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Abstract 

The West Antarctic Ice Sheet is drained primarily by five major ice streams, 

which together control the volume of ice discharged into the ocean across the 

grounding line. The grounding line of Kamb Ice Stream (KIS) is unusual because the 

ice stream upstream of it is stagnant. Here, a set of surface features--shore-parallel, 

long wavelength, low amplitude undulations--found only at that grounding line are 

examined and found to be "pinch and swell" features formed by an instability in the 

viscous deformation of the ice.  When a relatively competent layer is surrounded by 

lower strength materials, particular wavelength features within the layer may be 

amplified under certain layer thickness and strain rate conditions. The undulations 

at KIS grounding line are possible due to the relatively large strain rates and 

particular ice thickness at that location.  

Several data sets are used to characterize the surface features. High 

resolution surface profiles are created using kinematic GPS carried on board a sled 

that was used to tow ice penetrating radar equipment. The radar data are used to 

examine the relationship between surface shape and basal crevasses. Additional 

surface profiles are created using ICESat laser altimeter observations. Repeat GPS 

surveys of a strain grid across the grounding line yields strain rate information.  

Analysis of repeat observations over tidal cycles and multi-day intervals shows 

that the features are not standing or traveling waves. Together, these observations 
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are then used to evaluate the contributions of elastic and viscous deformation of the 

ice in creating the grounding line undulations. 
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1  Introduction 

Marine ice sheets are defined by three characteristics: the subglacial bed is 

below sea level, the bed is in some locations mantled by unconsolidated marine clay, 

and the ice is in contact with the ocean at its downstream margin (Figure 1) (Alley 

and Bindschadler, 2001; Mercer, 1978; Schoof, 2007; Weertman, 1974). The ice 

mass accumulates as snow falls on the ice sheet surface and flows from the interior 

of the ice sheet towards the margins, where ice is lost to iceberg calving, melting, 

and sublimation. Where the bed consists of marine clay, the low strength and high 

pore water pressure of the subglacial material (till) provide little resistance and as a 

result ice moves rapidly downstream towards the ocean in features called ice 

streams (Kamb, 2001). Ice streams are separated by slow-flowing interstream 

ridges, where the bed is relatively high and liquid water is not abundant at the 

ice/bed interface (Whillans et al., 2001). Along much of the coastal margin, ice goes 

afloat to form embayment-filling ice shelves. The transition between grounded 

inland ice and the floating shelf is called the grounding line, or grounding zone. At 

some locations, the transition from the grounded to floating ice is distinct forming a 

grounding line. In other places, the transition occurs over a plain that is usually a 

few km’s wide and considered a grounding zone (Fricker and Padman, 2006). Ice in 

the grounding zone is close to floating allowing it to fluctuate between grounded 

and floating with changes to sea level such as tidal fluctuations. 
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The location of the grounding line or zone depends on both the flow of the ice 

sheet and the ice shelf into which it discharges. When ice begins to float at an ice 

stream grounding line, the resistive stress at its base goes from small to zero, the 

rate at which the ice flows increases, and the local thinning rate increases relative to 

the thinning rate upstream. If the thinning rate increases enough to cause ice 

upstream of the grounding line to float, the upstream ice will speed up and thin as 

well. Where the bed deepens toward the interior, the retreat may continue for some 

distance upstream. The role of the ice shelf is to modify the stress balance at the 

grounding line, an effect that depends on the geometry of the shelf itself (Schoof, 

2007). If the geometry of the shelf changes (perhaps due to a change in melting or 

iceberg calving), so too will the location of the grounding line.  

Ice at the grounding line is influenced by the ocean. The surface height of the 

ice shelf changes continuously with the tide, which in turn changes the slope of the 

grounding line transition and the angle of flexure. This interaction with the ocean 

causes continuous perturbations to the stress field within the ice as the ice shelf 

moves through the tide cycle.  These perturbations can be seen 100’s of ice 

Figure 1:  Cartoon of transition of grounded to floating ice.  
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thicknesses upstream or downstream, out onto the floating ice shelf as a seismic 

wave (Anandakrishnan and Alley, 1997).  

1.1 The West Antarctic Ice-sheet and Kamb Ice Stream 

The West Antarctic Ice-sheet (WAIS) is a marine ice sheet.  Most of the mass 

flux out of the Ross Sea sector of the West Antarctic Ice-sheet (WAIS) discharges 

through five relatively fast flowing ice streams (Figure 2) (Bindschadler et al., 2001; 

Shabtaie and Bentley, 1987). Kamb Ice Stream (KIS) is one of the major outlets from 

the WAIS into the Ross Ice Shelf (RIS) (Figure 2). The ice stream is bounded by Siple 

Dome (SD) to the north and Engelhart Ridge (ER) to the south. KIS is different from 

other ice streams draining into the WAIS due to its stagnate nature which leads to 

unusual flows features downstream of the grounding line  

KIS ceased its rapid flow about 150 years ago, but, prior to that time, 

experienced flow speeds similar to adjacent ice streams (Catania et al., 2006; Ng and 

Conway, 2004; Retzlaff and Bentley, 1993). The kinematic state at KIS grounding 

line is unlike that of any of the other Ross ice streams. In all cases, the basal 

boundary condition changes abruptly where the ice goes afloat (basal traction is 

non-zero upstream and zero downstream of the groundling line) but at KIS, the 

basal traction upstream of the grounding line is higher than at other locations 

causing the ice stream to flow very slowly (about 3 ma-1). At other ice stream 

grounding lines, the basal traction is smaller allowing the ice to flow across the 
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grounding line at faster speeds; speeds are on average 400 ma-1 (Joughin et al., 

2002). The rate of stretching occurring across the grounding line at KIS is greater 

than at other ice streams due to the increase in speed as the ice goes afloat.  
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A set of shore-parallel, long wavelength surface undulations are observed in 

visible-band imagery of the ice shelf surface downstream of the grounding line at 

KIS (Figure 3) These features are not observed at the mouths of the other ice 

streams (Figure 3). The surface undulations have a typical wavelength of ~1.3 km, 

amplitudes of about 0.5 to 3.0 m, and they repeat only a handful of times before 

disappearing. Basal crevasses are observed in association with some surface swales 

but the relationship between the two is not regular. Undulations of this type are 

seen nowhere else along the coast.  

The goal of the present work is to investigate ice mechanics associated with 

the creation of the surface undulations observed at the KIS grounding line. Classical 

models of deformation occurring at the grounding line use elastic processes to 

describe the transition from grounded to floating ice (Holdsworth, 1969; Vaughan, 

1995; Sayag and Worster, 2011). In recent years there has been some debate about 

the necessity of using viscoelastic processes instead to describe this type of 

deformation (Reeh et al., 2003; Schoof, 2007). Several methods have been 

developed modeling the ice at the grounding line transition as extensional gravity 

currents that produce similar surface profiles to the classical elastic models but may 

capture the material properties of the ice more effectively (Robison et al., 2010; 

Durand et al., 2009; Schoof, 2011). Since the surface undulations are unusual 

features, the KIS grounding line provides a unique setting to explore the 

deformation properties of the ice and determine if the deformation occurring at this 
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location is related to the elastic or viscous properties of the ice. The study site will 

be investigated using a combination of remote sensing, field based observations, and 

mathematical models. Theoretical tools used to develop and test hypotheses for the 

formation and persistence of these features include models of necking in viscous 

layers and bending in elastic plates.  
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2 Observations 

 The surface features investigated here were first observed in Moderate 

Resolution Imaging Spectro-radiometer (MODIS) images (Scambos et al., 2007) 

(Figure 3). Though these images provide a general idea of the geometry of the 

features, their coarse resolution (250 m) precludes detailed mapping of the features. 

Higher resolution data sets in the form of both satellite and field based observations, 

have been collected across the features in order to determine the geometry of the 

grounding line transition, the thickness of the ice, the structure of the ice below the 

surface, the velocity of the ice, and strain rates.  Examination of these data sets, as 

well as data collected across the neighboring WIS grounding line, provide a detailed 

description of the features and allow the process associated with their formation to 

be examined. 

2.1 Data sources 

The data sources and uses are summarized here. MODIS visible band imagery 

and the Mosaic of Antarctica (MOA) derived from single MODIS images are used to 

identify the locations of the undulations and the grounding line positions (Scambos 

et al., 2007). The resolution of MODIS imagery is 250 m and the error associated 

with digitizing the grounding line on MODIS imagery is 1 pixel. Higher resolution 

surface profiles are created using data collected from the Geoscience Laser 

Altimeter System (GLAS) on NASA’s Ice, Cloud, and Land Elevation Satellite (ICESat). 

Surface elevation is measured over 50-70 m diameter footprints every ~172 m with 
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an elevation precision of ~ 2 cm and an accuracy of ~ 14 cm (Brunt et al., 2010).  

Data used here is from release 28 with tide corrections included. Where individual 

tracks were unavailable, surface profiles were created using digital elevation model 

produced from a combination of ICESat laser elevation profiles and surface slopes 

derived from the MOA. Surface profiles have also been measured via GPS on-board 

sleds driven across the features in November of 2006 (Catania, 2011).  The resulting 

profiles are the highest resolution available with a data point collected ~ 5 m at a 15 

m accuracy (Garmin, 2008).  Continuous GPS was collected, with the Trimble 

5900/R7 equipment, at stations within the strain array over a period of six days 

during November of 2006.  Ice thickness information comes from the BEDMAP data 

set (Le Brocq et al., 2010).   

Arrays of survey marks (“strain grids”) were installed by Ginny Catania, Ken 

Cruikshank, and Christina Hulbe across the KIS and WIS grounding line transitions 

in November and December of 2006. The KIS array covered an area of 7 km across 

stream and 11 km in the downstream direction with 1 km spacing (Figure 4). The 

WIS array was arranged similarly with an area 4 km by 12 km with 1 km spacing; 

also oriented lengthwise along flow (Figure 4). Repeat ‘rapid static’ differential GPS 

surveys were completed in late 2006 and repeated one year later using Trimble 

5700/R7 equipment.  
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Base stations for the KIS grid were established each season at KA4, KF4, and 

KK4.  The positions of the base stations were determined by the Natural Resources 

Canada online Precise Point Positioning (PPP) service.  Continuous GPS was 

collected at the base stations and rover GPS units moved to the other locations 

within the grid observing the relative locations of the other poles. At each grid point 

the rover would stop for 15 to 20 minutes. The network resulting from the vectors 

between grid points and base stations are used to determine the relative positions 

of all points. The absolute positions are then determined using a network 

adjustment completed by Dr. Ken Cruikshank using the “TGO”, 1.6 Trimble 

Geomatics Office, software (Cruikshank, 2012) Positioning errors for the base 

stations KA4 and KF4 in 2006 and 2007 are 0.003 seconds N-S, 0.004 seconds E-W, 

and 0.014 m in the vertical. Positioning error for base station KK4 in 2006 and 2007 

is 0.005 seconds N-S, 0.007 seconds E-W, and .022 m in the vertical.   

Figure 4: Pole locations for KIS (a) and WIS (b) GPS grids during November and 
December  of  2006.  
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Base stations were established for the WIS grid at WA2, WF2, and WL2 in 

November 2006 and November 2007.  Collection methods were the same as 

described above for the KIS grid. Positioning errors for 2006 range from 0.003 to 

0.004 m in the N-S and E-W directions at all base stations. The vertical error is .012 

m to .017 m. In 2007, the vertical error ranges from .022 m to .036 m and .005 m to 

.008 m in the N-S and E-W. Some poles in the WIS grid sustained damage between 

2006 and 2007. In 2007, severe damage (bending or breakage) to poles WH1 and 

WH2 made the stations unusable. Moderate damage to poles WA1, WB1, WD1, WE1, 

WF3, and WE4 affects positioning errors at those stations. Points WC4, WD4, WE3, 

and WF1 were identified as having poor horizontal quality and therefore unusable 

(Cruikshank, 2012).  

Ground-based ice penetrating radar was used by Ginny Catania to image 

internal features across the grounding line and undulations during November and 

December of 2006.  Two resistively loaded 2 MHz dipole antennas were attached to 

sleds and spaced 100 m apart.  Samples were taken in the form of 2 kV pulses. The 

sleds were driven over the area along paths both perpendicular and parallel to the 

grounding line, collecting radar data and continuous GPS along surface profile. The 

method of collection was similar to that described by Catania et al. (2008). Data was 

filtered and processed by Catania and colleagues in the manner described by 

MacGregor et al. (2011).   
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2.2 Surface morphology  

The features studied here are shore-parallel, long wavelength surface 

undulations. Similar features are not observed at neighboring grounding lines 

(Figure 3). The surface features occur within 15 km of the grounding line, repeat 

only a handful of times (<10), and are not uniformly distributed across the mouth of 

KIS (Figure 5).  The KIS grounding line transition is distinct and has a slope of about 

40 m over an ~10 km range (Figure 6). Ice thicknesses, h, range from ~550 m in the 

south to ~650 m in the north (Le Brocq et al., 2010). 

Figure 5: Digitized surface undulations observed at the KIS grounding line overlain 
on stacked MODIS image (Scambos et al., 2007). The arrow marks the direction of 
ice flow. N and S refer to north and south directions.  
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Comparison of surface elevation profiles across the grounding line, parallel 

to the direction of ice flow and perpendicular to the local strikes of the undulations 

shows that the undulations do not have a uniform geometry (Figure 6). Undulations 

along the south of the grounding line (orange and red profiles in Figure 7), have 

relatively large amplitudes, A, of about 0.5 to 3.0 m and wavelengths, , of ~1.3 km.  

