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Abstract: We present an imaging pipeline to achieve enhanced images of the interior of concrete 12 

from ground penetrating radar (GPR) and ultrasonic echo array (UEA) measurements. This work 13 

lays the foundation for an advanced yet practical imaging tool to assess concrete structures. 14 

Specifically, we propose an enhanced two-dimensional (2D) total focusing method (XTFM) to 15 

reconstruct images from raw GPR and UEA data. The proposed XTFM algorithm integrates total 16 

focusing method (TFM) and synthetic aperture focusing technique (SAFT) concepts to post-17 

process large independent and interelement measurements from both modalities in a 18 

computationally efficient way. Furthermore, we introduce a novel 2D image fusion algorithm 19 

using wavelet multilevel decomposition and an NDT knowledge-based rule to fuse GPR and UEA 20 

images. We then compare our algorithm with conventional fusion algorithms such as averaging, 21 

maximum, and product. The results from three laboratory concrete reference specimens are 22 

evaluated in detail. The fused images are compared with each other as well as benchmarked with 23 
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the original GPR and UEA images. The output image obtained from our proposed pipeline is an 24 

enhanced 2D image of the interior of concrete structures that eases interpretation by a human 25 

inspector as well as has it the potential to improve interpretation by computer vision and image 26 

analysis algorithms. 27 

 28 

Keywords: Non-destructive testing, condition assessment, ground penetrating radar, ultrasonic 29 

echo array, image fusion, synthetic aperture focusing technique, total focusing method, pipeline, 30 

image evaluation metric, concrete structure. 31 

 32 

INTRODUCTION AND BACKGROUND 33 

It has been decades since imaging technologies first found their way into non-destructive testing 34 

(NDT) of concrete structures. Many NDT methods have been introduced to image the interior of 35 

concrete such as radar imaging [1, 2, 3], ultrasonic echo imaging [4, 5, 6], ultrasonic tomography 36 

[7, 8], X-ray computed tomography (CT) [9, 10], and magnetic resonance imaging (MRI) [11]. All 37 

these modalities have their own limitations [12, 13]. The two most used modalities for NDT of 38 

concrete structures are electromagnetic (or radar) waves and ultrasonic stress waves. Both have 39 

their strengths and weaknesses, stemming from their underlying physics principles [14]. For 40 

example, virtually all the energy of an electromagnetic wave produced by a ground penetrating 41 

radar (GPR) instrument is reflected when arriving at a metallic object such as a steel reinforcing 42 

bar (or rebar) in reinforced concrete. On the other hand, a significant portion is transmitted through 43 

concrete-air interfaces such as an internal crack or void. Conversely, ultrasonic stress waves can 44 

penetrate through a metallic object, but most of the energy is reflected at a concrete-air interface. 45 

Furthermore, scattering and attenuation patterns are different for these two modalities, so is the 46 
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speed of data collection [15]. Langenberg et al. discuss the underlying theory of electromagnetic 47 

and ultrasonic stress wave imaging in the context of NDT on concrete [16]. 48 

 49 

Image fusion is the process of combining and merging complementary information into a single 50 

image from two or more source images, which generates an improved visualization, and benefits 51 

from different NDT methods, especially when they are complementary in nature [15]. There are 52 

two main reasons to perform multimodal image fusion [17]. The first one is to achieve an improved 53 

visual representation of an image with higher overall quality, thus improving a human inspector’s 54 

ability to determine features of interest. The second one is to produce a single image that has the 55 

information content from both modalities for subsequent computer vision and image processing 56 

algorithms such as image segmentation. For multimodal image fusion, it is desirable to preserve 57 

relevant and complementary information while reducing noise and providing an enhanced visual 58 

representation [18]. In this study, image fusion is performed at the pixel level, where the fused 59 

image is obtained from the corresponding pixel values of the source images. 60 

 61 

Kohl et al. [15] published the first research on data fusion of ultrasonic and GPR images on 62 

concrete where they evaluated different arithmetic rules such as mean, substitution, and maximum 63 

to fuse the images. In addition, they employed the maximum amplitude of both modalities on 64 

datasets of different sizes. The authors reported that maximum information content was achieved 65 

using their approach for concrete structures with high reinforcement density and/or air voids. They 66 

did not propose any metrics that would allow for evaluating image quality. In a similar study, 67 

Maierhofer et al. [19] performed data fusion of GPR and UEA data from concrete structures. The 68 

authors used the maximum amplitude method and reported that maximum information was 69 
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obtained in structures with a high reinforcement density, tendon ducts, and/or air voids and gaps. 70 

Like [15], they did not use any metrics to quantify information or image quality. Van der Wielen 71 

et al. [20] used ultrasonic and GPR measurements on concrete pavement and compared the results. 72 

