
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

9-3-2021

A 3D Crossbar Architecture for both Pipeline and A 3D Crossbar Architecture for both Pipeline and

Parallel Computations Parallel Computations

John M. Acken
Portland State University, john.acken@pdx.edu

Muayad J. Aljafar
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Aljafar, M. J., & Acken, J. M. (2021). A 3-D Crossbar Architecture for Both Pipeline and Parallel
Computations. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(11), 4456-4469.

This Article is brought to you for free and open access. It has been accepted for inclusion in Electrical and
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/674
mailto:pdxscholar@pdx.edu

1

Abstract— A 3D architecture made up of a CMOS layer

combined with a 3D stack of bipolar memristor crossbar arrays

provides an innovative approach to hardware support for utilizing

the strength of CMOS combined with the strength of memristors.

Memristors have been evaluated for implementing a broad

spectrum of applications such as memory, computations,

hardware-based security primitives, cryptography, etc., and

numerous studies have shown that memristors are desirable

candidates for such applications. This paper proposes a novel 3D

memristive crossbar architecture (i.e., a stack of memristive

crossbar arrays built on top of CMOS substrate) with a specific

focus on the way of connecting the crossbar arrays to the CMOS

layer. The proposed architecture is configurable and allows

restructuring crossbar arrays and creating 1D arrays with

adjustable sizes. The proposed architecture enables parallel and

pipeline computations where data can move or be processed in

planes perpendicular to the stacked crossbar arrays. In addition,

the proposed architecture is scalable meaning that stacks of

crossbar arrays can be connected without additional overhead.

This paper shows examples of implementing a full adder, a 4-bit

look-ahead carry generator, and an 8-bit multiplexer. Simulations

and area, delay, and power analysis demonstrate the behavior of

the proposed 3D circuit.

Index Terms—3D circuit, memristor crossbar arrays, parallel

and pipeline computation, stateful logic computation

I. BACKGROUND AND INTRODUCTION

HE inherent memory wall bottleneck of the von Neumann

architecture and the end of Moore’s law being approached

has led to a scramble for new architectures and nanodevices.

One innovative architecture combines a 3D memristor crossbar

array with a 3D architecture made up of a CMOS layer and

memristor crossbar array [1]. Memristors [2]-[3] are examples

of nanodevices. Memristors are the fourth passive element with

many attractive properties—the other three elements are

resistors, capacitors, and inductors. Memristors have memory,

but the other three do not. Memristors are low-power devices

with fast switching speed, high endurance, excellent scalability,

and CMOS compatibility [4]-[8]. Memristors have been

proposed for a broad spectrum of applications including,

memory, computation, and hardware-based security

applications such as PUFs (Physically Unclonable Functions)

[9]-[11], [32]-[33]. Examples of new architectures for digital

Manuscript received December 18, 2020; revised April 5, 2021; revised June

19, 2021. Muayad J. Aljafar is with the Information and Communication

Engineering Department, Basra College, Basra, Iraq (e-mail:

m.aljafar@gmail.com).

memories or reconfigurable logic circuits are CMOL

(Cmos+MOLeculer-scale devices) FPGA [1], [12], FPNI (Field

Programmable Nanowire Interconnect) [13], three-dimensional

crossbar arrays of rectifying memristors [14], 3D crossbar

arrays for network on chip based on post-silicon devices [15],

and three-dimensional integration of Carbon Nanotube FETs

with Silicon CMOS [16]-[17]. CMOL FPGA consists of a

crossbar array fabricated above a sea of CMOS inverters. This

crossbar array is slightly rotated for connecting each nanowire

electrically to one metallic pin (or interconnect) extending up

from the CMOS substrate. FPNI tradeoffs some speed, density,

and fault-tolerance of CMOL in exchange for easier fabrication,

lower power dissipation, and greater freedom in selecting

nanowires in crossbar array [13]. The CMOS-memristor

architectures have further improved by fabricating stacked

crossbar arrays of rectifying memristors in an attempt to

mitigate the sneak currents in crossbar arrays [14]. In addition

to memristor technology, other technologies such as carbon

nanotube FETs with silicon CMOS have been proposed in 3D

architectures [16]-[17].

This paper proposes a novel 3D memristive crossbar

architecture. The novelty of this architecture is in the way of

connecting the crossbar arrays to the CMOS layer. There are

existing 3D CMOS-memristor architectures as described in the

previous paragraph. The emphasis in our paper is not speed,

power, or density but rather the flexibility of the circuits and

their interconnections. The proposed architecture provides

programmable flexibility in connecting the stacked crossbar

arrays. These connections are configurable and can turn the 3D

architecture into, e.g., 1D arrays with adjustable sizes for

parallel and pipeline computing, resulting in a highly

configurable architecture. In addition, the proposed architecture

can move or process data in planes perpendicular to the stacked

crossbar arrays. This circuit architecture is different from

conventional 3D memristive architectures in the literature. The

proposed architecture also provides programmable flexibility

for implementing completely different functions such as RAM

arrays, logic gates, etc. This paper shows examples of

implementing some combinational circuits (n-bit adder and 8-

bit multiplexer), demonstrating the behavior of the proposed

architecture. The rest of the paper is organized as follows.

Section II describes the new 3D crossbar architecture, and

John M. Acken is with the Electrical and Computer Engineering

Department, Portland State University, Portland, OR 97201 USA

(acken@pdx.edu).

A 3D Crossbar Architecture for both Pipeline

and Parallel Computations

Muayad J. Aljafar and John M. Acken

T

2

Section III shows examples of implementing circuits in the new

architecture. Section IV evaluates the proposed architecture,

and Section V concludes the paper.

II. PROPOSED IMPLEMENTATION

The proposed architecture consists of l (limited by

technology) stacked memristive crossbar arrays of m×n and

allows processing data in any plane (XY, YZ, and XZ) in the

3D architecture. This unconventional 3D architecture requires

different interconnects (for connecting a CMOS chip to

crossbar nanowires) from ones introduced in the CMOL

architecture [1]. The proposed architecture utilizes only two-

terminal selectors, i.e., memristors with intrinsic current-

rectifying characteristic. This current-rectifying characteristic

can 1) effectively break the sneak current paths and is a key

reason that the array proposed here can operate without having

an external transistor or diode at each crosspoint, 2) reduce the

difficulties of fine-tune programming of memristors in crossbar

arrays, and 3) enable multi-bit storage ability [19]. The

proposed architecture enables in-memory computations and

overcomes the memory bottleneck in von-Neumann

architectures. Details of the circuit architecture are available in

Section II-A.

A. Architecture Details

Fig. 1 shows a schematic of the proposed architecture. The

crossbar arrays are stacked above a CMOS layer in XY planes

extending up toward Z-axis. The crossbars and CMOS circuits

communicate through nanowires and CMOS switches shown in

Fig. 1. The CMOS layer supplies the voltage needed for

operating the crossbar arrays where logic and storage are

implemented. For the following description, we use five

stacked 7×6 crossbar arrays. As mentioned earlier, data can

move in any plane perpendicular to the stacked crossbar arrays,

and for that, the CMOS switches play a major role. Fig. 2 shows

how horizontal CMOS switches can connect rows of (seven)

memristors in an XZ plane. The brown squares are memristors

located at intersections of gray nanowires. Yellow planes are

insulating layers. The CMOS peripheral switches (on both

sides) allow data to move between the stacked crossbar arrays

in XZ planes. Each XZ plane can be used for implementing

multiple operations in parallel. For example, connecting two

rows of memristors by two CMOS switches results in three

separate arrays, i.e., one with a size of 1×14 and the others with

a size of 1×7. These three arrays can implement three different

types of operations all at once. Note that the horizontal and

vertical switches connect the relative memristors anti-serially.

