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ABSTRACT1
This study proposes a multi-period facility location formulation to maximize coverage2

while meeting a coverage reliability constraint. The coverage reliability constraint is a chance-3
constraint limiting the probability of failure to maintain the desired service standard, commonly4
followed by emergency medical services and fire departments. Further, uncertainties in the fail-5
ure probabilities are incorporated by utilizing robust optimization using polyhedral uncertainty6
sets, which results in a compact mixed-integer linear program. A case study in the Portland, OR7
metropolitan area is analyzed for employing unmanned aerial vehicles (UAVs) or drones to deliver8
defibrillators in the region to combat out-of-hospital cardiac arrests. In our context, multiple peri-9
ods represent periods with different wind speed and direction distributions. The results show that10
extending to a multi-period formulation, rather than using average information in a single period,11
is particularly beneficial when either response time is short or uncertainty in failure probabilities is12
not accounted for. Accounting for uncertainty in decision-making improves coverage significantly13
while also reducing variability in simulated coverage, especially when response times are longer.14
Going from a single-period deterministic formulation to a multi-period robust formulation boosts15
the simulated coverage values by 57%, on average. The effect of considering a distance-based16
equity metric in decision-making is also explored.17
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INTRODUCTION1
Public service agencies like hospitals, fire, rescue, and police departments are required to2

maintain high levels of service. For example, fire-related incidents require 90% reliability for a3
4-minute response time (1). Similarly, in the case of emergency medical services, the US Emer-4
gency Medical Services Act of 1997 requires a 95% response rate within 10 minutes (2). In the5
United Kingdom, the National Health Service aims at serving 75% and 95% of demands in 8 and6
14 minutes, respectively (3). As transportation systems are dynamic and stochastic an inherent7
uncertainty in travel time is present. This uncertainty in travel time leads to uncertainty in facility8
or demand coverage.9

Drone or unmanned aerial vehicle (UAV) deliveries are being explored as a quicker, more10
cost-effective, and more reliable alternative for time-sensitive medical deliveries, emergency sce-11
narios, humanitarian logistics, and other agricultural, security, and military applications (4, 5).12
Large corporations such as Amazon have secured operational licenses and begun field trials (6). In13
addition, there is support from federal programs, such as the Federal Aviation Authority’s UAS-14
BEYOND program (7), to test medical applications including delivery of automatic external defib-15
rillators (AEDs), medical prescriptions, and medical emergency response. These medical applica-16
tions are being field tested in the states of Nevada, North Carolina, and North Dakota, respectively.17

Drones have some advantages when compared to traditional ground transportation modes.18
They can arrive faster by taking more direct paths and avoiding ground-based obstructions or19
congestion. For ground vehicles, congestion and associated delays are key sources of travel time20
uncertainty. But for drone deliveries uncertainties arise because of weather conditions, mainly21
from uncertainty about wind speed and direction (8).22

The effect of stochasticity in environmental factors on the performance of emergency de-23
partments is hard to quantify exactly, in addition to being data-intensive. However, reliable esti-24
mates for expected values (like, mean and variance) and extrema (like, minimum and maximum)25
are much easier to obtain. This is much more true for strategic decisions like facility location when26
the planning periods are longer. Robust optimization (RO) is a distribution-free approach that al-27
lows for incorporating stochasticity with limited information using uncertainty sets. The splitting28
of a planning period into multiple smaller periods would disaggregate uncertainties and possibly29
aid RO in tackling them.30

This paper considers a robust multi-period maximum coverage facility location problem31
considering coverage reliability (MP-R) to improve decision-making. The coverage reliability32
constraints are captured using the chance constraints which provide probabilistic constraint satis-33
faction guarantee. The final model is developed by integrating the chance constrained approach34
with robust optimization, similar to Lutter et al. (2), and expanded to multiple time periods. The35
contributions of this paper are:36

• Developing a compact mixed-integer linear programming formulation for MP-R using37
polyhedral uncertainty sets (9).38

• Developing a case study in the Portland, OR metropolitan area to locate drone-launch39
sites to deliver defibrillators, considering uncertainty in travel times arising due to varia-40
tion in wind speeds and directions.41

• Analyzing the value of adding robustness and multiple time periods using a novel Monte-42
Carlo simulation scheme.43

A brief literature review is presented in the next section, followed by the development of the44
mathematical model. The case study is developed and the computational analyses are discussed.45
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Finally, the paper ends with brief conclusions and recommendations for future research.1

LITERATURE REVIEW2
A plethora of research has already been conducted in the field of emergency medical re-3

sponse. A vast majority of research has been focused around using ground vehicles (i.e., tradi-4
tional ambulances) for optimizing coverage (10–13), survival rates (14, 15), amount of relocation5
(10, 13, 16), and crew shifts (11). Detailed literature reviews on ambulance location can be found6
in (17–19). Recently, there has been increasing interest around the usage of air-based vehicles for7
emergency medical operations: AED-enabled drones for out-of-hospital cardiac arrests (20, 21),8
drones supplying emergency relief packages (22, 23), helicopters (24), and air ambulances (25).9
This study focuses on locating AED-enabled drones for tackling out-of-hospital cardiac events10
in a planning region using a multi-period facility location formulation incorporating reliability in11
coverage.12

Multi-period variants of traditional facility location problems have been studied for various13
contexts since the seminal work of Ballou (26). Nickel and da Gama (27) provides a review of14
multi-period facility location problems (MPFLP), and Vatsa and Jayaswal (28) provides a brief15
review of studies considering uncertainties in MPFLP literature. Vatsa and Jayaswal (28) note that16
while demand and cost uncertainties are widely tackled in the MPFLP literature, research tackling17
supply-side uncertainties (example, coverage capabilities) is relatively scarce. Kim et al. (29)18
propose a MPFLP with drones considering uncertainty in flight distances. The study assumes that19
the probability of drone’s successful return to the launch station is not time-period-dependent and20
that the time-periods are long enough that all drone trips complete in a time-period. Ghelichi et al.21
(30) proposes a multi-stop drone location and scheduling problem for medical supply delivery. The22
study assumes deterministic travel speed for drones (i.e., ignoring weather conditions) in multiple23
periods, and time-periods are short and a drone-trip is assumed to last over multiple time periods.24
Our study assumes that the probability of timely arrival at a demand location from a launch site is25
dependent on the time period, and that the time-periods are long enough that drones trips can be26
completed in a time period.27

