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ABSTRACT1
Increasing e-commerce activity, competition for shorter delivery times, and innovations2

in transportation technologies have pushed the industry towards instant delivery logistics. In this3
paper, we study a facility location and online demand allocation problem applicable for a logistics4
company expanding to instant delivery service using unmanned aerial vehicles (UAV) or drones.5
The problem is decomposed into two stages. During the planning stage, the facilities are located,6
and product and battery capacity are allocated. During the operational stage, the customers place7
orders dynamically and real-time demand allocation decisions are made. We explore a multi-8
armed bandit framework for maximizing the cumulative reward realized by the logistics company9
subject to various capacity constraints and compare it with other strategies. The multi-armed bandit10
(MAB) framework provides about 7% more rewards than the second-best strategy when tested11
on standard test instances. A case study based in Portland Metro Area showed that MAB can12
outperform the second-best strategy by more than 20%.13

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
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INTRODUCTION1
E-commerce usage has become ever-ubiquitous now, especially due to social isolation re-2

quirements during the COVID-19 pandemic. A shift towards digital shopping has resulted in3
double-digit retail e-commerce growth rates (32.1% growth from 2019 Q4 to 2020 Q4) com-4
pared to single-digit in total retail growth (6.9% growth from 2019 Q4 to 2020 Q4) (1). In recent5
years, the delivery time thresholds for online purchases have also become intensive, with various6
e-commerce platforms providing same-day delivery options. Now, even options for 2-hour (Wal-7
mart, Amazon Prime Now, Walmart, Space NK) and 1-hour delivery (Instacart Express, Shipt,8
Alibaba Fresh Hema, buymie.eu) exist, with the industry gearing towards an instant (30-minute9
or better) delivery goal (Amazon Prime Air, Getir, Wolt). One of the viable alternatives for in-10
stant delivery right now is a UAV/drone. With the numerous large corporations including Amazon,11
Walmart, UPS, DHL, and Kroger heavily investing in drone technology, the growth in this sector12
has surpassed previous forecasts (2). The higher operational speed and better cost-effectiveness of13
drones compared to traditional ground vehicles (3) would be beneficial as extant logistics systems14
are stressed with increased demand from e-commerce growth.15

This work delves into facility location and resource allocation for including instant deliv-16
ery logistics into a company’s operations. We assume that the instant deliveries (or, time-sensitive17
deliveries) are fulfilled through a battery-operated drone. While the non-time-sensitive orders can18
either be fulfilled by a drone from the located facilities or a truck from the central warehouse. The19
system consists of a set of facilities that can act as both “dark" stores (or micro fulfillment cen-20
ters), and drone operations sites. During the planning stage, the facilities are located and resources21
(product and battery capacity) are allocated such that it maximizes the total profit based on the22
deterministic information available. Once the facilities are set up, during the operational stage, the23
orders are received and real-time decisions are made regarding which facility and mode of trans-24
port would be used for fulfillment on an order-wise basis. Therefore, the goal in the operational25
stage is the adaptive learning of allocation of each order to maximize the cumulative profits while26
respecting resource capacity constraints.27

Powell (4) summarizes the work done by various communities on stochastic optimiza-28
tion. Focusing on online sequential decision-making communities, Markov decision processes,29
Q-learning, and approximate dynamic programming are formed based on state transition func-30
tions like Bellman’s equation. These methods learn over time through multiple iterations over31
these states. In our problem, we model consumption of non-replenishable resources over time, and32
therefore, a state of the system does not recur. Additionally, the above methods use maximization33
of terminal reward as the objective function which is not the case for our problem. These nuances34
make the above approaches not suitable for our problem.35

Multi-armed bandits is an online decision-making framework that maximizes the cumula-36
tive reward over the learning period (4). Multi-armed bandits can also be equipped with “context”37
that provide information available before making decisions, and “knapsacks” that can account for38
globalized resource consumption associated with the decisions (5). The above characteristics make39
multi-armed bandits a suitable approach for our problem.40

The key contributions of this study are: (i) formulating the instant delivery logistics prob-41
lem as a two-stage problem – offline facility location with online resource allocation; (ii) while42
most of the previous logistics research has focused on time-aggregated dynamic resource alloca-43
tion (6), we consider dynamic resource allocation at an order-level, which could be potentially44
beneficial for reducing delivery times (because of no lag in decision-making); and (iii) exploring45
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a multi-armed bandit approach to effectively learn how to allocate orders to facilities in real-time1
and maximize the cumulative profits, and comparing it with other strategies.2

The rest of the paper is organized as follows: the next section covers the relevant litera-3
ture spanning the fields of facility location for stochastic demand, and dynamic resource allocation4
problems. Next, the problem description and formulation along with the dynamic resource alloca-5
tion strategies are discussed. Later, computational experiments are conducted on test datasets. The6
final section concludes the work and provides avenues for further research.7

LITERATURE REVIEW8
In this section, we focus on primarily on facility location problems and dynamic resource9

allocation.10

Facility Location Problems11
Facility location has been one of the classical Operations Research problems and is one of the12
first prominent decisions that impact tactical and operational strategies for all organizations. An13
extensive number of books as well as review articles have been dedicated to facility location re-14
search: (7–9). Further, application-specific facility location reviews for humanitarian relief (10),15
healthcare and emergency location (11), and urban-based applications (12) are also available.16

Mukundan and Daskin (13) is one of the earliest works to explicitly consider maximizing17
profit (others implicitly considered maximizing profit as an alternative to minimizing cost). They18
consider joint location and sizing problems while considering cover-based constraints for facilities19
based on their size. Profit is defined as the difference between revenue and cost. We extend20
the problem considered by Mukundan and Daskin (13) in two ways: firstly, by considering a21
continuum of facility size. This is achieved by converting costs in the objective functions to budget22
constraints. Therefore, the objective function in our work consists of only revenue-based terms.23
Secondly, we enforce capacity constraints derived from product and battery capacity allocations.24
Further, our problem does not consider coverage as a function of investment level as the facilities25
considered here are “dark-stores" which only cater to internet-based orders. The range of the26
facility is determined by explicitly modeling energy consumption in battery-operated drones.27