They found that GPR is more efficient for dowel positioning and found both useful in thickness 73 

estimation. Krause et al. [21] compared ultrasonic echo, GPR and impulse-echo methods on 74 

concrete. They compared the modalities in terms of measuring thickness, location of a metal duct 75 

and voided regions inside the duct. They found that all the modalities are useful in measuring 76 

thickness and location of the duct. They also found that GPR is not suitable to detect the voids 77 

inside the ducts while UEA is.  Gucunski [22] et al. reported a comparison of some NDT methods 78 

including GPR and ultrasonic pulse echo in condition assessment of concrete bridge decks. They 79 

categorized different NDT technologies and reported that both GPR and ultrasonic pulse echo have 80 

good potential in detecting delaminations and deterioration. Wimsatt et al. [23] reported combining 81 

three datasets from ultrasonic echo, impact echo, and GPR obtained from tunnel inspection using 82 

weighted averaging. They applied depth-varying weights to each image to account for different 83 

resolutions and penetration depths. They reported that the fused images provide useful information 84 

from each modality in a concise combined presentation. 85 

 86 

Salazar et al. used fusion of GPR and ultrasound images on a historic masonry wall using the mean 87 

and product results of the two images [24]. They reported improved defect detection in the fused 88 

image, especially with the mean method, but without the support of any image quality metrics. Not 89 

applied to images but related, Volker and Shokouhi applied two data fusion algorithms, namely 90 

Dempster’s rule of combination and the Hadamard product for GPR, impact echo, and ultrasonic 91 

pulse echo data to automatically detect honeycombing in concrete [25]. They evaluated their 92 
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method quantitatively by comparing receiver operating characteristic (ROC) curves for individual 93 

tests and fusion methods. Results from both fusion algorithms were slightly better compared to 94 

when a single modality was used. They also investigated clustering methods for fusing GPR, 95 

impact echo, and ultrasonic data to detect honeycombing in another study [26] and found that the 96 

density-based clustering algorithm performed well on the classification task between defect and 97 

non-defect features. 98 

 99 

Summarizing the state-of-the-art in imaging of concrete structures, we make the following 100 

observations: (1) Reconstruction algorithms are not cohesive among GPR and UEA modalities, 101 

and hence there is a lack of well-defined holistic pipeline, (2) image fusion for concrete 102 

applications has still many opportunities for improvement, (3) few studies have proposed 103 

quantitative metrics to evaluate fusion performance, and (4) no advanced automated diagnostic 104 

algorithms have been developed to quantitatively analyze images. 105 

 106 

The main contribution of this study is a comprehensive pipeline for enhanced multimodal 2D 107 

imaging of concrete structures that span the first three points above. First, we present an integrated 108 

algorithm to reconstruct GPR and UEA images from raw independent and interelement 109 

measurements. Second, we introduce a fusion algorithm based on multilevel wavelet 110 

decomposition and an NDT-informed fusion rule. Third, we evaluate the quality of each image in 111 

terms of two standard types of reflectors and compare the image quality between the original GPR, 112 

UEA and fused images. The overall goal is to lay the foundation for an advanced yet practical 113 

diagnostic imaging tool for concrete structures. This pipeline has the potential to be used in 114 
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conjunction with image analysis methods such as deep learning to build a prognostics tool in the 115 

future if a proper amount of valid data is available.  116 

 117 

EXPERIMENTAL SETUP 118 

Test Specimens 119 

Three specimens with different geometries and known features were built in the laboratory using 120 

a standard normal-weight concrete with a specified compressive strength of 31 MPa (4500 psi). 121 

The outside dimensions of all specimens are length x width x depth = 1219 x 610 x 305 mm (48 x 122 

24 x 12 in). Fig. 1 (a) shows Specimen 1, which is unreinforced and varies in depth from 51 to 305 123 

mm (2 to 12 in) in steps of 51 mm (2 in). Fig. 1 (b) shows Specimen 2, which contains five #4 [bar 124 

diameter, db = 13 mm (0.5 in)] steel rebars having rebar clear covers, cc on the top and bottom side 125 

ranging from 25 to 127 mm (1 to 5 in) and 165 to 267 mm (6.5 to 10.5 in), respectively. Finally, 126 

Specimen 3, which is shown in Fig. 1 (c), has a row of rebars on each the top and bottom side with 127 

a constant rebar clear cover, cc = 76 mm (3 in). The rebars on the top and bottom side range from 128 

#4 to #8 [db = 12.7 to 25 mm (0.5 to 1 in)] and #9 to #11 [db = 29 to 36 mm (1.13 to 1.41 in)]. The 129 

bottom side also has four closely-spaced #4 [db = 13 mm (0.5 in)] rebars as well as a hollow 51 130 

mm (2 in) diameter PE pipe. 131 
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 132 

