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Abstract—Power system balancing authorities are rou-

tinely affected by sudden frequency fluctuations. These fre-

quency events can precipitate cascading outages and cause

damage to both customer-owned and utility equipment.

In this document, we describe an Algorithm Evaluation

Environment that uses a suite of metrics to evaluate an

algorithm and quantify its efficacy. Using the Algorithm

Evaluation Environment, a detection algorithm can be

tuned to best match the definition of a frequency event

as defined by experts within the context of their own

balancing area. We demonstrate the utility of the Algo-

rithm Evaluation Environment using a regression-based

frequency event detection algorithm. This algorithm can

detect frequency events within a short period of time after

the onset of an event. The algorithm has four parameters

that can be adjusted, making it highly tunable and therefore

suitable for demonstration of the Algorithm Evaluation

Environment.

Index Terms—primary frequency response, frequency

event, event detection, synchrophasor, phasor measurement

unit

I. INTRODUCTION

This document presents an Algorithm Evaluation En-

vironment (AEE) in which a frequency detection algo-

This research was supported by Portland General Electric.

rithm can be tuned and evaluated against assessment

from industry experts. The algorithm in question resides

within a Real-time Automation Controller (RTAC) that

continuously monitors data from a Phasor Measurement

Unit (PMU) and looks for deviations that are indicative

of a frequency event [1]. An example of such an event is

shown in Figure 1. Upon detecting a frequency deviation,

the algorithm generates a flag, which can then be used

to initiate dispatch of an energy response asset in time

to help arrest the frequency event. This regression-

based frequency detection algorithm has four parameters,

which are adjusted to align event detection with opinions

of industry experts. If properly tuned, the algorithm

rapidly detects frequency events with high accuracy and

sensitivity, and with low false detection rates.

Every Balancing Authority (BA) has different toler-

ance to frequency events due to differences in system

inertia, inter-BA connections, and intra-BA response

assets [2]; as such, the definition of a frequency event

varies by BA. The North American Electric Reliability

Corporation (NERC) discusses frequency event charac-

teristics extensively in its Frequency Response Initiative

Report [3]. The NERC BAL-003-1 Frequency Response
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Fig. 1. An example of an under-frequency event, characterized by a

rapid decrease in frequency (top, red) and a corresponding surge in the

slew rate (bottom, black, a.u.)

Standard (FRS) background document also provides

means for quantifying frequency events [4]. However,

the FRS does not provide a universal definition of a fre-

quency event, so it is the role of experts from individual

BAs to determine what qualifies as a frequency event.

By not setting a universal definition of what consti-

tutes a frequency event, NERC acknowledges that the

stability of different BAs may be more or less sensitive

to frequency events. Large continental-scale intercon-

nections have enormous rotational inertia, making them

less sensitive to sudden changes in system topology [5],

[6]. On the other hand, smaller or isolated BAs, such

as islands and BAs with limited regional integration,

have much lower rotational inertia and therefore greater

sensitivity to frequency events [7], [8]. As such, fre-

quency response detection algorithms need to be tuned

uniquely for each authority. The AEE facilitates this

customization.

In this paper, we use a regression-based frequency

detection algorithm to demonstrate how the AEE is used

to tune algorithm parameters for the optimal detection of

events, with events pre-classified by a group of industry

experts. This regression algorithm evaluates the “slew

rate,” which we define as the rate of change of frequency

as approximated using a least-sum-of-squares linear re-

gression. The regression algorithm has four variables that

can be adjusted to tune results. The four parameters are

window size, point separation threshold, and series-over

threshold, all of which are discussed and analyzed in

Section II. Using the AEE, these four tuning parameters

can be adjusted to achieve frequency detection results

that closely match expert definitions of frequency events.

II. FREQUENCY EVENT DETECTION ALGORITHM

Our frequency response testing system uses an algo-

rithm to flag frequency events based on data from a

PMU. The PMU was invented by Phadke and Thorp

in the 1980s [9], [10]. PMUs provide rapid sampling

of synchrophasors, which are time-stamped measure-

ments of Steinmetz’s current and voltage phasors, from

which frequency may be calculated [11]. Every PMU

measurement includes a time stamp that is aligned to a

common time reference [12]. PMU data provide a high-

fidelity representation of frequency, which the frequency

response system uses to detect events in real-time.