Ambulance location literature is rich in two-stage facility location models where ambu-28
lances are located offline and their allocations to demand points (and ambulance relocation) are29
made in real-time (14, 15). For the real-time allocation, either offline policies are used as in Gen-30
dreau et al. (14), or adaptive online policies using methods like approximate dynamic programming31
are developed as in Schmid (15). The above works model allocation decision for ambulances to32
a request and then, their relocation decisions. The unavailability of ambulances for a request due33
to being busy or excessive travel time is modeled, but the researchers do not consider the model-34
ing of non-replenishable resource consumption (like cost budgets). In this work, facility location35
decisions are made offline and we develop an adaptive online policy using a multi-armed bandits36
approach for allocation of requests to appropriate fulfillment facility. Additionally, the unavailabil-37
ity of drones (due to range considerations) and trucks (for instant fulfillment requests) is modeled,38
and non-replenishable resource consumption related to routing costs and product capacity at indi-39
vidual facilities is considered.40

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
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Dynamic Resource Allocation1
Resource allocation problems are widely observed: assigning a vehicle to a demand point in vehicle2
routing problems (VRP), a personnel to a job, etc. In the context of VRP, Bektaş et al. (16)3
concisely defines dynamic problems as problems in which information is revealed gradually over4
time, rather than all at once (static problems). Here, we use the same definition for resource5
allocation problems, and use the words “dynamic” and “online” interchangeably.6

In operations research, dynamic resource allocation problems are generally tackled by for-7
mulating them as multi-stage stochastic programs (MSSP) (17). Several AI-based techniques have8
also been explored for online resource allocation problems which include Q-learning (18, 19),9
multi-armed bandits (20, 21), online algorithms (22), and approximate dynamic programming10
(ADP) (23). Recently, Powell (4) summarized the commonalities of various communities of11
stochastic and/or dynamic optimization and noted that adaptive learning algorithms based on dy-12
namic programming (Q-learning, ADP, stochastic dual dynamic programming for MSSP) fall un-13
der the category of state-dependent problems with a terminal reward objective. Additionally, they14
observed that contextual bandits lend themselves well to several state-dependent problems with15
a cumulative reward objective. In this study, we explore a multi-armed bandit framework for16
dynamic resource allocation. Badanidiyuru et al. (21) first proposed a multi-armed framework17
with universal budget constraints, which explicitly accommodates budget constraints in decision-18
making. Specifically, we use linear contextual bandits with knapsacks proposed by Agrawal and19
Devanur (24) and extrapolate results to accommodate restricted “arm” availability arising from20
drone range constraints.21

Focusing on delivery-related applications, Mallick et al. (25) discuss recommendation sys-22
tems for a carrier in truckload freight exchange marketplaces with constraints on arriving back at23
the origin within the planning period. Guo et al. (17) studied drone-truck combined instant de-24
livery logistics (90-minute grocery delivery) and proposed to solve it as a multi-stage stochastic25
program. Here, all the orders in a 30-minute interval were considered for allocation and routing.26
The truck and drone resources were available at each time interval for allocation (i.e., they are27
replenished). Similar assumptions have been made in humanitarian logistics applications (18, 23),28
where a constant amount of resources to be distributed (food, medical kits) are made available ev-29
ery time period. However, in our study, a total product inventory and battery capacity are allocated30
to each open facility for the planning period and these are not replenished during the operational31
stage. Additionally, the above research addresses catering demand in each time interval. Our study32
differs by allocating demand at an order level, which would improve delivery time performance33
for instant orders, and is also adequate considering the limited payload capacity of drones (26).34

Availability-related constraints are adequately tackled in dynamic fleet management litera-35
ture (27), where drivers available at any time period are varying. However in this study, we assume36
that a sufficient amount of drones are placed at facilities and trucks are central warehouses that37
vehicle-related availability constraints and congestion effects can be safely ignored, to emphasize38
more on the allocation of facility and mode of delivery to a request. Shavarani et al. (28) studied39
a congested facility location problem for drone delivery with a case study implementation in San40
Francisco. The results show that for the system with 30 minute wait time, drone acquisition costs41
only accounted for about 12% of recharging infrastructure setup and operation costs. We consider42
that the drone acquisition costs are already considered in the drone operations facility opening and43
operation costs.44

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
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PROBLEM DESCRIPTION1
This section presents the maximum profit facility location problem for online demand satis-2

faction which is applicable for a logistics company employing UAVs/drones for last-mile delivery.3
We propose a two-stage framework wherein the planning stage, we locate facilities and allocate re-4
sources (product and battery capacity) to them with an a priori estimate of consumer demand. With5
the facilities located, and resources allocated, in the operational stage, the consumers place orders6
dynamically and we use multi-armed bandits for making real-time decisions to maximize the cu-7
mulative revenue while consuming resources. Note that the resources allocated at the end of the8
planning stage are not replenished in the operational stage. We consider two types of consumers:9
time-sensitive and regular. For time-sensitive customers, the demand must be met instantly, else,10
the demand is lost. For the regular customers, the demand must be fulfilled but instant deliveries11
are not mandatory.12

Stage 1: Planning Stage13
The online demand satisfaction problem is defined over a finite planning horizon. There are two14
modes of delivery available: drone delivery and traditional ground-based delivery. The drone-15
based deliveries are achieved by locating facilities that act as both products holding storerooms as16
well as drone launching stations. The ground-based deliveries are fulfilled using trucks located at a17
central warehouse. We assume that there are enough drones/trucks at each facility that congestion18
effects can be neglected. The time-sensitive orders are fulfilled instantly (for example, 30 minutes19
or less), and the regular orders are fulfilled within a predetermined level of service (example, 1-day20
delivery or 2-day delivery). The time-sensitive orders are, therefore, assumed to be satisfied only21
using drones, while the regular orders can be delivered by either drones or trucks.22