Erdoğan et al. (11) state that appropriately defining coverage and incorporating uncertainty28
in travel times are the most important considerations in ambulance location. This study defines29
coverage based on the importance of covering the demand point. Therefore, the coverage impor-30
tance metric can be a function of various population parameters like size and demographics, and31
other characteristics like history of emergency requests and equity considerations. Additionally, in32
most regions, the emergency response systems are required to maintain adequate service standards.33
We model the service standard reliability constraint as a chance constraint on probability of timely34
arrival for each demand point. Therefore, a demand point is considered covered only if the service35
standard reliability requirements are met for all time periods of the planning period.36

The probability of timely arrival at a demand point is linked to the uncertainty in drone37
travel times which stems from variations in wind speed and directions. Due to dependency on38
environmental factors, the estimated values of probabilities of timely arrival are not deterministic,39
rather uncertain. Tackling parameter uncertainty has been a focus of the mathematical program-40
ming community for a long time. Two major approaches exist for tackling uncertainty: stochastic41
optimization (SO) and robust optimization (RO). SO assumes that a probability distribution of the42
uncertainty is available, whereas RO assumes no underlying distribution of the uncertainty and con-43
siders it to be deterministic and set-based (31, 32). A set-based uncertainty structure of RO leads to44
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better computational tractability than SO (32). RO immunizes the solution from any manifestation1
of uncertainty in the described uncertainty set. In general, the larger the size of the uncertainty set,2
the lower is the objective value (considering maximization objective) and the lower is the proba-3
bility of constraint violation (32). This trade-off between expected objective values and constraint4
violation can be controlled by varying the size of the uncertainty set. Here, we use RO using poly-5
hedral uncertainty sets (9) to tackle uncertainty while maintaining computational tractability. This6
approach ensures that the robust counterpart of our linear optimization problem is also linear. We7
refer the interested reader to (31–36) for a more comprehensive picture of RO.8

PROBLEM DESCRIPTION9
This section first describes the modeling of the coverage reliability constraint and its as-10

sumptions. Later, we formulate a deterministic multi-period maximum coverage facility location11
problem with coverage reliability (abbreviated as MP-D). Finally, we provide a robust formulation12
of MP-D (abbreviated as MP-R) which accounts for uncertainty in the values of coverage failure13
probabilities.14

Consider a set of demand points (represented as I) each with coverage importance ci, a set15
of facilities (represented as J), and a set of all time periods (represented as T ). Let A be a |I|× |J|16
1-0 accessibility matrix describing if the demand point i can be covered by a facility j. We use at

i j17
to represent the probabilistic nature of the (i, j) element of A in time period t ∈ T , while, Ai j is18
used for the deterministic initial state of (i, j) element of the matrix A. More specifically, if Ai j = 1,19
then, at

i j = 1 with probability (1− pt
i j), and at

i j = 0 with probability pt
i j. If Ai j = 0, then, at

i j = 020
always. Let, p̄t

i j be our estimate of pt
i j. Now, the service reliability requirement of achieving a21

service standard α can then be stated as22

Pr

[
∑
j∈Si

at
i j ≥ 1

]
≥ α , (1)

23

where Si = { j ∈ J |Ai j = 1}. The above equation potentially considers all the facilities that can24
access demand point i ∈ I. As a consequence, we assume that all the accessible facilities respond25
to the demand at location i. Under the assumption of independence among the values in A, equation26
(1) can modified as27

Pr

[
∑
j∈Si

at
i j ≥ 1

]
= 1− ∏

j∈Si

pt
i j ≡ 1− ∏

j∈Si

p̄t
i j ≥ α (2)

For the above discussion, we have assumed that p̄t
i j completely describe the distribution28

of variables at
i j. However, there are errors endemic to sampling (environmental factors) and mea-29

surement while estimating the value of pt
i j. Therefore, the values of pt

i j may not be known with30
complete certainty. We tackle this issue while formulating the MP-R model.31

For MP-D and MP-R, the decision-making agency wishes to locate a maximum of q fa-32
cilities in each time-period to maximize the cumulative coverage importance achieved subject to33
coverage requirements described. Additionally, opened facility locations can be shifted between34
time periods subject to a facility relocation cost budget constraint.35
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Nomenclature1
Sets and Indices
I Set of all demand points (i ∈ I)
J Set of all candidate facility locations ( j,k ∈ J)
T Set of all time periods (t ∈ T := {1,2, . . . , |T |})

2

Parameters
ci Coverage importance of demand point i ∈ I; ci ≥ 0
Ai j 1, if the demand point i ∈ I can be covered by facility j ∈ J, and 0, otherwise
Si Set of facilities j ∈ J that can cover the demand point i ∈ I; Si = { j ∈ J |Ai j = 1} ∀ i ∈ I

p̄t
i j

Nominal probability of failure of covering demand point i ∈ I by facility j ∈ J in time
period t ∈ T ; 0 < pt

i j ≤ 1

p̂t
i j

Maximum deviation from nominal probability of failure of covering demand point i ∈ I
by facility j ∈ J in time period t ∈ T ; 0 ≤ p̂t

i j < pt
i j + p̂t

i j ≤ 1
q Maximum number of facilities that can be located; q ∈ Z+∪{0}
α Required coverage threshold; 0 ≤ α ≤ 1

Γt
i

Maximum number of delivery paths to demand point i that can achieve worst-case
probability of failure simultaneously in time period t ∈ T ; Γt

i ∈ Z+∪{0}

f t
jk

Cost associated with shifting the facility from location j ∈ J to location k ∈ J at the
beginning of time period t ∈ T

B Facility shifting cost budget

3

Decision Variables
xi 1, if demand location i ∈ I is covered with given coverage threshold; 0, otherwise
yt

j 1, if candidate facility location j ∈ J is open during time period t ∈ T ; and 0, otherwise

zt
jk

1, if a facility is moved from location j ∈ J to location k ∈ J at the beginning of time
period t ∈ T\{1}; and 0, otherwise

4

Deterministic Formulation5

max
x,y,z ∑

i∈I
cixi (3)

∏
j∈Si

(p̄t
i j)

yt
j ≤ (1−α)xi ∀ i ∈ I, t ∈ T (4)

∑
j∈J

yt
j ≤ q ∀ t ∈ T (5)

∑
t∈T\{1}

∑
j∈J

∑
k∈J

f t
jkzt

jk ≤ B (6)

∑
k∈J

zt
jk = yt−1

j ∀ j ∈ J, t ∈ T\{1} (7)

