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Abstract

Even-order intermodulation distortions are often considered easy to filter in narrowband
radio frequency (RF) wireless systems because they are usually located far away from the
desired passband and adjacent bands. However, even-order intermodulation distortions
have recently attracted more interest with the increasing popularity of wideband RF appli-
cations. The authors’ previous work was devoted to establishing the power spectrum model
of second-order intermodulation distortion. Motivated by the latest efforts on RF power
amplifier linearization with second-order and fourth-order intermodulation, our focus now
is to establish a power spectrum model of fourth-order intermodulation distortion which
can be used to discuss the fourth-order impacts on the passband and adjacent bands. Here,
together with the authors’ previous work on the odd-order intermodulation, a relatively
comprehensive power spectrum model is presented here, including second-, third-, fourth-
, and fifth-order intermodulation, which offers a broader view for spectrum planners and
RF designers. With qualitative and quantitative reasoning, we further explain that higher-
order (i.e., n > 5) IM distortions of a weakly nonlinear amplifier are indeed negligible. The
experiment measurement at the end of this paper validates the spectrum model.

1 INTRODUCTION

Nonlinearity in wireless communication systems usually exists
in the RF front ends and is produced by nonlinear devices
such as power amplifiers, low-noise amplifiers, mixers, etc.
[1–3]. Nonlinear distortion is critical because it decreases the
signal-to-noise ratio (SNR), and thus results in performance
degradation. Therefore, behavioural modelling of nonlinear
devices plays an important role in the design of linearization
techniques used to overcome the effects of nonlinear distortion
in wireless applications. Traditionally, only odd-order inter-
modulation (IM) distortions are of concern in narrowband
RF systems because the even-order IM distortions are located
far away from the desired passband and are easily filtered [4].
However, with the increasing deployment of wideband applica-
tions, even-order IM distortion may no longer be negligible. For
example, the compensation or cancellation of the second-order
IM distortion was suggested for wideband applications in
long term evolution advanced (LTE-A) and fifth generation
new radio (5G NR) systems [5, 6]. Additionally, a wideband
inductorless low noise amplifier (LNA) was designed using a
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technique for canceling second-order IM products [7]. Further-
more, an exploratory effort was made to linearize the RF power
amplifier by the injection of the IM2 and IM4 signals [8].

We derived a power spectrum model of the second-order
IM distortion in our previous work [9]. Inspired by the recent
attention regarding higher even-order IM distortions, we are
now focusing on fourth-order IM distortion and its impact to
the passband and adjacent bands. In this paper, a power spec-
trum model of fourth-order IM distortion is derived in terms
of the amplifier parameters such as bandwidth, gain, intercept
points, etc. We further explain from quantitative and qualitative
perspectives that the higher-order (i.e., n > 5) IM of a weakly
nonlinear amplifier is indeed negligible. Thus, a comprehensive
power spectrum model up to fifth order is presented, which can
be viewed as a blueprint for spectrum planners.

2 POWER SPECTRUM OF
FOURTH-ORDER IM

An OFDM signal in the passband centred at the carrier
frequency fc , as the input to the power amplifier, can be
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represented as:

s (t ) = Re
{

g (t ) e j2𝜋 fc t
}
= s̃ (t ) cos

[
2𝜋 fc t + 𝜃 (t )

]
(1)

where Re{∙} denotes the real part of {∙}, g(t ) is the complex
envelope of s(t ), s̃(t ) and 𝜃(t ) are the magnitude and phase
of g(t ), respectively. The power spectral density of s̃(t ) is given
below [10]:

P̃s

(
f
)
=

{
N0∕2, || f || ≤ B

0, || f || > B
(2)

where B is the bandwidth and N0B is the power of s̃(t ).
Considering power spectrum only, an equivalent expression

of Equation (1) can be written as [9]:

s (t ) = s̃ (t ) cos
(
2𝜋 fc t

)
(3)

Among the polynomial models for amplifiers, the Taylor
series is perhaps the most used model and can be expressed as:

y (t ) = a1s (t ) + a2s2 (t ) + a3s3 (t ) + a4s4 (t )

+ a5s5 (t ) +⋯+ ansn (t ) +⋯ (4)

where an is the Taylor coefficient of the n th-order term, s(t ) and
y(t ) are the input and output signals, respectively.

Now consider only fourth-order IM distortion a4s4(t ) in
Equation (4),

a4s4 (t ) = a4
[
s̃ (t ) cos

(
2𝜋 fc t

)]4

=
3
4

a4 s̃4 (t ) +
1
2

a4 s̃4 (t ) cos
(
4𝜋 fc t

)
+

1
8

a4 s̃4 (t ) cos
(
8𝜋 fc t

)
(5)

We can see that the fourth-order IM distortions are located
around the DC, the second-order harmonic frequency, and the
fourth-order harmonic frequency. Since the DC term and the
fourth-order harmonic frequency term are easily filtered, we
will consider the fourth-order IM only at the second-order har-
monic frequency from now on, which we define as:

y4 (t )
Δ
=

1
2

a4 s̃4 (t ) cos
(
4𝜋 fc t

)
= ỹ4 (t ) cos

(
4𝜋 fc t

)
(6)

where ỹ4(t )
Δ
= a4 s̃4(t )∕2.