Let G denote the set of demand points. During the planning stage, each demand point23
can be considered as a small geographical region (for example, ZIP code, Census tract, etc.). Let24
nS

g and nR
g denote the anticipated number of time-sensitive and regular orders from point g ∈ G,25

respectively. Let Fg denote the set of all deliveries to point g ∈ G, i.e. Fg = {1, . . . ,nS
g,n

S
g +26

1, . . . ,nS
g +nR

g}. During the facility location (or, planning) stage, we do not take temporal aspects27
into consideration, and therefore, can consider both types of deliveries together.28

Let og f denote the order weight of f th (∈ Fg) order from demand point g ∈ G. We assume29
each order can weigh up to omax. During the planning stage, og f could take the form of using30
representative weights for different weight categories (therefore, obtaining the number of orders31
for different weight categories), and during the operational stage, the demand can assume the con-32
tinuum of values up to omax. The parameters cD

g f and cT
g f denote the estimated profit for satisfying33

the f th order of demand point g ∈ G using drones and trucks, respectively.34
The drone-based deliveries are carried out from potential facility locations spread through35

the service area. The set of all potential facility locations is represented by H. A maximum of36
p number of facilities can be opened. This parameter is prescribed considering leasing costs,37
recharging infrastructure setup costs, drone acquisition costs, and other related costs. A total of α38
amount of commodity and β amount of battery capacity (for drones) are available for distribution39
among open facilities. If a facility is opened, then a minimum of αmin and βmin amount of product40
and battery capacity must be allocated to it.41

We assume that the drones only make one-to-one deliveries (from facility to demand point42
and back), as drones would be allocated at an order level during the operational stage. Let, bgh f43

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
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be the battery consumption order to travel from a facility h ∈ H to a point g ∈ G and back while1
delivering the f th order, and Bdrone be the battery capacity of the drone. To be on a bit on the2
conservative side, we simplify bgh f to bgh (the battery consumption obtained using order weight of3
omax). The set Gh = {g ∈ G : bgh ≤ Bdrone} describes the set of demand points that are accessible4
from a facility h ∈ H.5

The truck-based deliveries are satisfied from a central warehouse. During the planning6
horizon, there are a maximum of |M| truck trips available (M denotes the set of truck trips) which7
are determined based on the predetermined level of service, for example, an average of 2 truck8
trips per day over the planning period of 300 days yields |M|= 600. The capacity of each truck (in9
the number of packages that can be delivered in each trip) is Btruck which is determined based on10
actual truck capacity, operator working hours constraints, etc. Each truck trip can be considered11
as a traveling salesman problem, and therefore, truck trip routing costs can be estimated using12
continuous approximation (29). For a warehouse located ‘d0’ distance away from the center of the13
service area (of size A), the continuous approximation trip cost is given as:14

mth Truck Trip Cost = k1nm + k2d0 (1nm>0)+ k3
√

nmA
where, nm is the number of customers serviced on the mth (∈ M) trip, A is the size of15

service area, and k1,k2,k3 are the proportionality constants. The term (1nm>0) is the Heaviside step16
function with value 1 when nm > 0, and 0 otherwise. The first term represents time costs (related17
to customer service times), and the second and third terms combined are distance related costs.18

As the truck trip costs are concave, the best allocation is by consolidating as many assign-19
ments on a trip as possible. It is given that each truck can serve up to Btruck customers per trip, and20
a total routing cost budget is Brouting. Then, the best allocation occurs when the first m∗ truck trips21
each serves Btruck customers, and the remaining routing budget is utilized on the (m∗+1)th truck22
trip. The value of m∗ is given as:23

m∗ :=
⌊

Brouting

k1Btruck + k2d0 + k3
√

BtruckA

⌋
Therefore, instead of incorporating a non-linear non-convex routing cost constraint, we can24

incorporate a simpler (and slightly conservative) linear constraint by limiting the total number of25
truck-based deliveries to ω = (min{|M|,m∗} ·Btruck).26

Now, we discuss the decision variables for the planning stage optimization problem. The27
binary variable yh is 1 if a facility is opened at location h ∈ H. Let the variables uh and zh denote28
the product and battery capacity allocated to facility h ∈ H, respectively. The binary variable xhg f29
is 1 if f th (∈ Fg) order of point g ∈ G is met by facility h ∈ H using drone delivery, and the binary30
variable wg f be 1 if f th (∈ Fg) order of point g ∈G is met using truck delivery. Finally, the facility31
location problem can be described as:32

max
u,w,x,y,z ∑

h∈H
∑

g∈G
∑

f∈Fg

cD
g f xhg f + ∑

g∈G
∑

f∈Fg

cT
g f wg f (1)

∑
h∈H

yh ≤ p (2)

∑
h∈H

uh ≤ α (3)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
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uh ≤ αyh ∀ h ∈ H (4)
uh ≥ αminyh ∀ h ∈ H (5)

∑
g∈Gh

∑
f∈Fg

og f xhg f ≤ uh ∀ h ∈ H (6)

∑
h∈H

zh ≤ β (7)

zh ≤ β · yh ∀ h ∈ H (8)
zh ≥ βminyh ∀ h ∈ H (9)

∑
g∈Gh

∑
f∈Fg

bghxhg f ≤ zh ∀ h ∈ H (10)

∑
h∈H

xhg f +wg f ≤ 1 ∀ f ∈ Fg,g ∈ G (11)

∑
g∈G

∑
f∈Fg

wg f ≤ ω (12)

xhg f ∈ {0,1} ∀ f ∈ Fg,g ∈ G,h ∈ H (13)
wg f ∈ {0,1} ∀ f ∈ Fg,g ∈ G (14)

yh ∈ {0,1} ∀ h ∈ H (15)
uh,zh ≥ 0 ∀ h ∈ H (16)