∑
j∈J

zt
jk = yt

k ∀ k ∈ J, t ∈ T\{1} (8)

xi ∈ {0,1} ∀ i ∈ I (9)
yt

j ∈ {0,1} ∀ j ∈ J, t ∈ T (10)

zt
jk ∈ {0,1} ∀ j,k ∈ J, t ∈ T\{1} (11)
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For the deterministic formulation, we assume that pt
i j = p̄t

i j. Equation (3) represents maximizing1
coverage importance. In equation (4), the demand point i ∈ I is covered only if the probability2
of failure to cover it is less than (1−α) for all time periods t ∈ T . Note that all accessible open3
facilities respond to meet the demand at point i ∈ I. Equation (5) enforces that no more than q4
facilities can be opened.5

Equation (6) is a generalized cost constraint relating to the shifting facility locations. Equa-6
tions (7) and (8) are transportation allocation constraints. Note that using f t

j j = 0 for all j ∈ J, t ∈7
T\{1}, and 1, otherwise, would limit the total number of facility location shifts to B. Equations8
(9)–(11) are variable definitions. However, the formulation is not linear due to equation (4). Ap-9
plying logarithm function on both sides of equation (4) yields:10

∑
j∈Si

wt
i jy

t
j ≤ βxi ∀ i ∈ I, t ∈ T (12)

where wt
i j and β represent log(p̄t

i j) and log(1−α), respectively. The above formulation (equations11
3 and 5–12) is referred to as the deterministic multi-period facility location problem considering12
coverage reliability, abbreviated as MP-D. MP-D is an integer linear program and can be solved13
using standard MIP solvers.14

Robust Formulation15
The parameter pt

i j represents the probability that the facility j ∈ J, in time period t ∈ T , will fail16
to cover the demand point i ∈ I in a given service time threshold τ . However, due to sampling17
errors stemming from environmental factors like variations in travel times throughout the day, the18
estimated values of parameters pt

i j are uncertain. Later, in the presented case study of delivering19
AED-enabled drones, this variation occurs primarily due to changing wind speeds and directions.20
As the complete probability distribution of pt

i j is arduous to obtain in comparison to the bounds21
of its variation, we use a robust optimization using polyhedral uncertainty sets (9) to incorporate22
this uncertainty. Let, p̂t

i j be the maximum deviation of p̄t
i j. For our robust model, we assume that23

pt
i j ∈ [p̄t

i j − p̂t
i j, p̄t

i j + p̂t
i j]. Of all facilities servicing demand point i, up to Γt

i facilities observe24
worst-case failure probabilities (i.e., pt

i j = p̄t
i j + p̂t

i j), whereas the rest observe nominal failure25
probabilities (i.e., pt

i j = p̄t
i j). This allocation happens in such a way that the probability of failing26

to serve demand point i is maximized.27
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max
x,y,z ∑

i∈I
cixi (13)

max
{U⊆Si,|U |≤Γi}

[
∏
j∈U

(p̄t
i j + p̂t

i j)
yt

j ∏
j∈Si\U

(p̄t
i j)

yt
j

]
≤ (1−α)xi ∀ i ∈ I, t ∈ T (14)

∑
j∈J

yt
j ≤ q ∀ t ∈ T (15)

∑
t∈T\{1}

∑
j∈J

∑
k∈J

f t
jkzt

jk ≤ B (16)

∑
k∈J

zt
jk = yt−1

j ∀ j ∈ J, t ∈ T\{1} (17)

∑
j∈J

zt
jk = yt

k ∀ k ∈ J, t ∈ T\{1} (18)

xi ∈ {0,1} ∀ i ∈ I (19)
yt

j ∈ {0,1} ∀ j ∈ J, t ∈ T (20)

zt
jk ∈ {0,1} ∀ j,k ∈ J, t ∈ T\{1} (21)

Equation (13) represents the maximization of coverage importance. Incorporating uncer-1
tainty in the failure probabilities in equation (4) yields (14). The left hand side (lhs) of equation2
(14) seeks to find the absolute worst-case probability of failure such that at most Γi facilities ser-3
vicing the demand point i ∈ I can individually observe worst-case failure probability. Demand4
point i ∈ I is considered covered only if the left-hand side of equation (14) is less than (1−α).5
Generally, incorporating robustness into a problem imparts conservatism by realizing worst-case6
objective value subject to certain criteria (9, 37). This leads to the robustness sub-problem being7
in conflict with the overall objective. Here, worst-case realizations of failure probability in equa-8
tion (14) reduce the chance of the demand point i being covered, and while the overall objective9
(13) want to increase the chances of demand point i being covered. In other words, the current10
formulation is a bilevel optimization problem which cannot be solved directly using MIP solvers.11
Dualizing the robustness sub-problem would overcome this issue and align both objectives cor-12
rectly, and yield a single level mixed-integer linear problem. Equations (15)-(21) have the same13
meaning as equations (5)-(11). Taking the logarithm of (14) yields:14

max
{U⊆Si,|U |≤Γi}

[
∑
j∈U

log(p̄t
i j + p̂t

i j) · yt
j + ∑

j∈Si\U
log(p̄t

i j) · yt
j

]
≤ log(1−α) · xi ∀ i ∈ I, t ∈ T (22)

Let, ŵt
i j, wt

i j, and β represent log(p̄t
i j + p̂t

i j), log(p̄t
i j), and log(1−α), respectively. Note15

that ŵt
i j ≥ wt

i j. Rewriting ŵt
i j as wt

i j +(ŵt
i j −wt

i j), we re-write equation (22) as:16

∑
j∈Si

wt
i jy

t
j + max

{U⊆Si,|U |≤Γi}

[
∑
j∈U

(ŵt
i j −wt

i j) · yt
j

]
≤ βxi ∀ i ∈ I, t ∈ T (23)

The optimization problem described on the lhs of equation (23) can be written as:17
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For each i ∈ I, t ∈ T :
SPt

i : max
γ

∑
j∈Si

wt
i jy

t
j + ∑

j∈Si

(ŵt
i j −wt

i j)y
t
jγ

t
i j (24)

∑
j∈Si

γ
t
i j ≤ Γ

t
i (25)

γ
t
i j ∈ {0,1} ∀ j ∈ Si (26)

The constraint coefficient matrix of the above sub-problem is totally unimodular, and Γt
i1

are non-negative integer values. Therefore, γ t
i j can be linearized to the interval [0,1] without loss2

of optimality. Let, θ t
i and σ t

i j be the dual variables associated with equations (25) and the upper3
bound of equation (26), respectively. Taking the dual of the formulation represented by equations4
(24)-(26), yields:5