 Fig. 1 – Photos (rectified elevations views) of three reference specimens (top to bottom): 133 

Specimens 1, 2, and 3. Rebars are highlighted with red circles/rectangles. 134 

 135 

METHODOLOGY 136 

Instruments and Data Collection 137 

Two measurement modalities are utilized in this research both using a pitch-catch configuration: 138 

electromagnetic waves and ultrasonic stress waves. For the electromagnetic waves, a hand-held 139 

ground penetrating radar (GPR) instrument from GSSI, Model StructureScan Mini XT was 140 

employed [see photo in Fig. 2 (a)]. The instrument is equipped with one transmitting and one 141 
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receiving antenna (subsequently referred to as transducer). It emits an electromagnetic pulse that 142 

is transmitted into the material along a path on the structure’s surface, as shown on the photo in 143 

Fig. 2 (c). A portion of the incident electromagnetic pulse is reflected at interfaces between 144 

materials with different dielectric properties [14]. Fig. 2 (b) and (d) show a typical individual 145 

measurement (or A-scan signal) and a contour plot of subsequent A-scan signals (or B-scan plot), 146 

respectively, of unprocessed GPR data. Technical details are provided in Table 1. 147 

 148 

 149 

 Fig. 2 – Ground penetrating radar (GPR) measurements: (a) Photo of instrument (Manufacturer, 150 

model: GSSI, StructureScan Mini XT), (b) typical A-scan signal (unprocessed), (c) Photo taken 151 

during data collection, and (d) typical B-scan plot from independent measurements 152 

(unprocessed). The blue line in (d) marks the location of the A-scan signal shown in (b). 153 
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For the ultrasonic stress waves, an ultrasonic echo array (UEA) instrument from Proceq, Model 154 

Pundit 250 Array, was used [see photos in Fig. 3 (a) and (c)]. The instrument is equipped with 24 155 

ultrasonic transducers, arranged in an 8 x 3 array. It emits a shear stress wave pulse row-by-row 156 

into the material, which is subsequently received by all other transducers. A portion of the incident 157 

stress wave is reflected at interfaces between materials with different acoustic impedances [14]. 158 

Fig. 3 (b) and (d) show a typical A-scan signal and B-scan plot, respectively of unprocessed 159 

ultrasonic echo data. The transducer frequency is 50 kHz with a sampling frequency of 1 µs. Table 160 

1 shows a comparison between the properties of the GPR and UEA instruments. 161 

 162 

 163 

 Fig. 3 – Ultrasonic echo array (UEA) measurements: (a) Photo of instrument (Manufacturer, 164 

model: Proceq, Pundit 250 Array); (b) typical A-scan signal (unprocessed), (c) Photo taken 165 
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during data collection, and (d) typical B-scan plot from interelement measurements 166 

(unprocessed). The red line in (d) marks the location of the A-scan signal shown in (b). 167 

 168 

Table 1 – Technical details of the two utilized instruments. 169 

Instrument GPR UEA 

Wave type Electromagnetic Stress (shear) wave 

Central pulse frequency 2.7 GHz 50 kHz 

Signal Resolution 0.0164 ns 1 µs 

Recording frequency 2.54 mm (0.1 in) (fixed) 
10 mm (0.394 in) 

(selected for this study) 

Number of transducer rows, 

transducers/row 

2, 1 8, 31 

Transducer spacing(s) 40 mm (1.58 in) 30 mm (1.18 in) 

1The instrument records across all three transducers in one row and then computes and saves the 170 

average signal. 171 

 172 

PIPELINE METHODOLOGY 173 

Image Reconstruction 174 

In this research, an integrated approach based on the total focusing method (TFM) [27, 28] and the 175 

synthetic aperture focusing technique (SAFT) [4] was employed that can be used to reconstruct 176 

2D images for both modalities. TFM utilizes the full aperture to reconstruct the image by 177 

synthetically focusing on every pixel of interest, while SAFT uses independent recordings [29, 178 

30]. Our reconstruction approach uses measurements that contain both interelement data of the 179 
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array as well as independent overlapping measurements and works for both GPR and UEA 180 

modalities. We propose the term XTFM (extended total focusing method) because it considers 181 

overlapping measurements and works across modalities, i.e., it can process both GPR and UEA 182 

data. Overlapping measurements return an independent array response at different positions where 183 

there is a dependent interelement response at each position. Therefore, a large matrix of 184 

measurements is collected that contains both interelement as well as independent array data. We 185 

treat each UEA measurement the same as one GPR recording where the UEA data are stored in 186 

the form of an nS x 1000 x 8 × 8 array, while The GPR data are in a nS x 512 x 2 × 2 array, with 187 

the diagonals consisting of zeros and the matrix being symmetric, meaning that only one signal is 188 