Fig. 3 shows the stacked crossbar arrays in a YZ plane. Note

that gray lines are vertical nanowires connected to vertical

switches. These switches allow data to move between stacked

crossbar arrays in YZ planes. Since there are five stacked

crossbar arrays, each plane of memristors (seen as a row or

column of memristors in Fig. 2 and Fig. 3) is connected to five

CMOS switches from each side. When all vertical and

horizontal switches are turned off, the stacked crossbar arrays

are disconnected, and each crossbar array can implement only

one type of logic operation [18]. Therefore, adding vertical and

horizontal switches facilitates reconfiguring the topology of the

architecture for compact and efficient use. The circuit in Fig. 4

shows the functionality of the peripheral CMOS switches. Each

nanowire (a gray line in Fig. 1) on each side is connected to a

non-inverting tristate buffer and a transmission gate (Fig. 4a).

The crossbar arrays communicate through these switches. For

example, moving one bit from crossbar A1 to crossbar B1

occurs through a non-inverting tristate buffer connected to a

crossbar A1 nanowire, and a transmission gate connected to a

crossbar B1 nanowire (Fig. 4b). The non-inverting tristate

buffer is used as an amplifier, whereas a transmission gate is

used as a selector. The overall number of transistors used in

Fig. 4a is 10 including two transistors (an inverter) used for

generating 𝐸𝑛̅̅̅̅ . These peripheral switches are fabricated in the

CMOS layer. There are more transistors required to select a

connection to multiple voltage levels as discussed in Section

IV.

Fig. 1. Proposed 3D architecture of memristor arrays. Here, l=5, m=7, and

n=6.

Fig. 2. Schematic of the proposed circuit in an XZ plane.

Fig. 3. Schematic of the proposed circuit in an YZ plane.

3

B. Fabrication Possibilities

Improvements in fabrication technology for 3D memristors

demonstrate the feasibility of our architecture. Although

memristor fabrication is improving there are still several

challenges ahead such as heat dissipation, routing difficulties

for active (1T1R) arrays, and high-temperature steps. An

example of the feasibility of our architecture is provided by Li

et al. [14] where they practically demonstrated several stacked

crossbar arrays of rectifying memristors. They fabricated three

stacked crossbar arrays using the fluid-supported membrane

transfer technique. They used a hydrogen silsesquioxane layer

between each layer of a crossbar array for electrical isolation.

In addition, the authors fabricated five stacked crossbar arrays

using a different approach. They showed successful readout for

different scenarios confirming the efficient blocking of sneak

paths by the rectifying memristors. Furthermore, the authors

simulated the readout resistance in different states in a 64×64

crossbar array with different layers, considering the worst-case

scenario. Their simulations also show the correct operation of

the 3D circuit. These examples in the literature show the

possibility of fabricating 3D crossbar arrays similar to our

proposed one.

III. EXAMPLE APPLICATIONS

This section shows examples of calculating logic functions

in the proposed 3D architecture. Here, the goal is to demonstrate

the scalability of the design and show examples of both parallel

and pipeline computations in the 3D architecture. The details of

the following examples are included to clearly demonstrate the

flexibility of this architecture. The examples are 1-bit full adder

(Section III-B), 4-bit full adder (Section III-C), and 8-bit

multiplexer (Section III-D) implemented with volistor and

programmable diode gates [18], [24], [27] in crossbar arrays of

rectifying memristors [14], [19]-[20]. The functionality of these

logic gates is briefly explained in Section III-A.

A. Volistor and Programmable Diode Gates

The implementation of volistor and programmable diode

gates relies on rectifying memristors, i.e., memristors with

intrinsic diode behavior. The use of rectifying memristors

eliminates the sneak currents in a crossbar array due to the

diode-like behavior and the need for individual selectors for

each memristor. This work exploits the high rectifying ratio of

the memristors for logic applications. Below, we review

different implementations of some volistor and programmable

diode gates utilized in the examples.

Programmable Diode OR and Volistor NOR Gates: Here, we

show schematics for implementing an n-input programmable

diode-OR and volistor NOR gates. Fig. 5a shows a schematic

of a programmable diode OR gate, where inputs are voltage

signals applied to terminal A of the memristors (see the inset in

Fig. 5), and the output is the voltage on wired-OR l, vl. When

inputs are similar, either low or high, vl will be equal to the input

voltages. However, when inputs are different, vl will be equal

to the high input voltage. Specifically, all memristors connected

to a low input are reverse-biased, expressing a high resistance

as if they were programmed to an HRS. Here, the low input is

chosen 0V, which encodes logic 0, and the high input is chosen

0.6V, which encodes logic 1. A configuration example under

which the gate operates correctly is also shown in Fig. 5a where

inputs vi are chosen to be non-destructive to the memristors’

states, i.e., vi < V+
TH and V+

TH is a memristor positive threshold

voltage. The state of each memristor in Fig. 5a is used to either

connect or disconnect an input to the gate. If a memristor is set

(or programmed to a low resistance state, LRS), it connects the

input to the gate, but if the memristor is reset (or programmed

to a high resistance state, HRS), it suppresses the input. The

truth table in Fig. 5 summarizes the correct behavior of the

programmable diode-OR gate.

The output of the programmable diode OR gate can be stored

as resistance. Fig. 5b shows an implementation of a volistor

NOR gate, which stores the logic output of the diode OR in an

output memristor. The output memristor is connected to bias

voltage V-
W, chosen to satisfy V-

W - vl ≤VRESET when at least one

of the inputs connected to the gate (through a memristor in an

LRS) is high; here, VRESET is a voltage that programs a

memristor in an LRS to an HRS. A voltage configuration under

which the volistor NOR gate operates correctly is also shown in

Fig. 5b. This implementation requires initializing the output

memristor to an LRS.

Fig. 5c and 5d show two schematics for implementing a NOR

gate, where both input and output are stored in memristors (as

logic resistance). These schematics, which have been used in

the literature, have different implementations than the volistor

NOR gate. Specifically, in volistor NOR, the wired-NOR is

floated; however, the wired-NOR in other schematics is

grounded through a reference resistor. (This is true for other

volistor gates, as well). In Fig. 5c, V+
r, a positive voltage smaller

than V+
TH, is applied to terminal A of the input memristors, V-

W

is applied to the output memristor, and wired-OR l is grounded

through reference resistor Rg. The value of Rg should be chosen

with care to reflect the logic values stored in the input

memristors. In general, Rg should be much larger than the LRS

and much smaller than the HRS. One choice for Rg, chosen in

this paper, is the geometric mean of LRS and HRS. Here, we

discuss the conditions under which the NOR gate operates

correctly by considering all input combinations of the gate. If at

Nanowire

En En En

...

En A1

Nanowire

A1

Nanowire

B1

En A1  En A1 En B1 En B1En B1

a b
Fig. 4. (a) Schematic of peripheral CMOS switches connected to one side of

each crossbar nanowire in Fig. 1. (b) Example of connecting two nanowires

of two crossbar arrays.