Denoting the power spectrum of ỹ4(t ) as P̃y4
( f ), the power

spectrum Py4
( f ) of y4(t ) can be expressed as [9, 11],

Py4

(
f
)
=

1
4

[
P̃y4

(
f − 2 fc

)
+ P̃y4

(
f + 2 fc

)]
(7)

Equation (7) is symmetric in frequency. In the real-time mea-
surement, only the spectrum in the positive frequency range is
measurable with twice the magnitude. Therefore, Equation (7)

can be rewritten as:

Py4

(
f
)
=

1
2

P̃y4

(
f − 2 fc

)
(8)

P̃y4
( f ) can be calculated from the autocorrelation function

Rỹ4
(𝜏) of ỹ4(t ) using the Wiener–Khintchine theorem:

P̃y4

(
f
)
=  {

Rỹ4
(𝜏)

}
=

∞

∫
−∞

Rỹ4
(𝜏) e− j2𝜋 f 𝜏d𝜏 (9)

where  {∙} denotes the Fourier transform of {∙}. Rỹ4
(𝜏) can be

calculated as:

Rỹ4
(𝜏) = E {ỹ (t ) ỹ (t + 𝜏)} =

1
4

a2
4E

{
s̃4 (t ) s̃4 (t + 𝜏)

}
(10)

Using Isserlis’ theorem [12]:

E {X1X2 ⋯Xn} =
∑
p∈P2

n

∏
{i, j }∈p

E
{

XiXj

}
(11)

Equation (10) yields a massive expansion of 105 terms of the
expectations. Through a lengthy simplification (the expansion
and simplification are not included due to the page limit), we
will derive:

Rỹ4
(𝜏) =

1
4

a2
4E

{
s̃4 (t ) s̃4 (t + 𝜏)

}
=

1
4

a2
4N 4

0

[
9B4 + 70B2 sin2 (2𝜋B𝜏)

4𝜋2𝜏2
+ 26

sin4 (2𝜋B𝜏)

16𝜋4𝜏4

]
=

9
4

a2
4N 4

0 B4 +
70
4

a2
4N 2

0 B2R2
s̃

(𝜏) +
26
4

a2
4R4

s̃
(𝜏) (12)

where Rs̃ (𝜏) = F−1{P̃s ( f )} = N0B
sin(2𝜋B𝜏)

2𝜋B𝜏
is obtained from

Equation (2).
Then, the power spectrum P̃y4

( f ) can be calculated as:

P̃y4

(
f
)
= F

{
Rỹ4

(𝜏)
}
=

9
4

F
{

a2
4N 4

0 B4
}

+
35
2

a2
4N 2

0 B2F
{

R2
s̃

(𝜏)
}
+

13
2

a2
4F

{
R4

s̃
(𝜏)

}
(13)

Using convolution property of Fourier transform, F {R2
s̃ (𝜏)}

in Equation (13) can be expressed as:

F
{

R2
s̃

(𝜏)
}
= F {Rs̃ (𝜏)} ⊗ F {Rs̃ (𝜏)} (14)

where ⊗ indicates convolution. Noting F {Rs̃ (𝜏)} = P̃s ( f ) is
given in Equation (2), Equation (14) can be calculated as:

F
{

R2
s̃

(𝜏)
}
=

N 2
0

4

(
2B − || f ||) , || f || ≤ 2B (15)

F {R4
s̃ (𝜏)} in Equation (13) can be derived as (see

Appendix A)
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F
{

R4
s̃

(𝜏)
}
= F

{
R2

s̃
(𝜏)

}
⊗ F

{
R2

s̃
(𝜏)

}

=

⎧⎪⎪⎨⎪⎪⎩
N 4

0

16

(1
2
|| f ||3 − 2B|| f ||2 + 16

3
B3

)
, || f || ≤ 2B

N 4
0

16

(
−

1
6
|| f ||3 + 2B|| f ||2 − 8B2 || f || + 32

3
B3

)
, 2B ≤ || f || ≤ 4B

(16)

By substituting Equations (15) and (16) into Equation (13),
Equation (13) can be expressed as:

P̃y4

(
f
)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

9
4

a2
4N 4

0 B4𝛿
(

f
)
+ a2

4N 4
0

×
(13

64
|| f ||3 − 13

16
B|| f ||2

−
35
8

B2 || f || + 131
12

B3
)
, || f || ≤ 2B

13
192

a2
4N 4

0

(
−|| f ||3 + 12B|| f ||2

− 48B2 || f || + 64B3
)
, 2B ≤ || f || ≤ 4B

(17)

Substitute Equation (17) into Equation (8), the power spec-
trum of fourth-order IM can be obtained as:

Py4

(
f
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9
8

a2
4N 4

0 B4𝛿
(

f − 2 fc
)