Undulations located to the north along the grounding line (the green and blue 

 Figure 6: Full length K2 kinematic GPS line (a) and Whillans kinematic GPS line 
(b) created using the high resolution GPS.  Profiles start upstream of the grounding 
lines and continue on to the Ross Ice Shelf along paths perpendicular to the 
grounding line.  K2 line extends across surface undulations.  Data for the WIS 
profile ends before it reaches 30 km.  
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profiles in Figure 7) have smaller amplitudes, 0 to 1 m. There may be fewer 

undulations on the right side of the mouth of KIS or the undulations may simply be 

smaller and more difficult to identify.   
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Figure 7: (previous page) a) – Surface elevation profiles along the KIS grounding line. 
Starting from the top KA1-KK1 kinematic GPS track, K2 kinematic GPS track, I3e 3030 
(2006) ICESat track, and I3j 3149 (2008) ICESat track. b) Ice thickness of KIS from 
BEDMAP (Le Brocq et al., 2010) c) Locations of surface elevation profiles plotted on a 
MODIS composite (Scambos et al., 2007). d) Surface elevation profiles along the WIS 
grounding line (400x vertical exaggeration). Profiles created using DEM data set.  e) 
Ice thickness of WIS from BEDMAP dataset (Le Brocq et al., 2010). f) Locations of 
surface elevation profiles plotted on the MOA (Scambos et al., 2007).  
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The grounding line transition at WIS is less distinct than at KIS and no 

repeated surface undulations are evident downstream of the grounding line (Figure 

8).  Instead, there is a gradual transition from fully grounded to fully floating ice (the 

transition region is often called an “ice plain”). The slope is about ~13 m over ~10 

km (Figure 6). Surface profiles perpendicular to the grounding line derived from the 

DEM dataset show the single undulation (a dip) that is often observed at the 

grounded to floating transition (Schoof, 2007; Vaughan, 1995) (Figure 7) . Ice 

thickness along the WIS grounding line ranges from 500m to 800m (Le Brocq et al., 

2010).   

2.3 Ice Penetrating Radar 

The longest KIS radar profile, called ‘K2’ here, was collected along flow near 

the centerline of the ice stream (Figure 9). Regions with abundant basal crevasses 

correspond to some of the areas with lower surface elevation but there is not a one 

to one correspondence between the two. The radar profile across a WIS grounding 

line transition reveals very few basal crevasses, and the crevasses that are observed 

are not associated with surface lowering (Figure 10).   

 

Figure 8:(previous page) 3D perspective renderings of Kamb (a) and Whillans (b) 
grounding lines using ICESat elevation data. Panel a corresponds to panel a in Figure 
3 and panel b corresponds to panel c in Figure 3. Horizontal scales are the same for 
both (a) and (b) but the vertical scales are different. 
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Figure 9: (previous page) Ice penetrating radar data collected across the KIS 
grounding line during November of 2006.  Radar data was processed by Dr. Ginny 
Catania at the University of Texas. The lower panel of the graph shows the surface 
profile created from kinematic GPS collected at the same time as the radar. Blue 
boxes mark areas of surface lowering. Hyperbolae at depth are associated with 
basal crevasses. Though areas with heavy crevassing do tend to have a lower 
profile than those without, there is not a simple correlation between the surface 
undulations and basal crevasses. For example, the surface profile from km 22 to 
26 is similar to the profile from km 29 and 34 but they do not have equivalent 
basal crevassing. There are areas, such as km 27, where a dip in the surface profile 
has no associated basal crevassing . 
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2.4 Repeat Observations 

The position of the undulations with respect to the grounding line and 

possible change over short time scales can be examined in a few ways. First, an 

examination of repeat MODIS imagery shows no significant change in shadow 

location over a period of 24 hours (Figure 11). Thus the features are fixed in space 

vertically and horizontally on short time scales at the 250 m resolution of the 

imagery. This is important because it establishes that the undulations are not 

transient features, ruling out some formation processes. 

Repeat-track analysis of ICESat track 3164, using 2b from 2004 and 3j from 

2008, shows no significant change in the position of the undulations. The horizontal 

distance between tracks ranges from 80 – 140 m with a mean value of 100 m 

separation (Figure 12). This separation causes the tracks to intersect the 

topography at 20  angle. The initial position of track 3164 2b is offset at 20  from 

the initial position of track 3164 3J. The tracks then intersect the topography at 

approximately the same distance along track (Figure 12). The slight variation in 

track position combined with satellite error could account for the small offset 

between 2004 and 2008. The slightly larger offset, 2 m, at the grounding line could 

be due to basal melting there or an error in the tide correction. The undulations 

appear fixed in the local reference frame on this time scale. This demonstrates that 

the undulations are neither standing waves excited by tidal motion or transient 

features.   
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Figure 11: MODIS images from 2001. All four images are stacked in the “compilation.”  
There is no significant change in shadow location among images (Scambos et al., 
2007).  
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Continuous GPS was collected at eight stations within the KIS grid array over 

the course of six days (Figure 13).  Fluctuations to the surface elevation at the six 

stations match the tide predictions for that time period (Padman, 2012). None of the 

stations are out of phase suggesting that all stations are rising or falling with the tide 

in the same manner. If the undulations were standing or traveling waves the 

stations would move relative to the tide displacement, not all together with it. The 

features do not appear to be related to changes in the tide height.  

  

Figure 12:  Cross track analysis of ICESat track 3164 where red lines are track 3164 3J 
from 2008 and black lines are track 3164 2b from 2004. a) Along track comparison 
with green line representing the difference between 3j and 2b (1250x vertical 
exaggeration). b) Zoom in of location of ICESat tracks with diagram showing the angle 
the tracks intersect the grounding line. Triangles mark the original starting point to 
data line.  Black star marks the adjusted starting point for track 2b to account for the 
offset between tracks. c) Location of the tracks relative to the KIS grounding line 
overlain on stack MODIS image (Scambos et a., 2007). d) Tide predictions for the KIS 
grounding line intersection with track 3164 in both 2004 and 2008 (Padman, 2012) 
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 Figure 13: Continuous GPS measurements collected in November and December of 
2006 at eight stations within the pole array on KIS. Pole locations are overlain on 
stacked MODIS image (Scambos et al., 2007). Data shows surface height changes that 
are congruent with the expected fluctuations in tide height (Padman, 2012).   
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2.5 Surface velocity 

Velocities for positions along the KIS strain grid range from 0.04  0.03 ma-1 

to 7.37   0.11 ma-1 (Figure 14).  The slowest velocities are found upstream of the 

grounding line while velocities are largest at the most downstream locations. The 

largest velocity gradients thus mark the boundary between grounded ice that is 

frozen to the bed and ice that is floating in the shelf. 

Velocities measured in the WIS strain grid between 2006 and 2007 range 

from 369.22   .06 ma-1 to 371.18  .05 ma-1.  The velocities of the poles farthest 

upstream are the lowest and velocities of poles on floating ice are the highest but 

the difference is small. This pattern is consistent with the transition of low basal 

traction under the ice stream to even smaller basal traction under the floating ice.  

Figure 14: Velocities calculated from rapid static GPS data collected during 
November of 2006 and 2007 for KIS (a) and WIS (b). Plots overlain on top of 
stacked MODIS images (Scambos et al, 2007). 
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2.6 Strain rates 

Assuming the velocity field is continuous, strain rates, at the centroids 

between four adjacent poles are calculated from the spatial gradients (Cuffey and 

Paterson, 2010) (Figure 15) 

 
( 1 ) 

Velocity, , has components  in the  directions in a Cartesian 

coordinate system where the x-axis and y- axis are in the horizontal plane and the z-

axis represents the vertical direction. The indices j and k represent x, y, or z and xx 

=x, xy = y, and xz = z (Cuffey and Paterson, 2010). In the xy plane, the strain rates are 

calculated  

 

Figure 15: Diagram of centroid position within strain grid.  
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( 2 ) 

 
( 3 ) 

 
( 4 ) 

 
( 5 ) 

Solving the strain tensor  

 
( 6 ) 

for its eigenvectors and eigenvalues produces principal strain rates in the horizontal 

plane (Figure 16).  
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The deformation pattern for both the KIS and WIS grounding lines is 

extension parallel to the flow direction with the largest strain rates are across the 

grounding line (Figure 17). The principal extensive strain rates for the KIS grid 

range from 6.00 x 10-6   1.12 x 10-3 a-1 to 5.80 x 10-3  2.14 x 10-4 a-1 with a mean of 

1.00 x 10-3  5.65 x 10-4 a-1 (Appendix F). The principal extensive strain rates for the 

WIS grid range from 7.83 x 10-5  6.90 x 10-7 a-1 to 8.01 x 10-4  3.70 x 10-7 a-1 with a 

mean of 4.87 x 10-4  6.65 x 10-7 a-1   (Appendix G). 

 

Figure 16: Principal strain rates calculated for quadrilaterals in the strain grids 
using rapid static GPS measured across the KIS (a) and the WIS (b) grounding line 
during November of 2006 and 2007. Plots overlain on top of stacked MODIS 
images (Scambos et al., 2007). 
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The large number of damaged poles in the WIS grid led to areas that are 

poorly resolved by the quadrilateral calculation, an alternative calculation is 

performed using triangulation. A Delaunay triangulation is completed on the grid 

using the Matlab function Delaunay (Figure 18). In a Delaunay triangulation no 

triangle vertex is contained within another triangle’s circumscribed circle and no 

side of any triangle is cut by another triangle (Cai et al., 2008).  The centroid of each 

triangle is 

 
( 7 ) 

 
( 8 ) 

in which the subscript indicates the vertex number (Figure 18).  The velocity of each 

vertex is  

 ( 9 ) 

 ( 10 ) 

in which  and   represent the distance from the vertex to the centroid,  

represents the strain rate components for the centroid, and  and  represent the 

Figure 17:  Velocity (a, b) and principal extensive strain rates (c,d) calculated at the 
centroids across the KIS and WIS grounding lines (Appendix F, Appendix G). 
Propagated errors are shown as vertical bars. The error for (d) is equivalent to the 
width of the marker. The data are as in figure (16) and the profiles are for the K*6 
grid line of KIS and the W*2 grid line of WIS.  The gounding line transition is at 
approximately km  5 for both the KIS and WIS profiles.  
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velocity component for the centroid. The system of equations for each centroid is 

thus  

  

( 11 ) 

 which can be solved for the centroid velocity and strain rates (Cai et al., 2008). 

Principal strain rates are again the eigenvectors of ( 6).  

Velocities and strain rates computed using triangulation are similar to those 

computed using quadrilaterals, although the spatial coverage is better with the 

former than the latter (Figure 18). The extension going from grounded to floating ice 

follows a more expected pattern (with the highest strain rates across the transition) 

here than in the quadrilateral-derived result. Velocities calculated at the centroids of 

the Delaunay triangles are less variable than those calculated at the quadrilateral 

centroids due to an increase in the number of centroids for the Delaunay method 

(Figure 18). 
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Figure 18:  Velocity (a) and principal strain rates (b, c) measured across WIS 
grounding lines (Appendix H). Strain rates calculated using triangulation (b) are 
overlain on a stacked MODIS image with estimated grounding line position in black 
(Scambos et al., 2007). The principal extensive strain rates are plotted in (c). Values 
calculated using the quadrilateral method are marked with dots and values 
calculated using the triangulation method are marked with triangles. Propagated 
errors are shown as vertical bars. The error for (c) is equivalent to the width of the 
marker. The quadrilaterl data are as in figure (17).  The gounding line transition is 
at approximately km  5 .  Centroids from the Delaunay triangluation (d) are marked 
with green stars and black dots. The black centroids are used to create triangulation 
method profiles and the locations are comparble to the  centoids along the W*2 grid 
line.  
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3  Analysis  

Several models of the grounding line transition and ice shelf are developed to 

evaluate the relationship between material properties and the observed surface 

morphology. A comparison of the surface morphology to possible changes in the 

density of the ice or the position of the grounding line is completed. Elastic models 

presented here include a thin clamped plate, a point load with a fixed location, and a 

point load with a free boundary. The viscous model used for this analysis examines 

the observed surface features as amplified instabilities caused by the transition 

from grounded to floating ice. All of the models use the data presented previously in 

chapter two.  

3.1 Density Variation 

3.1.1 Isostatic and Hydrostatic equilibrium 

When a layer is in a state of isostatic equilibrium, any variations in surface 

height must reflect variations in density, thickness, or a combination of both (Figure 

19) (Turcotte and Schubert, 2002). If the surface undulations at the KIS grounding 

line were compensated by variation in thickness there would be varying bottom 

relief of 0 to 29 m. The source of such variations in ice thickness might be basal 

crevasses or a special pattern in basal melting. Crevasses are present under some 

surface swales but they would need to be very wide, and remain wide well into the 

underside of the ice shelf (Figure 9). Alternatively, narrow crevasses could locally 
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modify the bulk density of the column. When a crevasse forms underneath the ice, 

the denser seawater can infiltrate the ice creating an area with a larger bulk density. 

The new density is  

 
( 12 ) 

in which  represents the density of the thicker/higher column of ice,  represents 

the density of the thinner/shorter column of ice, A represents the amplitude of the 

undulations, and d represents the thickness of the surrounding ice not including 

amplitude. With an ice thickness of 600m and surface undulations with maximum 

amplitude of 3m, the density of the ice only needs to be changed by 0.5% to produce 

the observed surface lowering.  
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3.1.2 Changes to the grounding line  

The surface features may be evidence of cyclic grounding line events due to 

an unknown process. One possible mechanism causing the surface pattern could be 

episodic changes in the thinning rate, in which local highs would represent periods 

with a lower thinning rate and troughs would represent periods with a higher 

thinning rate. Using a speed of 7.0 ma-1, a strain rate of 1.0 x 10-3 a-1  , and holding 

the grounding line position fixed, it would take approximately 190 years to 

transition from a trough to an adjacent peak in the observed undulations. It is 

unclear what kind of process would cause cycles in the thinning rate on this 

timescale and this idea is thus discounted.  

