
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

5-2022

Proposed Application for an Entity Component Proposed Application for an Entity Component

System in an Energy Services Interface System in an Energy Services Interface

Tylor Slay
Portland State University, tylor.slay@gmail.com

Grace B. Spitzer
Portland State University

Robert B. Bass
Portland State University, robert.bass@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Slay, Tylor; Spitzer, Grace B.; and Bass, Robert B., "Proposed Application for an Entity Component System
in an Energy Services Interface" (2022). Electrical and Computer Engineering Faculty Publications and
Presentations. 681.
https://pdxscholar.library.pdx.edu/ece_fac/681

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F681&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F681&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/681
https://pdxscholar.library.pdx.edu/ece_fac/681?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F681&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

Proposed Application for an Entity Component

System in an Energy Services Interface

Tylor Slay, Grace B. Spitzer, Robert B. Bass

Department of Electrical & Computer Engineering

Portland State University

Portland, OR, USA

tslay@pdx.edu

Abstract—An Entity Component System is a data-

oriented architecture originally developed to streamline

video game performance. Despite being quite new, Entity

Component Systems are relatively well established within

the video game industry due to the cutting edge nature

of research into performance, especially around graphics.

However, Entity Component Systems have not been widely

examined or adopted outside of that industry. We propose

adopting an Entity Component Systems framework to serve

the needs of an Energy Service Interfaces. We examine the

needs of an Energy Service Interface, give an overview of

open-source Entity Component Systems (ECSs) libraries,

examine some preliminary performance results for ECSs,

and explore the traditional approach to fulfilling the

needs of an Energy Service Interface (ESI) with database

architectures.

Index Terms—Energy Service Interface, Distributed En-

ergy Resource, Smart Energy Profile, Data-Oriented De-

sign, Entity Component Systems

I. INTRODUCTION

The mass adoption of renewable energy generating

resources has lead to the need for increased flexibility of

the bulk power system. Traditionally, deterministic gen-

eration has followed stochastic load. The new paradigm

This work was supported by US DOE OE0000922.

in the bulk power system will be deterministic load

following stochastic generation, in addition to a reduced

fraction of traditional generation following load. This

will require new technologies to promote participation

from a wide range of devices.

The ESI, first presented by Harden in 2011, is an

enabling contribution towards this new paradigm [1].

The objective of the ESI is to ensure secure, trustworthy

information exchange between utilities and customer-

owned Distributed Energy Resources (DERs) in order

to promote dispatch of grid services through large-scale

deployment of DERs. The ESI does so by providing

a set of rules and interoperability requirements that

define bi-directional, service-oriented, logical interfaces

with expectations for privacy, security, and trust. The

Grid Modernization Laboratory Consortium (GMLC)

has built upon Harden’s ESI concept and has demon-

strated a vision of the future where major household

appliances are grid-enabled DERs that contribute to the

reliability and resiliency of the bulk power system [2].

An ESI server would necessarily require some method

of storing data relating to the aggregation of DERs.

Traditionally, a database would serve this role. The

May 21, 2022 DRAFT

server performance would thus be limited by the speed

of database access [3].

A high performance back-end database is necessary

for large-scale DER aggregation. Traditional databases

are well suited for static storage of data at the scale

expected of an ESI. However, the memory demands of

an ESI server are not static. In response to the need

to continuously modify data, a traditional database has

severe limitations, such as query times and data trans-

lation for processing. ECSs are a data-oriented design

paradigm that could potentially improve upon database

performance in these areas.

Entity Component System were developed to stream-

line memory management in video games. In a field

where cutting edge graphics are a huge competitive

advantage, video game developers have begun adopting

ECSs for data management. ECSs continuously pro-

cess enormous numbers of individual entities whose

characteristics are both dynamic and interrelated. The

approach taken by ECS offers significant benefits in

terms of individual entity query times and data pro-

cessing tasks when compared to databases. The use of

ECSs is well established in the video game industry,

with major corporations such as Unity1 having adopted

ECS frameworks for their software products. Outside the

video game and VFX industries, however, ECS have seen

little to no attention or adoption. This is partially because

of the highly specialized nature of the technology and

development thus far, and partially because adoption in

industries outside of software moves at a more conser-

vative pace. Given this context, we propose that the use

case for this new technology could very well be more

in line with the memory management needs of an ESI

than a traditional database.

