

basin HRU size sensitivity, regardless of which metric is used.  
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Figure 17. Range in Correlation Coefficient (r) among 6 HRU size classes by basin for the period 
10/1/1987-9/30/2010. 

 

Figure 18. Range in Nashe-Sutcliffe Efficiency (NSE) among 6 HRU size classes by basin for the 
period 10/1/1987-9/30/2010. 
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The statistical significance of these patterns was tested using Moran’s I; (see Table 7 

for results).  

Table 7. Results of Moran's I analysis for goodness of fit means and ranges. Correlations that are 
significant at the pseudo p-value = 0.01 level are highlighted in green, and those that are significant at 
the pseudo p-value = 0.05 level are shown in yellow. 

Variable Moran's I Pseudo p-value 

Mean r 0.2433 0.016 

Mean NSE -0.0655 0.401 

Mean IoA 0.1104 0.078 

Mean PB 0.1273 0.057 

Range in r 0.1819 0.027 

Range in NSE 0.1199 0.043 

Range in IoA 0.2882 0.004 

Range in PB -0.0311 0.440 

 

The clearest result of this analysis is that goodness of fit range scores do seem to 

exhibit more clustering than average goodness of fit scores. This confirms that the 

patterns suggested by Figures 17 and 18 are probably significant. Two of the range 

metrics are clustered with 95% confidence and one of them has 99% confidence. Among 

average scores, only one (mean r) shows significant clustering. It should be noted, 

however, that the clustering is not very strong, and the Moran’s I scores are not very 

high. Positive scores indicate that the data are more clustered than dispersed, but the 

values all have an absolute value of less than 0.3. Generally, a Moran’s I score with an 

absolute value of 0.3 or more is indicative of relatively strong clustering or dispersal 

(O’Sullivan and Unwin, 2010). This suggests that the patterns shown by Figures 17 and 

18 may not be especially important. Further, Moran’s I is a global metric, and does not 
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indicate where the clustering actually occurs. It may be in the northwest, as our eyes 

suggest, but it may also be elsewhere. 

3.5. Correlations between basin characteristics and range in goodness of fit scores by 
basin 

The geographic pattern in HRU size sensitivity suggested by Figures 17 and 18 could 

be driven by numerous variables. Elevation, precipitation, or the type of precipitation 

system (frontal vs. convective) could be contributing to it, and it could also be influenced 

by land cover type, temperature, and other factors. All of these factors, when mapped, 

seem to vary along a similar gradient. In order to obtain more insight into these 

relationships, some statistical comparisons were performed. This analysis is only 

intended to show interesting correlations, not causation; there are too many variables and 

too few samples for the latter. The ranges in the 4 goodness-of-fit metrics were correlated 

with a set of basin characteristic variables as described in the Data and Methods section 

(see Appendix A for the list of basin variables). Results from these correlations are 

shown in Table 8. Only those variables that had at least one correlation significant at the 

p = 0.01 (99% confidence) level and a correlation number with an absolute value greater 

than 0.5 are shown. Correlations with absolute values greater than 0.5, 0.6, and 0.7 are 

highlighted in light, medium, and dark blue, respectively. 

Several of the variables with the strongest correlations to the range scores are mean 

annual precipitation and the related variables of average runoff depth, average monthly 

maximum days of precipitation, and average April and May precipitation. These numbers 

are all negatively correlated to the range in model performance. That is, the correlations 

imply that models of basins with high levels of rainfall are less likely to be sensitive to 
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HRU size. It should be stressed, however, that precipitation is strongly correlated to many 

other basin variables, including LULC, longitude, and elevation. The observed 

correlation does not indicate as to which of these interrelated variables are responsible for 

the decrease in HRU size sensitivity associated with higher precipitation. 

One possible driver of lower HRU size sensitivity in wetter areas may be the type of 

precipitation delivery rather than the total volume. The wettest basins are in the Pacific 

Northwest, and most of that rain is delivered by large synoptic-scale winter frontal 

systems that are consistent over large areas. In dryer inland areas, convective systems are 

more important, and these can have much more localized effects (Abatzoglou, 2011). 

This smaller-scale variation in climate inputs in dryer areas could explain the fact that 

dryer basins are more sensitive to HRU size, as smaller subdivisions might be need to 

capture variability in climate inputs. 

These patterns in HRU size sensitivity could also be driven by elevation. Table 8 

shows that elevation is strongly positively correlated to HRU size range. This could be 

because, in snow-dominated areas, it is key to use HRU subdivision to distinguish 

between source and non-source areas. In high elevation “source areas,” snow pack can 

accumulate all winter long and contribute to streamflow throughout the spring and 

summer, whereas a basin’s lower elevation areas might provide no significant runoff in 

spring and summer. It may be the importance of capturing this distinction that drives 

sensitivity in these high elevation basins. For the study basins, average precipitation is 

strongly negatively correlated with elevation, because the westernmost basins are wetter 

and lower than the interior basins. Thus, the source/non-source driver could also explain   



 

 

Table 8. Spearman's rank correlation coefficients between basin variables and ranges in model performance scores. Model performance range 
scores are for the total modeled period (10/1/1985-9/30/2010). Only those variables that had at least one correlation with an absolute value of greater 
than 0.5 and a significance at the alpha = 0.01 level are shown in this table. Correlations that are significant at alpha = 0.01 level are followed by two 
stars. Alpha levels of 0.05 followed by one star. Correlations with an absolute value of greater than 0.5, 0.6, and 0.7 are highlighted in light, medium, 
and dark blue, respectively. 

Variable Brief variable description Range in r 
Range in 

NSE Range in IoA Range in PB 
LONG_CENT Longitude of basin centroid .405* .490** .438* .563** 
PPTAVG_BASIN Mean annual precip  -.395* -.523** -.477** -.692** 
T_MAXSTD_BASIN Standard deviation of max. monthly air temp. (degrees C) .366* .540** 0.339 .456* 
T_MIN_BASIN Mean of min. monthly air temp. (degrees C) -.498** -.599** -.430* -0.309 
RH_BASIN Mean relative humidity (percent) -.504** -.631** -.572** -.668** 
FST32F_BASIN Mean of mean day of the year of first freeze -.391* -.529** -0.341 -0.292 
LST32F_BASIN Mean of mean day of the year of last freeze .471** .613** .443* 0.35 
WD_BASIN Mean of annual number of days (days) of measurable precip. -.452* -.510** -.517** -.709** 
WDMAX_BASIN Mean of monthly max. number of days of precip. -.446* -.570** -.552** -.709** 
SNOW_PCT_PRECIP Snow percent of total precip. estimate .431* .571** 0.328 0.291 
JAN_PPT7100_CM Mean January precip (cm)   -.387* -.487** -.444* -.684** 
FEB_PPT7100_CM Mean February precip (cm)   -0.354 -.444* -.383* -.653** 
MAR_PPT7100_CM Mean March precip (cm)   -0.334 -.410* -.370* -.667** 
APR_PPT7100_CM Mean April precip (cm)   -.391* -.559** -.514** -.741** 
MAY_PPT7100_CM Mean May precip (cm)   -0.35 -.495** -.439* -.743** 
JUN_PPT7100_CM Mean June precip (cm)   -.380* -.444* -.440* -.628** 
SEP_PPT7100_CM Mean September precip (cm)   -.430* -.509** -.523** -.531** 
OCT_PPT7100_CM Mean October precip (cm)   -.440* -.540** -.513** -.689** 
NOV_PPT7100_CM Mean November precip (cm)   -.425* -.543** -.504** -.684** 
DEC_PPT7100_CM Mean December precip (cm)   -.383* -.514** -.459* -.666** 
FEB_TMP7100_DEGC Mean February air temp. -.449* -.518** -0.337 -0.273 
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Variable Brief variable description Range in r 
Range in 