For each i ∈ I, t ∈ T :
SPDt

i : min
σ ,θ

∑
j∈Si

wt
i jy

t
j + ∑

j∈Si

σ
t
i j +Γ

t
iθ

t
i (27)

σ
t
i j +θ

t
i ≥ (ŵt

i j −wt
i j)y j ∀ j ∈ Si (28)

σ
t
i j ≥ 0 ∀ j ∈ Si (29)

θ
t
i ≥ 0 (30)

Strong duality, along with the totally unimodular property, ensures that problems SPDt
i6

(equations (27)-(30)) and SPt
i (equations (24)-(26)), and consequently also the lhs of equation (14),7

are equivalent. Incorporating SPDt
i in the equation (23), updates the robust formulation (equations8

(13), (15)-(21), (23)) to:9
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max
x,y,z,σ ,θ

∑
i∈I

cixi (31)

∑
j∈Si

wt
i jy

t
j + ∑

j∈Si

σ
t
i j +Γ

t
iθ

t
i ≤ βxi ∀ i ∈ I, t ∈ T (32)

σ
t
i j +θ

t
i ≥ (ŵt

i j −wt
i j)y

t
j ∀ j ∈ Si, i ∈ I, t ∈ T (33)

∑
j∈J

yt
j ≤ q ∀ t ∈ T (34)

∑
t∈T\{1}

∑
j∈J

∑
k∈J

f t
jkzt

jk ≤ B (35)

∑
k∈J

zt
jk = yt−1

j ∀ j ∈ J, t ∈ T\{1} (36)

∑
j∈J

zt
jk = yt

k ∀ k ∈ J, t ∈ T\{1} (37)

xi ∈ {0,1} ∀ i ∈ I (38)
yt

j ∈ {0,1} ∀ j ∈ J, t ∈ T (39)

zt
jk ∈ {0,1} ∀ j,k ∈ J, t ∈ T\{1} (40)

σ
t
i j ≥ 0 ∀ i ∈ I, j ∈ J, t ∈ T (41)

θ
t
i ≥ 0 ∀ i ∈ I, t ∈ T (42)

The above formulation is referred to as the robust maximum coverage facility location problem1
considering coverage reliability, abbreviated as MP-R. MP-R is a mixed-integer linear program2
and can be solved using open-source or commercially-available MIP solvers. For cases when |T |3
is large, the computational times using a MIP solver could be prohibitively large. The authors rec-4
ommend decomposition-based methodologies for such cases. For example, applying Lagrangian5
relaxation to equations (32) and (33) decomposes MP-R into four sub-problems, of which three6
can be trivially solved. The development of computationally-efficient heuristics is left as a future7
research endeavor.8

COMPUTATIONAL ANALYSIS9
This section first describes the experimental setting of the case study conducted in Portland,10

OR metropolitan area. Later, three types of analysis are conducted: computational performance,11
the evaluating the value of considering robustness and multiple periods using a Monte Carlo sim-12
ulation scheme, and finally, incorporating equity in decision-making.13

The feasibility of using UAVs or drones for delivering defibrillators to demand points in14
the Portland, OR metropolitan area is evaluated here. The Portland Metro service area consists15
of 122 ZIP Code Tabulation Areas (ZCTA) which act as demand points, and 104 community cen-16
ters which act as potential launch sites as detailed in Chauhan et al. (22) and shown in Figure17
1. We evaluate drones against two service standards: the National Fire Protection Association’s18
emergency response standard of providing coverage reliability of 90% within in a response time19
of 4 minutes (1), abbreviated as SS1; and, the 1997 US Emergency Medical Services Act service20
response standard of providing coverage reliability of 95% within a response time of 10 minutes21
(2), abbreviated as SS2. Two service standards are selected to evaluate the effect of increasing22
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response time on system performance and the value of data disaggregation using multiple time1
periods. All drones are equipped with an AED which weighs 1.5 kg each (38). A major factor2
leading to uncertainty in drone response times is wind speed and direction. The calculation of3
bounds of probability of failure (lower bound: p_best; upper bound: p_worst) for delivering from4
a launch site to a demand point is carried out using procedure described in Algorithm 1, similar5
to (8), with sample size n = 10,000. The upper bound of probability of failure (p_worst) is con-6
sidered as worst-case probability ( p̄+ p̂). The nominal probability of failure (p̄) is an average of7
bounds of variation weighted according to the distribution of wind directions.8

FIGURE 1: Locations of demand points and facility locations in Portland Metro Area

A demand point is considered accessible by a launch site if the following two conditions9
are met. First, the amount of battery expended to go to the demand point and come back is less10
than the total available battery in the nominal scenario (calculated using the formula provided in11
(39)). The total battery capacity of the drone is divided in two parts: total available battery and12
battery safety factor. As in Chauhan et al. (22), we assume that drones ignore obstacles in urban13
landscape and travel over Euclidean distances, and that the energy consumed in VTOL operations14
are accommodated in battery safety factor. Second, the time required to reach the demand point in15
the most favorable wind direction and speed is less than the provided response time. The coverage16
importance metric is dependent on the normalized population of the demand point. The ZCTA17
population estimates for the demand points were adopted from 2017 American Community Survey18
5-year estimates (40).19

The summary of parameter specifications is provided below (8, 39).20
• Maximum available battery: 777 Wh21
• Battery Safety Factor: 20% of maximum available battery (Total available battery =22

maximum available battery − battery safety factor = 621.6 Wh)23
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• Sum of drone tare and battery mass: 10.1 kg1
• Lift-to-drag ratio: 2.84452
• Total power transfer efficiency: 0.663
• Nominal travel speed of drone: 20 meters per second (mps)4
• Maximum number of drones serving demand point i in time period t that can achieve5

worst-case probability of failure (Γt
i): 16

• ci = Normalized population of demand point i=
⌈

100×population of demand point i
maximum population of demand points

⌉
7

• Wind speed and direction distributions (see Figure 2) are available openly at8
https://github.com/drc1807/RMP-MCFLP-CR9

• Maximum possible wind speed: 68 miles per hour (30.3987 mps)10
• The planning period is one year. In Portland, the wind direction is primarily in the NW11

direction in the summer months (April through September). Whereas, in winter months12
(October through March), the wind primarily flows in the ESE direction (see Figure 2).13
We investigate the value of using a multi-period formulation with T = {Summer, Winter}14
over a single-period formulation with T = {Whole Year}.15

where ⌈u⌉ represents the ceiling function, i.e. the least integer greater than or equal to u. The16
model coverage (in %) is given as:17