+
1
2

a2
4N 4

0

(13
64

|| f − 2 fc
||3

−
13
16

B|| f − 2 fc
||2
−

35
8

B2

|| f − 2 fc
|| + 131

12
B3

)
, || f − 2 fc

|| ≤ 2B

13
384

a2
4N 4

0

(
−|| f − 2 fc

||3

+ 12B|| f − 2 fc
||2
− 48B2

|| f − 2 fc
|| + 64B3

)
, 2B ≤ || f − 2 fc

|| ≤ 4B

(18)

To express Equation (17) using G and fourth-order intercept
point I P4, a2

4 can be obtained as (see Appendix B)

a2
4 =

2
9

10
2G

5
−

3I P4
10 (19)

Therefore, the final power spectrum expression of the
fourth-order IM is given as:

Py4

(
f
)
=

⎧⎪⎪⎨⎪⎪⎩
4P4

0 10
−3I P4

10 𝛿
(

f − 2 fc
)
+

16
9

P4
0

B4
10

−3I P4
10

(
13
64

|| f − 2 fc
||3
−

13
16

B|| f − 2 fc
||2
−

35
8

B2 || f − 2 fc
|| + 131

12
B3

)
, || f − 2 fc

|| ≤ 2B

13
108

P4
0

B4
10

−3I P4
10

(
−|| f − 2 fc

||3
+ 12B|| f − 2 fc

||2
− 48B2 || f − 2 fc

|| + 64B3
)
, 2B ≤ || f − 2 fc

|| ≤ 4B

(20)

where P0 = a2
1N0B∕2 is the power of the linear output.

An interesting observation can be made from Equatiom (20),
the frequency spread of the fourth-order IM around second
harmonic 2 fc is twice as wide as that of the second-order
IM at 2 fc [9]. This is because the Fourier transform of the
fourth power to the autocorrelation F {R4

s̃ (𝜏)} in Equation
(15) can be further decomposed as a four-time convolu-
tion of F {Rs̃ (𝜏)}, i.e., F {R4

s̃ (𝜏)} = F {R2
s̃ (𝜏)} ⊗ F {R2

s̃ (𝜏)} =
F {Rs̃ (𝜏)} ⊗ F {Rs̃ (𝜏)} ⊗ F {Rs̃ (𝜏)} ⊗ F {Rs̃ (𝜏)}. Since each
F {Rs̃ (𝜏)} has a frequency spread of 2B, the frequency spread
of the fourth-order IM is 8B. This is not only true at 2 fc , but
also at the fourth-order harmonic 4 fc . However, the spread is
nB at DC if we consider only the positive frequency, but it is
symmetric in negative frequency.

From these observations, an important insight can be made:
since the nth even-order involves the calculation of F {Rn

s̃ (𝜏)},
we could conclude that the frequency spread of the nth even-
order IM is 2nB, except at DC, where it is nB.

The Power spectrum of fourth-order IM is illustrated in
Figure 1.

3 A COMPREHENSIVE POWER
SPECTRUM MODEL UP TO FIFTH ORDER

Historically, the power spectrum model of the PA nonlinear-
ity includes only the third-order IM [13]. In later experiments
and analyses, it was discovered that considering only the third-
order IM is not accurate enough to describe the nonlinearity;
thus, the fifth-order IM was included in the power spectrum
model, in our previous work [10]. This power spectrum model
with the third- and fifth- order IM around the passband is
given below:
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FIGURE 1 Power spectrum of Py4
( f )

Py135

(
f
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2B

⎡⎢⎢⎣P0 − 6P2
0 10−

I P3
10 − 30P3

0 10−
I P5

5 + 9P3
0 10−

I P3
5 + 90P4

0 10
−

I P3
10
−

I P5

5 + 225P5
0 10

−
2I P5

5
⎤⎥⎥⎦

+
1

8B3

⎡⎢⎢⎣6P3
0 10−

I P3
5 + 120P4

0 10
−

I P3
10
−

I P5

5 + 150P5
0 10−

2I P5
5

⎤⎥⎥⎦
[
3B2 − || f − fc

||2]
+

10
32

P5
0

B5
10−

2I P5
5

{
3
[
5B2 − || f − fc

||2]2
+ 40B4

}
,

|| f − fc
|| ≤ B

1
16B3

⎡⎢⎢⎣6P3
0 10−

I P3
5 + 120P4

0 10
−

I P3
10
−

I P5

5 + 150P5
0 10−

2I P5
5

⎤⎥⎥⎦
(
3B − || f − fc

||)2

+
10
16

P5
0

B5
10−

2I P5
5

[
2B

(
4B − || f − fc

||)3
+ 2B3

(
4B − || f − fc

||) − (
3B − || f − fc

||)4]
,

B ≥ || f − fc
|| ≤ 3B

5
32

P5
0

B5
10−

2I P5
5
(
5B − || f − fc

||)4
, 3B ≥ || f − fc

|| ≤ 5B

0, || f − fc
|| > 5B

(21)

From Equation (21), we notice that the frequency spread
of the third-order IM is 6B and that of the fifth-order IM is
10B, as they are also calculated from F {Rn

s̃ (𝜏)}, when n equals 3
and 5, respectively. Together with the discussion of the even-
order IM earlier, we could now draw a general conclusion.
The frequency spread of the nth-order IM is 2nB, regardless
of whether n is even or odd; this may occur at any frequency
location, except it would be nB around the DC when n is
even.