The objective function 1 aims to maximize the cumulative profit achieved by the delivery1
system. Equation 2 constrains the number of open facilities to a maximum of p. Equations 3 and2
7 ensure that a total amount of product and battery capacity allocated is less than α and β (the3
overall budgets), respectively. Equations 4 and 5 ensure that product is only inventoried at open4
facilities, and that at least a minimum of αmin amount of product is inventoried when a facility is5
opened. Equations 8 and 9 enforce similar constraints to battery capacity, i.e., battery capacity can6
only be allocated to open facilities and at least a minimum of βmin amount of battery capacity is7
allocated at an open facility. Equation 6 ensures that no more demand than the product inventory8
at a facility is met. Similarly, equation 10 constrains the battery consumption to be less than9
the battery capacity of the facility. Note that equations 6 and 10 take drone delivery range into10
consideration. Equation 11 ensures that a particular order can be satisfied by at most one facility11
using a drone or by using truck-based delivery. Constraint 12 limits the total number of truck based12
deliveries to ω . Equations 13-16 are variable definitions.13

After finding an optimal solution, it is modified by allocating the remaining slack in product14
(equation 3) and battery capacity (equation 7). The slack is allocated such that it maximizes the15
minimum value of product and battery capacity at an open facility.16

Stage 2: Operational Stage17
At the end of stage 1, we have a solution for the planning stage problem, given by the tuple18
(x∗,w∗,y∗,u∗,z∗). Let, the set of all opened facilities be represented by set H ′ := {h ∈H : y∗h = 1}.19
The product inventory and battery capacity located at an open facility h ∈ H ′ are given by u∗h20
and z∗h, respectively, which would be used for drone-based deliveries. The regular (i.e., non-time-21
sensitive) orders can also be fulfilled through the central warehouse using truck-based delivery22
(a maximum of ω number of regular order deliveries can be fulfilled). Order fulfillment leads23
to consumption of these resources (product, battery, truck) which are not replenished during the24

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
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entirety of the operational stage. The goal during the operational stage is to maximize cumulative1
profit by allocating orders arriving in an online manner to either one of the located facilities for2
drone delivery, or to the central warehouse for a truck delivery (only for regular orders), such that3
no more than available resources are utilized.4

During the operational stage, uncertainties stem from various sources: the probability of5
an order being from demand location g ∈ G, the probability of an order being time-sensitive, the6
order weight distribution from demand location g ∈ G, the battery consumption distribution while7
using drones for delivering an order, and the profit distributions of time-sensitive and regular or-8
ders. However, in any market, these values cannot be known with absolute certainty and need9
to be learned by implementing field trials. We explore three strategies for this online operational10
stage problem: first, a multi-armed bandits-based approach; second, an allocation heuristic de-11
signed from the solution of the planning stage optimization problem; and third, two random choice12
heuristics based on the random choice among available options for an order. Based on the context13
of our problem, we use the words “profits” and “rewards” synonymously here.14

Currently, there is no option of non-fulfillment of an order (possibly due to network con-15
gestion) and can be a part of future research. As a performance measurement here, we study the16
maximization of cumulative profit until the first resource constraint is violated considering the al-17
location of each order independent of its profit and resource consumption. Alternatively put, the18
episode ends at the first instance of a facility (or central warehouse) running out of a resource.19
Instant delivery logistics would typically be adopted for a relatively small geographical area (like a20
metropolitan area). In such cases, orders received after the first instance of exhaustion of resources21
could lead to denial of service based on geography, which cannot be the case for practical appli-22
cations. Also, this stopping criterion would indicate the need for resources to be replenished for23
uninterrupted service.24

Multi-armed bandits25
Multi-armed bandits are a reinforcement learning framework wherein the agent learns by exploring26
given set of options (a.k.a. “arms") such that the cumulative reward achieved is maximized. Here,27
specifically, we use linear contextual bandits with knapsacks (linCBwK), proposed by Agrawal28
and Devanur (24). The linCBwK allows us to choose only from a subset of arms (as all open29
facilities are not available to each order placed) while accounting for constraints consisting of the30
product inventory and battery consumption budgets at each facility, and overall truck routing.31

A linCBwK problem has five components to it. The first is the K number of arms or actions.32
Here, these actions represent options for each order: drone delivery from a located facility, or truck33
delivery from the central warehouse. Therefore, we have K = |H ′|+ 1 arms, and [K] := {h ∀ h ∈34
H ′}∪{truck} is the set of all arms.35

The second is time horizon or total number of decision-making events T . Here, each36
time/event t ∈ {1,2, . . . ,T} represents an order placed in real-time by demand point gt ∈ G (as-37

sumed i.i.d. to unknown distribution Dg, abbreviated as gt
iid∼ Dg). Let, λt (derived from λt |gt

iid∼38
Dλ

gt
) be 1 if the order is time-sensitive and requires instant delivery, and 0, otherwise. Note that39

the demand points outside the drone-based coverage region can only place regular orders. Then,40
for each h ∈H ′, taking the current environmental factors into account, we observe the battery con-41

sumption, bt
gth (bt

gth|gt
iid∼ Db

gth) for all h ∈ H ′. All of the above information is available before42
making the allocation decision for event t.43
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The third is the context. Context represents all information that we have prior to making1
a decision. At each event t, we observe an m-dimensional context vector for each arm a ∈ [K],2
represented by xt(a) ∈ [0,1]m. Let the context matrix Xt := {xt(a)∀a ∈ [K]} ∈ [0,1]m×K . For our3
case, we observe a m = K dimensional context for each arm. The K×K diagonal context matrix4
is constructed as:5

Xt [h,h] :=

{
1 if bt

gth ≤ Bdrone

0 otherwise
, ∀ h ∈ H ′

Xt [truck, truck] :=

{
1 if λt = 0
0 otherwise

Agrawal and Devanur (24) state that when the context matrix is a K-dimensional identity6
matrix, linCBwK emulates the bandits with knapsacks (BwK) problem (21). We extrapolate this7
result to consider a BwK problem with restricted arm availability. The above definition of context8
only allows arms with context equal to 1 to be available for selection. While defining context,9
we ensure that the truck arm is only available for regular deliveries. Additionally, we consider10
that the demand points outside the drone-based coverage can only place regular orders. The above11
definition allows for the availability of at least one arm for selection by the algorithm.12