4

least one input is logic ‘1’, i.e., one input memristor is in an

LRS, the voltage on wire-OR l should be close to V+
r; and

therefore, the voltage across the output memristor should be

about V-
W- V+

r. This negative voltage should be equal to or

smaller than VRESET to program the output memristor, which is

initialized to an LRS, to an HRS or logic ‘0’. And, if all

memristors are in an HRS, the voltage on wired-OR should be

close to 0V; therefore, the voltage across the output memristor

should be about V-
W, which is insufficient to program the

memristor to an HRS. This correct behavior of the logic NOR

gate can be achieved by the voltage configuration shown in

Fig. 5c. The schematic of the NOR gate in Fig. 5d is similar to

that in Fig. 5c. Here, a negative bias voltage, V-
r, which is larger

than V-
TH, a memristor’s negative threshold voltage, is applied

to terminal B of the input memristors, and V+
W, a positive

voltage, is applied to the output memristor. A voltage

configuration under which the NOR gate operates correctly is

also shown in Fig. 5d. Note that the schematic of NOR can be

modified for implementing a NOT gate by reducing the number

of inputs to one. In this implementation, the same voltage

configuration of NOR gates would realize a NOT gate. All the

implementations discussed above have been used in the

examples shown in Section III.

Programmable Diode AND and Volistor AND Gates: Here

we show schematics for implementing an n-input

programmable diode-AND and volistor AND gates. Fig. 6a

shows a schematic of a programmable diode AND gate, where

inputs are voltage signals applied to terminal B of the

memristors (see the inset in Fig. 5), and the output is the voltage

on wired-AND l, vl. When inputs are similar, either low or high,

vl will be equal to the input voltages. However, when inputs are

different, vl will be equal to the low input voltage. All

memristors connected to high inputs are reverse-biased,

expressing a high resistance as if they were programmed to an

HRS. Here, the low input is chosen 0V, which encodes logic 0,

and the high input is chosen 0.6V, which encodes logic 1. A

voltage configuration under which the gate operates correctly is

also shown in Fig. 6a. Specifically, inputs vi are chosen to be

non-destructive to the states of the memristors, i.e., vl– vi> V-
TH.

The state of each memristor in Fig. 6a is used to either connect

or disconnect an input to the gate. If a memristor is set, it

connects the input to the gate, but if the memristor is reset, it

suppresses the input.

Fig. 6b shows another schematic for implementing an n-input

programmable diode AND gate. Here, inputs are resistance,

whereas the output is voltage. Specifically, inputs are states of

memristors connected to reference resistors, Rgi. A positive

...

v1 v2

l

v3 vn

DC

a

i

A B

LRS HRS

...

v1 v2

l

vn V-
w

b

Inputs vi Output vl

similar
different

vi

High vi

..
.

V -r

V -r

V
-
r

V+
w

d

l

vi<V+
TH

 vi ϵ {0V, 0.6V}

vl max{v1 ...vn}

(When at least one of the inputs connected to the gate is high)

V-
w -0.6V

V-
w -vl VRESET

(When at least one of the inputs connected to the gate is high)

V -r= -0.6V & V -r>V -TH

V -r < vl < 0V

V+
w +0.6V

vl -V
+

w VRESET (When at least one

of the input memristors is in an LRS)

VRESET= - 1.2V

vi<V+
TH where V+

TH=1
 vi ϵ {0V, 0.6V}

vl =max{v1 ...vn}

vl

Rg

Rg= (LRS HRS)

VRESET -1.2V

...

c

vl
Rg

V -WV +r V +r V +r V +r

V +r= +0.6V & V
+

r<V +TH

0V<vl < V +r

V -w -0.6V

V -
w -vl VRESET (When at least one

of the input memristors is in an LRS)

 VRESET= - 1.2V
Rg= (LRS HRS)

Fig. 5. Implementations of logic OR and NOR gates. (a) Schematic of a programmable diode OR gate, (b) Schematic of a volistor NOR gate, (c) Schematic of a

NOR gate, (d) Schematic of a NOR gate. The inset shows the polarity of a memristor connected to a voltage source. The flow of current into the device decreases

its resistance. The other inset shows symbols of a memristor in an LRS and HRS. The truth table summarizes the correct behavior of a programmable diode OR

gate. Descriptions close to each schematic are examples of bias conditions under which the gates operate correctly.

5

voltage, V+
r, smaller than V+

TH, is applied to the input

memristors to read their logic values, vi, which in turn are

applied to the programmable diode AND gate in Fig. 6a.

Fig. 6c shows a schematic for implementing a volistor AND

gate, where inputs are voltage, and the output is resistance. In

this schematic, the output of the programmable diode AND

gate, shown in Fig. 6a, is stored in an output memristor,

connected to bias voltage V+
W. This implementation requires

initializing the output memristor to an LRS. A voltage

configuration under which this gate operates correctly is also

shown in Fig. 6c.

Fig. 6d shows another schematic for implementing a volistor

AND gate, where both input and output are resistances. In this

schematic, V+
r is applied to the input memristors to read their

values, vi, which in turn are applied to the volistor gate, shown

in Fig. 6c. This implementation requires initializing the output

memristor to an LRS. A voltage configuration under which this

gate operates correctly is also shown in Fig. 6d.

Fig. 6e shows the last schematic for implementing an AND

gate, where inputs are a combination of voltage and resistance.

This schematic is more flexible than those in Fig. 6a-Fig. 6d.

The gate’s output can be either voltage or resistance. Note that

the memristors located at intersections of input voltages and

..
.

v1

v2

v3

vn

a

l

vl

vl -vi>V -TH where V -TH = -1V

vl =min{v1 ...vn}

vi ϵ {0V, 0.6V}

..
.

v1

v2

v3

vn

b

l

..
.

Rg1

Rg2

Rg3

Rgn

vr

vl

..
.

v1

v2

vi

vn

l

..
.

Rg1

Rg2

Rgn

vr

vl

vi

e

V+
wV+

w

..
.

HRS

..
.

v1

v2

v3

vn

d

l

V+
w

..
.

Rg1

Rg2

Rg3

Rgn

V
+

r

V+
w

vl

..
.

v1

v2

v3

vn

c

l

vl

V
+

w

vl -vi>V -TH where V -TH = -1V

vi ϵ {0V, 0.6V}

vl -V
+

w VRESET

(When at least one of the inputs connected to

the gate is in an LRS)

VRESET= - 1.2V, V+
w +1.2V

V+
r =0.6V, V+

TH = 1V

vl -V
+

w VRESET

(When at least one of the inputs connected to

the gate is in an LRS)

VRESET= - 1.2V, V+
w +1.2V

V+
r <V+

TH

Rg= (LRS HRS)

Fig. 6. Implementations of a logic AND gate. (a) Schematic of a diode AND gate where both inputs and the output are voltage. (b) Schematic of a diode AND

gate where inputs are resistance, and the output is voltage. (c) Schematic of a volistor AND gate where inputs are voltage and the output is resistance. (d) Schematic

of a volistor AND gate where both inputs and the output are resistance. (e) Schematic of a diode AND gate where inputs are a combination of voltage and

resistance, and the output can be either voltage or resistance.

6

input resistances must be programmed to an HRS, as shown in

Fig. 6e. For ease of reference, all schematics discussed above

are summarized in Table I.

One advantage of using volistor and programmable diode

gates is that the bias voltages connected to output memristors

will not disturb the states of other memristors connected to the

input voltages. The reason is that the output memristors are

always reverse-biased and suppress the reverse currents. Let’s

consider the NOR gate in Fig. 5b, as an example. For any input

combinations, the voltage across the output memristor is

negative, therefore the memristor is always reverse-biased and

suppresses the current. In addition, the voltage across other

memristors is sufficiently smaller than V+
TH=1V or larger than

V-
TH=-1V and does not disturb their resistance states. For

example, when the inputs are equal, the voltage across these

memristors is about 0V, or when the inputs are different, the

voltage is close to either 0V or V-
TH/2, which induces

insignificant state drifts in these memristors.