The surface variation could also be caused by periodic changes in the 

grounding line position. The current thinning rate is approximately 0.6 ma-1 across 

the grounding line of KIS, which is higher than the thinning rates upstream or 

Figure 19:  Diagram on left depicts Airy’s method of compensation where the density 
is the same throughout and variations in surface topography are matched by 
equivalent basal variation. The diagram to the right depicts Pratt’s method of 
compensation where variations in topography are representative of variations in 
density (Turcotte and Schubert, 2002).  
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downstream of the grounding line.  If the grounding line stayed in place with a 

steady thinning rate for about 5 years, and then instantly shifted inland the distance 

of the wavelength of the observed features, about 1 km, a relatively higher elevation 

where the ice had been grounded previously and a trough at the former grounding 

line position would be formed. If this process repeated for approximately 30 years it 

could create the observed surface variability. There are currently no identified 

processes that would cause the grounding line position to change in this manner. 

3.2 Elastic bending  

3.2.1 Euler-Bernoulli beam bending  

Euler-Bernoulli beam bending is a special case of linear elastic beam theory 

which describes the deflection of an elastic beam subject to lateral loading (Turcotte 

and Schubert, 2002).  The theory is limited to cases where displacement is small 

compared to the length and in which the beam experiences no shear deformation. 

Taking inertial effects to be small, the relationship between deformation and the 

applied load  is  

 
( 13 ) 

for the static beam bending case in which w(x) describes the deflection of the beam. 

The elastic modulus E and the area moment of inertia of the beam I  remain constant 

throughout the beam (Turcotte and Schubert, 2002; Fowler, 2005).  
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3.2.2 Uniform load  

The transition at the grounding line can be represented as a thin plate 

clamped at one edge (over the grounding line) with a uniform load across the plate 

(Turcotte and Schubert, 2002). Repeat observations of the surface undulations show 

that they are fixed in time and space over the timescales were completed. Therefore 

the use of a static beam bending equation is reasonable. Where the plate is clamped 

 and  (Figure 20). At the end of the plate, , there is no external 

torque therefore .  The velocity of the beam is zero making  , and 

. With those boundary conditions and a uniform load, the solution to ( 13 ) is  

 
( 14 ) 

with a flexural rigidity of 

 
( 15 ) 

in which  represents Poisson’s ratio and  represents the thickness of the ice 

(Turcotte and Schubert, 2002). The load in this case is  

 
( 16 ) 
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in which   represents the density of sea water,   represents the density if ice,  

represents acceleration due to gravity, and  represents the length of the plate 

(Turcotte and Schubert, 2002).  
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Conditions at the KIS grounding line are represented using 1025 kg m-3 for 

the density of sea water, a Poisson’s ratio of 0.314, an elastic modulus of 9 x 109 Pa, a 

thickness of 600 m, a beam length of 800 km (L), and a depth integrated value of 

910 kg m-3 for the density of ice.  The resulting profile deflects downward, 

producing a deflection near the grounding line of appropriate magnitude but does 

not produce undulations as observed at KIS (Figure 20).  

3.2.3 Point load with a fixed boundary 

Another solution to ( 13 ) examines the effect of a single point load on a semi-

infinite elastic beam resting on a horizontal elastic foundation (Figure 21). The 

model is made comparable to an ice shelf over water by inverting the system, 

shifting the origin to line up with the point load, and eliminating the left half of the 

symmetry (Holdsworth, 1969; Vaughan, 1995) . The deflection of the beam can then 

be describe by 

 
( 17 ) 

and 

Figure 20: a)- Force diagram modeling a uniformly loaded plate clamped at one end 
with length L and thickness h (Turcotte and Schubert, 2002). b) Predicted profile of 
the KIS grounding line created from the thin clamped plate model (5500x vertical 
exaggeration).  c) Profile b) overlain on top of the kinematic GPS line K2 with (800x 
vertical exaggeration).   
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( 18 ) 

in which M(x) is the bending moment at x and  represents the unbent position of 

the beam ( Figure 21). The solution to the system of equations is (Holdsworth, 1969; 

Vaughan, 1995) 

 ( 19 ) 

in which the coefficient  is the damping factor  

 
( 20 ) 

The KIS grounding line is modeled using  ranging from -1 to 1 to represent 

a change in tide height.  The deflection of the model, from  -1 to 1, is limited to a 

region within about 10 km of the grounding line and does not model the surface 

undulations observed (Figure 21).  
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3.2.4 Model of a point load with a free boundary 

The transition can also be represented as a beam with a point load resting on 

a split foundation. In this solution to the beam equation, one half of the beam rests 

on an elastic solid and one part floats on a denser fluid with a free boundary at the 

grounding line rather than a fixed boundary. Beginning with ( 13 ) and following 

Sayag and Worster (2011) for a long ice shelf in which the grounding line is below 

the surface of the ocean, the deflection seaward of the grounding line is  

 

( 21 ) 

in which only the leading term in the series expansion has been retained. The 

parameter  represents a stiffness coefficient of the bed beneath the ice stream, the 

coefficients  and  are 

 

( 22 ) 

 
( 23 ) 

and the bending length scale is 

Figure 21: a)- Force diagram modeling an elastic beam resting on an elastic 
foundation with a point load at the grounding line, length L, and thickness h 
(Holdsworth, 1969; Vaughan, 1995). b) Predicted profile of the KIS grounding line 
created from a) (8000x vertical exaggeration). c) Profile b) overlain on top of the 
kinematic GPS line K2 (700x vertical exaggeration).
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( 24 ) 

A stiffness coefficient of 9114 kgm-2s-2 is used to representative a soft bed 

underneath the grounded portion of the ice stream (Sayag, 2011).   

Thus configured, the model yields a short wavelength undulation with an 

amplitude of about 2 m immediately downstream of the grounding line.  Thereafter 

the bending (the second term on the right hand side of (21) is damped according to 

(23).  In contrast to this elastic model prediction, the observed undulations do not 

decay rapidly but instead have similar amplitudes over a reach that extends many 

ice thicknesses away from the grounding line. While the relatively short wavelength 

predicted by the split foundation model is similar to the first undulation at the KIS 

grounding line, it does not fit the longer wavelength dip observed at both the WIS 

and KIS grounding lines (Figure 7). Were the split foundation model correct, it 

would predict an observed wavelength at both grounding lines.  The Holdsworth 

(1969) model produces a better result for the elastic deformation at both locations 

but does not reproduce the series of undulations observed at KIS  
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Figure 22: a)- Force diagram modeling an elastic beam resting on split elastic 
foundation with a point load at the grounding line, length L, and thickness h (Sayag 
and Worster, 2011). b) Predicted profile of the KIS grounding line created from a) 
(6500x  vertical exaggeration). c) Profile b) overlain on top of the kinematic GPS line 
K2(800x vertical exaggeration). 

3.3 Pinch and swell structures 

Folding theory examines the viscous deformation of layered materials 

undergoing a perturbation to the stress field caused by layer-parallel compression, 

extension, shear, or a density instability (Johnson and Fletcher, 1994; Schmalholz et 

al., 2008; Schmalholz et al., 2007). Viscous folding theory has been used to examine 

earth processes such as the folding of rock layers, isostatic rebound, and buckling 

instabilities in rock layers and ice shelves (Collins and Mccrae, 1985; Johnson and 

Fletcher, 1994; Smith, 1975). The layers may be treated as sets or as isolated layers 

depending on the magnitude of the viscosity contrast between layers. If the viscosity 

contrast is very large, such as between ice and air, the layer can be treated as a 

single isolated layer (Johnson and Fletcher, 1994).  

Glacier ice deforms as a viscous fluid in response to gravitational driving 

stresses. A floating ice shelf has a much higher viscosity than the two bounding 

layers of air and water, allowing it to be treated as an isolated layer. Ice is a slightly 

nonlinear material whose behavior is described by Nys’s generalization of Glen’s 

Flow Law in which the strain rates  are dependent on the deviatoric stresses  

following 
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 ( 25 ) 

with A representing a creep parameter,  the effective stress, and m the ratio 

between shear and normal viscosity where  (Cuffey and Paterson, 2010). 

Ice is a strain-rate softening material in which the effective viscosity decreases as 

strain rate increases, allowing the ice to deform more readily. In non-linear 

materials such as ice, perturbations in the stress field have been shown to amplify 

creating structures such as buckling or necking (Collins and Mccrae, 1985; Johnson 

and Fletcher, 1994; Ng and Conway, 2004; Smith, 1975).  

When a homogenous nonlinear fluid deforming by pure shear undergoes a 

perturbation, a discontinuity in the horizontal normal stress is created. The initial 

primary flow combined with the secondary flow   

 ( 26 ) 

creates a deflection of the top and bottom interfaces of the fluid (Figure 23). The 

direction of deflection depends upon the sign of the stress acting on the fluid. If the 

fluid is being compressed the interfaces between layers deflect in the same direction 

and folding occurs. When the fluid is stretching, the interfaces deflect in opposite 

directions and pinch and swell structures form.   
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The following analysis assumes an ice shelf of thickness , with parallel 

interfaces for the top and bottom, that is deforming under plane strain where 

. Mean velocity components for the primary flow are  

 ( 27 ) 

 ( 28 ) 

in which the over bar represents a mean quantity. The fluid motion for the 

perturbed flow can be described using the Navier-Stokes equations for plane strain 

,simplified for creep flow  

 
( 29 ) 

 

Figure 23: Diagram of the deflection of the interfaces forming either folding (top) 
or pinch and swell (bottom) structures. Blue arrows depict direction of strain 
either compression (top) or extension (bottom).  
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( 30 ) 

in which the tilde represents a mean quantity and  represents mean pressure 

(Johnson and Fletcher, 1994). Introducing the stream function to represent the 

perturbed velocity components,   and  , simplifies equations ( 29 ) 

and ( 30 ) to  

 
( 31 ) 

in which  for a power law fluid (Johnson and Fletcher, 1994).  Using the 

stream function  

 
( 32 ) 

in which and W is a function of z and substituting ( 32 ) into equation ( 31 ) 

creates 

 
( 33 ) 

The general solution for the velocity potential for a power law fluid becomes  
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( 34 ) 

with constants  and   related to the viscosity of the ice (Johnson 

and Fletcher, 1994).  In pinch and swell cases, the constants a and b are equal to 

zero since they are associated to buckling. Setting the boundary stresses equal to 

zero for an isolated layer produces  

 
( 35 ) 

and 

 

( 36 ) 

in which the dimensionless wave number   

 
( 37 ) 

depends on the wavelength , and the thickness h,  of the ice.  An instability will 

amplify at the rate of  

 
( 38 ) 
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in which  is the amplitude of the original instability. The amplification factor q 

 

( 39 ) 

depends on the material properties (Johnson and Fletcher, 1994).  Instabilities can 

amplify for any materials with . For the case of , such as ice, , 

making the wavelength to thickness ratio 2.19 or greater, for instabilities to amplify 

(Figure 24). The maximum value for Q is -3 for any combination of wavelength to 

thickness ratio (Figure 24). 

Figure 24: Graph of the wavelength to thickness ratio vrs amplification factor  for 
isolated power law materials with viscosity ratios from 0.1 to 10 (Johnson and 
Fletcher, 1994).
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The amplification factor, and thus , is sensitive to the ratio .  For example, 

holding all other values constant ( a -1 m, and km) 

a less than 10% change in the thickness from 550 m to 500 meters will double the 

amplification rate from 0.03 ma-1 to 0.06 ma-1. The initial amplitude used here is the 

tilt in ice as it transitions from grounded to floating and the strain rate is the average 

strain rate measured across the grounding line (Figure 6, Figure 27). Using the 

maximum value for the amplification factor ( , the approximate maximum 

rate of amplification for the region is 0.23 ma-1.  

Some of the terms in equations ( 38 ) and ( 39 ) are better constrained than 

others. Ice thicknesses along the grounding line are not known to the precision 

needed to create a definitive model of the rate of amplification for the region. Ice 

thickness is from the BEDMAP dataset, which has a data point every 5 km. The 

thickness data from BEDMAP appear to be about 40 m larger than those estimated 

from radar profiles suggesting imprecision in the dataset on the scales needed to 

constrain the calculation further. The variability in thickness as well as density, 

wavelength, and strain rate leads to range of possible solutions for the rate of 

amplification. One solution that uses the BEDMAP dataset for the thickness of the 

ice, an average wavelength of the features, and an average strain rate over the 

grounding line predicts the amplification rate to range from 0.0 ma-1 to 0.06 ma-1 

across the region (Figure 25). The calculation for Figure 25 has a strain rate of 7.46 

x 10-4 for areas approximately 20 km past the grounding line and then a zero strain 
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rate further than that. The nonlinear rheology of the ice combined with the 

stretching occurring across the grounding line leads to the amplification of 

instabilities within the ice (Figure 25). 