Model Coverage =
Objective Value of Model

∑
i∈I

ci
×100 (43)

Algorithm 1 Calculating bounds of probability of failure
Input sample size n, wind speed and direction distributions for each time period t ∈ T , maximum
possible wind speed (v_wind_max), probability distribution of wind directions, response time
(τ), drone travel speed (v_drone), and distance (dist_act) and delivery angle from facility j to
demand point i.
Calculate wt[i, j, t] which is the probability that the wind direction is not aligned with the delivery
direction (i.e. difference is greater than 90◦) from facility j to demand point i in time period t
using the input information.
for t ∈ T do

Generate windspeeds[t], an array of size n, following a lognormal distribution with given
input parameters and a maximum value of v_wind_max.
dist_best = (v_drone+windspeeds[t]) · τ
dist_worst = (v_drone−windspeeds[t]) · τ
for i ∈ I do

for j ∈ J do
p_best[i, j, t] = max{length(where(dist_best < dist_act[i, j])), 1}/n
p_worst[i, j, t] = max{length(where(dist_worst < dist_act[i, j])), 1}/n
p_nominal[i, j, t] = (1−wt[i, j, t]) · p_best[i, j, t]+wt[i, j, t] · p_worst[i, j, t]

end for
end for

end for

The cost of shifting a facility located at j ∈ J in time period (t−1) to a location k ∈ J,k ̸= j18
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in time period t is considered to be 1, and 0, if the location does not change. Alternatively put,1
f t

j j = 0 ∀ j ∈ J, t ∈ T\{1}, and 1, otherwise. This limits the total number of facility location shifts2
to the facility shifting cost budget B. The default value of B used here is ⌊0.35q⌋, where q is the3
maximum number of drone launch sites that can be opened.4

The experiments are performed on four models: MP-R, MP-D, MP-R with T = {Whole Year}5
(abbreviated as SP-R), and MP-D with T = {Whole Year} (abbreviated as SP-D) considering a6
planning period of a whole year. Models are solved using Gurobi (41) in Python interface on a7
Windows 10 desktop with Intel i7-7700K processor and CPU specifications of 3.6 GHz, 4 cores,8
8 logical processors, and 32 GB of RAM. Experiments to evaluate the computational efficiency9
with an increasing number of drone launch sites (q) are conducted, followed by the evaluation10
of the value added by robustness and granularity of information (through multiple time periods).11
Additionally, the effect of adding equity in decision-making is explored.12

(a) Summer (b) Winter

FIGURE 2: Wind direction distribution in Portland, OR

Computational Efficiency13
Prohibitive computational times can often be a barrier to model adoption in real life. In our case,14
the planning period is fairly large (a whole year), and therefore, no computational time limit was15
adopted for Gurobi. All the four models, for both service standards and given default values of16
parameters, converged in less than 2 hours for a range of q values, indicating that the development17
of time-efficient heuristics was not required. The model coverage values with their computational18
times are provided in Table 1.19

The effect of adding additional time periods is found to be more profound than the effect of20
adding robustness to the formulation. On average, for SS1, adding robustness increases computa-21
tional time by 5.2 times, whereas adding additional time-period increases computational times by22
37.0 times. For SS2, these values are 24.5 times and 49.5 times, respectively. The primary reason23
behind this is the number of constraints added to the model. A multi-period formulation requires24
the facility transfer variables z which adds 2 · |J| · |T\{1}| facility matching equality constraints25
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along with a facility relocation budget constraint. Additionally, |T |−1 simultaneous coverage re-1
liability constraints are also added which further deteriorates computational performance. On the2
other hand, adding robustness adds more variables and constraints to the model, but the constraints3
are computationally simpler. The accessibility matrix A is more sparse for the SS1 models than4
SS2 models, which leads to better computational performance.5

The addition of multiple periods to the formulation decreases the model coverage by a6
little amount (0.8% on average). This is because the satisfaction of multiple coverage reliability7
constraints is required for demand point coverage. As expected, adding robustness decreases the8
model coverage by a significant amount (4.9% on average) as a consequence of accounting for9
worst-case scenarios.10

TABLE 1: Computational Efficiency

Service
q

Model Coverage (%) Computational Time (sec)
Standard MP-R MP-D SP-R SP-D MP-R MP-D SP-R SP-D

SS1

3 12.57 15.76 12.9 15.76 32 6 2 1
6 24.37 27.41 24.64 28.19 109 15 3 1
9 33.52 37.93 34.62 38.8 416 17 3 1

12 41.9 47.02 42.64 48.36 444 33 2 1
15 49.28 53.9 49.37 55.6 44 23 2 1
20 55.45 62.31 55.21 62.99 49 8 2 1
25 59.92 67.19 59.09 67.4 44 4 2 1
30 62.28 68.36 62.1 68.56 5 4 1 1
35 62.28 68.5 62.28 68.71 2 1 1 1

SS2

3 35.37 44.85 39.09 46.31 5736 152 38 2
6 62.69 69.99 64.75 72.53 3937 152 64 1
9 75.8 82.18 77.26 83.02 1342 26 44 1

12 82.6 86.23 83.28 87.84 569 40 67 1
15 87.01 89.6 87.19 90.91 694 44 32 1
20 90.73 93.38 90.88 93.95 274 108 20 1
25 92.58 94.73 92.76 95.68 45 48 9 1
30 93.21 95.23 93.36 96.39 31 2 14 1
35 93.38 95.29 93.53 96.63 2 1 1 1

Note:
SS1 is providing 90% coverage reliability in a response time of 4 minutes
SS2 is providing 95% coverage reliability in a response time of 10 minutes

Value of developing multi-period formulation and adding robustness11
The value of using more information (through adding robustness and multiple time periods) in12
a model is evaluated in this section utilizing a Monte-Carlo simulation-based (MCS) framework.13
Generally, adding robustness to a formulation reduces the model coverage but should provide for14
better real-life performance, thereby reducing the gap between what is expected (model coverage)15
and what happens (simulated coverage). Similarly, having potentially different facility location16
layouts in different time periods should boost simulated coverage.17