recorded between each transducer pair. nS is the total number of scans. For every measurement, 189 

the image area that can be covered by the signal length is used for reconstruction. Thus, the beam 190 

is not focused in any particular manner. We deliberately omit the enveloping of the signal (using 191 

the Hilbert Transform) that is often applied in practice since we find that it creates the illusion of 192 

a circular shape for circular objects like rebars. It should be noted that the GPR instrument used in 193 

this study is not an array GPR (it has only one emitter and receiver), however, our proposed XTFM 194 

algorithm works for any number of channels ≥ 2. The following pseudo-code shows the steps of 195 

the proposed algorithm. The actual code in Python and MATLAB can be downloaded at no cost 196 

from our GitHub repository [31].  197 
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Algorithm 1: Pseudocode for 2D XTFM 198 

      XTFM (X, v, ε, sR, d, s, r, dim) 199 
 200 
        Input:  201 
 202 

X: 4D matrix of raw measurements containing all slices of independent and interelement 203 
data with the format of nS* sL * nC * nC , where nS is the number of independent scans, 204 
sL is the signal length of a raw measurement and nC is the number of channels of the 205 
instrument. 206 

 v: velocity of the medium 207 
 ε: time offset 208 
 sR: signal resolution 209 
 d: recording frequency 210 
 s: transducer spacing 211 
 r: desired resolution 212 
 dim: grid dimensions (2D) 213 
 214 
 Output: I (reconstructed image) 215 
 216 

Initialize vectors, xn, yn spanning from 0 to dim *r with a step of r 217 
 218 
 Initialize the output image, I with zeros with a size of dim 219 
 220 
            For every k independent measurement (total of nS) 221 

             For every i, j interelement measurement (total of (nC * (nC-1)/2): 222 
 223 

Calculate T matrix =  ��
�(xn-i*s - k*d)^2+yn^2))+�(xn-j*s - k*d)^2+yn^2

v + ε� /sR�  224 

 225 
                         Mask T matrix to discard out of range values (values bigger than sL) 226 
 227 

Add X[k,T, i, j] to I 228 
 229 

   End For 230 
 231 
 End For 232 
 233 
   Return I  234 
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The time variable, T, is an array, computed by broadcasting the 𝐱𝐱n and 𝐲𝐲n vectors. The array T 235 

can be implemented using fancy indexing (i.e., passing an array of indices to access elements of 236 

an array at the same time) and broadcasted to the final image. Thus, it can make the process 237 

computationally more efficient. All indices in the T matrix contribute to the final image if they are 238 

less than the signal length. The other indices are discarded through the masking step. This can lead 239 

to adding more information to the image, as well as increasing the risk of adding potential artifacts. 240 

Both ε and v need to be determined experimentally, which aligns the images in the y-direction and 241 

results in the correct focus. The process involves tuning the two parameters until the known 242 

features such as rebars and the backwall are shown in their correct locations. The assumption is 243 

that both parameters are deterministic entities and can be applied uniformly throughout a 244 

specimen. While this is a reasonable assumption for the specimens used in our study, it might not 245 

be for a real structure with larger dimensions where concrete properties might vary spatially.  246 

 247 

Image Fusion 248 

Preprocessing 249 

To keep the pipeline practical and general, an effort was made to minimize any manual 250 

preprocessing. The images should be aligned (or registered) correctly in the y-direction when the 251 

parameters ε and v were tuned correctly. Based on the geometry of the instruments and 252 

measurements, there might be a slight misalignment in the x-direction. Thus, the only image 253 

registration necessary in the x-direction before fusing the GPR and UEA images is translation in 254 

the x-direction. Finally, a conventional (and optional) surface wave removal was applied to both 255 

GPR and UEA images and the images were min-max normalized to take amplitude values in the 256 

0 to 1 range.  257 



 

14 
 

Wavelet image fusion 258 

Wavelet image fusion is a multiresolution approach capable of handling different image 259 

resolutions while extracting the image content with the most pertinent information [32, 33, 34]. 260 

The fusion rule used here was informed by the nature of the measurements. The direct pulse 261 

recorded from a reflector follows one of these two patterns, which consist of a center and two side 262 

lobes: dark-bright-dark (i.e., low-high-low intensity), which we name Type 1 reflector and a 263 

bright-dark-bright (i.e., high-low-high intensity), which we name Type 2 reflector. Examples of 264 

the former and latter are embedded metals such as rebars and air voids or backwalls of the concrete, 265 

respectively. The other areas of an image where there is no reflector are usually shades of gray 266 

having some level of variation, or noise. Fig. 4 shows (a) a sample reconstructed image having 267 

both reflectors as well as (b) a representative A-scan with the two reflectors highlighted by boxes. 268 