B. 1-bit Full Adder

There are serval ways of implementing arithmetic adders in

crossbar memristors, e.g., [21]-[26], [30]. This paper cascades

programmable diode OR gates [24] (i.e., gate 1 in Table I,

implemented in crossbar A in Fig. 7) and volistor AND gates

(i.e., gate 7 in Table I, implemented in crossbars B and C in

Fig. 7) for realizing a 1-bit full adder. The top two arrays are

preprogrammed to be 1-bit adder. Red memristors in the lower

array contain the results based upon voltage inputs. Inputs and

their complements are applied to crossbar array A1 as voltage

signals, i.e., va, vb, vc, va', vb', and vc'. If va is a high input voltage,

its complement va' is a low voltage input and vice versa. The

adder calculates the outputs (s and co) in one clock cycle.

Crossbar arrays A1 and B1 are connected through horizontal

CMOS switches, whereas crossbar arrays B1 and C1 are

connected through vertical CMOS switches—here, only two

columns of crossbar arrays B1 and C1 are connected. The adder

is implemented in the POS (Product-Of-Sums) form where

sums are realized by wired-OR logic in rows of crossbar array

A1, and products are realized by wired-AND logic in columns

of crossbar array B1. For example, the voltage on the top most

nanowire in crossbars A and B encodes logic a+b+c, and the

voltage on the left most nanowire in crossbars B1 and C1

encodes logic (a+b+c)(a+b'+c')(a'+b'+c)(a'+b+c'). VSET in

Fig. 7 is a positive voltage that toggles an HRS of a memristor

to an LRS, V+
W (≥VSET) is a positive voltage applied to the

output memristor in volistor AND gate, and Rgi is a reference

resistor, which connects a nanowire to the ground. This

implementation does not change the states of memristors in

crossbar arrays A1 and B1, hence, the same crossbar arrays can

implement a k-bit ripple carry adder in about k clock cycles.

Black squares are memristors in an HRS, and gray squares are

memristors in an LRS. This example shows how peripheral

switches can customize the crossbar structure for pipeline

computing.

C. 4-bit Look-ahead Carry Generator

This example utilizes two stacks of the crossbar arrays (Stack

1 and Stack 2 in Fig. 8) connected through horizontal CMOS

switches. Crossbar arrays A1, B1, C1, D1, and E1 belong to

Stack 1, and crossbar arrays A2, B2, C2, D2, and E2 belong to

Stack 2. Similarly, a network of the proposed architecture can

be connected through the vertical and horizontal switches. The

carry generator is implemented in three steps by, first,

calculating complements of carry bits, second, calculating the

carry bits, and third, calculating the sum bits. The circuit

configuration in Fig. 9a shows how to calculate complemented

carry bits c'1, c'2, and c'3 by cascading AND-NOR gates. This

step is implemented in one clock cycle. Inputs are a, b, and cin

Fig. 7. Implementation of a 1-bit full adder in the proposed 3D architecture.

The top two arrays are preprogrammed. The adder input is the voltages at

the top. The red memristors contain the results.

Fig. 8. Connecting two stacks of the proposed 3D architecture. The crossbar

arrays in Stack 1 and Stack 2 are labeled A1, B1, etc. for referencing.

TABLE I

LIST OF LOGIC GATES IMPLEMENTATIONS USED IN THE

EXAMPLES

Logic Gates
Gate’s

Input-Output
Ref.

1
Programmable

diode OR
V-V Fig. 5a

2 Volistor NOR V-R Fig. 5b

3 NOR R-R Fig. 5c

4 NOR R-R Fig. 5d

5
Programmable

diode AND
V-V Fig. 6a

6
Programmable

diode AND
R-V Fig. 6b

7 Volistor AND V-R Fig. 6c

8 Volistor AND R-R Fig. 6d

9 AND {V, R}-{V} or {R} Fig. 6e

7

stored in cyan memristors, and outputs are c'1, c'2, and c'3 stored

(a)

(b)

(c)
Fig. 9. Implementation of 4-bit look-ahead carry generator. (a) Computing c'1, c'2, and c'3, complements of the carry bits. (b) Computing the carry

bits and their complements. (c) Calculating the sum bits s0, s1, s2, and s3.

8

in red memristors. The complemented carry bits, c'1, c'2, and c'3,

are calculated in the SOP (Sum-of-Products) form. Specifically,

c'1 is calculated by cascading three programmable diode AND

gates (i.e., gate #6 in Table I) in crossbar A1, and a 3-input

volistor NOR gate (i.e., gate #2 in Table I) in crossbar B1. The

products computed in crossbar A1 are a0b0, b0cin, and a0cin. c'2

is calculated by cascading three AND gates (i.e., gate #9 in

Table I) in crossbar C1 and a 3-input volistor NOR gate (gate

#2 in in Table I) in crossbar D1. The products computed in

crossbar C1 are a1b1, b1c1, and a1c1. The input voltage to the

AND gates, vc1, which encodes carry bit c1, is calculated in

crossbar B1 by a programmable diode OR gate (i.e., gate #1 in

Table I). Similarly, c'3 is calculated by cascading three AND

gates (gate #9 in Table I) in crossbar A2 and a 3-input volistor

NOR gate (gate #2 in Table I) in crossbar B2. The products

computed in crossbar A2 are a2b2, b2c2, and a2c2. The input

voltage to the AND gates, vc2, which encodes carry bit c2, is

calculated in Crossbar D1. In Fig. 9a, V+ (which is equal to V+
r,

a positive voltage for reading a state of a memristor) is applied

for suppressing sneak currents. Next, carry bits c1, c2, and c3 are

calculated and stored in crossbar arrays E1, C2, and D2,

respectively, by using three NOT gates (Fig. 9b). This step is

realized in one clock cycle. Note that the NOT gate that

calculates c1 (in crossbar B1 and E1) uses the same voltage

configuration as the NOR gate in Fig. 5d, whereas the other two

NOT gates that calculate c2 and c3 (in crossbar D1 and C2 and

in crossbar B2 and D2) use the same voltage configuration as

the NOR gate in Fig. 5c. In Fig. 9b, V- (which is equal to V-
r, a

negative voltage for reading a state of a memristor) is applied

for suppressing sneak currents. Next, complements of these

carry bits are again calculated (by using three NOT gates with

the same voltage configuration as in the NOR gate in Fig. 5c)

and stored in the same crossbar arrays where carry bits are

located. This step, which is not shown in Fig. 9, is realized one

clock cycle. Finally, sum bits s0, s1, s2, and s3 are calculated in

the SOP form and stored in the bottom-right memristors in

crossbar arrays E2, E1, C2 and D2 in Fig. 9c. This step is

implemented in two clock cycles. In the first clock cycle,

products a'i b'i c'i, a'i bi ci, ai bi c'i and ai b'i ci are calculated

simultaneously with volistor AND gates (i.e., gate #8 in Table

I), as shown in the upper crossbar arrays in Fig. 9c. And in the

second clock cycle, the sums of the products (sum bits) are

calculated with NOR gates (gate #3 in Table I), as shown in the

lower crossbar arrays in Fig. 9c. Note that V+
W (>=VSET)

connected to the output memristors in volistor AND gates

(Fig. 9c) is different from V+
W (<V+

TH) connected to the output

memristors in NOT gates (Fig. 9b). In all computations, the

working memristors (i.e., the gray and black memristors)

maintain their resistance states. Therefore, only input and

output memristors (i.e., the cyan and red memristors) need to

be reprogrammed for implementing the next 4-bit addition.