3.3.1 Relaxation rate  

If the features moved out the area of active formation, the rate at which the 

surface will subside is (Johnson and Fletcher, 1994) 

 
(40) 

Figure 25: Diagram of the amplitude of tilt in layer of ice at grounded to floating 
transition (top) and calculated rate of amplification for KIS grounding line. 
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in which all variables are as defined in previous sections and viscosity is defined to 

be at the plastic limit with a value on the order of 1014 Pa s (Cuffey and Paterson, 

2010). Features with larger amplitudes will decay more quickly than those with 

smaller amplitudes. For features with the amplitudes of 3 m, the relaxation rate 

would be approximately 0.8 ma-1 , suggesting that surface undulations would not 

persist long after the initial formation.  
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4  Conclusion and Discussion 

Downstream of the KIS grounding line, there exists a set of shore-parallel 

long wavelength surface undulations exist that do not appear at neighboring 

grounding lines (Figure 3). These features have amplitudes approximately 0.5 to 3.0 

m and wavelengths of approximately 1.3 km (Figure 7). While the features are all of 

similar scale, they are not uniformly distributed nor are their geometries uniform 

(Figure 5, Figure 6). Although regions with abundant basal crevasses do correspond 

to some of the areas with lower surface elevation, the relationship is not simple and 

does not explain the observed surface undulations (Figure 9, Figure 10). Repeat 

observations show that the features are fixed relative to the grounding line and tide 

height on timescales up to a few years. That is, they do not appear to be an 

excitation of the material due to tidal motion (Figure 11, Figure 12, Figure 13).  

The KIS and WIS grounding line transitions have very different velocities and 

strain rates. Across the KIS strain grid, the surface velocities are measured at 0.04  

0.03 ma-1 to 7.37   0.11 ma-1 with the slowest poles located in the grounded ice 

(Figure 14) (Appendix A). Comparatively, the neighboring WIS strain grid velocities 

were measured at 369.22   .06 ma-1 to 371.18  .05 ma-1 (Figure 14) (Appendix B). 

These measurements highlight the difference between KIS and other grounding line 

settings with fast flowing ice. Because the transition at the grounding line of KIS is 

that of stagnant grounded ice to floating, the principle extensive strain rates 

calculated within the KIS strain grid (6.00 x 10-6   1.12 x 10-3 to 5.80 x 10-3  2.14 x 
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10-4 with a mean of 1.00 x 10-3  5.65 x 10-4) are higher than those observed within 

the neighboring WIS strain grid (7.83 x 10-5  6.90 x 10-7 to 8.01 x 10-4  3.70 x 10-7 

with a mean of 4.87 x 10-4  6.65 x 10-7)(Figure 16, Figure 17, Figure 18) (Appendix 

F, Appendix G). The highest strain rates for both ice streams are located directly 

across the grounding line (Figure 17, Figure 18).   

Elastic deformation is insufficient to describe the surface undulations 

observed at the grounding line of KIS. The elastic model based on a thin clamped 

plate describes an overall deflection of the surface but does not predict any 

undulations to the surface (Figure 20). The two point load models used here to 

evaluate bending at the grounding line produce a single undulation in the surface, a 

dip immediately downstream of the grounding-to-floating transition. Different 

treatments of the material properties yield slightly different geometries, longer and 

shorter wavelengths, but do not produce more than one undulation. Thus, 

something more than elastic properties of the ice must be responsible for the 

features observed at the KIS grounding line.  

Viscous folding theory describes the deformation that occurs to a viscous 

layer that experiences extension or compression, such as the stretching of the ice 

over the grounding line. As long as the wavelength to thickness ratio of the ice 

remained above 2.19, which for example could be a wavelength of 1.3 km and a 

thickness of 594 m, instabilities created by the transition from grounded –to-

floating ice can be amplified within a viscous layer (Figure 24). One possible model 
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of the current grounding line settings predicts amplification rates from 0 to  

0.06 ma-1 (Figure 25). These results are supported by observations of viscous 

bucking features on both the RIS and George VI Ice Shelf in West Antarctica (Collins 

and Mccrae, 1985; LaBarbera and MacAyeal, 2011). 

KIS became stagnant about 165 years ago (Catania et al., 2006). Changing 

from a transition like the one at WIS to one with stagnate ice before the grounding 

line and faster flowing ice downstream on the ice shelf, would have created a higher 

strain rate across the grounding line than existed before the stagnation. It is 

reasonable to assume that the strain rate has remained at the same magnitude 

observed today. If the features have continued to form since the stagnation of KIS 

165 years ago, the current amplification rates would create surface undulations 

with amplitudes from 0 to 9.9 m. The observed surface features have approximate 

amplitudes of 0 to 3.0 m which falls within the possible range predicted by viscous 

theory (Figure 7). This work determines that the elastic models are insufficient to 

explain the observations. It is thus determined that the surface undulations 

downstream of the KIS grounding line are not derived from an elastic process but 

are viscous in origin. This determination suggests that the grounding line transition 

may be more appropriately described using a viscous approach rather than an 

elastic model.  
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A Kamb Ice Stream strain grid locations and velocities 

Station locations in decimal degrees using WGS1984 in November and 

December of  2006 and 2007 along with calculated speeds, azimuths of direction, 

and associated speed error for grid network at ground line of KIS.  

station 

name 

latitude 

2006 

longitude 

 2006 

latitude 

2007 

longitude 

 2007 

Speed   

(ma-1) 

Azimuth  

(°) 

Speed  

error 

KA1  82.864363 154.785463 82.864362 154.785469 0.10 -52.30 0.23 

KA2  82.855548 154.770746 82.855548 154.770751 0.07 -36.40 0.21 

KA3  82.846262 154.759492 82.846262 154.759496 0.05 -45.00 0.14 

KA4  82.837413 154.746851 82.837412 154.746853 0.04 -68.90 0.03 

KA5  82.828130 154.734428 82.828130 154.734431 0.06 -75.50 0.14 

KA6  82.819387 154.723084 82.819386 154.723088 0.07 -63.30 0.20 

KA7  82.810289 154.709919 82.810286 154.709637 3.86 160.40 0.07 

KB1  82.862602 154.858001 82.862602 154.858012 0.15 -47.10 0.29 

KB2  82.853643 154.841963 82.853643 154.841972 0.13 -38.70 0.17 

KB3  82.844741 154.833363 82.844741 154.833371 0.11 -34.50 0.14 

KB4  82.835385 154.817575 82.835384 154.817584 0.12 -41.30 0.13 

KB5  82.825805 154.807898 82.825805 154.807906 0.13 -60.80 0.12 

KB6  82.817193 154.792622 82.817192 154.792633 0.18 -60.70 0.15 

KB7  82.807189 154.782744 82.807188 154.782762 0.30 -62.20 0.23 

KC1  82.861172 154.930337 82.861171 154.930363 0.37 -41.00 0.25 

KC2  82.852452 154.913914 82.852452 154.913937 0.32 -35.80 0.16 

KC3  82.843350 154.904453 82.843350 154.904473 0.29 -35.00 0.18 

KC4  82.833881 154.888223 82.833881 154.888242 0.26 -40.10 0.13 

KC5  82.824089 154.878458 82.824088 154.878476 0.28 -50.10 0.18 

KC6  82.816077 154.863566 82.816076 154.863589 0.36 -54.80 0.16 

KC7  82.805611 154.853459 82.805606 154.853198 3.60 162.20* 0.10 

KD1  82.859613 155.003312 82.859610 155.003078 3.19 159.90* 0.13 

KD2  82.850723 154.987660 82.850722 154.987717 0.78 -32.70 0.24 

KD3  82.841607 154.976431 82.841606 154.976481 0.69 -32.60 0.17 

KD4  82.832210 154.961572 82.832209 154.961614 0.58 -34.70 0.15 

KD5  82.822867 154.952303 82.822866 154.952344 0.61 -45.80 0.19 

KD6  82.813934 154.932931 82.813931 154.932983 0.79 -49.90 0.16 
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station 

name 

latitude 

2006 

longitude 

 2006 

latitude 

2007 

longitude 

 2007 

Speed   

(ma-1) 

Azimuth  

(°) 

Speed  

error 

KD7  82.804897 154.925803 82.804892 154.925880 1.17 -51.10 0.28 

KE1  82.857852 155.076170 82.857848 155.076308 1.92 -37.60 0.21 

KE2  82.849253 155.060330 82.849248 155.060175 2.19 170.60* 0.10 

KE3  82.840339 155.050982 82.840334 155.050821 2.26 169.20* 0.07 

KE4  82.830482 155.032049 82.830481 155.032151 1.40 -31.40 0.15 

KE5  82.821985 155.024093 82.821981 155.024198 1.48 -40.10 0.11 

KE6  82.812923 155.003785 82.812917 155.003906 1.76 -45.10 0.17 

KE7  82.803865 155.000190 82.803857 155.000347 2.29 -45.60 0.18 

KF1  82.856314 155.148578 82.856307 155.148790 3.00 -41.00 0.12 

KF2  82.847584 155.133644 82.847576 155.133855 2.98 -40.70 0.10 

KF3  82.838663 155.121627 82.838656 155.121835 2.94 -41.00 0.08 

KF4  82.828845 155.106304 82.828838 155.106495 2.72 -41.50 0.01 

KF5  82.820354 155.099904 82.820347 155.100105 2.85 -41.20 0.08 

KF6  82.811787 155.082598 82.811779 155.082811 3.04 -41.80 0.08 

KF7  82.802750 155.070720 82.802740 155.070961 3.47 -43.50 0.09 

KG1  82.854610 155.221170 82.854599 155.221432 3.73 -42.40 0.13 

KG2  82.845984 155.205857 82.845974 155.206126 3.82 -42.00 0.12 

KG3  82.836873 155.193796 82.836862 155.194073 3.94 -41.80 0.11 

KG4  82.827397 155.176430 82.827387 155.176710 3.98 -41.30 0.10 

KG5  82.818776 155.170588 82.818765 155.170879 4.15 -41.60 0.14 

KG6  82.810846 155.153094 82.810834 155.153390 4.24 -42.10 0.08 

KG7  82.801152 155.145579 82.801139 155.145897 4.56 -42.60 0.09 

KH1  82.852921 155.293548 82.852908 155.293865 4.53 -42.80 0.15 

KH2  82.844301 155.277819 82.844288 155.278140 4.59 -42.80 0.15 

KH3  82.835088 155.266157 82.835074 155.266488 4.74 -42.80 0.17 

KH4  82.825899 155.249841 82.825886 155.250174 4.77 -42.60 0.08 

KH5  82.816904 155.242269 82.816890 155.242613 4.92 -42.50 0.09 

KH6  82.808854 155.227335 82.808840 155.227685 5.02 -42.50 0.09 

KH7  82.799508 155.216509 82.799493 155.216877 5.28 -42.40 0.09 

KI1  82.851382 155.365738 82.851367 155.366108 5.28 -42.90 0.21 

KI2  82.842699 155.351277 82.842683 155.351655 5.41 -42.80 0.11 
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station 

name 

latitude 

2006 

longitude 

 2006 

latitude 

2007 

longitude 

 2007 

Speed   

(ma-1) 

Azimuth  

(°) 

Speed  

error 

KI3  82.833355 155.339381 82.833339 155.339770 5.56 -42.70 0.09 

KI4  82.824380 155.323992 82.824364 155.324387 5.65 -42.50 0.18 

KI5  82.815674 155.313650 82.815658 155.314051 5.75 -42.40 0.09 

KI6  82.806658 155.300693 82.806642 155.301105 5.90 -42.30 0.10 

KI7  82.797913 155.290383 82.797896 155.290812 6.15 -41.90 0.10 

KJ1  82.849728 155.439136 82.849711 155.439557 6.02 -43.00 0.11 

KJ2  82.840986 155.423525 82.840968 155.423954 6.14 -42.90 0.10 

KJ3  82.831616 155.411912 82.831599 155.412349 6.27 -42.70 0.10 

KJ4  82.822552 155.394394 82.822534 155.394836 6.32 -42.40 0.12 

KJ5  82.814609 155.386340 82.814591 155.386788 6.42 -42.40 0.13 

KJ6  82.804990 155.372161 82.804972 155.372622 6.60 -42.10 0.12 

KJ7  82.796517 155.360636 82.796499 155.361109 6.78 -41.90 0.10 

KK1  82.848383 155.510466 82.848364 155.510932 6.67 -43.00 0.13 

KK2  82.839372 155.496990 82.839353 155.497466 6.82 -42.90 0.09 

KK3  82.830207 155.481631 82.830187 155.482113 6.91 -42.70 0.07 

KK4  82.821138 155.470652 82.821119 155.471139 6.97 -42.40 0.01 

KK5  82.811953 155.461992 82.811933 155.462485 7.07 -42.20 0.12 

KK6  82.803012 155.446345 82.802992 155.446851 7.25 -41.80 0.10 

KK7  82.794326 155.430246 82.794307 155.430761 7.37 -41.60 0.11 

*  Station velocities were ******* 
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B Whillans Ice Stream strain grid location and velocities 

Station names and locations in decimal degrees using WGS1984 projection 

for the field seasons 2006 and 2007, along with speeds (ma-1) and azimuth of 

direction (degrees) with associated speed error (ma-1)  for the grid network at the 

grounding line of WIS. 

station 

name 

latitude 

2006 

longitude 

 2006 

latitude 

2007 

longitude 

 2007 

Speed   

(ma-1) 

Azimuth  

(°) 