Our objective is to achieve high contrast for both types of reflectors, Type 1 as well as Type 2, so 269 

that they are clearly discernible from the background. For example, in the results section we 270 

discuss that from reconstructed images of Specimen 2, the GPR image shows all the rebars but it 271 

does not reveal the backwall. On the other hand, the UEA image clearly shows the backwall but 272 

the small rebars are missing. Generally, we observe higher attenuation of the radar waves, stronger 273 

reflection of radar wave energy on near-surface rebars, and higher penetration depth of the 274 

ultrasonic waves. 275 
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 276 

Fig. 4 – (a) Sample reconstructed image of Specimen 2 showing Type 1 (red box) and Type 2 277 

(blue box) reflectors and (b) representative A-scan with the two reflectors highlighted by boxes 278 

[location indicated by green line in (a)]. 279 

 280 

We propose Algorithm 2 based on the observations made from reconstructed 2D images of the 281 

three specimens and the underlying physics of the used modalities. 282 

 283 

Algorithm 2: Proposed Image Fusion Algorithm 284 

Step 1: Each image from the two modalities is decomposed via 2D multilevel wavelet 285 

decomposition into a low-frequency and three high-frequency detail coefficients for each level. 286 

The decomposition is performed recursively for a desired number of levels, for which we propose 287 



 

16 
 

it being at least four. The Sym5 wavelet from the Symlets family is used in this study, which is 288 

suitable for 2D image processing applications [35]. 289 

Step 2: Each approximation is divided into three ranges of bright, dark, and gray based on the 290 

intensity of each pixel value. The thresholds to divide these three ranges are: pixel values > mean 291 

+ one standard deviation, pixel values < mean - one standard deviation, and pixel values within 292 

mean +/- one standard deviation, respectively. The following rules are applied, based on the 293 

expected capabilities and reliabilities of the two modalities: 294 

Case 1: If a feature is bright in the images of both modalities, e.g., the center lobe of a 295 

Type 1 reflector (e.g., a rebar in concrete), or the side lobes of a Type 2 reflector, we pick 296 

the maximum pixel value.  297 

Case 2: If a feature is dark in the images of both modalities, e.g., the center lobe of a Type 298 

2 reflector (e.g., the hollow pipe embedded in Specimen 3 or the backwall), or the side 299 

lobes of a Type 1 reflector, we select the minimum pixel value.  300 

Case 3: If a bright feature is visible in the GPR image, and in the UEA image it is in the 301 

gray (i.e., mid-) range, we pick the pixel value from the GPR image. 302 

Case 4: If a bright feature is visible in the UEA image and the GPR image shows it in the 303 

gray range, we select the mean value, since GPR is better suited for detecting bright 304 

reflectors (like a rebar).  305 

Case 5: If a dark feature is visible in the GPR image and the UEA image shows it in the 306 

gray range, we pick the mean value.   307 

Case 6: If a dark reflector is visible in the UEA image and the GPR image shows it in the 308 

gray range (like the backwall in Specimens 2 and 3), we select the pixel value from the 309 

UEA image. 310 
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Case 7: If a feature appears in the gray range in the images of both modalities, we pick the 311 

mean pixel value. 312 

Case 8: If a feature is in the bright range of the GPR image and the dark range of UEA 313 

image, we select the pixel value of the bright feature. 314 

Case 9: If a feature is in the bright range of the UEA image and dark range of the GPR 315 

image, we select the mean pixel value.  316 

Step 3:  317 

Adopt the maximum pixel value of the detail coefficients. 318 

Step 4:  319 

Perform multilevel wavelet reconstruction using the inverse wavelet transform to obtain 320 

the final fused image. 321 

 322 

RESULTS AND DISCUSSION 323 

Local Evaluation Metric 324 

The aim of fusion is to enhance the quality (discernibility) of the features of interest and provide a 325 

single overall high-quality image capturing information from both modalities. Therefore, we 326 

suggest two types of metrics to evaluate the fused images. First, and the more important one, is a 327 

local metric to evaluate each reflector individually. As previously described, there are two types 328 

of reflectors with consecutive bright and dark regions. To measure the quality of a feature, we 329 

define a local contrast metric for each reflector as the contrast (relative intensity) of the local 330 

extrema on top of the feature. We measure this by adding relative intensities of the extrema 331 

amplitudes. Fig. 4 (b) shows the amplitudes that are added together (e.g., |A1|+|A2|) to compute the 332 
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value of the local contrast metric. This metric measures the saliency of the center lobe of the 333 

recorded pulse. Red and blue lines refer to Type 1 and Type 2 reflectors, respectively. 334 

 335 

 336 

Fig. 5 – Results for Specimen 2: (a) Photo, reconstructed images from (b) GPR and (c) UEA, and 337 

fused images using (d) averaging, (e) maximum, (f) product, and (g) our proposed method. 338 