Programming the input and output memristors takes only four

clock cycles. Overall, nine clock cycles are required for

implementing the 4-bit look-ahead carry generator as explained

above.

D. 8-bit Multiplexer

This example shows an 8-bit multiplexer implementation in

stacked crossbar arrays A1, B1, C1, D1, and E1. The

multiplexer selects between inputs a and b based on the

selector’s value, x (i.e., c=x'a+xb where c is the multiplexers’

output). This example utilizes AND and NOR gates and

implements the multiplexer in c=(x'a'+xb')' form, which

requires writing the input complements (instead of true inputs)

in the input memristors. Fig. 10 shows crossbar arrays for

calculating x'a (Fig. 10a and Fig. 10b) and x'a+xb (Fig. 10c and

Fig. 7d), and the crossbar arrays for calculating xb are not

shown, as they are very similar to Fig. 10a and Fig. 10b. Cyan

memristors show values of a and b, and orange memristors

show the value of x and its complement, x'. The circuit

calculates x'a (and xb) with volistor AND gates (i.e., gate #7 in

Table I) and stores the results in red memristors. These products

are calculated in two consecutive clock cycles due to the limited

size of crossbar arrays. In the first clock cycle, input bits a4 …

a0 (and b4 … b0) stored in crossbar A1 (and C1) are applied to

crossbar B1 in Fig. 10a (and D1) for calculating products x'a4,

x'a3, x'a2, x'a1, x'a0 (and xb4, xb3, xb2, xb1, xb0). And, in the

second clock cycle, input bits a7 a6 a5 (and b7 b6 b5) stored in

crossbar B1 (and D1) are applied to crossbar A1 in Fig. 10b

(and C1) for calculating products x'a7, x'a6, x'a5 (and xb7, xb6,

xb5). Voltage values Va7x', Va6x'… Va0x' on vertical nanowires in

Fig. 10a and Fig. 10b show products values a7x', a6x'… a0x'.

Next, the circuit NORs the products and stores the results (the

multiplexer’s output) in crossbar array E1. Due to the limited

size of crossbar arrays, the NOR step is also implemented in

two clock cycles. In one clock cycle, NOR operations

c0=(x'a0+xb0)', c1=(x'a1+xb1)', c2=(x'a2+xb2)', c3=(x'a3+xb3)',

and c4=(x'a4+xb4)' are realized (Fig. 10c), and in the second

clock cycle, NOR operations c5=(x'a5+ xb5)', c6=(x'a6+xb6)', and

c7=(x'a7+xb7)' are performed (Fig. 10d). These NOR operations

are implemented with NOR gate #4 in Table I. Overall, the

implementation of an 8-bit multiplexer takes eight cycles. In the

first clock cycle, the input and output memristors are

programmed to an HRS. In the second and third clock cycles,

the output memristors are programmed to an LRS, and in the

fourth clock cycle, the input memristors are programmed by the

input complements. In the next four clock cycles, the 8-bit

multiplexer is implemented.

IV. AREA, TIME, AND POWER EVALUATIONS

This section analyzes the size, delay, and power of the

proposed architecture. The size was evaluated with respect to

the number of transistors and memristors, the delay was

measured based on the number of clock cycles for

implementing a function, and the mean power of all circuits

discussed above was calculated using the LTspice simulator, as

well. There are five transistors required for selecting a

connection to one of four voltage levels or a reference resistor.

These transistors are different from the peripheral switches

shown in Fig. 4. Each nanowire in the crossbar arrays can be

driven by four voltage levels V-
r (>V-

TH), 0V, V+
r (< V+

TH), and

V+
W (> VSET), connected to reference resistor Rg, and set to high

9

impedance Z, where V-
r and V+

r are non-destructive voltages to

the states of memristors and are chosen to satisfy V-
r- V+

r≤

VRESET. These voltage levels are sufficient for both logic

computation and crossbar initialization, and the same CMOS

circuits implement both operations. Setting and resetting

operations require connecting a memristor to VSET and VRESET,

respectively, and these operations are realized in the same

manner as in a 2D crossbar array. In other words, there is no

difference between selecting a specific memristor in our 3D

architecture and a 2D crossbar array.

A. Simulations

The proposed architecture was simulated for implementing

all circuits explained above using the LTSpice simulator, 50nm

TSMC process BSIM4 models, and a rectifying memristor

model used in [28]. Table II shows the memristor parameters.

RON and ROFF are the low and high resistance values of a

rectifying memristor, T is the state transition delay of a

memristor, and α is a positive constant related to the

programming rate. For simplicity, we assume that V -
TH and

V+
TH are symmetric, but in practice, these threshold voltages

may not be symmetric. The goal here is to investigate the

proposed architecture with a multitude of memristors, and this

simple model allows for efficient simulations. Therefore, the

simulation results should be considered only as suggestive as

the physical implementations might show different

characteristics. We use the same reasoning as in [28] to

emphasize architectural behavior rather than detailed circuit

behavior. This goal can be achieved even though this model is

a simple one. For example, the model assumes a piecewise

linear dependency between its programming rate and the

 (a) (b)

 (c) (d)

Fig. 10. Implementation of 8-bit multiplexer. (a)-(b) Calculation of x'a. (c)-(d) Calculation of the multiplexer’s output, c=x'a+xb.

TABLE II

MEMRISTOR PARAMETERS AS USED IN [28]

Memristor

Parameter

Value

VRESET -1.2V

V -TH -1V

V+
TH 1V

VSET 1.2V

RON 500 KΩ

ROFF 500MΩ

T 4ns

α 125×107 (Vs)-1

10

applied voltage. It also assumes fixed threshold voltages, which

is not correct for many physical devices [19]-[20].

The memristor model used assumes a diode-like behavior

only at LRS similar to [29]. In other words, the device is non-

rectifying at HRS, but it shows a high resistance value.

However, in [16], the rectifying memristors in an HRS are more

conductive when forward-biased compared to when reverse-

biased. Fig. 11a shows the I-V characteristics of the rectifying

memristor model used [28] with varied α sampled 10 times

from a normal distribution with mean 125×107 (Vs)-1 and

standard deviation 50×106 (Vs)- 1. Fig. 11b shows the I-V

characteristics of 10 different rectifying memristors from a

fabricated crossbar array with 10 Gbits/cm2 density [19]. The

model used simulates the behavior of the real memristors when

reverse-biased.

If a memristor model with a diode-behavior (for both HRS

and LRS) is used in our simulations, the circuits shown above

work more efficiently by further reducing the sneak path

currents in crossbar arrays and improving logic

implementations in crossbar arrays by increasing the margin

between logic states. For example, in the volistor NOR gate

shown in Fig. 5b, the memristor in an HRS allows a smaller

reverse current compared to our Spice implementation, in

which the reverse current is equal to the forward current. Our

Spice implementation would show a smaller voltage on wired-

NOR when the number of reverse-biased memristors in an HRS

increases. This smaller voltage would increase the transition

delay in the output memristor and the power dissipation of the

gate.

The rectifying memristors have large resistance values.

Table III shows some of these published values in the literature.

The simulation results show that the circuits operate correctly

for TC=T, where TC is the clock time of the circuits. For

example, Fig. 12a shows the simulation results of applying

inputs (va, vb, vc) = (1, 0, 1) to the adder in Fig. 7. The outputs

are s and c stored as resistance in two memristors in crossbar C.