NSE Range in IoA Range in PB 
MAR_TMP7100_DEGC Mean March air temp. -.455* -.544** -0.347 -0.244 
APR_TMP7100_DEGC Mean April air temp. -.425* -.513** -0.31 -0.186 
FRAGUN_BASIN Fragmentation Index of "undeveloped" land  -0.139 -0.334 -0.028 -.578** 
HIRES_LENTIC_MEANSI
Z Mean size (ha) of Lakes/Ponds 0.298 .500** 0.295 0.05 
HIRES_LENTIC_PCT Percent of  surface area covered by Lakes/ponds .416* .500** .457* 0.193 
BFI_AVE Base Flow Index (BFI) 0.307 .520** 0.256 0.212 
PERDUN Percent Dunne overland flow -0.261 -0.275 -0.147 -.552** 
RUNAVE7100 Estimated  annual runoff, mm/year -.435* -.573** -.512** -.763** 
WB5100_JAN_MM Estimated  January runoff, mm/month -.439* -.504** -.404* -.652** 
WB5100_FEB_MM Estimated  February runoff, mm/month -.480** -.526** -.424* -.588** 
WB5100_MAR_MM Estimated  March runoff, mm/month -.496** -.561** -.458* -.533** 
WB5100_APR_MM Estimated  April runoff, mm/month -.500** -.557** -.521** -.614** 
WB5100_MAY_MM Estimated  May runoff, mm/month -.454* -.523** -.539** -.624** 
WB5100_NOV_MM Estimated  November runoff, mm/month -.378* -.498** -.453* -.699** 
WB5100_DEC_MM Estimated  December runoff, mm/month -.398* -.493** -.425* -.676** 
WB5100_ANN_MM Estimated  annual runoff, mm/year -0.344 -.509** -.405* -.731** 
FORESTNLCD06 Percent NLCD "forest" -.569** -.371* -.504** -.409* 
MIXEDFORNLCD06 Percent NLCD Mixed Forest (class 43) -0.278 -.494** -0.348 -.685** 
GRASSNLCD06 Percent NLCD Herbaceous (grassland) (class 71) .517** 0.324 0.282 0.135 
ROADS_KM_SQ_KM Road density, km of roads per sq km -.553** -.530** -.408* -0.306 
HGD Percentage of soils in hydrologic group D (clayey, low infilitration) .485** .372* .508** .378* 
BDAVE Mean value of bulk density (grams per cubic centimeter) .594** .645** .652** .512** 
SILTAVE Mean value of silt content (percentage) -.438* -.560** -.504** -.597** 
RFACT Rainfall and Runoff factor ("R factor" of Universal Soil Loss Equation) -.465** -.525** -.445* -.463** 
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Variable Brief variable description Range in r 
Range in 

NSE Range in IoA Range in PB 
ELEV_MEAN_M_BASIN Mean  elevation (meters)  .574** .680** .521** .566** 
ELEV_MAX_M_BASIN Max. elevation (meters) .538** .733** .514** .533** 
ELEV_MIN_M_BASIN Min.  elevation (meters) .538** .635** .545** .522** 
ELEV_MEDIAN_M_BASIN Median elevation (meters) .577** .684** .514** .558** 

RRMEAN 
Dimensionless elevation - relief ratio, calculated as 
(ELEV_MEAN - ELEV_MIN)/(ELEV_MAX - ELEV_MIN). .531** .506** 0.311 .591** 

RRMEDIAN 
Dimensionless elevation - relief ratio, calculated as 
(ELEV_MEDIAN - ELEV_MIN)/(ELEV_MAX - ELEV_MIN). .538** .538** 0.309 .572** 
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the correlations between HRU size sensitivity and precipitation, which is so closely 

related to elevation. All of these interpretations, however, are speculative, as these 

statistics show correlation only, not causality. 

RRMEAN and RRMEDIAN, two measures of terrain roughness, also show positive 

correlation to score ranges. It seems logical that rougher landscapes should require more 

subdivision (Wood et al. [1988] came to this conclusion). These metrics co-vary with 

elevation, however, and so the driver could be the terrain roughness, the source/non-

source issue described above, or some combination of these and other factors. 

It is also key to stress that, although there is some variation in goodness-of-fit score 

ranges, this does not mean that basins with lower precipitation or higher elevation are 

sensitive to HRU size. They are just slightly more sensitive than the other basins. Figure 

19, which shows a boxplot of r scores for the 10 driest basins (as defined by GAGES II 

averages), separated by HRU size class, illustrates this point. Although drier basins may 

have higher r ranges on average, there is still almost no variation between the six HRU 

size classes. The boxplot that shows r for all 30 basins (Figure 3) is a bit more consistent 

across the classes, but negligibly so. 
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also have considered more goodness-of-fit metrics for daily streamflow, and considered 

monthly and seasonal performance as well, which are likely to result in different 

performance. 

Further, the models were not calibrated due to time limitations and concerns that 

stochastic calibration could impair model comparability. Thus, the model performance 

scores were poor. It was assumed that the outputs of these uncalibrated models, which 

would be unsatisfactory for most hydrological applications, are acceptable for this type of 

analysis. Another assumption of the study is that by standardizing input layers and other 

model creation procedures, one can effectively isolate HRU size as a variable. Although 

it may be true that this works well when comparing different size classes within one 

basin, comparing ranges across basins, as is done in Table 8, may be less robust. The 

variation in sources of error illustrated by the water balance sums (Table 6) and the 

hydrographs (Figures 8 through 13) may compromise inter-basin comparability. 

Comparisons within a single basin, however, should be unaffected by this.  