Speed  

error 

WA2  84.397507 165.103224 84.396068 165.134668 369.27 -40 0.018 

WA3  84.406015 165.143908 84.404573 165.175393 369.34 -40 0.048 

WA4  84.414217 165.183469 84.412773 165.214975 369.22 -40 0.06 

WB1  84.383598 165.149647 84.382155 165.180997 369.28 -40 0.055 

WB2  84.392866 165.184837 84.391423 165.216245 369.4 -40 0.043 

WB3  84.402759 165.244780 84.401311 165.276230 369.44 -40 0.056 

WB4  84.408617 165.259341 84.407168 165.290812 369.4 -40 0.074 

WC1  84.379790 165.233978 84.378346 165.265303 369.32 -40 0.063 

WC2  84.388967 165.264958 84.387519 165.296332 369.45 -40 0.054 

WC3  84.399625 165.330614 84.398173 165.362030 369.48 -40 0.069 

WC4*  84.404258 165.339295 84.402815 165.370956    NaN   NaN  NaN 

WD1  84.375703 165.319453 84.374253 165.350775 369.76 -39.9 0.066 

WD2  84.384969 165.347010 84.383518 165.378362 369.6 -39.9 0.065 

WD3  84.396180 165.419758 84.394724 165.451154 369.67 -40 0.123 

WD4*  84.400423 165.423486 84.398972 165.455081    NaN   NaN  NaN 

WE1  84.371847 165.405058 84.370395 165.436367 369.96 -39.9 0.066 

WE2  84.381531 165.431746 84.380076 165.463112 370.12 -39.9 0.06 

WE3*  84.392454 165.508728 84.390994 165.540254    NaN   NaN  NaN 

WE4  84.396993 165.505385 84.395534 165.536792 369.88 -39.9 0.11 

WF1*  84.368220 165.488648 84.366762 165.520082    NaN   NaN  NaN 

WF2  84.377649 165.515996 84.376191 165.547355 370.43 -39.9 0.021 

WF3  84.388632 165.595322 84.387167 165.626711 370.4 -39.9 0.094 

WF4  84.393285 165.590851 84.391821 165.622255 370.26 -39.9 0.064 

WG1  84.364396 165.580090 84.362944 165.611358 369.95 -39.7 0.063 

WG2  84.374538 165.601267 84.373079 165.632583 370.18 -39.8 0.036 
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station 

name 

latitude 

2006 

longitude 

 2006 

latitude 

2007 

longitude 

 2007 

Speed   

(ma-1) 

Azimuth  

(°) 

Speed  

error 

WG3  84.384525 165.677932 84.383059 165.709281 370.27 -39.8 0.053 

WG4  84.389640 165.681325 84.388173 165.712692 370.25 -39.9 0.06 

WH1* 84.360971 165.665295 84.359518 165.696597    NaN   NaN  NaN 

WH2*  84.370951 165.683325 84.369492 165.714620    NaN   NaN  NaN 

WH3  84.380531 165.757497 84.379064 165.788834 370.42 -39.8 0.064 

WH4  84.386146 165.773097 84.384677 165.804456 370.44 -39.8 0.088 

WI1  84.357561 165.746813 84.356103 165.778080 370.57 -39.6 0.129 

WI2  84.367141 165.765783 84.365680 165.797083 370.57 -39.7 0.062 

WI3  84.375820 165.839865 84.374353 165.871199 370.68 -39.7 0.064 

WI4  84.382944 165.857672 84.381474 165.889030 370.67 -39.7 0.09 

WJ1  84.353659 165.830072 84.352200 165.861332 370.8 -39.5 0.058 

WJ2  84.362238 165.866801 84.360775 165.898099 370.91 -39.6 0.053 

WJ3  84.370377 165.907598 84.368910 165.938921 370.86 -39.6 0.064 

WJ4  84.378517 165.946882 84.377047 165.978229 370.83 -39.6 0.097 

WK1  84.349553 165.909412 84.348093 165.940667 371.02 -39.5 0.065 

WK2  84.358781 165.951798 84.357317 165.983093 371.09 -39.5 0.041 

WK3  84.366303 165.991869 84.364835 166.023187 371.07 -39.5 0.046 

WK4  84.374435 166.031482 84.372965 166.062826 371.01 -39.5 0.077 

WL1  84.346186 165.989550 84.344726 166.020801 371.18 -39.4 0.048 

WL2  84.355043 166.036584 84.353579 166.067871 371.22 -39.4 0.023 

WL3  84.363039 166.074278 84.361571 166.105592 371.22 -39.4 0.049 

WL4  84.370359 166.111406 84.368889 166.142745 371.16 -39.4 0.058 

*  Stations that were damaged. 
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C Kamb Ice Stream strain components 

 
Stations 

Used           er.  er   er   er 

KA1 KA2 

KB1 KB2  5.7E-5 7.3E-6 -4.8E-5 -4.5E-5 5.1E-6 5.0E-6 -6.4E-6 -6.5E-6 

KA2 KA3 

KB2 KB3  5.7E-5 1.5E-5 -3.8E-5 -1.1E-5 3.8E-6 3.6E-6 -4.6E-6 -4.3E-6 

KA3 KA4 

KB3 KB4  7.7E-5 1.6E-5 -3.9E-5 8.9E-6 2.7E-6 2.6E-6 -2.9E-6 5.1E-7 

KA4 KA5 

KB4 KB5  7.7E-5 1.5E-5 -6.1E-5 2.8E-5 2.7E-6 2.4E-6 -2.8E-6 2.5E-6 

KA5 KA6 

KB5 KB6  6.7E-5 -3.1E-5 -9.7E-5 4.2E-5 3.9E-6 -3.8E-6 -4.2E-6 4.0E-6 

KA6 KA7 

KB6 KB7  2.5E-3 2.2E-3 -1.1E-3 -7.8E-4 9.0E-6 2.9E-6 -6.7E-6 -6.1E-7 

KB1 KB2 

KC1 KC2  2.0E-4 1.8E-5 -1.4E-4 -5.9E-5 5.1E-6 5.0E-6 -6.2E-6 -6.4E-6 

KB2 KB3 

KC2 KC3  1.9E-4 2.0E-5 -1.3E-4 -2.4E-5 4.0E-6 3.6E-6 -4.5E-6 -4.2E-6 

KB3 KB4 

KC3 KC4  1.6E-4 2.1E-5 -1.2E-4 1.3E-5 3.8E-6 3.4E-6 -3.9E-6 3.6E-6 

KB4 KB5 

KC4 KC5  1.4E-4 2.7E-5 -1.2E-4 4.2E-5 3.6E-6 3.0E-6 -3.8E-6 3.3E-6 

KB5 KB6 

KC5 KC6  1.4E-4 -3.9E-5 -1.4E-4 9.0E-5 3.8E-6 -4.0E-6 -4.2E-6 4.5E-6 

KB6 KB7 

KC6 KC7  -2.2E-3 1.8E-3 7.7E-4 -6.6E-4 -4.0E-6 1.1E-6 1.6E-6 2.5E-7 

KC1 KC2 

KD1 KD2  -1.7E-3 -2.3E-3 6.7E-4 9.3E-4 -2.3E-6 -3.5E-6 8.0E-7 9.6E-7 

KC2 KC3 

KD2 KD3  4.6E-4 6.1E-5 -2.7E-4 -4.4E-5 5.3E-6 4.3E-6 -5.5E-6 -4.8E-6 

KC3 KC4 

KD3 KD4  3.8E-4 8.3E-5 -2.2E-4 -2.2E-5 4.4E-6 3.7E-6 -4.4E-6 -1.2E-7 

KC4 KC5 

KD4 KD5  3.1E-4 4.1E-5 -2.3E-4 8.5E-5 4.3E-6 3.6E-6 -4.4E-6 3.9E-6 

KC5 KC6 

KD5 KD6  3.4E-4 -7.6E-5 -3.4E-4 1.7E-4 4.8E-6 -4.6E-6 -5.1E-6 5.2E-6 

KC6 KC7 

KD6 KD7  2.6E-3 1.7E-3 -1.4E-3 -5.3E-4 9.0E-6 2.5E-7 -7.2E-6 1.3E-6 

KD1 KD2 

KE1 KE2  1.1E-3 1.1E-4 -9.2E-4 -4.2E-5 4.2E-7 -5.9E-7 -7.7E-7 4.6E-7 

KD2 KD3 

KE2 KE3  -3.3E-3 8.2E-5 9.3E-4 -7.1E-5 -7.4E-6 3.3E-6 4.8E-6 -3.8E-6 
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Stations 

Used           er.  er   er   er 

KD3 KD4 

KE3 KE4  -1.2E-3 -1.9E-3 2.1E-4 6.4E-4 8.1E-8 -1.3E-6 -5.9E-7 1.5E-10 

KD4 KD5 

KE4 KE5  8.7E-4 7.1E-5 -5.6E-4 2.0E-4 5.3E-6 3.6E-6 -4.9E-6 4.0E-6 

KD5 KD6 

KE5 KE6  8.6E-4 -1.3E-4 -6.9E-4 3.0E-4 5.2E-6 -4.1E-6 -5.2E-6 4.9E-6 

KD6 KD7 

KE6 KE7  9.4E-4 -3.4E-4 -8.0E-4 4.0E-4 6.4E-6 -5.2E-6 -6.8E-6 6.1E-6 

KE1 KE2 

KF1 KF2  3.1E-3 2.4E-3 -1.9E-3 -1.0E-3 5.0E-6 6.6E-6 -5.0E-6 -5.2E-6 

KE2 KE3 

KF2 KF3  5.5E-3 6.2E-5 -2.9E-3 -4.8E-5 4.5E-6 1.9E-6 -3.7E-6 -2.3E-6 

KE3 KE4 

KF3 KF4  3.3E-3 -1.9E-3 -2.1E-3 5.9E-4 3.6E-6 -2.6E-6 -3.4E-6 1.4E-6 

KE4 KE5 

KF4 KF5  1.1E-3 -2.7E-5 -1.2E-3 1.9E-4 3.1E-6 1.1E-6 -3.4E-6 2.6E-6 

KE5 KE6 

KF5 KF6  1.1E-3 -1.6E-4 -9.6E-4 2.9E-4 3.6E-6 -2.9E-6 -3.7E-6 3.6E-6 

KE6 KE7 

KF6 KF7  1.1E-3 -3.6E-4 -8.8E-4 4.4E-4 4.2E-6 -3.4E-6 -4.3E-6 4.0E-6 

KF1 KF2 

KG1 KG2  6.5E-4 -4.8E-5 -7.1E-4 1.2E-5 3.2E-6 -2.8E-7 -3.9E-6 2.6E-7 

KF2 KF3 

KG2 KG3  8.0E-4 -3.3E-5 -8.1E-4 3.4E-5 2.8E-6 -3.8E-7 -3.5E-6 4.1E-7 

KF3 KF4 

KG3 KG4  1.0E-3 7.3E-5 -9.5E-4 -7.2E-5 2.3E-6 -6.8E-7 -2.6E-6 7.5E-7 

KF4 KF5 

KG4 KG5  1.2E-3 -1.4E-4 -1.1E-3 1.3E-4 3.2E-6 -2.1E-6 -3.3E-6 2.2E-6 

KF5 KF6 

KG5 KG6  1.1E-3 -1.1E-4 -1.0E-3 1.6E-4 3.6E-6 -2.7E-6 -3.8E-6 3.1E-6 

KF6 KF7 

KG6 KG7  1.0E-3 -2.7E-4 -9.0E-4 3.5E-4 2.6E-6 -2.0E-6 -2.9E-6 2.4E-6 

KG1 KG2 

KH1 KH2  6.8E-4 -7.5E-5 -6.9E-4 5.4E-5 3.8E-6 -3.3E-6 -4.5E-6 4.0E-6 

KG2 KG3 

KH2 KH3  6.6E-4 -1.3E-4 -7.1E-4 1.0E-4 3.7E-6 -3.1E-6 -4.4E-6 3.8E-6 

KG3 KG4 

KH3 KH4  6.5E-4 -5.0E-5 -7.2E-4 6.0E-6 3.1E-6 -2.6E-6 -3.6E-6 3.0E-6 

KG4 KG5 

KH4 KH5  6.4E-4 -1.4E-4 -7.1E-4 1.4E-4 3.1E-6 -2.5E-6 -3.4E-6 2.7E-6 

KG5 KG6 

KH5 KH6  6.6E-4 -8.1E-5 -6.9E-4 1.1E-4 3.1E-6 -2.8E-6 -3.5E-6 3.2E-6 
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Stations 