Our regression detection algorithm is a threshold-

detection algorithm that uses the Rate of Change of

Frequency (ROCOF) developed from a least-squares

linear regression; this rate of change is referred to as

the slew rate, Equation 1.

slew rate =
N

∑
(xy)−

∑
(x)

∑
(y)

N
∑

(x2)− (
∑

(x))2
, (1)

where N is number of data points in time over which we

calculate the regression (or the “regression window”).

The ROCOF was selected as a detection parameter

by observation: while frequency after an event may be

significantly above or below the nominal value of 60

Hz, frequency events share a characteristic in that the

frequency value suddenly and precipitously changes. As

such, the rate of change is more useful than frequency

alone. Since the rate of change is the value of interest,

only the slope of the regression is required.
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The purpose of using a linear regression rather than

the derivative of frequency is to compensate for noise in

the PMU data. Noise is more pronounced when reading

synchrophasors at 30 measurements per second, in con-

trast to the one to four second rate of a SCADA system.

Micro-deviations in frequency abound at this sampling

rate. These small deviations cause the derivative of

frequency to vary considerably between positive and

negative on a point-by-point basis rather than smoothly

varying with the overall frequency change over time,

making threshold detection difficult. Linear regression

produces a smoothed derivative of frequency data.

Linear regression is effective at minimizing the influ-

ence of noise on the outcome of the algorithm; however,

it introduces a time delay into the response since the

regression must be calculated over a window of time.

For a given period, new values indicative of an event

will initially be overwhelmed by the prior values that

did not indicate an event. This extends the amount of

time between the initiation of the frequency excursion

and the point that the calculated slew rate crosses the

slew rate threshold. To minimize this delay, the detection

algorithm relies on the characteristics of the initial slew

rate change to declare an event, rather than waiting for

a threshold to be crossed. Following are the four tunable

parameters of the regression algorithm:

A. Window Size

Slew rate is calculated using PMU data over a pre-

determined number of data points, called a “window,”

with a length N being the window size. A larger window

results in a smoother output function, but a longer time

delay.

B. Event Parameter Threshold

The algorithm uses a threshold, called the event pa-

rameter threshold, to indicate the possible beginning of

an event. This threshold is a slew rate value (positive or

Fig. 2. The point separation threshold has been exceeded, red dot,

near the beginning of the frequency event.

negative) that, if exceeded, indicates a rapid change in

frequency.

C. Point Separation Threshold

The algorithm takes into consideration magnitude dif-

ferences between adjacent data points in the slew data,

called the “points separation.” An instance where the

point separation threshold was exceeded is shown as

the red dot in Figure 2.

D. Series-Over Threshold

The algorithm monitors how many times in a row

that the points separation exceeds the point separation

threshold. This is called the “series-over” value. If the

series-over value exceeds the series-over threshold, then

the algorithm declares an event. Figure 3 show tracking

of series-over values, represented by green dots.

Fig. 3. The point separation threshold has been exceeded, red dot,

multiple times, green dots, demonstrating the series-over detection.
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The algorithm characterizes frequency deviations us-

ing three parameters: the event parameter, point sep-

aration and series-over thresholds. These provide the

operator with four degrees of freedom when tuning the

algorithm, including the window size.

III. ALGORITHM EVALUATION ENVIRONMENT

Prior to being deployed to detect events in real-

time, an algorithm must be validated against expert

assessments. This is done within the AEE. The flowchart

in Figure 4 describes the workflow of the AEE.

To facilitate this validation, we compiled an archive

of sample PMU frequency plots, referred to as the

Frequency Event Archive (FEA). These plots are a subset

of our archive of PMU data. The original PMU archive

containes over two years of frequency measurements. To

construct the FEA, we obtained timestamps of frequency

events from our utility partner, Portland General Electric,

as well as from a list of frequency events identified by

NERC. The event files containing data at these times-

tamps were then extracted from the PMU data archive.

These event files were compiled along with samples of

non-events and near-events to form a set of example

files, the FEA. These example files were then reviewed

and evaluated by a group of “experts” consisting of the

project team members.

The FEA consists of 135 PMU data files. Each data

file contains five minutes of PMU frequency data, sam-

pled at 30 frames per second. As shown at the top

of the AEE flow diagram, Figure 4, the FEA files are

evaluated by both industry experts and an algorithm.

The manual evaluations and algorithm classifications

are then compared to determine the efficacy of the

algorithm. Once tuned to best match expert assessments,

the updated algorithm parameters are then transferred to

the RTAC for real-time event detection. This process is

generalizable to any frequency event detection algorithm,

not just the regression algorithm presented in this paper.