An MCS framework is proposed to quantify the value of using additional information. In18
an MCS scenario s, the time period is ts, and n = 1000 values of wind directions and speeds are19
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randomly generated. In our case, an MCS scenario s can be thought of as a day of the year, and n1
is the number of wind speed and direction observations made throughout the day. Therefore, for2
multi-period formulations, ts = ‘Summer’ with probability 183/365 and ts = ‘Winter’ with proba-3
bility 182/365. For single-period formulations, ts = ‘Whole Year’ with probability 1. Depending on4
the value of ts, the wind speeds are generated as in Algorithm 1 and wind directions are chosen as5
per the distributions of the time period. These angles and speeds are combined with the originally6
projected delivery angles and nominal drone delivery speed to find effective drone speed. The ef-7
fective drone speeds are then utilized to determine the realizations of the probability of failure for8
the scenarios (p̃s).9

The solutions obtained from the robust and the deterministic formulations for the variable10
y are denoted by y∗. The new values for the variable x (denoted by x̃) and the actual coverage are11
calculated using y∗ and p̃s. For multi-period formulation, the facility location layout is determined12
by the simulation time period ts. A total of 100 MCS scenarios are evaluated and the algorithm for13
the described MCS is detailed in Algorithm 2.14

Algorithm 2 Monte Carlo simulation for evaluating coverage
Input number of MCS scenarios (MCS_s), number of wind speed and direction observations per
scenario (n), probability distribution of time periods t ∈ T (π), other model input parameters
Solve the model and determine y∗, the optimum values of decision variable y
Determine Ji, the set of open and accessible facilities for each demand point i ∈ I
s = 1
simulated_coverage = zeros(MCS_s)
while s ≤ MCS_s do

Randomly select simulation time period ts, such that ts = t with probability πt
Generate windspeeds[ts], an array of n elements, as in Algorithm 1
Generate windangles[ts], an array of n elements, based on the probability distribution in time
period ts

Determine effective delivery angles and effective drone speeds using vector algebra.
For each i, j combination, calculate dist_covs

i j, an array of length n describing distances cov-
ered by drones using effective delivery angles and effective drone speeds.
For each i, j combination, calculate p̃s

i j = length(where(dist_covs
i j < dist_act[i, j]))/n

w̃s = log(p̃s)
x̃s = zeros(length(I))
for i ∈ I do

if ∑
j∈Ji

w̃s
i jy

∗
j ≤ β then

x̃s
i = 1

end if
end for
simulated_coverage[s] =

∑i∈I cix̃s
i

∑i∈I ci
×100

s + = 1
end while



Chauhan, Unnikrishnan, Figliozzi, and Boyles 16

The simulated coverage values for all four models with default values are presented in1
Table 2. For SS1 (providing 90% coverage reliability in 4 minutes), extending to multi-period2
formulation improves average simulated coverage by 0.29 times on average for robust models, and3
by 0.41 times on average for deterministic models. Whereas for SS2 (providing 95% coverage4
reliability in 10 minutes), the improvements in average simulated coverage are by 0.02 times for5
robust models, and by 0.24 times for deterministic models. The improvements are higher when6
the response time is short because the importance of choosing the right set of facility locations7
increases. An explanatory factor would be that multi-period formulation allows for more flexibility8
by allowing changing facility locations for different periods. The extent of facility relocation is9
depicted in Figure 3. The results reveal that at least 40% of the relocation budget is used when10
15 or more facilities are opened. To further investigate the role of facility relocation, consider the11
visualization of facility location by season for MP-R SS2 model with q = 15, as an example, in12
Figure 4. Based on the wind patterns in Portland (see Figure 2), we expect the facilities in the13
summer season to provide better coverage reliability to demand locations in the west and/or north14
directions of them. As a result, the facility locations should be skewed a little bit towards the eastern15
and/or southern region of the operational area. Similarly, the locations in the winter season should16
be skewed a little bit towards the western and/or northern region. For our considered example,17
we indeed note that the centroid of facility locations opened in summer only is to the east of the18
centroid of facility locations opened in winter only, which is in agreement with our hypothesis.19

(a) SS1 (b) SS2

FIGURE 3: Facility relocations in multi-period formulation (B represents maximum allowable
facility relocations)



Chauhan, Unnikrishnan, Figliozzi, and Boyles 17

TABLE 2: Value of extending to multi-period formulation and adding robustness

Model q
SS1 SS2

Model Simulated Cov. (%) Model Simulated Cov. (%)
Cov. (%) Min Ave Max Cov. (%) Min Ave Max

MP-R

3 12.57 5.96 9.28 11.11 35.37 21.42 26.47 32.6
6 24.37 13.89 16.59 19.55 62.69 36.59 46.01 56.38
9 33.52 16.3 22.3 26.97 75.8 56.08 63.44 67.07
12 41.9 24.52 29.96 35.67 82.6 66.18 72.25 79.38
15 49.28 32.39 37.82 44.85 87.01 72.77 75.36 79.02
20 55.45 35.58 45.26 53.67 90.73 72.62 78.47 85.97
25 59.92 43 48.71 54.68 92.58 77.26 81.81 89.09
30 62.28 48.99 52.58 56.05 93.21 77.98 83.21 88.86
35 62.28 50.92 53.26 56.53 93.38 86.41 90.91 92.7

MP-D

3 15.76 5.81 8.56 10.25 44.85 23.27 24.75 28.07
6 27.41 7.9 14.03 19.43 69.99 14.96 31.01 45.74
9 37.93 14.66 21.79 28.22 82.18 45.05 51.95 60.25
12 47.02 19.22 27.83 35.43 86.23 47.44 55.65 66.15
15 53.9 24.76 32.04 39.81 89.6 41.87 51.32 64.99
20 62.31 25.3 35.16 44.31 93.38 50.48 60.82 71.48
25 67.19 34.45 40.98 47.5 94.73 68.33 74.49 78.55
30 68.36 37.22 46.33 55.69 95.23 67.04 77.36 84.77
35 68.5 40.88 48.01 58.19 95.29 77.83 83.27 90.67

SP-R

3 12.9 1.1 3.54 7.87 39.09 19.34 28.89 32.93
6 24.64 10.37 11.96 18.06 64.75 36.92 42.25 52.18
9 34.62 14.36 17.66 24.67 77.26 52.89 62.33 68.47
12 42.64 23.81 28.73 34.92 83.28 58.88 65.28 74.91
15 49.37 26.91 34.26 43 87.19 68.98 77.46 83.37
20 55.21 29.05 40.63 50.63 90.88 70.98 78.71 84.86
25 59.09 40.05 45.95 53.93 92.76 77.18 80.4 82.93
30 62.1 42.01 50.33 57.33 93.36 76.28 81.65 89.06
35 62.28 46.84 52.95 58.94 93.53 87.34 89.74 91.87