Used           er.  er   er   er 

KG6 KG7 

KH6 KH7  6.7E-4 -2.3E-4 -6.3E-4 2.4E-4 2.5E-6 -2.0E-6 -2.9E-6 2.4E-6 

KH1 KH2 

KI1 KI2  6.9E-4 -8.8E-5 -6.5E-4 7.9E-5 4.1E-6 -3.7E-6 -4.8E-6 4.5E-6 

KH2 KH3 

KI2 KI3  7.3E-4 -1.4E-4 -6.7E-4 1.2E-4 3.6E-6 -3.0E-6 -4.0E-6 3.4E-6 

KH3 KH4 

KI3 KI4  7.5E-4 -6.6E-5 -6.8E-4 3.8E-5 3.5E-6 -3.1E-6 -3.9E-6 3.5E-6 

KH4 KH5 

KI4 KI5  7.6E-4 -1.2E-4 -6.8E-4 9.2E-5 3.0E-6 -2.6E-6 -3.4E-6 3.1E-6 

KH5 KH6 

KI5 KI6  7.8E-4 -1.2E-4 -6.9E-4 1.0E-4 2.7E-6 -2.3E-6 -3.1E-6 2.8E-6 

KH6 KH7 

KI6 KI7  8.0E-4 -2.5E-4 -6.8E-4 1.9E-4 2.7E-6 -2.3E-6 -3.1E-6 2.6E-6 

KI1 KI2 

KJ1 KJ2  6.5E-4 -1.2E-4 -6.2E-4 1.0E-4 3.5E-6 -3.2E-6 -4.1E-6 3.8E-6 

KI2 KI3 

KJ2 KJ3  6.4E-4 -1.3E-4 -6.0E-4 9.4E-5 2.8E-6 -2.3E-6 -3.0E-6 2.5E-6 

KI3 KI4 

KJ3 KJ4  6.4E-4 -8.6E-5 -5.7E-4 4.2E-5 3.5E-6 -3.0E-6 -3.8E-6 3.3E-6 

KI4 KI5 

KJ4 KJ5  6.1E-4 -9.4E-5 -5.4E-4 7.8E-5 3.6E-6 -3.3E-6 -4.1E-6 3.8E-6 

KI5 KI6 

KJ5 KJ6  6.2E-4 -1.6E-4 -5.4E-4 1.1E-4 3.1E-6 -2.6E-6 -3.6E-6 3.0E-6 

KI6 KI7 

KJ6 KJ7  6.3E-4 -2.3E-4 -5.4E-4 1.5E-4 3.0E-6 -2.6E-6 -3.5E-6 3.2E-6 

KJ1 KJ2 

KK1 KK2  5.9E-4 -1.3E-4 -5.5E-4 1.1E-4 3.0E-6 -2.6E-6 -3.4E-6 3.1E-6 

KJ2 KJ3 

KK2 KK3  5.9E-4 -1.2E-4 -5.5E-4 6.2E-5 2.5E-6 -2.1E-6 -2.8E-6 2.3E-6 

KJ3 KJ4 

KK3 KK4  5.7E-4 -7.7E-5 -5.2E-4 1.8E-5 2.1E-6 -1.8E-6 -2.2E-6 2.0E-6 

KJ4 KJ5 

KK4 KK5  5.7E-4 -9.8E-5 -5.1E-4 7.6E-5 2.7E-6 -2.4E-6 -3.1E-6 2.8E-6 

KJ5 KJ6 

KK5 KK6  6.0E-4 -2.0E-4 -5.1E-4 1.1E-4 3.4E-6 -2.8E-6 -4.0E-6 3.4E-6 

KJ6 KJ7 

KK6 KK7  6.0E-4 -1.7E-4 -4.9E-4 1.0E-4 3.0E-6 -2.6E-6 -3.6E-6 3.3E-6 
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D Whillans Ice Stream quad strain components 

Stations 

Used           er.  er   er   er 

WA1 WB1 

WA2 WB2   5.9E-5 1.3E-4 -7.6E-5 4.1E-5 -2.9E-7 9.7E-7 -1.2E-6 9.8E-7 

WB1 WC1 

WB2 WC2   2.5E-4 1.1E-4 1.9E-4 -9.1E-5 1.5E-6 1.2E-6 1.6E-6 -1.8E-7 

WC1 WD1 

WC2 WD2   4.3E-4 -6.9E-5 -8.4E-5 -5.7E-5 1.8E-6 -1.1E-7 -9.5E-8 2.7E-8 

WD1 WE1 

WD2 WE2   6.1E-4 -5.0E-5 1.2E-5 -5.0E-5 1.8E-6 -1.1E-7 5.1E-8 4.8E-8 

WE1 WF1* 

WE2 WF2       NaN      NaN  -3.8E-4 1.2E-4     NaN      NaN  -4.4E-8 -5.5E-7 

WF1 WG1* 

WF2 WG2       NaN      NaN  1.2E-3 -5.4E-5     NaN      NaN  1.3E-6 -4.1E-7 

WG1 WH1* 

WG2 WH2       NaN      NaN  2.9E-4 -4.4E-4     NaN      NaN  1.7E-6 -1.4E-6 

WH1 WI1* 

WH2 WI2       NaN      NaN  7.1E-5 -3.0E-4     NaN      NaN  2.3E-6 -2.0E-6 

WI1 WJ1 

WI2 WJ2   6.6E-4 -1.6E-4 2.6E-4 -2.9E-4 2.4E-6 -1.8E-6 2.2E-6 -2.0E-6 

WJ1 WK1 

WJ2 WK2   6.4E-4 -6.6E-5 3.6E-4 -2.4E-4 1.7E-6 -1.2E-6 1.8E-6 -1.5E-6 

WK1 WL1 

WK2 WL2   6.2E-4 -6.1E-5 4.5E-4 -1.8E-4 1.3E-6 -9.9E-7 1.5E-6 -1.2E-6 

WA2 WB2 

WA3 WB3   1.2E-4 1.1E-5 -7.0E-5 -9.5E-5 9.7E-7 -1.4E-7 -1.1E-6 -1.1E-6 

WB2 WC2 

WB3 WC3   1.2E-4 -2.2E-5 3.6E-5 -9.0E-5 1.4E-6 -1.1E-6 1.6E-6 -1.3E-6 

WC2 WD2 

WC3 WD3   3.3E-4 -3.4E-5 6.8E-5 -1.2E-4 2.0E-6 -1.5E-6 2.2E-6 -1.8E-6 

WD2 WE2* 

WD3 WE3       NaN      NaN  -3.2E-4 -2.7E-4     NaN      NaN  -1.9E-6 -1.5E-6 

WE2 WF2* 

WE3 WF3       NaN      NaN  1.7E-4 -2.7E-4     NaN      NaN  1.3E-6 -1.1E-6 

WF2 WG2 

WF3 WG3   1.5E-4 -1.5E-4 5.6E-4 -2.4E-4 1.3E-6 -1.1E-6 1.6E-6 -1.3E-6 

WG2 WH2* 

WG3 WH3       NaN      NaN  4.1E-4 -3.8E-4     NaN      NaN  1.7E-6 -1.5E-6 

WH2 WI2* 

WH3 WI3       NaN      NaN  2.4E-4 -3.3E-4     NaN      NaN  1.9E-6 -1.9E-6 

WI2 WJ2 

WI3 WJ3   7.8E-4 -8.5E-5 3.9E-4 -1.9E-4 2.2E-6 5.0E-8 2.0E-6 -1.8E-6 
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Stations 

Used           er.  er   er   er 

WJ2 WK2 

WJ3 WK3   6.5E-4 -1.8E-4 3.9E-4 -1.5E-4 1.5E-6 -1.4E-6 1.5E-6 -1.5E-6 

WK2 WL2 

WK3 WL3   6.1E-4 -1.6E-4 4.6E-4 -1.7E-4 1.2E-6 -1.1E-6 1.2E-6 -1.3E-6 

WA3 WB3 

WA4 WB4   1.6E-4 -2.0E-4 -1.2E-4 -6.2E-5 1.6E-6 -1.8E-6 -1.8E-6 -2.0E-6 

WB3 WC3* 

WB4 WC4       NaN      NaN  3.2E-4 3.1E-4     NaN      NaN  1.9E-6 2.6E-7 

WC3 WD3* 

WC4 WD4       NaN      NaN  -1.3E-4 4.8E-4     NaN      NaN  9.0E-7 3.3E-6 

WD3 WE3* 

WD4 WE4       NaN      NaN  -2.6E-4 5.4E-4     NaN      NaN  -1.9E-6 3.3E-6 

WE3 WF3* 

WE4 WF4       NaN      NaN  1.1E-4 5.2E-4     NaN      NaN  -4.4E-7 3.2E-6 

WF3 WG3 

WF4 WG4   1.6E-4 -2.4E-4 3.4E-4 -2.7E-5 1.7E-6 -2.7E-6 1.9E-6 5.8E-7 

WG3 WH3 

WG4 WH4   5.5E-4 -2.2E-4 3.2E-4 -2.6E-4 2.1E-6 -2.7E-6 1.9E-6 -2.6E-6 

WH3 WI3 

WH4 WI4   7.0E-4 -2.2E-4 3.4E-4 -2.8E-4 2.7E-6 -2.8E-6 2.2E-6 -2.7E-6 

WI3 WJ3 

WI4 WJ4   7.4E-4 -2.2E-4 4.8E-4 -2.2E-4 3.1E-6 -2.5E-6 2.7E-6 -2.3E-6 

WJ3 WK3 

WJ4 WK4   7.0E-4 -1.7E-4 4.5E-4 -1.2E-4 2.6E-6 -2.1E-6 2.2E-6 -1.9E-6 

WK3 WL3 

WK4 WL4   6.7E-4 -1.3E-4 4.9E-4 -2.7E-5 2.0E-6 -1.7E-6 1.9E-6 1.3E-8 

*  Quads containing damaged stations. 

 

  



  Fiona Seifert 

 76 

E Whillans Ice Stream triangular strain components 

Stations 

Used           er.  er   er   er 

WA1 WF1 

WB1  1.2E-4 -3.3E-5 -2.3E-5 5.9E-5 2.4E-8 -6.6E-9 -4.5E-9 1.2E-8 

WA2 WK1 

WJ1  1.6E-4 -2.1E-4 1.4E-5 -1.1E-4 3.2E-8 -4.1E-8 2.7E-9 -2.1E-8 

WJ1 WG1 

WF1  7.5E-5 -8.0E-5 -1.7E-5 -7.1E-5 1.5E-8 -1.6E-8 -3.5E-9 -1.4E-8 

WK1 WG1 

WJ1  3.4E-5 -7.5E-5 -2.1E-5 -7.0E-5 6.9E-9 -1.5E-8 -4.3E-9 -1.4E-8 

WA2 WL1 

WD2  4.3E-4 -4.1E-4 -6.5E-5 1.5E-4 8.5E-8 -8.2E-8 -1.3E-8 2.9E-8 

WC2 WD2 

WL1  3.7E-4 -1.5E-4 2.1E-5 -2.2E-4 7.3E-8 -3.1E-8 4.2E-9 -4.4E-8 

WC4 WD4 

WL3  3.3E-4 -3.5E-4 2.0E-4 -3.4E-4 6.6E-8 -7.1E-8 4.0E-8 -6.8E-8 

WH3 WG3 

WL3  3.6E-4 -3.4E-4 1.1E-4 -3.7E-4 7.2E-8 -6.9E-8 2.1E-8 -7.4E-8 

WJ2 WA3 

WK2  2.2E-4 -4.1E-4 4.0E-5 -3.8E-4 4.3E-8 -8.1E-8 7.9E-9 -7.6E-8 

WK2 WG2 

WJ2  3.2E-5 -1.7E-4 9.6E-5 -4.5E-4 6.3E-9 -3.5E-8 1.9E-8 -9.0E-8 

WL2 WG2 

WK2  -3.3E-5 -2.5E-4 2.2E-4 -3.0E-4 -6.6E-9 -4.9E-8 4.5E-8 -6.0E-8 

WJ2 WI2 

WD3  3.1E-4 -3.1E-4 -1.2E-4 -4.9E-4 6.2E-8 -6.3E-8 -2.4E-8 -9.9E-8 

WD3 WA3 

WJ2  2.2E-4 -4.2E-4 3.1E-5 -3.1E-4 4.4E-8 -8.5E-8 6.1E-9 -6.1E-8 

WD1 WL2 

WB3  1.4E-3 1.2E-3 1.3E-3 1.5E-3 2.7E-7 2.4E-7 2.6E-7 2.9E-7 

WL2 WK2 

WB3  2.8E-4 -3.5E-4 8.8E-5 -2.6E-4 5.5E-8 -6.9E-8 1.8E-8 -5.2E-8 

WB3 WK2 

WA3  2.8E-4 -3.4E-4 8.3E-5 -3.3E-4 5.5E-8 -6.8E-8 1.7E-8 -6.6E-8 

WI2 WC2 

WK3  -4.4E-3 -6.2E-3 1.1E-2 1.4E-2 -8.7E-7 -1.2E-6 2.2E-6 2.7E-6 

WC4 WL3 

WK3  3.7E-4 -3.5E-4 1.8E-4 -3.4E-4 7.4E-8 -7.1E-8 3.6E-8 -6.9E-8 

WK3 WL3 

WG3  3.6E-4 -3.5E-4 9.2E-5 -2.7E-4 7.2E-8 -6.9E-8 1.8E-8 -5.4E-8 

WH1 WG1 

WK1  -3.3E-5 -1.7E-4 -3.7E-5 -9.1E-5 -6.5E-9 -3.4E-8 -7.3E-9 -1.8E-8 

WC1 WB1 

WF1  9.8E-5 -5.7E-5 -1.0E-4 -1.8E-5 2.0E-8 -1.1E-8 -2.0E-8 -3.6E-9 

WF1 WG1 

WC1  5.4E-5 -5.8E-5 -7.0E-5 -1.7E-5 1.1E-8 -1.2E-8 -1.4E-8 -3.4E-9 
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Stations 