Frequency
Event

Archive

Detection
Algorithm

Expert
Evaluation

Evaluation
Metric

Calculation

Event

Data

Files

TP,FP,TN,FN

Updated

Parameters

Update Real-Time
System

Evaluate 

Algorithm 

Performance


A,TPR,TNR,S,etc

SatisfactoryNot Satisfactory

Evaluate 

Binary 


Classification


Updated

Parameters

Tune Algorithm
Parameters

Grid

Frequency


Data
Real-Time

Detection
System

Fig. 4. The Algorithm Evaluation Environment (AEE) flow chart. The

validity of an algorithm depends on how well its outputs compare to

the assessments of experts.

A. Frequency Event Archive

A set of visualization tools are used to analyze events

within the PMU archive and identify example PMU data

files. Some of the files within the FEA show obvious

frequency events. The list of NERC events included 29

such frequency events. Of these, we found 27 events

within our PMU data archive; two were missing from the

archive as they occurred during PMU outages or main-

tenance downtime. Additional frequency events were

found by combing through the PMU data archive; these

were also added to the FEA.

The FEA also includes examples where no event is

present. These non-events are included within the FEA

to test algorithm susceptibility to false positives and its

ability to exclude true negatives. Aside from clear events

and non-events, also included within the FEA are more

ambiguous near-events, which are more challenging for
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both the industry experts and the algorithms to identify.

These cases show marginal frequency fluctuations that

may or may not be identified as frequency events,

depending on the expert evaluator. Figures 6 and 5 show

examples of a non-event and a near-event, respectively

Fig. 5. Example of a non-event. Including non-events tests algorithm

identification of false positives and exclusion of true negatives.

Fig. 6. Example of a near-event. The ambiguous characteristics of

such events challenge expert opinions and algorithm efficacy.

B. Event Identification

As depicted on the AEE flowchart, an industry expert

identifies each file from the FEA as either an event or

a non-event; the algorithm evaluates and identifies the

same data set. Some criteria that evaluators can use to

indicate an event include rapid departure from expected

frequency, a large difference between initial and final

frequency, and sudden deviations in the rate of change

of frequency. If a file is determined to show an event,

both the expert and the algorithm assess the event as

either as “under-frequency” or “over-frequency” event.

C. Industry Expert Evaluation

The process for compiling industry expert assessments

of frequency events uses an online assessment survey.

The survey sequentially presents the FEA events to an

expert and records their responses within a database. A

screen shot of the survey is shown in Figure 7.

Fig. 7. The online survey interface. An example of an assessment

question.

The survey prompts the expert for their name and an

estimate of their relative expertise at assessing frequency

events on a scale from one to five. This estimate is later

used to weigh the expert’s assessments against those of

other experts. Then, the survey presents the expert with

candidate frequency event plots that show both frequency

and slew rate. The survey prompts the expert to assess

each candidate as either an over-frequency event, an

under-frequency event, or a non-event. This continues

until the expert has assessed all the files within the FEA.

After the survey is complete, the data are processed

by a spreadsheet tool. Users’ assessments are weighted

by their self-reported expertise level. The weighted as-

sessments for each event file are summed. The weighted

value represents the relative sureness of the assessment.

D. Binary Classification

After both the expert and algorithm event identifica-

tions have been completed for all files, the algorithm
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results are classified against the expert assessments using

a binary classification scheme. The classification metrics

are True Positive (TP), True Negative (TN), False Posi-

tive (FP), or False Negative (FN):

• TP: the algorithm and the expert both agree an event

occurred.

• TN: the algorithm and the expert both agree an event

did not occur.

• FP: the algorithm declared an event that the expert did

not identify as an event.

• FN: the algorithm did not declare an event that the

expert identified as an event.

E. Evaluation Metrics

The AEE uses the binary classification metrics to

calculate evaluation metrics. Evaluation metrics quantify

the efficacy of an event detection algorithm in relation

to the assessment of the industry experts. The evaluation

metrics are Accuracy, Sensitivity, Precision, Specificity,

and False Discovery Rate (FDR), which are defined as

follows [13].

Accuracy measures the ability to correctly identify data

sets containing events and data sets containing no events.

Accuracy =
TP + TN

SetSize
× 100% (2)

Sensitivity measures the ability to correctly identify

frequency events.