The minimum HRU size of 4 km2 was another study limitation. A few previous 

studies had identified an HRU size of as small as 1-km as being most effective, and many 

studies included HRUs much smaller than that. This study did not consider HRUs this 

small; its results might have been different if it had. Also, as discussed above, range of 

goodness-of-fit scores, especially for NSE and PB, may be an unreliable measure of HRU 

size sensitivity. Finally, the correlations between goodness-of-fit ranges and basin 

characteristics are intriguing, but the study does not allow for any definite conclusions as 

to the cause of geographic variability in in these ranges.  
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4. Conclusions 

The most important result of this study, and the answer to research Questions 1 and 2 

above, is that there is no indication that HRU size has a consistent, significant effect on 

semi-distributed model performance across most mountainous basins in the western US. 

While this finding may not reveal an optimal HRU size, it may explain the inconsistency 

in the results of previous studies, as cited in Table 1. Users of PRMS and similar semi-

distributed models would thus be advised to keep HRU schemes relatively coarse and 

simple. This has the benefit of reducing model processing time and the number of 

degrees of freedom, and of allowing modelers to focus on other, more influential aspects 

of model development. Intuitively, it often seems that a model with more subdivisions 

should be a better representation of reality and should perform better, but these results 

indicate that there may be very little pay-off for the increased complexity and overhead of 

a more highly subdivided model.  

This does not indicate, however, that spatially coarse models are generally preferable 

to fully distributed models. PRMS is more distributed with increased subdivison, but it is 

still very different from a fully distributed model. Even the smallest HRUs used in this 

study are much larger the cells in most distributed models, and moreover, routing and in-

stream processes were not included in this study (PRMS does have an optional routing 

module, but it was not used). Routing and in-stream processes add realism to a model, 

and require a finer level of spatial detail. Thus, this study does not indicate that complex, 

fully distributed, grid-based models are not justified. Fully distributed models can be 

quite powerful, and will always have their place. This study merely demonstrates that in 
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at least one semi-distributed model, increased subdivision has little influence over the 

goodness of fit of daily streamflow at the mouth of the basin. Despite this minimal 

influence, results do include some interesting geographic patterns. Cartographic display 

of the range of goodness of fit scores by basin suggests that the western and especially 

northwestern basins are somewhat less sensitive to hydrological model subdivision. 

Moran’s I analysis shows that this clustered pattern is likely significant, but since this is a 

global statistic, it is not clear if the statistically significant cluster is located in that exact 

region.  

If the northwestern basins are less sensitive to HRU size, it could be driven by the 

high levels of precipitation in this region. Spearman’s rho correlations among goodness-

of-fit ranges and various basin characteristics revealed that high levels of precipitation are 

associated with lower sensitivity to HRU size. This may be because of the higher spatial 

uniformity of the synoptic-scale frontal systems that deliver most precipitation in the 

wettest basins. This suggests that although coarsely subdivided PRMS models may be 

adequate in moist areas, more highly subdivided HRUs may be appropriate in areas with 

convective, spatially heterogeneous weather patterns. The lower HRU size sensitivity in 

this region could also be driven by its lower elevations. In higher elevation areas, it may 

be more critical to subdivide the basin to distinguish between source and non-source 

areas. 

This study could be improved in a number of ways. First and foremost, the models 

could be calibrated using a consistent automatic calibration procedure. Once models are 

better fitted to the historic data, the untested assumption that variation in models with 
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poor performance is relevant to better performing models would no longer be required. 

Care would have to be taken, though, to ensure that the calibration did not interfere with 

model comparability. Each of the six versions of the same basin could theoretically arrive 

at different parameter sets with a different performance score via stochastic processes, 

and this variation could distort or mask variability to HRU size. The best way to avoid 

this problem, while limited the amount of processing time required, would be to only 

calibrate one version of each basin. HRU size class 4 could be used, for example. The 

optimal parameter sets could then be applied to all other delineations of the basin. (One 

calibration parameter value is used for the entire basin, not each HRU, so this is 

possible.) Another way of dealing with the stochastic approach would be to calibrate one 

model numerous times to see if its optimal parameter values were consistent. A few 

consistent results could still be caused by chance, however; the problem of equifinality is 

hard to avoid in hydrological models.  

One way to control for equifinality in calibration would be to use only a few 

calibration parameters. Based on the hydrographs (Figures 8 through 13), these should 

include parameters that affect ET, snow pack formation and melt, and speed of 

groundwater flow. Even after calibration, however, those basins in which the 

precipitation input depths are lower than the runoff depth are not likely to perform well. 

These basins could reasonably be dropped from further investigations due to this poor fit.  

One interesting extension would be to consider HRU size sensitivity separately for 

the wet and dry seasons. If the northwestern basins showed significantly higher HRU size 

sensitivity in summer than winter, it would provide evidence that spatial variability in 
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climate inputs (i.e., convective weather patterns) leads to increased HRU size sensitivity 

in summer. 

Another possible improvement would be to consider components of the hydrologic 

cycle other than runoff, such as ET or snow-water equivalent. Conducting a similar 

experiment with another hydrologic model and comparing its finding to this study would 

also be very informative, as it would allow for insight as to which of these findings are 

universal, and which are artifacts of PRMS structure. Finally, now that the question of the 

importance of HRU size in PRMS has been answered (albeit with caveats), it would be 

interesting to use a similar approach to find which GIS input layers are most effective for 

parameterization across a range of basins. 
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Appendix A 

GAGES II variables used that were compared to model performance scores. Descriptions 
are from the dataset’s documentation.  

Variable Name Description 
AGGECOREGION Aggregated level II ecoregion used for classification 
DRAIN_SQKM Watershed drainage area, sq km, as delineated in our basin boundary 

DRAIN_SQKM 

Watershed drainage area, sq km, as delineated in our basin boundary (this is the same as 
what is in the BasinID worksheet, but is duplicated here for convenient comparison to 
NWIS_DRAIN_SQKM) 

HYDRO_DISTURB_IN
DX 

Hydrologic "disturbance index" score, based on 7 variables: 1) MAJ_DDENS_2009, 2) 
WATER_WITHDR, 3) change in dam storage 1950-2009, 4) CANALS_PCT, 5) 
RAW_DIS_NEAREST_MAJ_NPDES, 6) ROADS_KM_SQ_KM, and 7) FRAGUN_BASIN.  
Low values = low anthropogenic hydrologic modification in the watershed, high values = high 
anthropogenic hydrologic modification 

BAS_COMPACTNESS 
Watershed compactness ratio, = area/perimeter^2 * 100; higher number = more compact 
shape.   

LAT_CENT Latitude of centroid location of basin, decimal degrees 
LONG_CENT Longitude of centroid location of basin, decimal degrees 

PPTAVG_BASIN 
Mean annual precip (cm) for the watershed, from 800m PRISM data.  30 years period of 
record 1971-2000.  