  339 
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Table 2 – Normalized local evaluation metrics for select image features from Specimen 2. 340 

Case Position: x, y 
in (mm) GPR UEA Average Maximum Product Proposed 

method 
#4 rebar 8, 1 (203, 25) 1.00 0.00 0.45 0.56 0.46 1.01 

#4 rebar 16, 2 (406, 51) 1.00 0.52 0.75 0.79 0.87 1.08 

#4 rebar 24, 3 (610, 76) 0.86 1.00 0.90 0.98 1.12 1.23 

#4 rebar 32, 4 (813, 102) 1.00 0.83 0.85 0.82 1.05 1.29 

#4 rebar 40, 5 (1016, 127) 1.00 0.83 0.83 0.82 0.98 1.23 

Backwall 28.8, 12 (730, 305) 0.00 1.00 0.49 0.89 0.42 1.05 

 341 

From Table 2 and Fig. 5 we can observe that the GPR image [Fig. 5 (b)] clearly shows small 342 

rebars at different depths, while the UEA image [Fig. 5 (c)] does not reveal small and close-to-343 

the-surface rebars. The results in the Table 2 are normalized with respect to the best individual 344 

modality to show if any of the fusion methods can retain or improve the evaluation metric. Average 345 

and maximum [Figs. 5 (d) and (e)] do not perform better than any of the single modalities while 346 

product [Fig. 5 (f)] sometimes gives better results, especially when both modalities detect the 347 

rebar. However, product fails when one modality does not detect it and when information is 348 

complementary. In the case of a backwall, the information is complementary and averaging and 349 

product perform worse than maximum. Our proposed method [Fig. 5 (g)] can preserve and 350 

accentuate information in all the above cases. 351 



 

20 
 

 352 

Fig. 6 – Results for Specimen 3: (a) Photo, reconstructed images from (b) GPR and (c) UEA, and 353 

fused images using (d) averaging, (e) maximum, (f) product, and (g) our proposed method. 354 

 355 

Table 3 – Normalized local evaluation metric for reconstructed images for Specimen 3. 356 

Case Position: x, y 
in (mm) GPR UEA Average Maximum Product Proposed 

method 
#11 rebar 24, 3 (610, 76) 1.00 0.63 0.81 0.79 1.08 1.03 

#10 rebar 32, 3 (813, 76) 1.00 0.76 0.80 0.89 1.01 1.12 

# 9 rebar 40, 3 (1016, 76) 1.00 0.84 0.84 0.84 1.09 1.36 

# 6 rebar 24, 8.5 (610, 216) 0.00 1.00 0.57 0.93 0.60 1.09 

Backwall 28.8, 12 (730, 305) 0.12 1.00 0.54 0.87 0.52 0.99 

Pipe 8, 3 (203, 76) 0.89 1.00 0.75 0.91 0.76 1.46 
Close 
rebars 

13.75-17.75, 3 (349-
451, 76) 0.62 1.00 0.67 0.63 1.14 1.19 
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From Fig. 6 And Table 3 we can see that both GPR and UEA images [Figs. 6 (b) and (c)] clearly 357 

show the large diameter rebars that are located close to the surface. In this case, averaging, 358 

maximum, and product [Figs. 6 (d) to (f)] are all able to detect the features as well, while product 359 

giving a better result, since the feature is detected in both modalities and multiplying them 360 

accentuates redundant information. The proposed method [Figs. 6 (g)] can retain the information 361 

from both modalities and gives the best results. In case of the #6 rebar at a depth of 216 mm (8.5 362 

in) that is hidden under the #11 top rebar [see blue box in Fig. 6 (a)], as expected, the GPR image 363 

[Fig. 6 (b)] does not show the rebar since all the energy is reflected back from the top rebar. 364 

However, the UEA image [Fig. 6 (c)] reveals this feature (see blue arrow) because stress waves 365 

can propagate through metallic objects. In this case, averaging, maximum, and product [Fig. 6 (d) 366 

to (f)] give worse results compared to when only a single modality, e.g., UEA, is used, hence no 367 

value is added with fusion. However, the proposed method [Fig. 6 (g)] not only retains the 368 

information but also has a slightly improved contrast value.  In the case of Type 2 reflectors, i.e., 369 

the pipe and the backwall, we can see that the GPR image [Fig. 6 (b)] barely shows the backwall. 370 

Again, none of the fusion methods give better results than the best individual modalities, which is 371 