The power spectrum model of second-order IM can be
obtained from [9] as,

Py2

(
f
)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
4

P2
0 10−

I P2
10 𝛿

(
f − 2 fc

)
+

1
8B2

P2
0 10−

I P2
10

×
(
2B − || f − 2 fc

||) , || f − 2 fc
|| ≤ 2B

0, || f − 2 fc
|| > 2B

(22)

The IM terms higher than the fourth- and fifth- order are
much less significant, and are generally considered negligible
by technology developers. This could be intuitively explained
as below:

1. As observed from the Taylor series Equation (4), the higher-
order terms carry less energy when the power amplifier is
weakly nonlinear, otherwise the amplifier should be simply
discarded.

2. Using the trigonometric property, it is easy to show the

higher-order terms ansn(t ) will have ⌈ n+1

2
⌉ distinct frequency

segments as,

ansn (t ) = an

[
s̃ (t ) cos

(
2𝜋 fc t

)]n
= ans̃n (t )

[
cos

(
2𝜋 fc t

)]n

= ans̃n (t )
1
2n

n∑
k=0

(
n

k

)
cos

[
2𝜋 (n − 2k) fc t

]
(23)
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where ⌈x⌉ denotes the ceiling function, which maps x to the
least integer greater than or equal to x.

3. At each segment, the frequency spread of higher-order IM
would be broader as it is 2nB, (nB at DC for even order) thus
the power spectrum of higher-order IM will be distributed
over a wider spread.

With all the reasons above, the power spectrum of higher-
order terms will generally have much lower value. Hence, the
power spectrum impacts of all higher-order terms are often
ignored, which also concurs with the practice of the designers.

Therefore, a relatively comprehensive (up to the fifth order)
power spectrum model, concerning passband and adjacent fre-
quency range till second harmonic, can be expressed as:

Py

(
f
)
= Py135

(
f
)
+ Py2

(
f
)
+ Py4

(
f
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2B

⎡⎢⎢⎣P0 − 6P2
0 10−

I P3
10 − 30P3

0 10−
I P5

5 + 9P3
0 10−

I P3
5 + 90P4

0 10
−

I P3
10
−

I P5

5 + 225P5
0 10−

2I P5
5

⎤⎥⎥⎦
+

1
8B3

⎡⎢⎢⎣6P3
0 10−

I P3
5 + 120P4

0 10
−

I P3
10
−

I P5

5 + 150P5
0 10−

2I P5
5

⎤⎥⎥⎦
[
3B2 − || f − fc

||2]

+
10
32

P5
0

B5
10−

2I P5
5

{
3
[
5B2 − || f − fc

||2]2
+ 40B4

}
,

|| f − fc
|| ≤ B

1
16B3

⎡⎢⎢⎣6P3
0 10−

I P3
5 + 120P4

0 10
−

I P3
10
−

I P5

5 + 150P5
0 10−

2I P5
5

⎤⎥⎥⎦
(
3B − || f − fc

||)2

+
10
16

P5
0

B5
10−

2I P5
5

[
2B

(
4B − || f − fc

||)3
+ 2B3

(
4B − || f − fc

||) − (
3B − || f − fc

||)4]
,

B < || f − fc
|| ≤ 3B

5
32

P5
0

B5
10−

2I P5
5
(
5B − || f − fc

||)4
,
3B < || f − fc

|| ≤ 5B

(
4P4

0 10
−3I P4

10 +
1
4

P2
0 10

−I P2
10

)
𝛿
(

f − 2 fc
)
+

16
9

P4
0

B4
10

−3I P4
10

(13
64

|| f − 2 fc
||3 − 13

16
B|| f − 2 fc

||2)

−

(
70
9

P4
0

B2
10

−3I P4
10 +

P2
0

8B3
10

−I P2
10

)|| f − 2 fc
|| + 524

27

P4
0

B
10

−3I P4
10 +

P2
0

4B
10

−I P2
10 ,

|| f − 2 fc
|| ≤ 2B

13
108

P4
0

B4
10

−3I P4
10

(
−|| f − 2 fc

||3 + 12B|| f − 2 fc
||2 − 48B2 || f − 2 fc

|| + 64B3
)
,
2B ≤ || f − 2 fc

|| ≤ 4B

0,otherwise

(24)
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FIGURE 2 Power spectrum of Py ( f )

This comprehensive power spectrum model Equation (23) is
illustrated in Figure 2.