The fourth component of linCBwK problem is reward. At time t, a scalar reward rt(at) ∈13
[0,1] is realized after playing action at ∈ [K]. Without loss of generality, we assume that the reward14
for fulfilling a time-sensitive delivery is cS ∈ (0,1], and a regular delivery is cR ∈ [0,cS) irrespective15
of which action is chosen. This assumption can be relaxed to model rewards that are a function of16
the ordering demand point gt and the action at chosen.17

The fifth component of linCBwK is knapsacks constraints, or globalized budget constraints.18
For our problem, there are d = (2 · |H ′|+ 1) universal knapsack constraints. The first |H ′| con-19
straints represent the product consumption at facility h ∈ H ′ with budgets u∗h, the second |H ′| con-20
straints represent the battery consumption at facility h ∈ H ′ with budgets z∗h, and the last knapsack21
constrains the total number of truck deliveries to a budget ω (as described in Stage 1). If at time t,22
the truck arm is chosen, then, 0 amount of product (Uh), 0 amount of battery (Bh) resources, and 123
unit of truck delivery resources are used. If the truck-delivery arm is not chosen, then let ht denote24
the chosen facility for fulfillment of demand. When ht is chosen, (ot

gt
· eht ) amount of product,25

(bt
gtht
· eht ) amount of battery resource, and 0 unit of truck delivery resources are consumed. Here,26

eht is a |H ′|× 1 matrix with value 1 for the row where h = ht , and 0, otherwise. Let Itruck
t be 1 if27

the truck-delivery arm is chosen at time t, and 0, otherwise.28
The bandit optimization problem that we are tackling here is given as:29

max
e,Itruck

T

∑
t=1

[{
cS

λt + cR(1−λt)
}
(1− Itruck

t ) + cR(1−λt)Itruck
t

]
(17)

s.to.
T

∑
t=1

ot
gt
· eht · (1− Itruck

t )≤ u∗h ∀ h ∈ H ′ (18)

T

∑
t=1

bt
gtht
· eht · (1− Itruck

t )≤ z∗h ∀ h ∈ H ′ (19)
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T

∑
t=1

Itruck
t ≤ ω (20)

At time t, upon selection of arm at , let vt(at) be the d-dimensional resource consumption1
vector. As a reminder, we allow only payloads up to omax. Also note that for chosen arm, the value2
of bt

gtht
is always less than or equal to Bdrone. Therefore, we can use the above values to normalize3

resource consumption vector vt(at) in the range [0,1], a requirement to implement linCBwK. The4
first set of transformations are given as:5

Transformations I:

Product consumption knapsacks: ot
gt
←

ot
gt

omax
u∗h←

u∗h
omax

Battery consumption knapsacks: bt
gtht
←

bt
gtht

Bdrone
z∗h←

z∗h
Bdrone

The other required transformation for linCBwK is a uniform value of budget for each knap-6
sack constraint. Therefore, we scale each knapsack so that its budget to the lowest value after the7
above transformations. The new budget, B, is given as:8

B = min
{

min{u∗h : h ∈ H ′},min{z∗h : h ∈ H ′},ω
}

The transformations to make the budget the same for all knapsack constraints are:9

Transformations II:

Product consumption knapsacks: ot
gt
← B

u∗h
ot

gt
; u∗h← B

Battery consumption knapsacks: bt
gtht
← B

z∗h
bt

gtht
; z∗h← B

Truck delivery knapsack: Itruck
t ← B

ω
Itruck
t ; ω ← B

We make the following two assumptions about context, rewards, and resource consumption10
vectors in linCBwK (24):11

• In every round t, the tuple {xt(a),rt(a),vt(a)}K
a=1 is generated from an unknown distribu-12

tion D , independent of everything in previous rounds. The procedure used for generating13
contexts, rewards, and resource consumption for our instant delivery logistics problem14
satisfies this assumption.15

• There exists an unknown vector µ∗ ∈ [0,1]m×1 and a matrix W∗ ∈ [0,1]m×d such that for16
every arm a, given contexts xt(a), and history Ht−1 before time t,17

E[rt(a)|xt(a),Ht−1] = µ
T
∗ xt(a), E[vt(a)|xt(a),Ht−1] =WT

∗ xt(a) (21)

The decision-making flow of the linCBwK algorithm consists of five major steps: observ-18
ing the context matrix Xt , obtaining optimistic estimates of µ∗ and W∗ using the l2-regularized19
norms of previously observed values of rewards and resource consumption, arm selection using an20
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expected reward penalized with expected resource consumption, realizing the values of reward and1
resource consumption for the selected arm, and finally, updating the penalty weights using multi-2
plicative weight update (MWU) algorithm (24). The detailed algorithm is in Algorithm 1. Like all3
multi-armed bandit algorithms, the performance is measured by the complexity of the cumulative4
regret. For linCBwK, the regret is measured from the optimal static policy (24), obtained from5
solving a static stochastic optimization problem.6

Algorithm 1 Algorithm for linCBwK

Input parameters: B, T0, T , (1−δ ) confidence level, MWU algorithm parameter ε

Compute Z which satisfies assumptions presented in Agrawal and Devanur (24)

Initialize t = 1, θ1, j =
1

1+d , ∀ j ∈ {1,2, . . . ,d}, radiust =
√

m log
(d+tmd

δ

)
+
√

m
Initialize B′ = B−T0, T ′ = T −T0
while t ≤ T ′ do

Observe context Xt
For every a ∈ [K], compute µ̃t(a) and W̃t(a) (the optimistic estimates of µ∗ and W∗) as:

µ̃t(a) := arg max
µ∈Ct,0

xt(a)Tµ, where, µ̂t := M−1
t

t−1

∑
i=1

xi(ai)ri(ai)
T

where, Ct,0 :=
{

µ ∈ Rm×1 : ∥µ− µ̂t∥Mt ≤ radiust
} (22)