UEA in this case, but the proposed method [Fig. 6 (g)] retains the information of the backwall and 372 

intensifies the pipe. The fusion rule is to keep the minimum value when both modalities detect a 373 

dark feature or trust UEA when the UEA image shows a dark feature while the GPR image shows 374 

it in gray. For closely spaced rebars [see green box in Fig. 6 (a)], we also study a horizontal line 375 

at y = 76 mm (3 in) and consider the relative contrast of the rebars as well as the relative contrast 376 

of the space between the rebars. We can see that the UEA image [Fig. 6 (b)] is better than the GPR 377 

image [Fig. 6 (c)], and among the fusion methods, product [Fig. 6 (f)] and our proposed method 378 

[Fig. 6 (g)] exhibit the best performance. It should be noted that none of the images allow for 379 
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distinguishing the two middle bars, which are in contact with each other, i.e., all images show three 380 

rather than four individual reflectors. This is a limitation of our instruments and their resulting 381 

wavelength in our concrete. 382 

 383 

 384 

Fig. 7 – Results for Specimen 1: (a) Photo, reconstructed images for (b) GPR and (c) UEA, and 385 

fused images using (d) Averaging, (e) Maximum, (f) Product, and (g) our proposed method.  386 
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Table 4 – Normalized local evaluation metric for images from Specimen 1. 387 

Case Position: x, y 
in (mm) GPR UEA Average Maximum Product Proposed 

method 

Step 1 4, 2 (102, 51) 1.00 0.46 0.68 0.74 0.55 1.08 

Step 2 11.5, 4 (292, 102) 0.84 1.00 0.88 1.06 0.82 1.06 

Step 3 18.5, 6 (470, 152) 0.57 1.00 0.75 0.61 0.73 0.97 

Step 4 26, 8 (660, 203) 0.38 1.00 0.66 0.57 0.65 0.99 

Step 5 34, 10 (864, 254) 0.19 1.00 0.47 0.38 0.49 1.01 

Step 6 43, 12 (1092, 305) 0.32 1.00 0.55 0.82 0.57 0.98 

 388 

From Table 4 and Fig. 7 we can see that the UEA image [Fig. 7 (c)] shows the backwalls (steps) 389 

consistently better than the GPR image [Fig. 7 (b)] except for the one very close to the surface. 390 

The proposed method [Fig. 7 (g)] can retain and improve the information in most of the cases 391 

better than any of the other methods [Figs. 7 (d) to (f)]. 392 

 393 

Global Evaluation Metrics 394 

While we have now evaluated image quality based on local metrics, it can be valuable to consider 395 

some global evaluation metrics.  Although we humans usually pay attention to local features and 396 

salient points in the image, we care about the overall appearance of the image as well. In addition, 397 

we would like to determine the overall information content of an image as well. These global 398 

metrics of quality are important for future work on automating the pipeline since image analysis 399 

methods such as deep neural networks perform notably worse when input images have a low 400 

quality [36]. In this study we used standard deviation, entropy, and average gradient as global 401 

evaluation metrics. 402 
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The standard deviation of a gray-level image represents the overall contrast. Usually, higher 403 

contrast images are more favorable for human perception because the features are more clearly 404 

discernible from the background [37]. Table 5 shows the results for the standard deviation metric 405 

of all reconstructed images for all three specimens. Values were computed for the entire images 406 

shown in Figs. 5 to 7 and then normalized relative to the highest individual modality. The fused 407 

image with the proposed method has a higher contrast compared to all other images.  408 

 409 

Image entropy is used to measure the information content and richness of a grayscale image [37, 410 

38]. Table 5 shows the results for the entropy metric. The values are normalized relative to the 411 

highest individual modality. The proposed wavelet-based method produces an image with the 412 

highest information entropy among all images, which supports a visual analysis of the image where 413 

we can observe more details of rebars and backwall information. 414 

 415 

Average gradient is an image fusion metric where spatial resolution of an image can be compared 416 

to other images [32]. Each pixel of the gradient image shows how the intensity changes in a given 417 

direction. We expect a higher average gradient for an image with more edges and features. Table 418 

5 shows the results of the average gradient metric for the different images. The values are 419 

normalized relative to the highest individual modality. It can be observed that the proposed 420 

wavelet-fused image has a higher average gradient, which means they contain more discernible 421 

features. This is consistent with a visual analysis, especially for the case of the proposed wavelet-422 

based image where we can perceive more discernible features. 423 
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We can see that the proposed method performs well for all three global metrics and for all 424 

specimens. While maximum was not the best method when evaluated locally, it gives high global 425 

information, which makes sense since it maximizes information. However, it is unable to perform 426 

well globally for Specimen 1 when we have only Type 2 reflectors. This is because maximizing is 427 

not desired when the extremes are local minima. Even though product gives a high result in some 428 

cases, it does not perform well globally. Averaging, as expected by its definition, averages the 429 

information. We can see that the proposed method is able to retain the information from both 430 