In Equation (24), the first three frequency segments, all cen-
tred around the carrier frequency fc , are the passband signal and
third- and fifth- order IM distortions; the next two segments,
centred around the second-order harmonic frequency 2 fc , are
second- and fourth- order IM distortions. Therefore, we can
separate Equation (24) into two parts, based on the two centre
frequencies above.

Py

(
f
)
= Py135

(
f
)
+ Py24

(
f
)

(25)

Py135
( f ) represents the passband signal and odd-order IM (up

to the fifth), and Py24
( f ) represents the even-order IM (up to the

fourth). The expression of Py24
( f ) is the summation of Equa-

tions (20) and (22), which is given below:

Py24

(
f
)
= Py2

(
f
)
+ Py4

(
f
)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
9P4

0 10
−3I P4

10 +
1
4

P2
0 10

−I P2
10

)
𝛿
(

f − 2 fc
)
+

1
4

P4
0

B4
10

−3I P4
10

(13
64

|| f − 2 fc
||3 − 13

16
B|| f − 2 fc

||2)

−

(
35
32

P4
0

B2
10

−3I P4
10 +

P2
0

8B3
10

−I P2
10

)|| f − 2 fc
|| + 131

48

P4
0

B
10

−3I P4
10 +

P2
0

4B2
10

−I P2
10 ,

|| f − 2 fc
|| ≤ 2B

13
48

P4
0

B4
10

−3I P4
10

(
−|| f − 2 fc

||3 + 12B|| f − 2 fc
||2 − 48B2 || f − 2 fc

|| + 64B3
)
,2B ≤ || f − 2 fc

|| ≤ 4B

(26)

In Figure 2, Py135
( f ) is shown as the blue dash-dot (for black-

and-white print) curve and Py24
( f ) is shown as the red curve.

We notice that if the bandwidth increases relative to the carrier
frequency, the even-order IM might interfere with the passband
and adjacent bands. Therefore, several frequency scenarios will
be discussed in terms of the relationship between the bandwidth
and carrier frequency.

4 FREQUENCY SCENARIOS
BETWEEN EVEN- AND ODD- ORDER
INTERMODULATION

From Equations (21) and (26), we can see that the even-order
IM (up to the fourth) is located in the frequency range from
(2 fc − 4B) to (2 fc + 4B), while the passband and odd-order IM
(up to fifth) are located in the frequency range from ( fc − 5B) to
( fc + 5B). The impact of the even-order IM to the passband and
adjacent bands will be discussed in three frequency scenarios
in terms of the relationship between carrier frequency fc and
bandwidth B.

4.1 Frequency scenario 1

fc > 9B (27)

The inequality in Equation (27) is from (2 fc − 4B) >
( fc + 5B). As shown in Figure 2, the left edge of the even-order
IM (2 fc − 4B) does not reach the right edge of the odd-order
IM ( fc + 5B). In other words, there is no overlap between the
even-order IM and the odd-order IM. This would likely be the
most common situation in RF wireless communications. In fact,
the centre frequency is usually far greater than the bandwidth
( fc ≫ 9B). While in Scenario 1, the even-order IM may not be
able to overlap with the passband and immediate adjacent bands
(located at odd-order IM) directly, it can affect other bands rela-
tively far away from the desired passband. For example, assume
a 5G signal is transmitted at 940 MHz with a bandwidth of

B = 20MHz (in downlink band n8 [14]); the even-order IM
at the second harmonic will locate around 1880 MHz with a
frequency spread of 8B = 160MHz, which will cover downlink
bands n2 and n3. Since we are considering the fourth-order IM,
whose spread is twice that of the second-order IM, it may affect
wider frequency ranges than if considering the second-order IM
only.
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FIGURE 3 Power spectrum of passband signal, odd-order IM, and
even-order IM in Scenario 2

4.2 Frequency scenario 2

5B < fc ≤ 9B (28)

This inequality in Equation (28) is from ( fc + B) <
(2 fc − 4B) ≤ ( fc + 5B). This hypothetical scenario might
occur in wideband applications other than 5G. As shown in
Figure 3, the left edge of the even-order IM (2 fc − 4B) falls
into the odd-order IM but has not touched the passband yet.
This means the even-order IM has affected the odd-order
IM but there is no overlap between the even-order IM and
passband signal. In this situation, the adjacent channel power
ratio (ACPR) performance is degraded because the adjacent
power is increased by the even-order IM. The even-order IM
also brings new challenges to linearization technology. As in
case of this scenario, it is not easily filtered.

4.3 Frequency scenario 3

fc ≤ 5B (29)

This condition is from ( fc + B) > (2 fc − 4B). As shown in
Figure 4, the left edge of the even-order IM (2 fc − 4B) has
fallen into the desired passband. However, this situation is
unlikely to happen in current wireless communications, as few
applications can satisfy the inequality.

From the scenarios mentioned above, bandpass or bandstop
filters could be used to remove the even-order IM distortion
in Scenario 1, and predistortion techniques could be applied to
avoid the even-order IM in Scenarios 2 and 3.