Used           er.  er   er   er 

WC1 WH1 

WD1  -2.3E-5 -2.0E-4 -9.3E-5 6.5E-5 -4.7E-9 -4.0E-8 -1.9E-8 1.3E-8 

WG1 WH1 

WC1  -2.2E-5 -1.8E-4 -9.7E-5 -5.9E-5 -4.5E-9 -3.5E-8 -1.9E-8 -1.2E-8 

WI1 WL1 

WA2  2.6E-4 -3.1E-4 -1.2E-4 1.8E-4 5.2E-8 -6.2E-8 -2.4E-8 3.6E-8 

WA2 WJ1 

WI1  2.3E-4 -1.3E-4 -5.5E-5 -1.8E-4 4.5E-8 -2.6E-8 -1.1E-8 -3.7E-8 

WJ2 WG2 

WF2  5.1E-6 -1.7E-4 2.9E-4 -4.9E-4 1.0E-9 -3.4E-8 5.9E-8 -9.8E-8 

WG2 WD2 

WF2  2.0E-4 -4.0E-4 -5.3E-5 -8.1E-5 4.1E-8 -8.1E-8 -1.1E-8 -1.6E-8 

WD2 WC2 

WF2  4.0E-4 -1.7E-4 -1.1E-4 -1.5E-4 8.0E-8 -3.4E-8 -2.1E-8 -2.9E-8 

WF2 WI2 

WJ2  5.8E-6 -1.7E-4 1.9E-4 -6.4E-4 1.2E-9 -3.3E-8 3.7E-8 -1.3E-7 

WF2 WC2 

WI2  3.8E-4 -9.5E-5 2.1E-5 -6.8E-4 7.6E-8 -1.9E-8 4.2E-9 -1.4E-7 

WE2 WD2 

WG2  2.0E-4 -3.6E-4 -8.3E-5 9.8E-5 3.9E-8 -7.2E-8 -1.7E-8 2.0E-8 

WE2 WH1 

WK1  3.3E-4 -1.6E-5 1.0E-5 -7.2E-5 6.6E-8 -3.3E-9 2.1E-9 -1.4E-8 

WD1 WH1 

WE2  5.6E-4 2.6E-4 5.7E-4 5.8E-4 1.1E-7 5.2E-8 1.1E-7 1.2E-7 

WA4 WL3 

WD4  2.8E-4 -4.2E-4 2.0E-4 -3.4E-4 5.6E-8 -8.3E-8 4.1E-8 -6.7E-8 

WC3 WG3 

WH3  3.4E-4 -3.3E-4 1.6E-5 -3.0E-4 6.8E-8 -6.5E-8 3.2E-9 -6.0E-8 

WH3 WD3 

WC3  3.5E-4 -4.1E-4 1.5E-5 -2.9E-4 7.0E-8 -8.1E-8 3.0E-9 -5.8E-8 

WC3 WD3 

WI2  3.0E-4 -3.8E-4 -9.4E-5 -2.4E-4 6.0E-8 -7.7E-8 -1.9E-8 -4.8E-8 

WI2 WK3 

WC3  2.3E-4 -4.7E-4 -1.4E-3 -2.0E-3 4.7E-8 -9.5E-8 -2.8E-7 -3.9E-7 

WC3 WK3 

WG3  -1.5E-4 -9.2E-4 -6.1E-4 -1.1E-3 -2.9E-8 -1.8E-7 -1.2E-7 -2.1E-7 

WA3 WD3 

WE3  3.4E-4 -4.5E-4 6.6E-5 -3.1E-4 6.8E-8 -8.9E-8 1.3E-8 -6.3E-8 

WE3 WD3 

WH3  3.3E-4 -4.3E-4 3.3E-5 -2.7E-4 6.6E-8 -8.6E-8 6.6E-9 -5.4E-8 

WL1 WI1 

WE1  -3.6E-3 -4.7E-3 1.5E-2 1.8E-2 -7.1E-7 -9.5E-7 3.0E-6 3.5E-6 

WE1 WF1 

WA1  9.2E-5 1.5E-4 -2.2E-5 5.4E-5 1.8E-8 2.9E-8 -4.4E-9 1.1E-8 

WE1 WJ1 

WF1  2.0E-4 6.7E-5 4.9E-5 4.5E-6 4.1E-8 1.3E-8 9.7E-9 9.1E-10 

WE1 WI1 

WJ1  2.4E-4 -1.4E-4 1.0E-4 -2.9E-4 4.9E-8 -2.8E-8 2.1E-8 -5.7E-8 
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Stations 

Used           er.  er   er   er 

WH2 WG2 

WL2  -2.8E-5 -2.1E-4 2.8E-4 1.3E-4 -5.7E-9 -4.2E-8 5.6E-8 2.6E-8 

WH2 WE2 

WG2  3.4E-4 -2.7E-4 3.3E-5 1.7E-4 6.8E-8 -5.4E-8 6.6E-9 3.4E-8 

WH2 WL2 

WD1  -9.5E-4 -1.4E-3 1.1E-3 1.2E-3 -1.9E-7 -2.9E-7 2.1E-7 2.3E-7 

WD1 WE2 

WH2  1.8E-3 1.5E-3 -7.2E-4 -7.8E-4 3.6E-7 3.1E-7 -1.4E-7 -1.6E-7 

WA2 WD2 

WB2  3.9E-4 -4.5E-4 -1.6E-4 2.4E-5 7.9E-8 -9.0E-8 -3.1E-8 4.9E-9 

WD2 WE2 

WB2  2.9E-4 -4.3E-4 5.0E-5 -1.2E-5 5.7E-8 -8.6E-8 1.0E-8 -2.4E-9 

WB2 WK1 

WA2  1.7E-4 -2.1E-4 -4.2E-5 -9.8E-5 3.3E-8 -4.1E-8 -8.5E-9 -2.0E-8 

WB2 WE2 

WK1  3.6E-4 6.4E-5 5.9E-5 4.0E-5 7.3E-8 1.3E-8 1.2E-8 8.0E-9 

WE4 WD4 

WF4  9.3E-4 -9.0E-4 3.9E-3 -3.3E-3 1.9E-7 -1.8E-7 7.9E-7 -6.7E-7 

WE4 WA4 

WD4  3.2E-4 -4.1E-4 2.0E-4 -3.4E-4 6.4E-8 -8.2E-8 4.0E-8 -6.7E-8 

WF4 WB4 

WE4  3.5E-4 -4.1E-4 3.1E-4 -2.6E-4 7.1E-8 -8.2E-8 6.2E-8 -5.2E-8 

WE4 WB4 

WA4  3.2E-4 -4.1E-4 2.5E-4 -2.7E-4 6.4E-8 -8.3E-8 5.0E-8 -5.3E-8 

WF3 WB3 

WA3  3.5E-4 -3.8E-4 7.4E-5 -3.2E-4 7.1E-8 -7.6E-8 1.5E-8 -6.5E-8 

WA3 WE3 

WF3  3.5E-4 -4.3E-4 7.4E-5 -3.1E-4 7.1E-8 -8.7E-8 1.5E-8 -6.1E-8 

WF3 WE3 

WJ3  2.8E-4 -3.9E-4 1.4E-4 -3.4E-4 5.6E-8 -7.9E-8 2.7E-8 -6.8E-8 

WD1 WB3 

WF3  1.9E-3 1.8E-3 1.5E-3 1.6E-3 3.8E-7 3.7E-7 2.9E-7 3.2E-7 

WJ3 WB4 

WF3  4.4E-3 4.3E-3 3.5E-3 3.6E-3 8.7E-7 8.6E-7 7.1E-7 7.2E-7 

WI3 WE3 

WH3  2.8E-4 -4.3E-4 1.5E-4 -2.7E-4 5.6E-8 -8.6E-8 3.0E-8 -5.5E-8 

WH3 WL3 

WI3  2.9E-4 -4.4E-4 1.7E-4 -2.9E-4 5.8E-8 -8.8E-8 3.3E-8 -5.8E-8 

WL3 WA4 

WI3  3.0E-4 -4.4E-4 1.5E-4 -2.9E-4 6.1E-8 -8.8E-8 3.0E-8 -5.8E-8 

WJ3 WE3 

WI3  2.8E-4 -4.3E-4 1.4E-4 -2.9E-4 5.6E-8 -8.6E-8 2.7E-8 -5.7E-8 

WI3 WB4 

WJ3  3.3E-4 -4.7E-4 2.1E-4 -3.5E-4 6.5E-8 -9.3E-8 4.3E-8 -7.0E-8 

WA4 WB4 

WI3  3.2E-4 -4.2E-4 2.0E-4 -2.3E-4 6.4E-8 -8.3E-8 4.1E-8 -4.6E-8 
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F Kamb Ice Stream principle strains 

Stations 

Used  

 principle 

strain rate 1  

 principle 

strain rate 1 e  

 principle 

strain rate 2  

 principle 

strain rate 2 e  

KA1 KA2 

KB1 KB2  -4.9E-5 -1.4E-4 6.1E-5 -1.4E-4 

KA2 KA3 

KB2 KB3  -7.3E-5 -1.3E-4 2.2E-4 -1.3E-4 

KA3 KA4 

KB3 KB4  -2.0E-3 -1.3E-4 1.2E-3 -1.3E-4 

KA4 KA5 

KB4 KB5  -1.8E-4 8.8E-5 1.2E-3 8.8E-5 

KA5 KA6 

KB5 KB6  -1.0E-3 -1.6E-5 3.1E-3 -1.6E-5 

KA6 KA7 

KB6 KB7  -1.6E-4 3.5E-4 8.3E-4 3.5E-4 

KB1 KB2 

KC1 KC2  -1.3E-4 7.8E-4 8.6E-4 7.8E-4 

KB2 KB3 

KC2 KC3  -9.3E-5 8.6E-4 8.6E-4 8.6E-4 

KB3 KB4 

KC3 KC4  -8.4E-5 7.3E-4 8.3E-4 7.3E-4 

KB4 KB5 

KC4 KC5  -6.9E-5 6.1E-4 7.6E-4 6.1E-4 

KB5 KB6 

KC5 KC6  -1.3E-5 -5.4E-5 5.9E-5 -5.4E-5 

KB6 KB7 

KC6 KC7  -3.7E-5 -1.9E-5 2.0E-4 -1.9E-5 

KC1 KC2 

KD1 KD2  -6.5E-5 5.1E-5 4.8E-4 5.1E-5 

KC2 KC3 

KD2 KD3  -3.4E-3 -1.1E-3 6.0E-6 -1.1E-3 

KC3 KC4 

KD3 KD4  -3.9E-4 2.1E-4 5.8E-3 2.1E-4 

KC4 KC5 

KD4 KD5  -1.5E-4 3.2E-4 9.8E-4 3.2E-4 

KC5 KC6 

KD5 KD6  -1.2E-4 7.5E-4 8.9E-4 7.5E-4 

KC6 KC7 

KD6 KD7  -8.4E-5 7.0E-4 9.3E-4 7.0E-4 

KD1 KD2 

KE1 KE2  -9.0E-5 5.3E-4 8.2E-4 5.3E-4 

KD2 KD3 

KE2 KE3  -1.0E-4 4.8E-4 7.5E-4 4.8E-4 
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Stations 

Used  

 principle 

strain rate 1  

 principle 

strain rate 1 e  

 principle 

strain rate 2  

 principle 

strain rate 2 e  

KD3 KD4 

KE3 KE4  6.8E-6 3.2E-4 7.9E-5 3.2E-4 

KD4 KD5 

KE4 KE5  -2.6E-6 7.4E-4 1.7E-4 7.4E-4 

KD5 KD6 

KE5 KE6  -3.4E-5 4.3E-4 3.9E-4 4.3E-4 

KD6 KD7 

KE6 KE7  -1.5E-3 7.9E-6 9.8E-4 8.0E-6 

KE1 KE2 

KF1 KF2  -4.7E-4 5.0E-4 4.3E-3 5.0E-4 

KE2 KE3 

KF2 KF3  -2.2E-4 3.0E-4 1.2E-3 3.0E-4 

KE3 KE4 

KF3 KF4  -1.8E-4 6.1E-4 8.3E-4 6.1E-4 

KE4 KE5 

KF4 KF5  -1.2E-4 7.1E-4 9.1E-4 7.1E-4 

KE5 KE6 

KF5 KF6  -1.0E-4 6.8E-4 7.8E-4 6.8E-4 

KE6 KE7 

KF6 KF7  -1.1E-4 4.0E-4 7.0E-4 4.0E-4 

KF1 KF2 

KG1 KG2  1.9E-5 5.2E-4 8.7E-5 5.2E-4 

KF2 KF3 

KG2 KG3  2.4E-5 6.9E-4 1.6E-4 6.9E-4 

KF3 KF4 

KG3 KG4  5.2E-5 8.2E-4 3.4E-4 8.2E-4 

KF4 KF5 

KG4 KG5  1.2E-4 9.3E-4 9.5E-4 9.3E-4 

KF5 KF6 

KG5 KG6  -1.1E-4 5.7E-4 1.4E-3 5.7E-4 

KF6 KF7 

KG6 KG7  -1.4E-4 5.5E-4 1.5E-3 5.5E-4 

KG1 KG2 

KH1 KH2  -1.1E-4 5.8E-4 8.8E-4 5.8E-4 

KG2 KG3 

KH2 KH3  -9.5E-5 6.1E-4 9.4E-4 6.1E-4 

KG3 KG4 

KH3 KH4  -7.1E-5 7.5E-4 7.6E-4 7.5E-4 

KG4 KG5 

KH4 KH5  -6.7E-5 5.6E-4 7.2E-4 5.6E-4 

KG5 KG6 

KH5 KH6  -1.1E-5 7.9E-4 1.2E-4 7.9E-4 
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Stations 