T_AVG_BASIN 
Average annual air temperature for the watershed, degrees C, from 2km PRISM data. 30 
years period of record 1971-2000. 

T_MAX_BASIN 
Watershed average of maximum monthly air temperature (degrees C) from 800m PRISM, 
derived from 30 years of record (1971-2000). 

T_MAXSTD_BASIN 
Standard deviation of maximum monthly air temperature (degrees C) from 800m PRISM, 
derived from 30 years of record (1971-2000). 

T_MIN_BASIN 
Watershed average of minimum monthly air temperature (degrees C) from 800m PRISM, 
derived from 30 years of record (1971-2000). 

T_MINSTD_BASIN 
Standard deviation of minimum monthly air temperature (degrees C) from 800m PRISM, 
derived from 30 years of record (1971-2000). 

RH_BASIN 
Watershed average relative humidity (percent), from 2km PRISM, derived from 30 years of 
record (1961-1990). 

FST32F_BASIN 
Watershed average of mean day of the year of first freeze, derived from 30 years of record 
(1961-1990), 2km PRISM. For example, value of 300 is the 300th day of the year (Oct 27th).   

LST32F_BASIN 

Watershed average of mean day of the year of last freeze, derived from 30 years of record 
(1961-1990), 2km PRISM.  For example, value of 100 is the 100th day of the year (April 
10th).   

WD_BASIN 
Watershed average of annual number of days (days) of measurable precipitation, derived 
from 30 years of record (1961-1990), 2km PRISM. 

WDMAX_BASIN 
Watershed average of monthly maximum number of days (days) of measurable precipitation, 
derived from 30 years of record (1961-1990), 2km PRISM. 

WDMIN_BASIN 
Watershed average of monthly minimum number of days (days) of measurable precipitation, 
derived from 30 years of record (1961-1990), 2km PRISM. 

PET 
Mean-annual potential evapotranspiration (PET), estimated using the Hamon (1961) 
equation.  

SNOW_PCT_PRECIP 
Snow percent of total precipitation estimate, mean for period 1901-2000.  From McCabe and 
Wolock (2010), 1km grid. 
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Variable Name Description 

PRECIP_SEAS_IND 

Precipitation seasonality index (Markham, 1970; Dingman, 2002).  Index of how much 
annual precipitation falls seasonally (high values) or spread out over the year (low values).  
Based on monthly precip values from 30 year (1971-2000) PRISM.  Range is 0 (precip 
spread out exactly evenly in each month) to 1 (all precip falls in a single month). 

JAN_PPT7100_CM 
Mean January precip (cm) for the watershed, from 800m PRISM data.  30 years period of 
record 1971-2000.  

FEB_PPT7100_CM 
Mean February precip (cm) for the watershed, from 800m PRISM data.  30 years period of 
record 1971-2000.  

MAR_PPT7100_CM 
Mean March precip (cm) for the watershed, from 800m PRISM data.  30 years period of 
record 1971-2000.  

APR_PPT7100_CM 
Mean April precip (cm) for the watershed, from 800m PRISM data.  30 years period of record 
1971-2000.  

MAY_PPT7100_CM 
Mean May precip (cm) for the watershed, from 800m PRISM data.  30 years period of record 
1971-2000.  

JUN_PPT7100_CM 
Mean June precip (cm) for the watershed, from 800m PRISM data.  30 years period of 
record 1971-2000.  

JUL_PPT7100_CM 
Mean July precip (cm) for the watershed, from 800m PRISM data.  30 years period of record 
1971-2000.  

AUG_PPT7100_CM 
Mean August precip (cm) for the watershed, from 800m PRISM data.  30 years period of 
record 1971-2000.  

SEP_PPT7100_CM 
Mean September precip (cm) for the watershed, from 800m PRISM data.  30 years period of 
record 1971-2000.  

OCT_PPT7100_CM 
Mean October precip (cm) for the watershed, from 800m PRISM data.  30 years period of 
record 1971-2000.  

NOV_PPT7100_CM 
Mean November precip (cm) for the watershed, from 800m PRISM data.  30 years period of 
record 1971-2000.  

DEC_PPT7100_CM 
Mean December precip (cm) for the watershed, from 800m PRISM data.  30 years period of 
record 1971-2000.  

JAN_TMP7100_DEGC 
Average January air temperature for the watershed, degrees C, from 800m PRISM data. 30 
years period of record 1971-2000. 

FEB_TMP7100_DEGC 
Average February air temperature for the watershed, degrees C, from 800m PRISM data. 30 
years period of record 1971-2000. 

MAR_TMP7100_DEG
C 

Average March air temperature for the watershed, degrees C, from 800m PRISM data. 30 
years period of record 1971-2000. 

APR_TMP7100_DEG
C 

Average April air temperature for the watershed, degrees C, from 800m PRISM data. 30 
years period of record 1971-2000. 

MAY_TMP7100_DEG
C 

Average May air temperature for the watershed, degrees C, from 800m PRISM data. 30 
years period of record 1971-2000. 

JUN_TMP7100_DEGC 
Average June air temperature for the watershed, degrees C, from 800m PRISM data. 30 
years period of record 1971-2000. 

JUL_TMP7100_DEGC 
Average July air temperature for the watershed, degrees C, from 800m PRISM data. 30 
years period of record 1971-2000. 

AUG_TMP7100_DEG
C 

Average August air temperature for the watershed, degrees C, from 800m PRISM data. 30 
years period of record 1971-2000. 

SEP_TMP7100_DEG
C 

Average September air temperature for the watershed, degrees C, from 800m PRISM data. 
30 years period of record 1971-2000. 

OCT_TMP7100_DEG
C 

Average October air temperature for the watershed, degrees C, from 800m PRISM data. 30 
years period of record 1971-2000. 

NOV_TMP7100_DEG
C 

Average November air temperature for the watershed, degrees C, from 800m PRISM data. 
30 years period of record 1971-2000. 

DEC_TMP7100_DEG
C 

Average December air temperature for the watershed, degrees C, from 800m PRISM data. 
30 years period of record 1971-2000. 
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Variable Name Description 
GEOL_REEDBUSH_D
OM 

Dominant (highest percent of area) geology, derived from a simplified version of Reed & 
Bush (2001) - Generalized Geologic Map of the Conterminous United States. 