5 EXPERIMENT VALIDATION

The experiment setup is shown in Figure 5. An Agilent E4438
ESG vector signal generator is used to transmit an OFDM
signal through a Mini-Circuit amplifier ZX60-8008E+. A Tek-

FIGURE 4 Power spectrum of passband signal, odd-order IM, and
even-order IM in Scenario 3

FIGURE 5 Experiment setup

tronix RSA 6120A real-time spectrum analyser is used to detect
the amplified signal from the output of the amplifier. A Tek-
tronix PS2520G DC power supply provides power for the
amplifier.

In this experiment, the centre frequency of the OFDM signal
is set at fc = 940MHz with a bandwidth B = 20MHz. These
parameters are chosen from 5G NR frequency bands and chan-
nel bandwidth [14]. The I P2 and I P4 are measured as 38.69 and
39.31 dBm, respectively, using a two-tone test at the same centre
frequency [15]. The power of the linear output P0 is −5.9 dBm.
By observation from the spectrum analyser, we can see that the
power spectrum of the even-order IM is located around the
second-order harmonic frequency as expected. The measured
and predicted power spectrum of the even-order IM is shown in
Figure 6. In Figure 6, the blue waveform represents the power
spectrum of measured even-order IM, and the red curve rep-
resents the power spectrum of predicted even-order IM. Note
that the noise floor detected in the experiment was added in the
predicted power spectrum of the even-order IM.

6 CONCLUDING REMARKS

In this paper, we developed a power spectrum model for the
fourth-order IM distortion in terms of amplifier parameters,
such as bandwidth, gain, and the fourth-order intercept point.
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FIGURE 6 Measured and predicted power spectrum of even-order IM

Combining this fourth-order spectrum model with our previ-
ous work, consisting of power spectrum models for passband
signal, second-, third-, and fifth- order IM, we have provided
a comprehensive power spectrum model up to the fifth order,
denoting an overall spectrum view which will benefit designers
and planners. Through the derivation, we illustrate the feasibility
of neglecting higher-order IM distortions with respect to power
spectrum models.

FUNDING

Publication of this article in an open access journal was funded
by the Portland State University Library’s Open Access Fund.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ORCID

Fu Li https://orcid.org/0000-0001-8819-0547

REFERENCES

1. Gharaibeh, K.M.: Nonlinear Distortion in Wireless Systems: Modeling and
Simulation with MATLAB. IEEE Press, Piscataway, NJ (2012)

2. Mohammadi, S.M.: A New Design Approach of Low-Noise Stable Broad-
band Microwave Amplifier Using Hybrid Optimization Method. IETE
Journal of Research. 1–7 (2020). https://www.tandfonline.com/doi/
citedby/10.1080/03772063.2020.1787879?scroll=top&needAccess=true

3. Iqbal, A., Jiat Tiang, J., Kin Wong, S., Alibakhshikenari, M., Falcone,
F., Limiti, E.: Multimode HMSIW-based bandpass filter with improved
selectivity for fifth-generation (5G) RF front-ends. Sensors 20(24), 7320
(2020)

4. Cripps, S.C.: RF Power Amplifiers for Wireless Communications, 2nd ed.,
Artech House, Boston (2006)

5. Chen, H.-H., Huang, P.-C., Wen, C.-K., Chen, J.-T.: Adaptive compen-
sation of even-order distortion in direct conversion receivers. In: 2003
IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat.
No.03CH37484), Orlando, FL, pp. 271–274 (2003)

6. Gebhard, A., et al.: A robust nonlinear RLS type adaptive filter for second-
order-intermodulation distortion cancellation in FDD LTE and 5G direct
conversion transceivers. IEEE Trans. Microw. Theory Tech. 67(5), 1946–
1961 (2019)

7. Arnborg, T., Alvandpour, A.: Wideband inductorless LNA employing
simultaneous 2nd and 3rd order distortion cancellation. In: NORCHIP
2010, Tampere, Finland, pp. 1–4 (2010)
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APPENDIX A

Derivation of F {R4
s̃ (𝜏)}.

As the Fourier transform is symmetric with zero frequency,
we will only provide the derivation along the positive frequency
as below.

When 2B ≤ f ≤ 4B,

F
{

R4
s̃

(𝜏)
}
=

2B

∫
f −2B

[
N 2

0

4
(2B − 𝜏)

][
N 2

0

4

(
2B − f + 𝜏

)]
d𝜏

=

2B

∫
f −2B

N 4
0

16
(4B2 − 2B f + 2B𝜏 − 2B𝜏 + f 𝜏−𝜏2)d𝜏

=
N 4

0

16

[
4B2𝜏 − 2B f 𝜏 +

1
2

f 𝜏2 −
1
3
𝜏3
]2B

f −2B

=
N 4

0

16

[
4B2(2B − ( f − 2B))− 2B f (2B − ( f − 2B))

+
1
2

f
(
4B2 −

(
f − 2B

)2)
−

1
3

(
8B3 −

(
f − 2B

)3)]