Voltages on horizontal nanowires of crossbar B exhibit the

outputs of wired-OR gates, utilized for implementing the

addition operation in the Product-of-Sums form. To assess the

Fig. 11. (a) I-V characteristics of the rectifying memristor model used in this work [28]. (b) I-V characteristics of fabricated rectifying memristors shown in

[19].

Fig. 12. Simulations of the 1-bit adder shown in Fig. 7. (a) Propagation of

inputs through the crossbar arrays and calculation of intermediate signals

are shown. v denotes a voltage value corresponding to a literal, product, or

sum–of–products. Inputs are va, vb, and vc, and outputs are s and c. (b)

Monte Carlo simulations show the circuit operation for varied threshold and

programming voltages with means 1V and 1.2V and standard deviation

0.05.

TABLE III

EXAMPLES OF RESISTANCE VALUES OF RECTIFYING

MEMRISTORS

Ref RON ROFF Rectifying Ratio

[14] ≈3V/10-3A ≈3V/10-7A 105 *

[19] 100KΩ-1MΩ 75MΩ-750MΩ -

[20] ≈3V/10-10A ≈3V/10-12A 105

[29] ≈0.5V/40×10-9A ≈0.5V/10-9 A >106

*When a bias voltage is larger than1.5V.

11

tolerance of the circuit to variations in threshold and

programming voltages, we ran Monte Carlo simulations 200

times. The varied threshold and programming voltages were

sampled from normal distributions with means 1V and 1.2V

and standard deviation 0.05. Fig. 12b shows the state variations

in the carry bit memristor for bias voltage V+
W is 1.4V

demonstrating the correct operation of the circuit.

The switching dynamics in memristors are highly nonlinear,

i.e., the switching time varies exponentially with the voltage.

Thus, voltages close but not higher than the threshold will

induce some switching that changes the voltage on a wired

logic. The model used, as mentioned above, assumes linear

switching dynamics for memristors. This assumption, however,

has a minor effect on the operations of programmable diode

gates (#1, 5, and 6 in Table I) because they use small input and

output voltages (i.e., as small as almost half the threshold

voltages that induce negligible state drifts in memristors). The

model also has a minor effect on the operations of volistor gates

because they use the same voltage configuration at the input as

programmable diode gates. As a result, state drifts in

memristors connected to inputs are negligible. The switching

can only occur in the output memristors, which are always

reverse-biased. This switching would further increase the

resistances of the output memristors (as opposed to just been

reverse-biased) [20] and would further decrease reverse

currents, which impact the wired-logic connecting the output

memristors to other memristors driven by the inputs (see e.g.,

volistor NOR in Fig. 5b). The switching dynamics in a

rectifying memristor for HRS and LRS are different, and both

volistors and programmable diode gates were designed to

benefit from this device characteristic.

B. Size

Each stack in the proposed architecture consists of m×n×l

memristors where l is the number of crossbar arrays. The

number of transistors connected to each nanowire is assumed to

be five (as described above), therefore, the number of

transistors connected to the crossbar arrays is (m+n)×5l. In

addition, the number of transistors in peripheral switches for

connecting stacks of adjacent crossbar arrays is (m+n)×20l,

where the two switches on each side of the stack are non-

inverting tristate buffers and transmission gates, and each non-

inverting tristate buffer and transmission gate consist of ten

transistors. Concluding that the number of transistors connected

to each stack is (m+n)×25l, i.e., five for the voltage levels and

20 for the interconnect tristate buffers and transmission gates.

Therefore, the number of transistors to memristors ratio is

25(m+n)×l: m×n×l or approximately 7.74:1 for the size of

crossbar arrays used above. When the size of the crossbar arrays

increases, the number of transistors to memristors decreases.

For example, for a stack of m×n crossbar arrays, when m=n, the

transistor to memristor ratio becomes 50:n. When n>50, this

ratio becomes smaller than one. Fig. 13 shows the number of

transistors to memristors ratio for different sizes of crossbar

arrays demonstrating the area behavior of the 3D architecture

for large crossbar arrays. The area behavior of the 3D

architecture comes not only due to the over numbered

memristors versus transistors, but also the size of the

memristors is smaller than transistors.

C. Delay

This paper assumes a clock time of TC, which is sufficient to

toggle the state of a memristor under VSET or VRESET. In the first

example, the 1-bit full adder, the circuit was realized in 3TC

including the initialization of output memristors to HRS and

then to LRS and the computation. In the second example, the 4-

bit adder was implemented in 9TC that includes the initialization

and programming of the input memristors (4TC), and the

computation of the carry and sum bits (5TC). In the third

example, the 8-bit multiplexer, the circuit was implemented in

8TC including the initialization and programming of the input

memristors (4TC), and the computation (4TC).

Note that in the current memristor technology, speed is a big

shortfall of memristor-based logic as opposed to conventional-

CMOS logic [31], i.e., reprogramming a memristor, over

creating an inversion layer in a transistor channel, requires a

significant amount of energy (and thus time) due to its large

bandgap of ions. In addition, the switching time of memristors

outweighs the RC delay, calculated for estimating the

propagation delay of a logic gate in a crossbar array.

Specifically, the transit-time in the 50nm process is 9.489ps and

no memristor logic family can compete with this unless

implemented as resistor-transistor logic [31].

D. Power

For all examples, the power consumption in the 3D

architecture was evaluated based on memristor parameters used

in [28] and shown in Table II. In addition, this paper utilizes the

following voltage levels and a reference resistor for

implementing logic functions: -0.7V, 0V, 0.6, 1.4, and 15MΩ.

These voltage levels are generated by dividing down a single

supply. Although this approach avoids the need for charge

pumps and additional power regulation but largely increases the

power consumption in the circuit. However, cascading

programmable diode gates and volistor gates for logic

computation in crossbar arrays avoid static power consumption.

This feature does not exist in CMOS circuits and some

memristor logic families.

The computational power for implementing the 1-bit full

adder in crossbar arrays A1, B1, and C1 and peripheral switches

was calculated. For any combination of inputs, except for 000

Fig. 13. Transistor- to-memristors ratio for the 3D crossbar arrays of

n×n×l where l has arbitrary value.

0

0.5

1

1.5

2

2.5

3

3.5

16 32 50 64 128 256 512 1024

T
ra

n
si

st
o

r-
to

-M
em

ri
st

o
r

R
at

io

n

12

and 111, the mean power is about 350 nW. For the other two

input combinations, the mean power is about 270 nW. Note that

the memristor model used was intended for slow sweep

experiments. Typically higher threshold voltages need to be

applied for fast switching, which increases the power

consumption. For example, the power consumption at

V+
W=1.6V increases by 1.4%.

The computational power for implementing a 4-bit look-

ahead carry generator in two stacks of crossbar arrays and the

peripheral switches was calculated, as well. Fig. 14 summarizes

the power analysis of the circuit for four combinations of inputs

a, b, and c0 over five clock cycles used for implementing the

adder (see Section III-C). Note that the adder consumes more

power in the first clock cycle as opposed to other clock cycles.

In fact, the adder uses more CMOS switches in the first clock

cycle than other clock cycles (see Fig. 9a). These switches

consume 74-90% of the total power consumed in the first clock

cycle. Furthermore, the peak power, which is 2.3 uW, occurs in

the first clock cycle.

The computational power for implementing the 8-bit

multiplexer in crossbar arrays A1 through E1 and peripheral

switches was calculated. Fig. 15 summarizes the power analysis

of the circuit for two combinations of inputs a, b, and c0 over

six clock cycles used for implementing the multiplexer (see

Section III-D). Note that the power consumed during the

initialization step is not shown in Fig. 15. The peak power

occurs in the second clock cycle and equals 310 nW. In the

previous example, the CMOS switches dominated the power in

the first cycle, whereas in this example, the CMOS switches

dominate the power in both the first and second cycles.