II. ESI SERVICE REQUIREMENTS

Electric utilities are responsible for maintaining power

system operations within physical constraints to prevent

damage to system component, and to ensure stable, reli-

able and economical delivery of electricity to customers.

Grid services are a means by which a utilities achieves

these operational objectives. DERs may be used to pro-

vide grid services through coordinated aggregation and

dispatch using a DER Management System (DERMS).

In this work, the ESI server is the DERMS [4].

There are myriad energy services used by utilities [5].

Some services balance energy generation and demand on

a day-ahead basis while others are autonomous controls

that balance on a sub-second basis. For this paper we

use as a working example the CAISO EIM, which uses

five minute control signals to balance generation and

demand.

Figure 1 shows an approximated EIM signal using

the difference between the hour-ahead forecast and

real-time demand.2 This representation of an EIM sig-

nal is sufficient for approximating DER participation.

It should be noted the approximated EIM follows a

generation-following-load control paradigm, where the

grid operator needs to ensure enough generation is

available to meet load. By assuming a load-following-

generation paradigm, the ESI server will increase de-

mand to meet generation by dispatching DER loads. This

is the paradigm we have chosen to implement for our

approximated EIM signal.

Figure 2 demonstrates the required number of DERs

to meet the service commitment of our approximated

EIM signal. The schedule updates indicate how many

schedules will need to be updated between each 5

minute increment. A negative schedule update represents

1https://docs.unity3d.com/Packages/com.unity.entities@0.17/manual/index.html
2http://www.caiso.com/TodaysOutlook

May 21, 2022 DRAFT

Fig. 1. CAISO hour-ahead demand forecast (blue) and real-time demand (red), left axis, for Jan 01, 2021 in 5 minute increments. Deviations

between hour-ahead and demand occur throughout the day, and result in EIM resource dispatch (yellow), right axis, if demand falls below

forecasts. The EIM dispatch is set to zero when demand is greater than forecasts because residential DER loads do not produce power.

the number of active schedules that will need to be

rescheduled to a later time. The DERs used for this

approximation were all assumed to be electric water

heaters with a 4500 watt power draw [6]. It is reasonable

to assume there will always be enough DERs to meet

the approximated EIM service commitment based on the

projected adoption of smart water heaters [7], [8].

Fig. 2. Number of DERs required to achieve EIM service com-

mitments. Negative schedule updates indicate the number of active

schedules that need to be rescheduled to a later time.

The average number of scheduled updates for the

approximated EIM service is nearly 100,000. This num-

ber does not reflect the process of checking currently

scheduled services and updating the amount of energy

available for participation given how long that spe-

cific DER has been active. It also doesn’t reflect how

many total DERs will be participating in other services

for the grid. An ESI server will need to continually

process incoming DER participation requests, optimize

scheduling for service, and estimate available energy for

participation. In the next section, we will discuss current

back-end database solutions for managing data.

III. DATABASE BACK-END

Websites today are rarely hard-coded HTML. Most

servers use some back-end database that manages re-

quests for information to be displayed on a page. This

back-end database typically consists of a lower-level pro-

gramming language that queries structured data stored in

a database. Most databases fall into the relational (SQL)

and non-relation (NoSQL) types.

The primary differences between relational and non-

relation databases are the way data are organized and

how the databases scale. Čerešňák and Kvat note that

May 21, 2022 DRAFT

SQL databases use a predefined scheme for data or-

ganization and scale vertically with more memory and

processing power [9]. NoSQL databases use a dynamic

scheme for data organization and scale horizontally with

more servers rather than increasing the processing and

memory capabilities of a single server. Databases are a

well established technology, with a large body of peer-

review literature devoted to examining their performance

in depth. Table I shows performance comparison of sev-

eral common relational and non-relational databases [9].