=
N 4

0

16

[
4B2(4B − f ) − 2B f (4B − f )

+
1
2

f (4B2 − f 2 − 4B2 + 4B f ) −
1
3

(8B3
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− ( f 3 − 6B f 2 + 12B2 f − 8B3))

]

=
N 4

0

16

(
16B3 − 4B2 f − 8B2 f + 2B f 2 + 2B2 f

−
1
2

f 3 − 2B2 f + 2B f 2 −
8
3

B3 +
1
3

f 3

− 2B f 2 + 4B2 f −
8
3

B3

)

=
N 4

0

16

(
−

1
6

f 3 + 2B f 2 − 8B2 f +
32
3

B3
)

(A1)

When 0 ≤ f ≤ 2B,

F
{

R4
s̃

(𝜏)
}

=

0

∫
f −2B

[
N 2

0

4
(2B + 𝜏)

][
N 2

0

4

(
2B − f + 𝜏

)]
d𝜏

+

f

∫
0

[
N 2

0

4
(2B − 𝜏)

][
N 2

0

4

(
2B − f + 𝜏

)]
d𝜏

+

2B

∫
f

[
N 2

0

4
(2B − 𝜏)

][
N 2

0

4

(
2B + f − 𝜏

)]
d𝜏

=

0

∫
f −2B

N 4
0

16

(
4B2 − 2B f + 2B𝜏 + 2B𝜏 − f 𝜏 + 𝜏2

)
d𝜏

+

f

∫
0

N 4
0

16

(
4B2 − 2B f + 2B𝜏 − 2B𝜏 + f 𝜏 − 𝜏2

)
d𝜏

+

2B

∫
f

N 4
0

16

(
4B2 + 2B f − 2B𝜏 − 2B𝜏 − f 𝜏 + 𝜏2

)
d𝜏

=
N 4

0

16

[
4B2𝜏 − 2B f 𝜏 + 2B𝜏2 −

1
2

f 𝜏2 +
1
3
𝜏3
]0

f −2B

+
N 4

0

16

[
4B2𝜏 − 2B f 𝜏 +

1
2

f 𝜏2 −
1
3
𝜏3
] f

0

+
N 4

0

16

[
4B2𝜏 + 2B f 𝜏 − 2B𝜏2 −

1
2

f 𝜏2 +
1
3
𝜏3
]2B

f

=
N 4

0

16

[
−

(
4B2( f − 2B) − 2B f ( f − 2B) + 2B( f − 2B)2

−
1
2

f ( f − 2B)2 +
1
3

( f − 2B)3
)]

+
N 4

0

16

×
[
4B2 f − 2B f 2 +

1
2

f 3 −
1
3

f 3
]
+

N 4
0

16

×

[
4B2(2B − f ) + 2B f (2B − f ) − 2B(4B2 − f 2)

−
1
2

f (4B2 − f 2) +
1
3

(8B3 − f 3)

]

= −
N 4

0

16

(
4B2 f − 8B3 − 2B f 2 + 4B2 f

+ 2B( f 2 + 4B2 − 4B f ) −
1
2

f ( f 2 − 4B f + 4B2)

+
1
3

( f 3 − 6B f 2 + 12B2 f − 8B3)

)

+
N 4

0

16

(1
6

f 3 − 2B f 2 + 4B2 f
)

+
N 4

0

16

[
8B3 − 4B2 f + 4B2 f − 2B f 2 − 8B3 + 2B f 2

− 2B2 f +
1
2

f 3 +
8
3

B3 −
1
3

f 3

]

= −
N 4

0

16

(
8B2 f − 8B3 − 2B f 2 + 2B f 2 + 8B3 − 8B2 f

−
1
2

f 3 + 2B f 2 − 2B2 f +
1
3

f 3 − 2B f 2 + 4B2 f −
8
3

B3

)

+
N 4

0

16

(1
6

f 3 − 2B f 2 + 4B2 f
)
+

N 4
0

16

×
[
8B3 − 2B f 2 − 8B3 + 2B f 2 − 2B2 f +

1
6

f 3 +
8
3

B3
]

= −
N 4

0

16

(
−

1
6

f 3 + 2B2 f −
8
3

B3
)
+

N 4
0

16

×
(1

6
f 3 − 2B f 2 + 4B2 f

)
+

N 4
0

16

(1
6

f 3 − 2B2 f +
8
3

B3
)

=
N 4

0

16

(1
2

f 3 − 2B f 2 +
16
3

B3
)

(A2)

The derivations along the negative frequencies are similar.
When −2B ≤ f ≤ 0,

F
{

R4
s̃

(𝜏)
}
=

f

∫
−2B

[
N 2

0

4
(2B + 𝜏)

][
N 2

0

4

(
2B − f + 𝜏

)]
d𝜏

+

0

∫
f

[
N 2

0

4
(2B + 𝜏)

][
N 2

0

4

(
2B + f − 𝜏

)]
d𝜏
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+

f +2B

∫
0

[
N 2

0

4
(2B −𝜏)

][
N 2

0

4

(
2B + f −𝜏

)]
d𝜏

=
N 4

0

16

(
−

1
2

f 3 − 2B f 2 +
16
3

B3
)

(A3)

When −4B ≤ f ≤ −2B,

F
{

R4
s̃

(𝜏)
}
=

f +2B

∫
−2B

[
N 2

0

4
(2B + 𝜏)

][
N 2

0

4

(
2B + f − 𝜏

)]
d𝜏

=
N 4

0

16

(1
6

f 3 + 2B f 2 + 8B2 f +
32
3

B3
)

(A4)

APPENDIX B

Expression of a2
4 in terms of G and I P4.