Table IV shows similarities and differences of multiple 3D

architectures. Our circuit trades off some of the area of CMOL

in exchange for flexibility (e.g., memory access,

programming speed, moving data between crossbars, and

programmability of applications).

V. CONCLUSION

A combination of a CMOS layer and a 3D stack of memristor

crossbar arrays in a 3D architecture provides an innovative

approach to utilize the benefit of CMOS, memristors, and 3D

circuits. This paper proposes a configurable 3D architecture

based on memristor crossbar arrays with a specific focus on

connecting the crossbar arrays to the CMOS layer and to each

other. The proposed architecture demonstrates programmable

flexibility in connecting the stacked crossbar arrays. The

proposed architecture also utilizes programmable flexibility for

implementing completely different functions such as RAM

arrays, logic gates, etc. The proposed connections facilitate

changing the architecture topology, which allows data to move

(be processed) in planes perpendicular to the stacked crossbar

arrays. In addition, these connections make connecting stacks

of crossbar arrays are feasible as demonstrated in Example 2

(Fig. 8). Simulations were conducted, and area, delay, and

power analysis were shown demonstrating the behavior of the

proposed architecture. The goal of our architecture is increased

flexibility for programming circuits, functions, and

interconnects, not the comparison of size, performance, and

power to other architectures. Our architecture is suitable for

pipeline and parallel computing and enables in-memory

computations as examples show.

REFERENCES

[1] K. K. Likharev, and D. B. Strukov, “CMOL: Devices, circuits, and

architectures,” in Introducing Molecular Electronics, pp. 447-477.

Springer, Berlin, Heidelberg, 2006.

[2] L. Chua, “Memristor-The missing circuit element,” in IEEE Trans. Circuit

Theory, vol. 18, no. 5, pp. 507-519, Sep 1971.

[3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams., “The

missing memristor found,” in Nature, vol. 453, no. 7191, pp. 80-83, 2008.

[4] M. D. Pickett, and R. Stanley Williams, “Sub-100 fJ and sub-nanosecond

thermally driven threshold switching in niobium oxide crosspoint

nanodevices,” in Nanotechnology, vol. 23, no. 21, pp. 215202, 2012.

[5] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. Stanley

Williams, “Sub-nanosecond switching of a tantalum oxide memristor,”

in Nanotechnology, vol. 22, no. 48, pp. 485203, 2011.

[6] M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, et al., “A fast,

high-endurance and scalable non-volatile memory device made from

asymmetric Ta2O5−x/TaO2−x bilayer structures,” in Nature materials,

vol. 10, no. 8, pp. 625-630, 2011.

[7] S. Pi, P. Lin, and Q. Xia, “Cross point arrays of 8 nm× 8 nm memristive

devices fabricated with nanoimprint lithography,” in Journal of Vacuum

Science & Technology B, Nanotechnology and Microelectronics:

Materials, Processing, Measurement, and Phenomena, vol. 31, no. 6, pp.

06FA02, 2013.

[8] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J.

Yang, et al., “Memristor−CMOS hybrid integrated circuits for

reconfigurable logic,” in Nano letters, vol. 9, no. 10, pp. 3640-3645, 2009.

[9] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for

computing,” in Nature nanotechnology, vol. 8, no. 1, pp. 13-24, 2013.

Fig. 15. Power analysis of the 8-bit multiplexer.

0

100

200

300

400

500

{00010101, 01010110, 0} {00010101, 01010110, 1}

M
ea

n
 P

o
w

er
 C

o
n

su
m

p
ti

o
n

 (
n
W

)
p

er
 c

y
cl

e

Input Combination

Power analysis of the 8-bit multiplexer

 First cycle Second cycle Third cycle

Fourth cycle Fifth cycle Sixth cycle

Fig. 14. Power analysis of the 4-bit look-ahead carry generator.

0

500

1000

1500

2000

2500

{1001, 0010, 0}{1001, 0010, 1}{0110, 1101, 0}{0110, 1101, 1}

M
ea

n
 P

o
w

er
 C

o
n

su
m

p
ti

o
n

 (
n
W

)
p

er
 c

y
cl

e

Input Combination

Power analysis of the 4-bit look-ahead carry generator

 First cycle Second cycle Third cycle

Fourth cycle Fifth cycle

https://scholar.google.com/citations?user=SbPe9WEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=HsAhVmsAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=dAFE2L8AAAAJ&hl=en&oi=sra

13

[10] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Electrochemical

metallization memories—fundamentals, applications, prospects,” in

Nanotechnology, vol. 22, no. 25, pp. 254003, 2011.

[11] I. A. B. Adames, J. Das, and S. Bhanja, “Survey of emerging technology

based physical unclonable functions,” In 2016 International Great Lakes

Symposium on VLSI (GLSVLSI), IEEE Press. 317-322, 2016.

[12] D. B. Strukov and K. K. Likharev, “CMOL FPGA: a reconfigurable

architecture for hybrid digital circuits with two-terminal nanodevices,”

in Nanotechnology, vol. 16, no. 6, pp. 888, 2005.

[13] G. S. Snider, and R. Stanley Williams, “Nano/CMOS architectures using a

field-programmable nanowire interconnect,” in Nanotechnology, vol. 18,

no. 3, pp. 035204, 2007.

[14] C. Li, and Q. Xia, “Three-dimensional crossbar arrays of self-rectifying

Si/SiO2/Si memristors,” In Handbook of Memristor Networks, pp. 791-813.

Springer, Cham, 2019.

[15] K. Nomura, K. Abe, S. Fujita and A. DeHon, “Novel Design of Three-

Dimensional Crossbar for Future Network on Chip based on Post-Silicon

Devices,” 2006 1st International Conference on Nano-Networks and

Workshops, Lausanne, 2006, pp. 1-5.

[16] M. M. Shulaker, K. Saraswat, H. -. P. Wong, and S. Mitra, “Monolithic

three-dimensional integration of carbon nanotube FETs with silicon

CMOS,” 2014 Symposium on VLSI Technology (VLSI-Technology):

Digest of Technical Papers, Honolulu, HI, 2014, pp. 1-2.

[17] M. M. Shulaker et al., "Monolithic 3D integration of logic and memory:

Carbon nanotube FETs, resistive RAM, and silicon FETs," 2014 IEEE

International Electron Devices Meeting, San Francisco, CA, 2014, pp.

27.4.1-27.4.4.

[18] M. J. Aljafar, M. A. Perkowski, and J. M. Acken, “Volistor Logic Gates in

Crossbar Arrays of Rectifying Memristors,” in International Journal of

Unconventional Computing, vol. 14, no. 3-4, pp. 319-348, 2019.

[19] K. K. Kim, et al., “A functional hybrid memristor crossbar-array/CMOS

system for data storage and neuromorphic applications,” in Nano letters,

vol. 12, no. 1, pp. 389-395, 2012.

[20] K. M. Kim, et al., “Low-power, self-rectifying, and forming-free

memristor with an asymmetric programing voltage for a high-density

crossbar application,” in Nano letters, vol. 16, no. 11, pp. 6724-6732, 2016.

[21] D. Chakraborty, S. Raj, and S. K. Jha, "A compact 8-bit adder design using

in-memory memristive computing: Towards solving the Feynman Grand

Prize challenge," 2017 IEEE/ACM International Symposium on Nanoscale

Architectures (NANOARCH), Newport, RI, 2017, pp. 67-72.