GEOL_HUNT_DOM_C
ODE Dominant (highest percent of area) geology, derived from Hunt (1979) coverage 

FRAGUN_BASIN 

Fragmentation Index of "undeveloped" land in the watershed.  High numbers = more 
disturbance by development and fragmentation; a very pristine basin with a lot of contiguous 
undeveloped land cover would have a low number 

HIRES_LENTIC_NUM Number of Lakes/Ponds + Reservoir water bodies from NHD Hi-Resolution (1:24k) data 
HIRES_LENTIC_DEN
S 

Density (#/sq km) of Lakes/Ponds + Reservoir water bodies from NHD Hi-Resolution (1:24k) 
data 

HIRES_LENTIC_MEA
NSIZ 

Mean size (ha) of Lakes/Ponds + Reservoir water bodies from NHD Hi-Resolution (1:24k) 
data 

STREAMS_KM_SQ_K
M Stream density, km of streams per watershed sq km, from NHD 100k streams 
STRAHLER_MAX Maximum Strahler stream order in watershed, from NHDPlus.   

MAINSTEM_SINUOU
SITY 

Sinuosity of mainstem stream line, from our delineation of mainstem stream lines (see 
Falcone et al., 2010).  Defined as curvilinear length of the mainstem stream line divided by 
the straight-line distance between the end points of the line. 

ARTIFPATH_PCT 

Percent of stream kilometers coded as "Artificial Path" in NHDPlus. Note this does not 
necessarily mean the stream is modified, only that it is wide enough to be represented as a 
polygon rather than a line. In some cases this is indicative of damming. 

ARTIFPATH_MAINST
EM_PCT 

Percent of mainstem stream(s) coded as "Artificial Path" in NHDPlus., from our delineation 
of mainstem streamlines.  Note this does not necessarily mean the stream is modified, only 
that it is wide enough to be represented as a polygon rather than a line. In some cases this 
is indicative of damming. 

HIRES_LENTIC_PCT 
Percent of watershed surface area covered by "Lakes/Ponds" + "Reservoirs" in NHD Hi-
Resolution (1:24k) data 

BFI_AVE 

Base Flow Index (BFI), The BFI is a ratio of base flow to total streamflow, expressed as a 
percentage and ranging from 0 to 100. Base flow is the sustained, slowly varying component 
of streamflow, usually attributed to ground-water discharge to a stream. 

PERDUN 

Dunne overland flow, also know as saturation overland flow, is generated in a basin when 
the water table "outcrops" on the land surface (due to the infiltration and redistribution of soil 
moisture within the basin), thereby producing temporary saturated areas. These saturated 
areas generate Dunne overland flow through exfiltration of shallow ground water and by 
routing precipitation directly to the stream network. 

PERHOR 
Horton overland flow, also known as infiltration-excess overland flow, is generated in a basin 
when infiltration rates are exceeded by precipitation rates. 

TOPWET 

Topographic wetness index, ln(a/S); where "ln" is the natural log, "a" is the upslope area per 
unit contour length and "S" is the slope at that point.  See 
http://ks.water.usgs.gov/Kansas/pubs/reports/wrir.99-4242.html and Wolock and McCabe, 
1995 for more detail 

CONTACT 

Subsurface flow contact time index. The subsurface contact time index estimates the 
number of days that infiltrated water resides in the saturated subsurface zone of the basin 
before discharging into the stream. 

RUNAVE7100 
Estimated watershed annual runoff, mm/year, mean for the period 1971-2000.  Estimation 
method integrated effects of climate, land use, water use, regulation, etc. 

WB5100_JAN_MM 

Estimated watershed January runoff, mm/month, mean for the period 1951-2000.  From 
Wolock and McCabe (1999) water balance model.  Estimates the effects of precip and 
temperature, but not other factors (land use, water use, regulation, etc.) 

WB5100_FEB_MM 

Estimated watershed February runoff, mm/month, mean for the period 1951-2000.  From 
Wolock and McCabe (1999) water balance model.  Estimates the effects of precip and 
temperature, but not other factors (land use, water use, regulation, etc.) 
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Variable Name Description 

WB5100_MAR_MM 

Estimated watershed March runoff, mm/month, mean for the period 1951-2000.  From 
Wolock and McCabe (1999) water balance model.  Estimates the effects of precip and 
temperature, but not other factors (land use, water use, regulation, etc.) 

WB5100_APR_MM 

Estimated watershed April runoff, mm/month, mean for the period 1951-2000.  From Wolock 
and McCabe (1999) water balance model.  Estimates the effects of precip and temperature, 
but not other factors (land use, water use, regulation, etc.) 

WB5100_MAY_MM 

Estimated watershed May runoff, mm/month, mean for the period 1951-2000.  From Wolock 
and McCabe (1999) water balance model.  Estimates the effects of precip and temperature, 
but not other factors (land use, water use, regulation, etc.) 

WB5100_JUN_MM 

Estimated watershed June runoff, mm/month, mean for the period 1951-2000.  From Wolock 
and McCabe (1999) water balance model.  Estimates the effects of precip and temperature, 
but not other factors (land use, water use, regulation, etc.) 

WB5100_JUL_MM 

Estimated watershed July runoff, mm/month, mean for the period 1951-2000.  From Wolock 
and McCabe (1999) water balance model.  Estimates the effects of precip and temperature, 
but not other factors (land use, water use, regulation, etc.) 

WB5100_AUG_MM 

Estimated watershed August runoff, mm/month, mean for the period 1951-2000.  From 
Wolock and McCabe (1999) water balance model.  Estimates the effects of precip and 
temperature, but not other factors (land use, water use, regulation, etc.) 

WB5100_SEP_MM 

Estimated watershed September runoff, mm/month, mean for the period 1951-2000.  From 
Wolock and McCabe (1999) water balance model.  Estimates the effects of precip and 
temperature, but not other factors (land use, water use, regulation, etc.) 

WB5100_OCT_MM 

Estimated watershed October runoff, mm/month, mean for the period 1951-2000.  From 
Wolock and McCabe (1999) water balance model.  Estimates the effects of precip and 
temperature, but not other factors (land use, water use, regulation, etc.) 

WB5100_NOV_MM 

Estimated watershed November runoff, mm/month, mean for the period 1951-2000.  From 
Wolock and McCabe (1999) water balance model.  Estimates the effects of precip and 
temperature, but not other factors (land use, water use, regulation, etc.) 

WB5100_DEC_MM 

Estimated watershed December runoff, mm/month, mean for the period 1951-2000.  From 
Wolock and McCabe (1999) water balance model.  Estimates the effects of precip and 
temperature, but not other factors (land use, water use, regulation, etc.) 

WB5100_ANN_MM 

Estimated watershed annual runoff, mm/year, mean for the period 1951-2000.  From Wolock 
and McCabe (1999) water balance model.  Estimates the effects of precip and temperature, 
but not other factors (land use, water use, regulation, etc.) 