W̃t(a) := arg minW∈Gt
xt(a)TWθt , where, Ŵt := M−1

t

t−1

∑
i=1

xi(ai)vi(ai)
T

where, Gt :=
{
Rm×d : w j ∈Ct, j

}
and Ct, j :=

{
w ∈ Rm×1 : ∥w− ŵt j∥Mt ≤ radiust

} (23)

Play the arm at := arg maxa∈[K]xt(a)T
(
µ̃t(a)−ZW̃t(a)θt

)
Observe reward rt(at) and resource consumption vt(at)
If for some j ∈ {1, . . . ,d}, ∑t ′≤t vt ′(at ′) · e j ≥ B, then EXIT. (Note: e j is a d× 1 matrix with
value 1 for jth row, and 0, otherwise)
Update θt+1 using MWU algorithm, and with gt(θt) := θt ·

(
vt(at)− B

T 1
)
, as:

θt+1, j =
wt, j

1+∑ j wt, j
, where wt, j =

{
wt−1, j(1+ ε)gt, j if gt, j > 0,

wt−1, j(1− ε)−gt, j if gt, j ≤ 0.
, ∀ j ∈ {1,2, . . . ,d}

(24)

t+= 1
end while

Planning Stage Optimization Allocation (PSOA) Heuristic7
The planning stage optimization allocation (PSOA) heuristic uses the insights obtained from the8
solution of the optimization problem solved in Stage 1 to derive a policy. Particularly, 2|G| different9
policies are derived depending upon the demand point g ∈ G placing an order, and the order being10
time-sensitive or not. The policies are given as:11

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
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For all g ∈ G

pPSOA
g,λ (h) =



∑ f∈F x∗hg f

∑a∈H ′∑ f∈F x∗ag f
if, ∑

a∈H ′
∑
f∈F

x∗ag f > 0, λ = 1

∑ f∈F
nR

g
nS

g+nR
g
x∗hg f

∑a∈H ′∑ f∈F
nR

g
nS

g+nR
g
x∗ag f +∑ f∈F w∗g f

if, ∑
a∈H ′

∑
f∈F

x∗ag f > 0, λ = 0

0 otherwise

,∀ h ∈ H ′

(25)

pPSOA
g,λ (truck) =

1− ∑
h∈H ′

pPSOA
g,λ (h) if, λ = 0

0 otherwise
(26)

where, λ = 1 for time-sensitive deliveries, and λ = 0 for regular deliveries. Note that as the type of1
orders (time-sensitive or regular) are not differentiated in the Stage 1 optimization problem, some2
demand points which can be covered through drone-based deliveries may only be served using the3
truck delivery option. As a result, these demand point could place a time-sensitive order and the4
PSOA heuristic would not know what to do. In such cases, the PSOA heuristic collects a reward of5
0, and consumes 0 units of all the resources (product, battery, and truck-delivery). The algorithm6
for PSOA is presented in Algorithm 2.7

Algorithm 2 PSOA Heuristic

Input parameters B′ = B−T0, and T ′ = T −T0.
Initialize t = 1
while t ≤ T ′ do

Observe ordering demand point gt , time-sensitivity of order λt , and context Xt .
Select an arm at ∈ [K] chosen randomly with probability of choosing at is pPSOA

gt ,λt
(at)

if at ∈ H ′ and Xt [at ,at ] = 1 then
Play the selected arm at
Observe reward rt(at) and resource consumption vt(at)

else
if λt = 1 then

Randomly select and play an arm at such that Xt [at ,at ] = 1
Observe reward rt(at) and resource consumption vt(at)

else
Play the truck arm, i.e, at = truck
Observe reward rt(at) and resource consumption vt(at)

end if
end if
If for some j ∈ {1, . . . ,d}, ∑t ′≤t vt ′(at ′) · e j ≥ B, then EXIT. (Note: e j is a d× 1 matrix with
value 1 for jth row, and 0, otherwise)
t+= 1

end while
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Random Choice (RC) Heuristic1
The random choice (RC) heuristic chooses one of the available options randomly in a weighted2
manner upon observing the context based on random choice among the available alternative at each3
time t. The nominal probability of choosing the “truck" arm for a regular order is pRC

truck =
ω

∑g∈G nR
g
.4

The algorithm is presented in Algorithm 3.5

Algorithm 3 RC Heuristic

Input parameters B′, and T ′.
Initialize t = 1
while t ≤ T ′ do

Observe ordering demand point gt , time-sensitivity of order λt , and context Xt .
Calculate the set of facilities available for drone deliveries, i.e., Havail := {h∈H ′ |Xt [h,h] = 1}

if |Havail|> 0 then
if λt = 1 then

Play one of the available facility arms each with probability 1
|Havail |

else
Play the arm “truck" with probability pRC

truck, and one of the available facility arms each
with probability 1

|Havail |(1− pRC
truck)

end if
else

Play arm “truck"
end if
Observe reward rt(at) and resource consumption vt(at)
If for some j ∈ {1, . . . ,d}, ∑t ′≤t vt ′(at ′) · e j ≥ B, then EXIT. (Note: e j is a d× 1 matrix with
value 1 for jth row, and 0, otherwise)
t+= 1

end while

Blind Random Choice (BRC) Heuristic6
The blind random choice (BRC) heuristic works like the RC heuristics, except that it does not have7
access to even the input parameters of the problem (nS,nR,ω). Therefore, at any time t, the BRC8
heuristic chooses one of the available arms randomly in a unweighted manner (i.e., each of the9
available arms has an equal probability of being selected).10

COMPUTATIONAL EXPERIMENTS11
The analysis is conducted on standard p-median test instances, adopted from Osman and12