modalities and accentuates them.  431 

 432 

Table 5 – Normalized global evaluation metrics for images of all specimens. 433 

Specimen Global Metric GPR UEA Average Maximum Product Proposed 
method 

1 Standard Deviation 0.80 1.00 0.72 0.74 0.68 1.21 
2 Standard Deviation 0.70 1.00 0.68 0.91 0.65 1.16 
3 Standard Deviation 0.82 1.00 0.77 0.95 0.77 1.34 
1 Entropy 0.91 1.00 0.91 0.91 0.91 1.05 
2 Entropy 0.88 1.00 0.89 0.99 0.88 1.05 
3 Entropy 0.92 1.00 0.91 1.00 0.92 1.12 
1 Average Gradient 0.60 1.00 0.62 0.67 0.62 1.17 
2 Average Gradient 0.50 1.00 0.57 0.96 0.54 1.12 
3 Average Gradient 0.64 1.00 0.67 0.97 0.67 1.18 

 434 

SUMMARY AND CONCLUSIONS 435 

In this article, a pipeline to image the interior of concrete structures is proposed and evaluated. 436 

Three laboratory concrete specimens with known geometry, material properties, and features were 437 

employed to evaluate the entire methodology. Data were collected for two different modalities 438 

using two commonly used non-destructive testing (NDT) instruments, namely ground penetrating 439 
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radar (GPR) and ultrasonic echo array (UEA). An extended total focusing method (XTFM) was 440 

developed to reconstruct 2D images for both measurement modalities. A novel fusion algorithm 441 

based on multilevel wavelet decomposition and an NDT-informed rule was developed to fuse the 442 

GPR and UEA images. Image quality metrics were utilized enabling a quantitative comparison of 443 

the fused images in terms of local feature contrast and overall global quality. The results show that 444 

advanced image fusion has significant potential to enhance concrete imaging compared to when 445 

only individual GPR or UEA images are used. We made the following observations: 446 

1. For the close-to-surface Type 1 reflectors (e.g., rebars) as well as small Type 1 reflectors, 447 

GPR is the superior modality, while UEA gives decent results except for small rebars close 448 

to the surface. 449 

2. For Type 2 reflectors (e.g., pipe, backwall) UEA performs better than GPR, while GPR 450 

gives decent results, especially if the reflector is not very far from the surface.  451 

3. If a metallic reflector is blocked by another metallic reflector, GPR is not able to detect it 452 

while UEA can. 453 

4. For closely spaced rebars, UEA is performing better than GPR in differentiating the 454 

intensity in the space between rebars as well as keeping a high relative amplitude for the 455 

reflector.  456 

5. The averaging fusion method keeps the information from both modalities, while smoothing 457 

everything. The maximum method does not produce consistent results and usually fails to 458 

improve an image. The reason is that the signals have multiple oscillations and there is 459 

usually a mismatch in many portions of the signals. Also, in case of Type 2 reflectors, 460 

maximization is not desired. The product method sometimes gives promising results, in 461 

particular for the cases when both modalities detect a Type 1 reflector. However, it fails in 462 
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almost all other cases such as when the information is complementary (i.e., one modality 463 

detects a feature and the other one does not), and when the reflector is Type 2.  464 

6. The proposed wavelet method takes advantage of low pass filtering the images first to 465 

smooth the images and minimize undesired non-feature extrema (oscillations) and then 466 

apply a custom fusion rule, that maximizes, minimizes and averages pixel values 467 

depending on the type of reflector. In addition, high pass filtering images and maximizing 468 

details improves amplitude and relative contrast. This method has shown promise in all the 469 

cases covered in this study. 470 

 471 

In conclusion, the proposed pipeline produced enhanced 2D images that retain and accentuate the 472 

information from both modalities with a target of Type 1 and Type 2 reflectors for all three 473 

specimens. We see significant potential and opportunity for further research, taking full advantage 474 

of the latest advances in the fields of image fusion and machine learning. The next step will be to 475 

collect additional data from specimens with known defects such as different types of cracking, 476 

rebar corrosion, and other forms of degradation. The fusion algorithm will also be tested and 477 

evaluated on large-scale laboratory specimens that exhibit different levels of damage from loading. 478 

Our ultimate goal is to develop a practical diagnostic tool that can be used to automatically analyze 479 

images and assist an inspector in the condition assessment of concrete structures. 480 

 481 

SHARING OF DATA AND ALGORITHMS 482 

All data and algorithms presented in this article will be available on the following GitHub 483 

repository [31]: https://github.com/Sinamhd9/A-Pipeline-for-Enhanced-Multimodal-Imaging-of-484 

Structural-Concrete.  485 

https://github.com/Sinamhd9/A-Pipeline-for-Enhanced-Multimodal-Imaging-of-Structural-Concrete
https://github.com/Sinamhd9/A-Pipeline-for-Enhanced-Multimodal-Imaging-of-Structural-Concrete
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