PCT_1ST_ORDER 
Percent of stream lengths in the watershed which are first-order streams (Strahler order); 
from NHDPlus 

PCT_2ND_ORDER 
Percent of stream lengths in the watershed which are second-order streams (Strahler order); 
from NHDPlus 

PCT_3RD_ORDER 
Percent of stream lengths in the watershed which are third-order streams (Strahler order); 
from NHDPlus 

PCT_4TH_ORDER 
Percent of stream lengths in the watershed which are fourth-order streams (Strahler order); 
from NHDPlus 

PCT_5TH_ORDER 
Percent of stream lengths in the watershed which are fifth-order streams (Strahler order); 
from NHDPlus 

PCT_6TH_ORDER_O
R_MORE 

Percent of stream lengths in the watershed which are sixth or greater-order streams 
(Strahler order); from NHDPlus 

PCT_NO_ORDER 
Percent of stream lengths in the watershed which do not have any streamorder in NHDPlus; 
these are typically canals, pipelines, and ditches. 

DEVNLCD06 
Watershed percent "developed" (urban), 2006 era (2001 for AK-HI-PR).  Sum of classes 21, 
22, 23, and 24 

FORESTNLCD06 Watershed percent "forest", 2006 era (2001 for AK-HI-PR).  Sum of classes 41, 42, and 43 

PLANTNLCD06 
Watershed percent "planted/cultivated" (agriculture), 2006 era (2001 for AK-HI-PR).  Sum of 
classes 81 and 82 
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Variable Name Description 
WATERNLCD06 Watershed percent Open Water (class 11) 
SNOWICENLCD06 Watershed percent Perennial Ice/Snow (class 12) 
DEVOPENNLCD06 Watershed percent Developed, Open Space (class 21) 
DEVLOWNLCD06 Watershed percent Developed, Low Intensity (class 22) 
DEVMEDNLCD06 Watershed percent Developed, Medium Intensity (class 23) 
DEVHINLCD06 Watershed percent Developed, High Intensity (class 24) 
BARRENNLCD06 Watershed percent Natural Barren (class 31) 
DECIDNLCD06 Watershed percent Deciduous Forest (class 41) 
EVERGRNLCD06 Watershed percent Evergreen Forest (class 42) 
MIXEDFORNLCD06 Watershed percent Mixed Forest (class 43) 
SHRUBNLCD06 Watershed percent Shrubland (class 52) 
GRASSNLCD06 Watershed percent Herbaceous (grassland) (class 71) 
PASTURENLCD06 Watershed percent Pasture/Hay (class 81) 
CROPSNLCD06 Watershed percent Cultivated Crops (class 82) 
WOODYWETNLCD06 Watershed percent Woody Wetlands (class 90) 
EMERGWETNLCD06 Watershed percent Emergent Herbaceous Wetlands (class 95) 

PDEN_2000_BLOCK 

Population density in the watershed, persons per sq km, from 2000 Census block data 
regridded to 100m.  This variable is maintained to support models built from original GAGES 
dataset. 

PDEN_DAY_LANDSC
AN_2007 

Population density in the watershed during the day, persons per sq km, from 90-m 2007 
Landscan 

PDEN_NIGHT_LAND
SCAN_2007 

Population density in the watershed at night (residential population), persons per sq km, 
from 90-m 2007 Landscan 

ROADS_KM_SQ_KM Road density, km of roads per watershed sq km, from Census 2000 TIGER roads 

RD_STR_INTERS 
Number of road/stream intersections, per km of total basin stream length (2000 TIGER roads 
and NHD 100k streams) 

IMPNLCD06 Watershed percent impervious surfaces from 30-m resolution NLCD06 data 

NLCD01_06_DEV 
Watershed percent which changed to "Developed" (urban) land (NLCD classes 21-24) 
between NLCD 2001 and 2006 

HGA 
Percentage of soils in hydrologic group A. Hydrologic group A soils have high infiltration 
rates. Soils are deep and well drained and, typically, have high sand and gravel content. 

HGB 
Percentage of soils in hydrologic group B. Hydrologic group B soils have moderate infiltration 
rates. Soils are moderately deep, moderately well drained, and moderately coarse in texture. 

HGAD 

Percentage of soils in hydrologic group A/D. Hydrologic group A/D soils have group A 
characteristics (high infiltration rates) when artificially drained and have group D 
characteristics (very slow infiltration rates) when not drained. 

HGC 

Percentage of soils in hydrologic group C. Hydrologic group C soils have slow soil inflitration 
rates. The soil profiles include layers impeding downward movement of water and, typically, 
have moderately fine or fine texture. 

HGD 

Percentage of soils in hydrologic group D. Hydrologic group D soils have very slow 
infiltration rates. Soils are clayey, have a high water table, or have a shallow impervious 
layer. 

AWCAVE 
Average value for the range of available water capacity for the soil layer or horizon (inches of 
water per inches of soil depth) 

PERMAVE Average permeability (inches/hour) 



 

75 

Variable Name Description 
BDAVE Average value of bulk density (grams per cubic centimeter) 
OMAVE Average value of organic matter content (percent by weight) 
WTDEPAVE Average value of depth to seasonally high water table (feet) 
ROCKDEPAVE Average value of total soil thickness examined (inches) 

NO4AVE 
Average value of percent by weight of soil material less than 3 inches in size and passing a 
No. 4 sieve (5 mm) 

NO200AVE 
Average value of percent by weight of soil material less than 3 inches in size and passing a 
No. 200 sieve (.074 mm) 

NO10AVE 
Average value of percent by weight of soil material less than 3 inches in size and passing a 
No. 10 sieve (2 mm) 

CLAYAVE Average value of clay content (percentage) 
SILTAVE Average value of silt content (percentage) 
SANDAVE Average value of sand content (percentage) 

KFACT_UP 

Average K-factor value for the uppermost soil horizon in each soil component. K-factor is an 
erodibility factor which quantifies the susceptibility of soil particles to detachment and 
movement by water. The K-factor is used in the Universal Soil Loss Equation (USLE) to 
estimate soil loss by water. Higher values of K-factor indicate greater potential for erosion 

RFACT 
Rainfall and Runoff factor ("R factor" of Universal Soil Loss Equation); average annual value 
for period 1971-2000 

ELEV_MEAN_M_BASI
N Mean watershed elevation (meters) from 100m National Elevation Dataset 
ELEV_MAX_M_BASIN Maximum watershed elevation (meters) from 100m National Elevation Dataset 

ELEV_MIN_M_BASIN 
Minimum watershed elevation (meters) from 100m National Elevation Dataset (may include 
sinks) 

ELEV_MEDIAN_M_BA
SIN Median watershed elevation (meters) from 100m National Elevation Dataset 

ELEV_STD_M_BASIN 
Standard deviation of elevation (meters) across the watershed from 100m National Elevation 
Dataset 

RRMEAN 
Dimensionless elevation - relief ratio, calculated as (ELEV_MEAN - 
ELEV_MIN)/(ELEV_MAX - ELEV_MIN). 