Database Insert Update Delete Select

Oracle 0.091 0.092 0.119 0.062

MySQL 0.038 0.068 0.047 0.067

MsSQL 0.093 0.075 0.171 0.060

Mongo 0.005 0.009 0.015 0.009

Redis 0.010 0.013 0.021 0.015

GraphQL 0.008 0.012 0.018 0.011

Cassandra 0.011 0.014 0.019 0.014

TABLE I

QUERY PERFORMANCE (MILLISECONDS) OF DATABASE WITH

100,000 RECORDS. [9]

The approximated ESI server requirements outlined in

the previous section show a typical database would be

adequate for scheduling DERs for EIM service partici-

pation. However, as the number of participating DERs

increases, the performance of the back-end database

will become a significant bottle-neck within the ESI

server. Kepner et. al. show that reaching database updates

into the millions per second is not a trivial feat [10].

While technology has advanced in the recent years, even

Google has only been able to achieve one million inserts

per second in 2014. In the following section, we explore

the new data-oriented paradigm in programming and

how new frameworks in video games are allowing much

faster processing of large amounts of data.

IV. ENTITY COMPONENT SYSTEM

With Object-Oriented Programming (OOP), an entity

has an inherited type, and there are often multiple levels

of inheritance. Managing the complexities associated

with these inheritance types increases the overhead of

OOP, both in terms of development and run-time per-

formance.

Unlike OOP, ECSs are based on composition rather

then inheritance. Individual entities within a system are

composed of various pieces of information, known as

components. The idea behind data-oriented design, the

umbrella term under which Entity Component Systems

fall, is to bypass the added complexity of inheritance. By

arranging all data into entities with associated compo-

nents, the designer has the ability to streamline multiple

types of operations within the system as a whole. Added

to this, it is possible to implement an ECS so that sets of

entities that share components are stored contiguously in

memory, additionally increasing the performance of the

system when those components need to be accessed or

modified.

Figure 3 outlines how an ESI client would implement

the ECS. For this example we use flow reservation

request and flow reservation response as the primary

entities used for communication between clients and

the ESI server. Each of these entities is comprised of

several components including: interval, power, energy,

and their respective polling rate to name a few. The ex-

ample implementation has three systems to manage these

entities: polling, request, and response. These systems

are responsible for ensuring the entities are up-to-date

and if they are not, then the entities are updated to ensure

active participation in the ESI server services.

ECSs have been used in video games to increase

performance by modeling objects within a game as

entities. Trees, cars, nonplayer characters (NPCs), and

May 21, 2022 DRAFT

Fig. 3. Example implementation of an Entity Component System within the ESI server/client system. Entities (purple) represent resources

exchanged between the ESI server and DER clients, each of which contain unique sets of data known as components (blue). Different systems

(orange) call entities to query component values or execute functions (red). In an ECS, data are decoupled from functions, in contrast to an

OOP where these exist together within classes.

bullets are all represented as entities, each of which

must be rendered within the visualization space. When

rendering a frame in this space, operations are performed

on sets of entities, such as all entities that should move

or collide. Each successive frame must be re-rendered,

which places considerable demand on data management.

This is very similar to the needs of an ESI server, which

might, for example, have to update the schedules of

hundreds of thousands of DERs that are being dispatched

to provide a grid service.

Table II shows a performance comparison between

several open-source ECS libraries [11]: EnTT, EntityX

and ECS-lib. These results are from a Safe Access

test. For this experiment, each entity has a position,

velocity, and target reference. An “access,” of an entity

in this case means that the entity was given a randomly

generated target. The entity first checks to see if the

target is “alive,” (thus Safe rather then Unsafe Access).

The entity then alters its velocity to point towards the

target, assuming the target is “alive.”

Of the open-source libraries tested, EnTT and EntityX

are more traditional data-oriented implementations [11].

Library 1,000 10,000 100,000 1,000,000

EnTT 0.022958 0.024666 0.039306 0.0913204

EntityX 0.08049 0.0864236 0.111046 0.164747

ECS-lib 0.42998 5.78322 58.8688 N/A

TABLE II

AVERAGE TIME/ENTITY (MICROSECONDS) FOR SAFE ACCESS

TEST FOR INCREASING DATASET SIZES (ENTITY COUNT).