SP-D

3 15.76 3.93 4.53 6.23 46.31 18.98 22.57 26.82
6 28.19 3.72 6.44 9.92 72.53 22.56 29.9 37.4
9 38.8 7 11.68 16.78 83.02 32.06 41.54 47.94
12 48.36 14.75 22.49 31.35 87.84 30.78 38.76 44.73
15 55.6 19.19 25.42 32.75 90.91 29.14 38.72 46.28
20 62.99 21.22 29.61 38.53 93.95 30.13 40.03 48.81
25 67.4 32.03 40.82 47.94 95.68 54.02 57.29 63.29
30 68.56 33.97 42.47 50.83 96.39 61.29 67.56 74.76
35 68.71 39.6 48.4 54.08 96.63 72.82 77.38 80.39

Note:
Cov. = Coverage
SS1 is providing 90% coverage reliability in a response time of 4 minutes
SS2 is providing 95% coverage reliability in a response time of 10 minutes
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FIGURE 4: Facility relocation and model coverage for MP-R (SS2; q = 15)

For SS1, the improvements in average simulated coverage achieved by adding robustness1
to multi-period and single-period formulations are by 0.14 times and 0.28 times, respectively. For2
SS2, the improvements in average simulated coverage are by 0.23 times and 0.51 times for multi-3
period and single-period formulations, respectively. The improvement by adding robustness to a4
multi-period formulation is lower as more detailed information has been accounted which leads5
to lower variability in data in each time period. Similarly, the variability in distance traveled by6
drone would increase with an increase in response time which leads to greater variability in failure7
probabilities. Therefore, the benefit obtained by adding robustness is greater when response times8
are longer. Overall, going from a single-period deterministic (SP-D) formulation to a multi-period9
robust (MP-R) formulation leads to an average simulated coverage improvement of 0.60 times10
and 0.54 times for SS1 and SS2, respectively. Figures 5 and 6 show model solution and an MCS11
simulation solution (having simulated coverage close to the average value) for SP-D and MP-R,12
respectively, for SS2 and q = 15. Accommodating uncertainty in decision-making leads to the13
consolidation of facilities towards the central core of the Portland Metro Area. Shorter travel14
distances lead to better coverage reliability in in the MP-R model.15
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FIGURE 5: Opened Facility Locations and Demand Point Coverage for SP-D (SS2; q = 15)

FIGURE 6: Opened Facility Locations and Demand Point Coverage for MP-R (SS2; q = 15;
Γt

i = 1)
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Figure 7 shows the ratio of average simulated coverage to the model coverage (ASC-to-1
MC). The closer the values to 1 the better, as it indicates that the expected performance is close to2
real-life simulated scenarios. Accounting for robustness and/or extending to multi-period formu-3
lation leads to better outcomes on this metric. The ratio has a generally positive correlation with4
increasing values of q. This is expected, as with more opened facilities, the access to a demand5
point improves, and therefore, the coverage reliability also improves.6

(a) SS1 (b) SS2

FIGURE 7: Ratio of average simulated coverage to model coverage

Table 3 shows the sensitivity of increasing conservatism on the coverage. For SS1, in-7
creasing robustness by increasing Γt

i from 1 to 2 does not change the average simulated coverage8
much (-0.01 times). For SS2, this results in slightly better average simulated coverage (0.04 times).9
Computational times on the other hand typically increased with an increase in the budget of ro-10
bustness. However, all models still converged in 8 hours, which is still not much considering a11
planning period of one year. Figure 8 shows the variation of computational times with the budget12
of robustness.13

(a) SS1 (b) SS2

FIGURE 8: Computational times for varying values of Γt
i in multi-period formulation
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TABLE 3: Sensitivity to increasing conservatism in decision-making for multi-period
formulation

Γt
i q

SS1 SS2
Model Simulated Cov. (%) Model Simulated Cov. (%)

Cov. (%) Min Ave Max Cov. (%) Min Ave Max

0

3 15.76 5.81 8.56 10.25 44.85 23.27 24.75 28.07
6 27.41 7.90 14.03 19.43 69.99 14.96 31.01 45.74
9 37.93 14.66 21.79 28.22 82.18 45.05 51.95 60.25

12 47.02 19.22 27.83 35.43 86.23 47.44 55.65 66.15
15 53.90 24.76 32.04 39.81 89.60 41.87 51.32 64.99
20 62.31 25.30 35.16 44.31 93.38 50.48 60.82 71.48
25 67.19 34.45 40.98 47.50 94.73 68.33 74.49 78.55
30 68.36 37.22 46.33 55.69 95.23 67.04 77.36 84.77
35 68.50 40.88 48.01 58.19 95.29 77.83 83.27 90.67

1

3 12.57 5.96 9.28 11.11 35.37 21.42 26.47 32.60
6 24.37 13.89 16.59 19.55 62.69 36.59 46.01 56.38
9 33.52 16.30 22.30 26.97 75.80 56.08 63.44 67.07

12 41.90 24.52 29.96 35.67 82.60 66.18 72.25 79.38
15 49.28 32.39 37.82 44.85 87.01 72.77 75.36 79.02
20 55.45 35.58 45.26 53.67 90.73 72.62 78.47 85.97
25 59.92 43.00 48.71 54.68 92.58 77.26 81.81 89.09
30 62.28 48.99 52.58 56.05 93.21 77.98 83.21 88.86
35 62.28 50.92 53.26 56.53 93.38 86.41 90.91 92.70

2

3 12.57 5.96 9.28 11.11 33.85 23.96 25.98 31.62
6 22.35 8.61 15.13 20.89 59.92 41.21 48.19 55.27
9 30.99 16.12 21.36 25.74 73.60 57.54 63.83 69.49

12 39.18 26.88 29.39 32.48 80.51 73.48 76.81 79.35
15 45.65 32.99 38.29 45.11 85.40 75.27 79.28 82.39
20 52.23 39.72 46.24 52.62 89.81 81.85 85.18 87.84
25 56.59 43.12 49.16 53.87 92.01 82.54 86.01 86.86
30 60.07 48.72 51.70 55.13 93.00 85.04 88.45 91.00
35 61.92 51.37 54.68 58.46 93.38 87.19 89.53 90.20

Significant improvements in range of variation in simulated coverage as well as in the ratio1
ASC-to-MC were found, especially for larger values of q. These results are as expected as ac-2
counting for more amount of uncertainty should lead to reduced model coverage (due to increased3
conservatism) and less variability in results (due to reduced probability of constraint violation).4
Therefore, finding a trade-off by changing the budget of robustness (Γt

i) can help improve the5
simulated coverage values, and reduce its gap from the model coverage. For example, Figure 96
shows variation in model and average simulated coverage with increasing value of Γt

i for MP-R7
SS1 model with q = 35. It can be noticed that the gap between the model and average simulated8
coverage is the minimum when Γt

i = 4.9
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FIGURE 9: Model and Average Simulated Coverage with increasing values of budget of
robustness Γt

i (MP-R SS1 with q = 35)