RRMEDIAN 
Dimensionless elevation - relief ratio, calculated as (ELEV_MEDIAN - 
ELEV_MIN)/(ELEV_MAX - ELEV_MIN). 

SLOPE_PCT 
Mean watershed slope, percent. Derived from 100m resolution National Elevation Dataset, 
so slope values may differ from those calculated from data of other resolutions. 

ASPECT_DEGREES 

Mean watershed aspect, degrees (degrees of the compass, 0-360). Derived from 100m 
resolution National Elevation Data.  0 and 360 point to north.  Because of the national Albers 
projection actual aspect may vary. 

ASPECT_NORTHNES
S 

Aspect "northness".  Ranges from -1 to 1.  Value of 1 means watershed is facing/draining 
due north, value of -1 means watershed is facing/draining due south. 

ASPECT_EASTNESS 
Aspect "eastness". Ranges from -1 to 1.  Value of 1 means watershed is facing/draining due 
east, value of -1 means watershed is facing/draining due west. 

 

Appendix B 

Goodness-of-fit scores for all models. The period used for scoring was 10/1/1987 to 
9/30/2010. 10/1/1985 to 9/30/1987 was discarded as a warm-up period. 
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USGS Gage ID HRU size class r NSE IoA PB 
06043500 1 0.7202 -11.61 0.47 171.47% 
06043500 2 0.7307 -11.41 0.48 171.87% 
06043500 3 0.732 -11.39 0.48 172.03% 
06043500 4 0.7391 -11.24 0.49 172.27% 
06043500 5 0.7514 -11.01 0.49 172.46% 
06043500 6 0.7534 -10.98 0.49 172.64% 
06280300 1 0.721 -0.21 0.79 23.23% 
06280300 2 0.7373 -0.11 0.8 23.94% 
06280300 3 0.7397 -0.11 0.81 24.21% 
06280300 4 0.7406 -0.1 0.81 24.54% 
06280300 5 0.7492 -0.06 0.81 24.94% 
06280300 6 0.7504 -0.05 0.81 24.95% 
08324000 1 0.1682 -0.36 0.39 -78.53% 
08324000 2 0.1691 -0.35 0.39 -79.30% 
08324000 3 0.1695 -0.34 0.39 -79.27% 
08324000 4 0.1722 -0.34 0.39 -78.22% 
08324000 5 0.1739 -0.33 0.39 -77.19% 
08324000 6 0.1744 -0.33 0.39 -76.62% 
09447800 1 0.4062 -0.17 0.57 217.30% 
09447800 2 0.4038 -0.18 0.57 228.55% 
09447800 3 0.4038 -0.18 0.57 228.55% 
09447800 4 0.4099 -0.15 0.58 223.29% 
09447800 5 0.4068 -0.18 0.57 235.12% 
09447800 6 0.4068 -0.18 0.57 237.43% 
09494000 1 0.5598 -6.72 0.48 204.25% 
09494000 2 0.574 -5.98 0.5 200.75% 
09494000 3 0.5742 -5.98 0.5 200.17% 
09494000 4 0.5747 -5.9 0.5 200.53% 
09494000 5 0.5731 -5.89 0.5 201.24% 
09494000 6 0.5735 -5.89 0.5 201.22% 
09497800 1 0.4481 -0.79 0.59 98.10% 
09497800 2 0.4548 -0.72 0.6 99.30% 
09497800 3 0.457 -0.71 0.6 99.49% 
09497800 4 0.4624 -0.7 0.6 99.04% 
09497800 5 0.4639 -0.69 0.61 100.96% 
09497800 6 0.4641 -0.69 0.61 101.00% 
10308200 1 0.3154 -3.98 0.41 84.53% 
10308200 2 0.3142 -3.84 0.42 85.02% 
10308200 3 0.3142 -3.84 0.42 85.13% 
10308200 4 0.3183 -3.7 0.42 85.37% 
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USGS Gage ID HRU size class r NSE IoA PB 
10308200 5 0.3179 -3.68 0.42 85.49% 
10308200 6 0.3175 -3.64 0.42 85.65% 
11266500 1 0.683 -0.04 0.78 39.69% 
11266500 2 0.7105 0.06 0.8 40.03% 
11266500 3 0.7172 0.07 0.81 41.94% 
11266500 4 0.7291 0.12 0.82 41.46% 
11266500 5 0.7344 0.13 0.82 41.93% 
11266500 6 0.7344 0.13 0.82 41.95% 
11473900 1 0.4863 0.15 0.64 29.62% 
11473900 2 0.5164 0.2 0.66 29.84% 
11473900 3 0.5205 0.2 0.67 29.90% 
11473900 4 0.5172 0.2 0.66 30.24% 
11473900 5 0.5207 0.2 0.67 30.50% 
11473900 6 0.5219 0.2 0.67 30.59% 
11482500 1 0.1629 -0.9 0.37 87.17% 
11482500 2 0.1642 -0.89 0.37 87.19% 
11482500 3 0.1642 -0.89 0.37 87.19% 
11482500 4 0.1674 -0.87 0.37 87.19% 
11482500 5 0.167 -0.86 0.37 87.64% 
11482500 6 0.167 -0.86 0.37 87.72% 
11522500 1 0.0062 -3.2 0.2 70.89% 
11522500 2 0.008 -3.09 0.21 71.04% 
11522500 3 0.0082 -3.08 0.21 71.02% 
11522500 4 0.0119 -3.08 0.21 71.20% 
11522500 5 0.012 -3.06 0.21 71.33% 
11522500 6 0.012 -3.06 0.21 71.44% 
11528700 1 0.1471 -2.24 0.29 153.43% 
11528700 2 0.1513 -2.16 0.3 153.94% 
11528700 3 0.1526 -2.14 0.3 154.11% 
11528700 4 0.1556 -2.12 0.3 154.36% 
11528700 5 0.1599 -2.11 0.31 154.75% 
11528700 6 0.1628 -2.1 0.31 154.91% 
11532500 1 0.035 -0.49 0.27 36.53% 
11532500 2 0.0451 -0.47 0.28 36.70% 
11532500 3 0.0452 -0.46 0.28 36.71% 
11532500 4 0.0436 -0.46 0.28 36.91% 
11532500 5 0.0425 -0.46 0.28 36.78% 
11532500 6 0.0443 -0.46 0.28 36.86% 