Christofides (30), each consisting of 50 locations that act both as demand points (represented by13
set G) and potential facility locations (represented by set H) on a randomly generated on a 100 ×14
100 grid (here, units are assumed to be kilometers). For the current planning period, the anticipated15
number of times-sensitive (nS

g) and regular (nR
g ) deliveries are random integers in the interval [8,12]16

and [8,12], respectively. The estimated demand for each order is randomly selected from a discrete17
uniform distribution from 0.5 kg to 2.25 kg in the interval of 0.25 kg. Euclidean distances are used18
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for distance computations. The battery consumption for a trip from facility h ∈H to demand point1
g∈G and back is calculated as in Figliozzi (31) assuming a payload of omax = 5 lbs (2.27 kg). The2
overall energy efficiency and the lift-to-drag ratio of the drone are 0.66 and 2.89, respectively. The3
battery capacity of the drone is 1410 Wh, and a maximum battery utilization factor of 0.8 is used.4
Thereby, the effective battery capacity of the drone (Bdrone) is 1128 Wh. The values of parameters5
α , β , αmin, βmin, and p are chosen to be 2500, 800 ·Bdrone, 800, 350 ·Bdrone, and 3, respectively.6
Considering the truck routing budget, the maximum number of orders that can be fulfilled by truck7
delivery (i.e., ω) is determined to be 400. We do not consider congestion effects in the current8
study and assume that enough drones/trucks are available at each operational facility.9

The solution of the planning stage problem determines the initial state of the operational10
stage problem (i.e. K, d, m, and B can be calculated). For bandit learning using linCBwK, the11
(1− δ ) confidence interval for estimating unknown parameters is taken to be 95%. The total12
number of orders (T ) is assumed to be 1000, and the initial learning iterations (T0) is assumed13
to be m

√
T (rounded to the nearest integer). The above value of T0 ensures that the linCBwK14

algorithm maintains the regret bound provided by Agrawal and Devanur (24). The online learning15
parameter, ε , is assumed to be

√
(d +1)/T , as proposed by Agrawal and Devanur (24).16

Unknown to the linCBwK algorithm, for the nominal case, we assume that the estimated17
values of time-sensitive and regular deliveries used in the planning stage are off by at most ρS =18
30% and ρR = 10% compared to the actual simulation values observed during the operational stage.19
Therefore, for the simulations, the probability of a demand point ordering and the order being20
time-sensitive is determined by calculating simulation values of time-sensitive (ñS

g) and regular21
(ñR

g ) deliveries from demand point g ∈ G is set to:22

ñS
g ∈Uni f orm

[
1

1+ρS nS
g,

1
1−ρS nS

g

]
, ∀ g ∈ G

ñR
g ∈Uni f orm

[
1

1+ρR nR
g ,

1
1−ρR nR

g

]
, ∀ g ∈ G

P(gt = g) =
ñS

g + ñR
g

∑g∈G ñS
g + ñR

g
, ∀ g ∈ G

P(λgt = 1 |gt = g) =


ñS

g

ñS
g + ñR

g
; g can be served using drones

0 ; g cannot be served using drones

, ∀ g ∈ G

At time t ∈ {1,2, . . . ,T}, the ordering demand point gt = g with probability P(gt = g),23
and the order is time-sensitive with probability P(λgt = 1 |gt = g). Unknown to the algorithms,24
we define parameters φ 1

g ,φ
2
g ∈Uni f orm(0.5,5) ∀ g ∈ G. The demand (ogt ) is randomly chosen in25

the interval [0,omax] from the beta distribution omax ·Beta(φ 1
gt
,φ 2

gt
), where, omax is the maximum26

weight of an order. The battery consumption at time t (i.e., bt
gth), between a demand point gt ∈ G27

and facility h∈H ′ is assumed to vary in the interval [bgh− b̂gh,bgh+ b̂gh], where, bgh is the nominal28
battery consumption (used in the planning stage), and b̂gh is the maximum variation is battery29
consumption. The value of b̂gh is assumed to be an integer in the interval [0.1bgh,0.3bgh]. Similar30
assumptions are made in Chauhan et al. (32).31

During the simulations, each instance is run 10 times to account for randomness in demand,32
time sensitivity, order weight, and battery consumption generation. Table 1 shows the cumulative33
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reward achieved. All instances opened 2 facilities for drone delivery and had a truck-delivery1
option for regular orders. The linCBwK provides the best rewards, slightly over 7% additional2
rewards with respect to the trailing PSOA heuristic. This result is as expected as the linCBwK3
dynamically updates the expected rewards and resource consumption, and weighs them appro-4
priately for decision-making. The BRC heuristic follows PSOA, and RC has the worst outcome5
with respect to cumulative rewards. We hypothesized that the RC heuristic would perform better6
than BRC heuristic because of the weighted probability while choosing the delivery option. With7
a lower number of arms, for our computational experiments, the BRC heuristic uses the truck-8
based delivery option less intensively than RC which improves its performance. The same trend is9
observed for the successful number of allocations as seen in Figure 1.10
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TABLE 1: Cumulative reward obtained through successful allocations (T = 1000,T0 = 95)

Instance
linCBwK PSOA BRC RC

Min Ave Max Min Ave Max Min Ave Max Min Ave Max
0 364.5 400.6 426.8 347.9 375.8 407.6 268.8 290 306.2 228 249.2 279.2
1 521.9 533.4 543.5 471.5 511.4 533.1 345.5 369.6 395.8 266.6 288.6 315.5
2 357.2 377.4 408.1 334.6 360 393.6 259.1 280.5 306.8 231.6 246.7 264.8
3 453.8 493.8 533.6 366.1 410.5 435 301.9 343.2 366 239.9 272.2 281.8
4 432.9 461.4 485.6 374.3 399.9 440.4 288.4 324.1 355.4 245.6 264.6 293.3
5 342.8 375.3 412.1 316.3 346.3 386 260.6 276.9 288.2 220.1 238.6 254
6 464.5 475.7 501 442.2 470.3 514.4 311.1 333.3 354.1 251.2 271.7 318.8
7 401.8 438.9 469.8 378.4 408.2 436.8 293.3 305.2 323 235.9 259.6 282.6
8 462.9 487.1 506.5 483.3 507.9 530 322.3 338.7 353.1 241.2 273.9 302.7
9 455.9 465.4 480 386 419.6 456.2 288.5 321.8 346.9 246.3 264.9 287.5