Consider in a two-tone test, the two tones are located at f1
and f2, respectively. I P4 is defined as the output power level at
which the output power P2( f1+ f2 ) at the frequency 2( f1 + f2)
would intercept the output power P0 at f1. The output power
P0 is directly proportional to the amplitude of the input signal
while the output power P2( f1+ f2 ) is directly proportional to the
fourth power of the input signal, at lower power levels. Thus, on
logarithmic scales, the output power versus input power would
be straight lines with a slope corresponding to the order of the
response, i.e., the response at f1 will have a slope of 1 and
the response at 2( f1 + f2) will have a slope of 4, as shown in
Figure B1.

Assume a two-tone signal is

sin (t ) = A cos
(
2𝜋 fc t

)
+ A cos

(
2𝜋 f2t

)
(B1)

where A is the amplitude of the tones. By inserting Equation
(A5) into Taylor series Equation (4) with weak nonlinearity

FIGURE B1 Illustration of I P4

assumption, we have:

sout (t ) = a2A2 +
9
4

a4A4 +
(

a1A +
9
4

a3A3
)

cos
(
2𝜋 f1t

)
+

(
a1A +

9
4

a3A3
)

cos
(
2𝜋 f2t

)
+

1
4

a3A3 cos
(
6𝜋 f1t

)
+

1
4

a3A3 cos
(
6𝜋 f2t

)
+

1
8

a4A4 cos
(
8𝜋 f1t

)
+

1
8

a4A4 cos
(
8𝜋 f2t

)
+

(1
2

a2A2 + 2a4A4
)

cos
(
4𝜋 f1t

)
+

(1
2

a2A2 + 2a4A4
)

cos
(
4𝜋 f2t

)
+

(
a2A2 + 3a4A4

)
cos

[
2𝜋

(
f1 + f2

)
t
]

+
(
a2A2 + 3a4A4

)
cos

[
2𝜋

(
f1 − f2

)
t
]

+
3
4

a3A3 cos
[
2𝜋

(
f1 + 2 f2

)
t
]

+
3
4

a3A3 cos
[
2𝜋

(
f1 − 2 f2

)
t
]

+
3
4

a3A3 cos
[
2𝜋

(
2 f1 + f2

)
t
]

+
3
4

a3A3 cos
[
2𝜋

(
2 f1 − f2

)
t
]

+
1
2

a4A4 cos
[
2𝜋

(
3 f1 + f2

)
t
]

+
1
2

a4A4 cos
[
2𝜋

(
3 f1 − f2

)
t
]

+
1
2

a4A4 cos
[
2𝜋

(
f1 + 3 f2

)
t
]

+
1
2

a4A4 cos
[
2𝜋

(
f1 − 3 f2

)
t
]

+
3
4

a4A4 cos
[
2𝜋

(
2 f1 + 2 f2

)
t
]

+
3
4

a4A4 cos
[
2𝜋

(
2 f1 − 2 f2

)
t
]

(B2)

From (A6), we have:

P0 = 10 × log
⎡⎢⎢⎣
(

a1A√
2

)2
103

R

⎤⎥⎥⎦ dBm (B3)

P4( f1+ f2 ) = 10 × log

⎡⎢⎢⎢⎣
⎛⎜⎜⎝

3

4
a4A4√

2

⎞⎟⎟⎠
2

103

R

⎤⎥⎥⎥⎦ dBm (B4)

By the definition of I P4, P0 = P2( f1+ f2 ). By comparing Equa-
tions (A7) and (A8), we can obtain the theoretical amplitude A



YANG ET AL. 11

at I P4 as:

A (at I P4) =
||||4a1

3a4

||||
1

3
(B5)

Then, by substituting Equation (A9) into either Equation
(A7) or Equation (A8), we have:

I P4 = 10 × log

⎡⎢⎢⎢⎣
(

2a8
1

9a2
4

) 1

3 103

R

⎤⎥⎥⎥⎦ dBm (B6)

After changing the I P4 scale from dBm to dB and assuming

R = 1, we have:

I P4 = 10 × log

(
2a8

1

9a2
4

) 1

3

(B7)

10
3I P4

10 =
2
9

a8
1

a2
4

(B8)

With a1 = 10G∕20 from [10],

a2
4 =

2
9

a8
110

−3I P4
10 =

2
9

10
2G

5
−

3I P4
10 (B9)
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