12035000 1 0.4936 0.21 0.56 -26.09% 
12035000 2 0.4954 0.21 0.56 -26.14% 
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USGS Gage ID HRU size class r NSE IoA PB 
12035000 3 0.4962 0.21 0.56 -26.15% 
12035000 4 0.4962 0.21 0.56 -26.15% 
12035000 5 0.4972 0.21 0.56 -26.14% 
12035000 6 0.4973 0.21 0.56 -26.14% 
12040500 1 -0.3675 -0.6 0.08 -2.09% 
12040500 2 -0.3679 -0.6 0.08 -2.00% 
12040500 3 -0.368 -0.6 0.08 -2.01% 
12040500 4 -0.368 -0.6 0.08 -1.99% 
12040500 5 -0.3682 -0.61 0.08 -1.15% 
12040500 6 -0.3682 -0.61 0.08 -1.15% 
12189500 1 -0.1413 -0.56 0.23 -38.61% 
12189500 2 -0.1419 -0.56 0.23 -38.64% 
12189500 3 -0.1421 -0.56 0.23 -38.62% 
12189500 4 -0.1424 -0.56 0.23 -38.46% 
12189500 5 -0.1424 -0.56 0.23 -38.39% 
12189500 6 -0.1418 -0.55 0.23 -38.31% 
12358500 1 0.6832 0.15 0.8 0.35% 
12358500 2 0.6885 0.17 0.81 0.34% 
12358500 3 0.6897 0.17 0.81 0.33% 
12358500 4 0.6938 0.19 0.81 0.37% 
12358500 5 0.6969 0.2 0.82 0.54% 
12358500 6 0.6985 0.2 0.82 0.65% 
12411000 1 0.6467 0.36 0.79 -5.53% 
12411000 2 0.647 0.37 0.79 -5.43% 
12411000 3 0.6471 0.37 0.79 -5.44% 
12411000 4 0.6474 0.37 0.79 -5.33% 
12411000 5 0.6484 0.37 0.79 -5.12% 
12411000 6 0.6486 0.37 0.79 -5.07% 
12413000 1 0.3357 -1.3 0.51 35.30% 
12413000 2 0.336 -1.29 0.51 35.35% 
12413000 3 0.3361 -1.29 0.51 35.37% 
12413000 4 0.3362 -1.29 0.51 35.45% 
12413000 5 0.3363 -1.29 0.51 35.58% 
12413000 6 0.3361 -1.29 0.51 35.68% 
12414500 1 0.2261 -4.21 0.37 87.80% 
12414500 2 0.2293 -4.17 0.37 87.89% 
12414500 3 0.2297 -4.16 0.37 87.92% 
12414500 4 0.2309 -4.23 0.37 89.52% 
12414500 5 0.235 -4.21 0.37 89.64% 
12414500 6 0.2356 -4.2 0.37 89.70% 
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USGS Gage ID HRU size class r NSE IoA PB 
12451000 1 0.2108 -0.4 0.49 -56.12% 
12451000 2 0.2074 -0.4 0.49 -56.06% 
12451000 3 0.2025 -0.4 0.49 -55.92% 
12451000 4 0.2026 -0.4 0.49 -55.69% 
12451000 5 0.2018 -0.4 0.49 -55.56% 
12451000 6 0.2341 -0.49 0.49 -76.17% 
13010065 1 0.6469 -0.63 0.73 30.12% 
13010065 2 0.645 -0.4 0.74 29.52% 
13010065 3 0.6672 -0.35 0.76 29.74% 
13010065 4 0.6763 -0.32 0.76 29.96% 
13010065 5 0.6825 -0.29 0.77 30.22% 
13010065 6 0.6841 -0.29 0.77 30.29% 
13011900 1 0.3889 -0.14 0.58 -42.53% 
13011900 2 0.3805 -0.12 0.57 -41.94% 
13011900 3 0.3805 -0.12 0.57 -41.94% 
13011900 4 0.3778 -0.12 0.57 -41.85% 
13011900 5 0.3799 -0.11 0.57 -41.75% 
13011900 6 0.3792 -0.11 0.57 -41.71% 
13023000 1 0.7297 -3.88 0.63 57.32% 
13023000 2 0.731 -3.87 0.63 57.48% 
13023000 3 0.7323 -3.86 0.63 57.57% 
13023000 4 0.748 -3.69 0.64 57.91% 
13023000 5 0.7535 -3.63 0.64 58.13% 
13023000 6 0.7568 -3.6 0.64 58.34% 
13161500 1 0.3811 -0.2 0.56 -47.39% 
13161500 2 0.3815 -0.2 0.56 -47.18% 
13161500 3 0.3929 -0.17 0.57 -45.16% 
13161500 4 0.3939 -0.17 0.58 -44.62% 
13161500 5 0.3973 -0.17 0.58 -43.88% 
13161500 6 0.4001 -0.17 0.58 -43.15% 
13185000 1 0.7508 -0.81 0.76 23.46% 
13185000 2 0.7593 -0.64 0.77 31.42% 
13185000 3 0.7596 -0.65 0.77 32.20% 
13185000 4 0.7607 -0.64 0.77 33.74% 
13185000 5 0.759 -0.64 0.77 34.65% 
13185000 6 0.7596 -0.65 0.77 35.15% 
13235000 1 0.6208 -2.76 0.61 47.99% 
13235000 2 0.6511 -2.54 0.64 48.30% 
13235000 3 0.6614 -2.47 0.64 48.39% 
13235000 4 0.6639 -2.45 0.64 48.59% 
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USGS Gage ID HRU size class r NSE IoA PB 
13235000 5 0.6724 -2.38 0.65 49.06% 
13235000 6 0.6738 -2.37 0.65 49.18% 
14301000 1 0.6166 0.36 0.7 -18.87% 
14301000 2 0.6182 0.37 0.7 -18.85% 
14301000 3 0.6184 0.37 0.7 -18.83% 
14301000 4 0.6199 0.37 0.71 -18.76% 
14301000 5 0.6203 0.37 0.71 -18.71% 
14301000 6 0.6203 0.37 0.71 -18.68% 
14306500 1 0.6327 0.39 0.73 -15.99% 
14306500 2 0.6332 0.39 0.73 -15.76% 
14306500 3 0.6332 0.39 0.73 -15.76% 
14306500 4 0.6333 0.39 0.73 -15.72% 
14306500 5 0.6337 0.39 0.73 -15.58% 
14306500 6 0.6337 0.39 0.73 -15.53% 
14400000 1 -0.0146 -0.26 0.25 2.89% 
14400000 2 -0.0129 -0.25 0.25 2.86% 
14400000 3 -0.013 -0.25 0.25 2.87% 
14400000 4 -0.0025 -0.24 0.25 3.10% 
14400000 5 -0.0039 -0.24 0.25 3.09% 
14400000 6 -0.004 -0.24 0.25 3.11% 
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