[22] H. A. D. Nguyen, J. Yu, L. Xie, M. Taouil, S. Hamdioui, and D. Fey,

“Memristive devices for computing: Beyond CMOS and beyond von

TABLE IV COMPARISONS OF 3D CIRCUITS DESIGNS

Comparisons
3D circuits

Proposed 3D Circuit CMOL [1][12] FPNA [13] [14]

Sneak current Eliminated by
Rectifying

memristors
Biasing nanowires[34] Biasing nanowires

Rectifying

memristors

Connecting

Crossbars-to-CMOS

Extended

Nanowires-to-

CMOS

Nano-Pins

(with different sizes)

underneath crossbar

Pads and Pins

(much larger than CMOL

Nano-Pins)

underneath crossbar

Peripheral

Contact Pads

Applications
 Memristive Logic,

memory, etc.
CMOS Logic, memory, etc.

CMOS Logic

(routing in crossbar)

Memristive Logic,

memory, etc.

Memory access
1-word

per crossbar
1-bit per stacked crossbars 1 -

1-word

per crossbar

Programming/mapping speed
1-word per crossbar

per cycle

1-bit per stacked crossbars

per cycle

1-bit per crossbar

 per cycle

1-word per

crossbar per cycle

Computation speed

Slow

(in crossbars as

opposed to CMOS)

Fast Fast

Slow

(in crossbars as

opposed to

CMOS)

Size

#vias
Large

(2nl per crossbar) 2

Small

(2n2 per stacked crossbars)

Small

(2n2 per stacked crossbar)

Large

(2nl per crossbar)

via translation

layer (above CMOS)
0 l-1 0 0

external selector Not required Cannot be used Cannot be used Not required

Overhead used for

memory application

5-transistor per each

nanowire

4 decoders

per stacked crossbars
- -

CMOS Overhead for

logic

implementation

5-transistor per

nanowire 3
CMOS logic gates

and flip flops
CMOS logic gates -

Overall Larger Smaller Small -

Flexibility

Vias (contact)

locations
Flexible Precise More flexible than CMOL Flexible

Data transfer
Extremely flexible

(all crossbar planes)

Restricted

(one plane)

Restricted

(one plane and

only for routing)

-

Connecting stacked

crossbars
Yes No - Set at fabrication

Programmability of

applications

Any array can be

programmed for any

type of application

No No No

Connecting a

network of 3D

architectures

Feasible - - -

Performance

(circuit alu4)

Power (uW) 20.27 - 61 -

Delay (ns) 4 36 3.3 28.7 -

1 Two pairs of decoders are needed to facilitate accessing of one pair of pins independently, which in turn allows accessing one memristor in stacked

crossbar arrays.

2 For nl, n×n is the size of a crossbar array, and l is the number of crossbar arrays in a stack.

3 Five transistors per nanowire are sufficient for both logic and memory applications.

4 Calculation delay of alu4 in CMOS FPGA was reported 5.1ns [35].

14

Neumann,” 2017 IFIP/IEEE International Conference on Very Large

Scale Integration (VLSI-SoC), Abu Dhabi, 2017, pp. 1-10.

[23] A. Siemon, S. Menzel, A. Chattopadhyay, R. Waser, and E. Linn, “In-

memory adder functionality in 1S1R arrays,” 2015 IEEE International

Symposium on Circuits and Systems (ISCAS), Lisbon, 2015, pp. 1338-

1341.

[24] M. J. Aljafar, M. A. Perkowski, J. M. Acken and R. Tan, “A Time-Efficient

CMOS-Memristive Programmable Circuit Realizing Logic Functions in

Generalized AND–XOR Structures,” in IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 26, no. 1, pp. 23-36, Jan. 2018.

[25] N. G. Murali, P. S. Vardhan, F. Lalchhandama, K. Datta, and I. Sengupta,

“Mapping of Boolean Logic Functions onto 3D Memristor Crossbar,” 2019

32nd International Conference on VLSI Design and 2019 18th

International Conference on Embedded Systems (VLSID), Delhi, NCR,

India, 2019, pp. 500-501.

[26] B. Chakrabarti, et al., “A multiply-add engine with monolithically

integrated 3D memristor crossbar/CMOS hybrid circuit,” Scientific

reports, vol. 7, p. 42429, 2017.

[27] M. Aljafar, P. Long, and M. Perkowski, “Memristor-based volistor gates

compute logic with low power consumption,” BioNanoScience, vol. 6, no.

3, pp. 214-234, 2016.

[28] E. Lehtonen, J. Tissari, J. Poikonen, M. Laiho, and L. Koskinen, “A cellular

computing architecture for parallel memristive stateful logic,”

in Microelectronics Journal, vol. 45, no. 11, pp. 1438-1449, 2014.

[29] K-H Kim, S. H. Jo, S Gaba, W Lei, “Nanoscale resistive memory with

intrinsic diode characteristics and long endurance,” in Applied Physics

Letters vo. 96, p. 053106, 2010.

[30] H. A. D. Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui and K. Bertels,

“On the Implementation of Computation-in-Memory Parallel Adder,”

IEEE Trans. VLSI, vol. 25, pp. 2206 - 2219, 2017.

[31] X. -Y. Wang et al., "High-Density Memristor-CMOS Ternary Logic

Family," in IEEE Transactions on Circuits and Systems I: Regular Papers,

vol. 68, no. 1, pp. 264-274, Jan. 2021.

[32] J. K. Eshraghian, S. M. Kang, S. Baek, G. Orchard, H. H. C. Iu, and W.

Lei, (2019, March). Analog weights in ReRAM DNN accelerators. In 2019

IEEE International Conference on Artificial Intelligence Circuits and

Systems (AICAS) (pp. 267-271). IEEE.

[33] F. Cai, et al. "A fully integrated reprogrammable memristor–CMOS

system for efficient multiply–accumulate operations," Nature

Electronics, vol. 2, no. 7, pp. 290-299, 2019.

[34] D. B. Strukov and K. K. Likharev, “Defect-tolerant architectures for

nanoelectronic crossbar memories,” in Nanosci Nanotechnol, vol. 7, pp.

151–167, 2007.

[35] D. B. Strukov and K. K. Likharev, “CMOL FPGA circuits,” in CDES, pp.

213–219, 2006.

Muayad J. Aljafar He received his M.Sc.

and Ph.D. degrees in electrical and

computer engineering from Portland State

University in 2016 and 2018. He was a

professor at Basra College of Science and

Technology since 2019. Recently, he

joined Tallinn Technology University

(TalTech) as a researcher. His primary

research areas are memristor computations and hardware

security.

John M. Acken He received his BS(76)

and MS(78) in electrical engineering from

Oklahoma State University and his PhD

(88) in electrical engineering from Stanford

University. He is a research faculty

member in the Electrical and Computer

Engineering Department, Portland State

University, Portland, OR. Prior to PSU, he

taught and guided research at Oklahoma State University. Dr.

Acken has contributed to several technical activities including:

Session Chair: CCCT 2008, Publicity Chair: IEEE IDDQ

Testing Workshop 1996, Session Chair: ACM/SIGDA

Workshop on Logic Level Modeling for ASICs 1995.

	A 3D Crossbar Architecture for both Pipeline and Parallel Computations
	Let us know how access to this document benefits you.
	Citation Details

	/var/tmp/StampPDF/V4y7c0lFkB/tmp.1649971835.pdf.t7xSH