Overall 342.8 450.9 543.5 316.3 421 533.1 259.1 318.3 395.8 220.1 263 318.8
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FIGURE 1: Number of successful allocations: average line with the standard deviation band
(T = 1000,T0 = 95)

The values ρS and ρR show the maximum deviation of the estimate used in the Stage 11
optimization problem from the simulated values used in Stage 2. The pair (ρS,ρR) = (0.0,0.0)2
implies that there was no estimation error during the planning stage. Figure 2 shows the effect3
of uncertainty on the performance of the heuristics, based on all 10 instances. As the amount4
of observed uncertainty increases, all heuristics perform slightly better. A likely reason for this5
observation is that the higher diversity in the demand generation provides more opportunities to6
facilities that are used less often. This would delay the resource consumption violation at a more7
intensively used facility.8

FIGURE 2: Cumulative rewards with varying the amount of uncertainty in estimating the number
and type of deliveries (ρS,ρR): average line with the standard deviation band (T = 1000,T0 = 95)
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Portland Metro Area Case Study1
For the Portland Metro Area case study, we consider Walmart expanding its service options to2
offer instant delivery to its Walmart+ service subscribers (similar to Amazon’s Prime subscrip-3
tion). The 26 Walmart stores in and around the Portland Metro are considered the potential4
drone-based fulfillment center candidates. The 90 centroids of the ZIP Code Tabulation Areas5
(ZCTAs) in the Portland Metro Area that can be serviced by drones are considered as the de-6
mand locations. The locations of Walmart stores and ZCTAs used in the study are available7
at https://github.com/drc1807/MPFL_DRA. The latest estimate of Walmart+ subscriber base in8
the USA is 60.78 million (33). Assuming geographically uniform subscriber base in the US and9
monthly ordering behavior results in 13840 anticipated daily deliveries in Portland Metro Area. We10
consider a planning period of one day. The proportion of time-sensitive deliveries at each demand11
point is randomly distributed in the interval [0.4,0.7]. The values of parameters α and β is set to12
28000 and 13000 ·Bdrone, respectively. For the operational stage, the total number of orders (T ) is13
set to 15000, and the amount of uncertainty is chosen as ρS = 30% and ρR = 10%. We explore14
three cases by changing the number of opened facilities (p) from 2 to 4. The values of αmin/omax,15
βmin/Bdrone, and ω are selected to be the smallest multiple of 50 greater than (p+1)0.5T 0.75. These16
values ensure that the regret bound conditions for linCBwK mentioned by Agrawal and Devanur17
(24) are met. Other parameters are the same as described for the p-median instances. The solutions18
of the planning stage optimization problem are shown in Figure 3.19

(a) p = 2
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(b) p = 3

(c) p = 4

FIGURE 3: Planning stage optimization problem solutions for Portland Metro Area
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Figure 4 shows the variation in cumulative rewards achieved by various algorithms with the1
number of opened facilities. Here as well, the linCBwK algorithm performs best. A slight decrease2
in cumulative reward with increasing p is expected as the effective number of deliveries used for3
all algorithms, T ′ (= T −T0), decreases with increasing p. In this regard, PSOA gives a stable per-4
formance. However, a significant improvement in accumulated profits is experienced by linCBwK,5
BRC, and RC for p = 3. A primary reason for the improved performance is the availability of all6
facilities for almost every order (see Figure 3(b)) as well as proportionate distribution of product7
and battery resources among the facilities. As p increases, the minimum amount of resource allo-8
cation at facilities also increases. This means that the facilities available to a smaller proportion of9
demand points have more redundant capacity, and the more readily available facilities face scarcity10
of resources. This causes a drop in performance of linCBwK, BRC, and RC when p = 4 due to11
the outlying facility serving only two demand points. By numbers, linCBwK beats the second-best12
approach by 11.2%, 13.2%, and 25.1%, on average, as p increases from 2 to 4, respectively.13

FIGURE 4: Cumulative rewards with varying the number of opened facilities (p): average line
with the standard deviation band (T = 15000, T0 = (p+1)

√
T )

CONCLUSIONS14
This paper investigates a facility location and online demand allocation problem applicable15

to a logistics company expanding to instant delivery using UAV/drones. The problem consists of16
two stages: a planning stage, and an operational stage. During the planning stage, the company17
wishes to locate micro-fulfillment centers which serve the dual purpose of product storage and18
drone operations. We present a profit-maximizing mixed-integer linear program that accounts19
for product capacity, battery capacity, and routing cost constraints. During the operational stage,20
the orders arrive in an online manner and real-time decisions are made for the satisfaction of21
demand with an objective of maximizing cumulative profits while respecting the resource budget22
constraints. To the best of the authors’ knowledge, this work is the first application in logistics23
considering non-replenishable resource consumption constraints in real-time decision-making.24

We explore a multi-armed bandit framework that explicitly accounts for global knapsack25
constraints. We extrapolate results from extant literature to account for restricted “arm" availabil-26
ity in the framework arising from drone range constraints. The multi-armed bandit framework is27
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compared with a heuristic policy derived from the planning stage optimization solution (PSOA1
heuristic), and two heuristics based on random choice. The analysis on standard test instances2
shows that the multi-armed bandit framework beats the second-best PSOA heuristic by accumu-3
lating 7% more profits, on average. An application of this problem to Portland Metro Area with4
a larger time horizon yields similar results with the multi-armed bandit framework performing the5
best, beating the second-best approach by at least 11.2%.6

The present work can be expanded in various aspects. Currently, the model does not ac-7
commodate the non-fulfillment of time-sensitive orders or provide an incentive to switch to regular8
orders. This may be an important feature due to possible network congestion issues or drone avail-9
ability issues. In this study, we assumed that enough drones are available at each facility, which10
may not be the case in many applications. Availability-related constraints are effectively tackled11
in the dynamic fleet management literature and can be a possible extension of this work.12
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