They both use integers to represent entities, and store

a version with each entity. They have equivalent O(1)

performance to check if an entity still exists, meaning it

is “alive.” EnTT uses a continuous array for each type

of component, where the integer representation of the

entity to which that component belongs is used as a key

to find the index of the correct component. EntityX also

stores components in continuous arrays, but the arrays

have space for every entity to contain every component,

regardless of whether they actually do or not. The ECS-

lib library, contrary to its name, varies from the other

two libraries in that its architecture is more heavily

influenced by object-oriented design then data-oriented

design. Each entity is itself responsible for managing its

May 21, 2022 DRAFT

own data, which is distinctly antithetical to data-oriented

principles, and hence its much slower performance in all

scenarios.

Note that the hardware used for the experiment whose

values are shown in Table I was not equivalent to the

hardware used for the experiment that produced the

performance numbers in Table II, and thus a direct side-

by-side comparison of the values would not be a fair

assessment of performance [9], [11]. The performances

metrics of the ECS frameworks still demonstrate a

processing time that is several orders of magnitude faster

than the typical back-end database solution.

V. CONCLUSION

This paper proposes the use of an ECS to implement a

high performance ESI server. Limited existing research

suggests that ECSs could offer significant performance

gains compared to databases, especially when taking into

consideration the specific requirements of an ESI server.

The predicted benefits of an ECS architecture are

based on reasonable assumptions, but have thus far been

overlooked when it comes to more rigorous experimental

verification. In the literature search for this paper, very

little work regarding ECS performance analysis was

found. One possible reason for this might be the lack

of focus on peer reviewed publication on the part of

video game developers. For whatever reason, no close

comparison of performance seems to currently exist

between databases and ECSs. Therefore, the numbers

given in this work come from separate experiments that

were not designed to accurately measure performance

differences between databases and ECSs. Nonetheless,

the authors believe that they effectively demonstrate

the potential performance advantages of ECSs for an

ESI. The authors believe that further work, including

a direct experimental comparison of database and ECS

performance, is warranted.

REFERENCES

[1] D. Hardin, “Customer energy services interface white paper,” in

Gridinterop Forum, 2011.

[2] S. Widergren, R. Melton, A. Khandekar, B. Nordman, and

M. Knight, “The plug-and-play electricity era: Interoperability to

integrate anything, anywhere, anytime,” IEEE Power & Energy

Mag., vol. 17, no. 5, pp. 47–58, 2019.

[3] S. Malkowski, M. Hedwig, and C. Pu, “Experimental evaluation

of N-tier systems: Observation and analysis of multi-bottlenecks,”

in IEEE Int. Symp. on Workload Characterization, 2009, pp. 118–

127.

[4] T. Slay and R. Bass, “An energy service interface for distributed

energy resources,” IEEE Conf. on Tech. for Sustainability, 2021.

[5] M. Obi, T. Slay, and R. Bass, “Distributed energy resource aggre-

gation using customer-owned equipment: A review of literature

and standards,” Energy Reports, vol. 6, pp. 2358–2369, 2020.

[6] T. Clarke, T. Slay, C. Eustis, and R. B. Bass, “Aggregation of

residential water heaters for peak shifting and frequency response

services,” IEEE Open Access Journal of Power and Energy,

vol. 7, pp. 22–30, 2019.

[7] Boneville Power Administration, “CTA-2045 Water Heater

Demonstration Report: A Business Case for CTA-2045 Market

Transformation,” November 2018.

[8] K. Marnell, C. Eustis, and R. Bass, “Resource study of large-

scale electric water heater aggregation,” IEEE Open Access J. of

Power & Energy, vol. 7, pp. 82–90, 2020.

[9] R. Čerešňák and M. Kvet, “Comparison of query performance

in relational a non-relation databases,” Transportation Research

Procedia, vol. 40, pp. 170–177, 2019.

[10] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gade-

pally, M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Reuther,

A. Rosa, and C. Yee, “Achieving 100,000,000 database inserts

per second using Accumulo and D4M,” in 2014 IEEE High

Performance Extreme Computing Conference (HPEC), 2014, pp.

1–6.

[11] H. Hansen and O. Öhrström, Benchmarking and Analysis of En-

tity Referencing Within Open-Source Entity Component Systems.

Malmö Universitet, 2020.

May 21, 2022 DRAFT

	Proposed Application for an Entity Component System in an Energy Services Interface
	Let us know how access to this document benefits you.
	Citation Details

	Proposed Application for an Entity Component System in an Energy Services Interface