Figure 10 shows model solution and an MCS simulation solution (having simulated cover-1
age close to the average value) for MP-R with Γt

i = 2 (SS2 and q = 15). Increasing conservatism2
further consolidates facilities around the central core compared to the case when Γt

i = 1 in MP-R,3
leading to better outcomes in terms of simulated coverage.4

FIGURE 10: Opened Facility Locations and Demand Point Coverage for MP-R (SS2; q = 15;
Γt

i = 2)

Incorporating equity in decision-making5
For the previous sections, the coverage importance was just based on the normalized population6
of the demand points. However, it is possible to incorporate equity-related weights to determine7
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coverage importance. For our case study, it can be considered that the facility locations that are not1
opened still have a defibrillator available onsite, just that they can not be transported. Therefore,2
distance to the nearest potential facility location could be considered as a metric of equity, as in3
(42). The larger the minimum distance to a potential facility location from a demand point, the less4
equitable it is, and the more coverage importance it should get. The normalized inequity metric is5
calculated as:6

• Distance to closest possible drone launch site from demand point i: mindist(i)7

• Normalized inequity metric of demand point i =
⌈

100×mindist(i)
maximum value of mindist(i)

⌉
8

For calculating the coverage importance metric, 50% weightage is assumed for both, the9
normalized population parameter, and the normalized inequity metric. Other parameters are set10
to their default values. The summary of results is shown in Figure 11. The simulated coverage11
values when equity is included are much lower than the values when equity is not included. When12
equity is included, the demand points far away from potential facility locations are given more13
importance, but, most of them can not even be accessed in the target response times (i.e. |Si| is14
a very small number). The spatial distribution of facilities and the demand coverage when equity15
is included is shown in figure 12 for the MP-R SS2 model with q = 15. It can be noticed that16
the figures 6 and 12 are very similar, covering almost the same demand points and most facilities17
opened at the same spot. A primary reason for this is the distribution of facility locations and18
demand points. The demand points outside the more densely populated central core are located19
too far away from the potential facility locations. For the response times used in our case study,20
it does not make a practical difference if equity is included or not. However, for longer response21
times, equity inclusion could be beneficial (longer response times lead to larger values of |Si|,22
which make it easier to meet service reliability target for all demand points).23

Aringhieri et al. (17) state that equity is still one of the most challenging concerns for24
emergency medical services. More comprehensive methodologies that explicitly address equity25
concerns should be explored. Previous works in facility location have addressed equity by using26
metrics based on distance, exclusion, and conditional value-at-risk in model formulation (43).27

(a) SS1 (b) SS2

FIGURE 11: Effect of incorporating equity on simulated coverage
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FIGURE 12: Opened Facility Locations and Demand Point Coverage for MP-R with equity
inclusion (SS2; q = 15; Γt

i = 1)

CONCLUSION1
This paper proposes a robust multi-period maximum covering facility location problem2

with coverage reliability (MP-R). MP-R is a generalized variant of the robust uncertain set covering3
the problem proposed by Lutter et al. (2). The problem incorporates uncertainty in travel times4
via chance constraints and uses robust optimization using polyhedral uncertainty sets to tackle5
uncertainty. More conservative solutions can be obtained by increasing the value of parameter Γt

i.6
A case study of the use of unmanned aerial vehicles (UAVs) or drones to deliver defibrilla-7

tors in the Portland Metro Area is proposed. The uncertainty in drone travel times is a product of8
natural variability in wind speeds and directions. In Portland, the wind characteristics (speed and9
direction) change drastically between the summer months (April to September) and winter months10
(October to March). Therefore, multiple periods are thought of as a discretization of recurring11
planning intervals (here, one whole year). We evaluate the effect of extending from a single period12
formulation (a whole year) to a multi-period formulation (two different time periods: summer and13
winter).14

The value of adding robustness and extending to a multi-period formulation was evalu-15
ated utilizing a novel Monte-Carlo simulation scheme. The results highlighted that utilizing a16
multi-period formulation was particularly beneficial when response time thresholds were short or17
when uncertainty is not accounted for in the model. On the other hand, adding robustness to the18
deterministic models was more beneficial for single-period formulations or when response time19
thresholds were longer. Combining these different strengths led to an increase in average simu-20
lated coverage of MP-R by 57% compared to the deterministic single-period formulation (SP-D).21
Geographically, accounting for uncertainty (in MP-R) consolidates the facility locations towards22
the dense central core of the metro area compared to more spread out locations in SP-D. A more23
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compact facility layout in MP-R improves the level of service in the central core of the metro area1
leading to superior simulated coverage.2

For the MP-R model, a sensitivity analysis on the facility relocation cost budget showed3
very minor changes in model coverage as well as simulated coverage values. This implies that4
simply providing the model with more detailed information by discretizing over the planning pe-5
riod (even when facility relocation is not allowed) is helpful rather than providing the average6
information of the planning period. From our case study, when the response times are shorter, we7
recommend that an existing SP-D model should be extended to MP-R (i.e., incorporating uncer-8
tainty and discretizing to multiple periods). When the response times are longer, only incorporating9
uncertainty in the SP-D model is sufficient and multiple periods are not necessary.10

The presented formulation can be used to analyze equity gaps and the need for additional11
resources. Analysis of distance-based equity inclusion in the objective yielded poorer coverage12
values. Equity inclusion increases the coverage importance of demand points further away from13
potential drone launch sites, but response times used in our study were too short for these points14
to be covered reliably. Geographically, equity inclusion did not affect the facility locations and15
demand point coverage significantly. However, for longer response times than used in this study,16
equity inclusion could be beneficial.17

Even with the MP-R model providing the best performance, a significant gap exists between18
model coverage and the simulated coverage values. A major contributing factor is the assumption19
of independence among the failure probabilities. While some of the gap can be addressed by ad-20
justing the budget of uncertainty and increasing the number of opened facilities, there is still a21
need to account for correlation in failure probabilities. Additionally, the study assumed that all22
the accessible open facilities respond to the demand while not considering the possible unavail-23
ability of a drone at a located launch site. Future studies should also focus on including capacity24
considerations at located launch sites.25
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