Used  

 principle 

strain rate 1  

 principle 

strain rate 1 e  

 principle 

strain rate 2  

 principle 

strain rate 2 e  

KG6 KG7 

KH6 KH7  2.1E-5 8.3E-4 2.1E-4 8.3E-4 

KH1 KH2 

KI1 KI2  3.1E-5 1.0E-3 4.8E-4 1.0E-3 

KH2 KH3 

KI2 KI3  8.4E-5 1.0E-3 1.1E-3 1.0E-3 

KH3 KH4 

KI3 KI4  1.5E-5 7.2E-4 1.4E-3 7.1E-4 

KH4 KH5 

KI4 KI5  -1.0E-4 6.7E-4 1.4E-3 6.7E-4 

KH5 KH6 

KI5 KI6  -9.0E-5 6.4E-4 8.6E-4 6.4E-4 

KH6 KH7 

KI6 KI7  -8.7E-5 5.5E-4 9.7E-4 5.5E-4 

KI1 KI2 

KJ1 KJ2  -6.9E-5 6.2E-4 8.0E-4 6.2E-4 

KI2 KI3 

KJ2 KJ3  -7.6E-5 6.8E-4 7.8E-4 6.8E-4 

KI3 KI4 

KJ3 KJ4  -8.7E-4 8.4E-4 2.6E-3 8.4E-4 

KI4 KI5 

KJ4 KJ5  -2.9E-3 -3.8E-4 9.6E-5 -3.8E-4 

KI5 KI6 

KJ5 KJ6  -5.4E-4 1.0E-3 2.6E-3 1.0E-3 

KI6 KI7 

KJ6 KJ7  4.1E-5 1.3E-3 1.3E-3 1.2E-3 

KJ1 KJ2 

KK1 KK2  6.9E-5 8.2E-4 1.5E-3 8.2E-4 

KJ2 KJ3 

KK2 KK3  1.5E-5 5.0E-4 1.4E-3 5.0E-4 

KJ3 KJ4 

KK3 KK4  -2.7E-5 4.9E-4 9.4E-4 4.9E-4 

KJ4 KJ5 

KK4 KK5  -6.1E-5 5.4E-4 1.1E-3 5.4E-4 

KJ5 KJ6 

KK5 KK6  -6.1E-5 6.1E-4 8.4E-4 6.1E-4 

KJ6 KJ7 

KK6 KK7  -6.0E-5 6.4E-4 7.6E-4 6.3E-4 

 

  



  Fiona Seifert 

 82 

G Whillans Ice Stream quad principle strains 

Stations 

Used  

principle 

strain rate 1 

 principle 

strain rate 1 e  

 principle 

strain rate 2  

 principle 

strain rate 2 e  

 WA1 WB1 

WA2 WB2  2.1E-5 6.9E-7 7.8E-5 6.9E-7 

WB1 WC1 

WB2 WC2  -1.5E-4 1.3E-6 3.1E-4 1.3E-6 

WC1 WD1 

WC2 WD2  -6.8E-5 1.8E-6 4.4E-4 1.8E-6 

WD1 WE1 

WD2 WE2  -5.0E-5 1.9E-6 6.1E-4 1.9E-6 

WE1 WF1* 

WE2 WF2      NaN  0.0E+0     NaN  0.0E+0 

WF1 WG1* 

WF2 WG2      NaN  0.0E+0     NaN  0.0E+0 

WG1 WH1* 

WG2 WH2      NaN  0.0E+0     NaN  0.0E+0 

WH1 WI1* 

WH2 WI2      NaN  0.0E+0     NaN  0.0E+0 

WI1 WJ1 

WI2 WJ2  -2.9E-4 3.8E-7 6.6E-4 3.8E-7 

WJ1 WK1 

WJ2 WK2  -2.7E-4 1.2E-7 6.7E-4 1.2E-7 

WA2 WB2 

WA3 WB3  -9.9E-5 -1.0E-7 1.3E-4 -1.0E-7 

WB2 WC2 

WB3 WC3  -9.0E-5 6.8E-8 1.2E-4 6.8E-8 

WC2 WD2 

WC3 WD3  -1.2E-4 1.6E-7 3.3E-4 1.6E-7 

WD2 WE2* 

WD3 WE3      NaN  0.0E+0     NaN  0.0E+0 

WE2 WF2* 

WE3 WF3      NaN  0.0E+0     NaN  0.0E+0 

WF2 WG2 

WF3 WG3  -3.3E-4 4.4E-8 2.4E-4 4.4E-8 

WG2 WH2* 

WG3 WH3      NaN  0.0E+0     NaN  0.0E+0 

WH2 WI2* 

WH3 WI3      NaN  0.0E+0     NaN  0.0E+0 

WI2 WJ2 

WI3 WJ3  -2.1E-4 3.7E-7 8.0E-4 3.7E-7 

WJ2 WK2 

WJ3 WK3  -1.6E-4 -2.2E-8 6.6E-4 -2.2E-8 

WA3 WB3 

WA4 WB4  -1.5E-4 -4.3E-7 2.5E-4 -4.3E-7 

WB3 WC3* 

WB4 WC4      NaN  0.0E+0     NaN  0.0E+0 
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Stations 

Used  

principle 

strain rate 1 

 principle 

strain rate 1 e  

 principle 

strain rate 2  

 principle 

strain rate 2 e  

WC3 WD3* 

WC4 WD4      NaN  0.0E+0     NaN  0.0E+0 

WD3 WE3* 

WD4 WE4      NaN  0.0E+0     NaN  0.0E+0 

WE3 WF3* 

WE4 WF4      NaN  0.0E+0     NaN  0.0E+0 

WF3 WG3 

WF4 WG4  -3.9E-5 2.3E-6 1.7E-4 2.3E-6 

WG3 WH3 

WG4 WH4  -2.6E-4 -5.2E-7 5.5E-4 -5.2E-7 

WH3 WI3 

WH4 WI4  -2.8E-4 2.9E-8 7.1E-4 2.9E-8 

WI3 WJ3 

WI4 WJ4  -2.4E-4 8.6E-7 7.6E-4 8.6E-7 

WJ3 WK3 

WJ4 WK4  -1.4E-4 6.3E-7 7.2E-4 6.3E-7 

WK3 WL3 

WK4 WL4  -7.1E-5 2.0E-6 7.1E-4 2.0E-6 

*  Quads containing damaged stations. 
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H Whillans Ice Stream triangular principle strains 

Stations 

Used  

 principle 

strain rate 1  

 principle 

strain rate 1 er.  

 principle 

strain rate 2  

 principle 

strain rate 2 er.  

 WA1 WF1 

WB1  4.8E-5 1.0E-7 1.3E-4 2.8E-7 

WA2 WK1 

WJ1  -1.4E-4 -2.9E-7 1.9E-4 4.0E-7 

WJ1 WG1 

WF1  -8.5E-5 -1.8E-7 8.9E-5 1.9E-7 

WK1 WG1 

WJ1  -8.9E-5 -1.9E-7 5.3E-5 1.1E-7 

WA2 WL1 

WD2  9.9E-6 2.1E-8 5.6E-4 1.2E-6 

WC2 WD2 

WL1  -2.3E-4 -4.7E-7 3.7E-4 7.8E-7 

WC4 WD4 

WL3  -3.5E-4 -7.4E-7 3.4E-4 7.1E-7 

WH3 WG3 

WL3  -3.9E-4 -8.1E-7 3.8E-4 8.0E-7 

WJ2 WA3 

WK2  -4.3E-4 -9.0E-7 2.7E-4 5.7E-7 

WK2 WG2 

WJ2  -4.5E-4 -9.5E-7 3.5E-5 7.3E-8 

WL2 WG2 

WK2  -3.0E-4 -6.4E-7 -3.2E-5 -6.8E-8 

WJ2 WI2 

WD3  -5.5E-4 -1.2E-6 3.6E-4 7.6E-7 

WD3 WA3 

WJ2  -3.7E-4 -7.8E-7 2.9E-4 6.0E-7 

WD1 WL2 

WB3  1.6E-4 3.4E-7 2.7E-3 5.6E-6 

WL2 WK2 

WB3  -2.9E-4 -6.0E-7 3.1E-4 6.4E-7 

WB3 WK2 

WA3  -3.6E-4 -7.5E-7 3.0E-4 6.3E-7 

WI2 WC2 

WK3  -4.7E-3 -9.9E-6 1.4E-2 2.9E-5 

WC4 WL3 

WK3  -3.5E-4 -7.4E-7 3.8E-4 8.0E-7 

WK3 WL3 

WG3  -3.0E-4 -6.2E-7 3.9E-4 8.1E-7 

WH1 WG1 

WK1  -1.7E-4 -3.6E-7 4.5E-5 9.5E-8 

WC1 WB1 

WF1  -5.7E-5 -1.2E-7 1.4E-4 2.9E-7 

WF1 WG1 

WC1  -5.5E-5 -1.2E-7 9.2E-5 1.9E-7 

WC1 WH1 -1.3E-4 -2.8E-7 1.7E-4 3.7E-7 
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Stations 

Used  

 principle 

strain rate 1  

 principle 

strain rate 1 er.  

 principle 

strain rate 2  

 principle 

strain rate 2 er.  

WD1  

WG1 WH1 

WC1  -1.8E-4 -3.7E-7 9.7E-5 2.0E-7 

WI1 WL1 

WA2  -1.4E-7 -3.0E-10 4.4E-4 9.2E-7 

WA2 WJ1 

WI1  -2.0E-4 -4.3E-7 2.5E-4 5.2E-7 

WJ2 WG2 

WF2  -5.0E-4 -1.0E-6 1.3E-5 2.7E-8 

WG2 WD2 

WF2  -2.1E-4 -4.4E-7 3.3E-4 7.0E-7 

WD2 WC2 

WF2  -1.8E-4 -3.8E-7 4.3E-4 9.1E-7 

WF2 WI2 

WJ2  -6.4E-4 -1.4E-6 5.9E-6 1.2E-8 

WF2 WC2 

WI2  -6.8E-4 -1.4E-6 3.8E-4 8.0E-7 

WE2 WD2 

WG2  -7.9E-5 -1.7E-7 3.7E-4 7.9E-7 

WE2 WH1 

WK1  -7.2E-5 -1.5E-7 3.3E-4 6.9E-7 

WD1 WH1 

WE2  1.6E-4 3.3E-7 9.9E-4 2.1E-6 

WA4 WL3 

WD4  -3.5E-4 -7.4E-7 3.0E-4 6.3E-7 

WC3 WG3 

WH3  -3.4E-4 -7.1E-7 3.8E-4 7.9E-7 

WH3 WD3 

WC3  -3.4E-4 -7.2E-7 4.1E-4 8.5E-7 

WC3 WD3 

WI2  -3.3E-4 -6.9E-7 3.9E-4 8.2E-7 

WI2 WK3 

WC3  -2.3E-3 -4.9E-6 5.8E-4 1.2E-6 

WC3 WK3 

WG3  -1.5E-3 -3.1E-6 2.9E-4 6.0E-7 

WA3 WD3 

WE3  -3.7E-4 -7.7E-7 3.9E-4 8.2E-7 

WE3 WD3 

WH3  -3.3E-4 -6.9E-7 3.9E-4 8.2E-7 

WL1 WI1 

WE1  -4.7E-3 -9.9E-6 1.9E-2 3.9E-5 

WE1 WF1 

WA1  8.8E-6 1.8E-8 1.4E-4 2.9E-7 

WE1 WJ1 

WF1  -1.1E-5 -2.3E-8 2.2E-4 4.6E-7 

WE1 WI1 

WJ1  -2.9E-4 -6.0E-7 2.4E-4 5.1E-7 

WH2 WG2 -3.6E-5 -7.5E-8 1.4E-4 2.9E-7 
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Stations 

Used  

 principle 

strain rate 1  

 principle 

strain rate 1 er.  

 principle 

strain rate 2  

 principle 

strain rate 2 er.  

WL2  

WH2 WE2 

WG2  1.1E-4 2.3E-7 4.0E-4 8.4E-7 

WH2 WL2 

WD1  -9.7E-4 -2.0E-6 1.2E-3 2.5E-6 

WD1 WE2 

WH2  -8.4E-4 -1.8E-6 1.8E-3 3.9E-6 

WA2 WD2 

WB2  -1.5E-4 -3.1E-7 5.6E-4 1.2E-6 

WD2 WE2 

WB2  -1.1E-4 -2.2E-7 3.8E-4 7.9E-7 

WB2 WK1 

WA2  -1.5E-4 -3.1E-7 2.1E-4 4.5E-7 

WB2 WE2 

WK1  2.9E-5 6.0E-8 3.7E-4 7.9E-7 

WE4 WD4 

WF4  -3.8E-3 -8.0E-6 1.4E-3 3.0E-6 

WE4 WA4 

WD4  -3.5E-4 -7.4E-7 3.4E-4 7.1E-7 

WF4 WB4 

WE4  -2.6E-4 -5.5E-7 3.6E-4 7.5E-7 

WE4 WB4 

WA4  -2.8E-4 -5.8E-7 3.3E-4 6.9E-7 

WF3 WB3 

WA3  -3.6E-4 -7.5E-7 3.9E-4 8.1E-7 

WA3 WE3 

WF3  -3.5E-4 -7.4E-7 4.0E-4 8.4E-7 

WF3 WE3 

WJ3  -3.6E-4 -7.7E-7 3.1E-4 6.4E-7 

WD1 WB3 

WF3  1.2E-4 2.6E-7 3.4E-3 7.2E-6 

WJ3 WB4 

WF3  3.0E-5 6.4E-8 7.9E-3 1.7E-5 

WI3 WE3 

WH3  -3.1E-4 -6.5E-7 3.1E-4 6.5E-7 

WH3 WL3 

WI3  -3.2E-4 -6.7E-7 3.2E-4 6.7E-7 

WL3 WA4 

WI3  -3.2E-4 -6.8E-7 3.4E-4 7.1E-7 

WJ3 WE3 

WI3  -3.2E-4 -6.8E-7 3.2E-4 6.6E-7 

WI3 WB4 

WJ3  -3.7E-4 -7.8E-7 3.5E-4 7.3E-7 

WA4 WB4 

WI3  -2.5E-4 -5.2E-7 3.4E-4 7.2E-7 
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