Sensitivity =
TP

TP + FN
× 100% (3)

Precision measures how many of the positively identified

events were true positives.

Precision =
TP

TP + FP
× 100% (4)

Specificity measures the ability to correctly identify

events. It is similar to Sensitivity, though it considers

the ratio of TNs to the number of total negatives.

Specificity =
TN

TN + FP
× 100% (5)

FDR measures the propensity to erroneously identify an

event. FDR is equivalent to 1− Precision.

FDR =
FP

FP + TP
× 100% (6)

Accuracy, Sensitivity, Precision, and Specificity range

from 0% to 100%, with ideal values of 100%. FDR also

ranges from 0% to 100%, but has an ideal value of 0%.

IV. ALGORITHM ANALYSIS

To analyze the regression algorithm parameters and

their effects on the evaluation metrics, around 20 test

runs were conducted per parameter. Only one parameter

was adjusted at a time while all others were held

constant.

A. Analysis: Window Size

A change in window size correlates to a significant

change in the evaluation metrics, Figure 8. As the

window size increases, the FDR decreases while the

other four evaluation metric values converge at about

80%. However, detection time increases as window sizes

become larger.
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Fig. 8. Evaluation metrics as a function of window size. Accuracy,

sensitivity, precision, and specificity have an ideal value of 100%,

while False Discovery Rate is ideally 0%. For this data set, the event

parameter threshold is 6.5 · 10−6, the point separation threshold is

15, and the series over threshold is 18 (a.u).
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B. Analysis: Event Parameter Threshold

Analysis of the event parameter threshold, Figure 9,

shows the evaluation metrics converging at around 85%

for values around 1.1 · 10−6. The evaluation metrics

deviate sharply for lower event parameter threshold

values.
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Fig. 9. Evaluation metrics as a function of event parameter threshold.

For this data set, the window size is 325, the point separation threshold

is 15, and the series over threshold is 18.

C. Analysis: Point Separation Threshold

Analysis of the point separation threshold, Figure 10,

shows the evaluation metrics converging at around 80%

for separation values between 8 and 9. The evaluation

metrics deviate sharply for both lower and higher points

separation threshold values.
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Fig. 10. Evaluation metrics as a function of point separation threshold.

For this data set, the window size is 300, event parameter threshold is

6.5 · 10−6, and the series over threshold is 18.

D. Analysis: Series-Over Threshold

Analysis of the series-over threshold parameter, Fig-

ure 11, shows that the evaluation metrics were largely

insensitive to variation in this parameter. This may be

due to the influence of the other parameters. In this test,

window size was set to 300 and point separation thresh-

old was set to 6.5 · 10−6. These values are quite high,

and it is plausible that a smaller window size or point

separation threshold would lead to more pronounced

effects due to series-over threshold variations.
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Fig. 11. Evaluation metrics as a function of the series-over threshold.

For this data set, the window size is 300, event parameter threshold is

6.5 · 10−6, and the point separation threshold is 20.

V. FUTURE WORK

There are several avenues for further development.

For instance, the process of tuning a frequency detection

algorithm should be automated and optimized. Since the

algorithm has four tunable parameters, a hypervolume of

suitable solution sets likely exists. However, considering

the size of the search space, finding suitable solution

sets within this four-dimensional space is a challenge.

Manually tuning these parameters to find an optimal set

would be time consuming and likely unsuccessful. An

automated optimization process would be preferred. We

are currently developing an optimization process, using

a Grey Wolf optimizer, that has demonstrated reasonable

time to convergence for acceptable solutions [14].
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Once an algorithm has been tuned, testing is required

prior to deployment. Algorithms should be tuned and

tested against real-time frequency events within a phys-

ical implementation. However, testing against live grid

data is inefficient due to the infrequency of events and

the inability to control their magnitude, time duration,

and other relevant parameters. Our real-time frequency

response testing system, Figure 12, provides controlled

testing capabilities.

PCC: 120/208 V

Event Flag

PMUGPS Clock

RTAC

Frequency
Event

Archive

Grid Simulator

Post-processing
System

PSU PMU
Data

Archive

Fig. 12. Representation of a real-time frequency response testing

system

The system consists of an SEL-3555 RTAC, an SEL-

351 PMU, an SEL-2407 GPS clock, and a GPS antenna,

which comprise the Real-time Frequency Response Test-

ing System; the PMU event archive, which contains the

archived PMU frequency events; and an NHR 9410-12

four-quadrant grid simulator, which provides a means for

emulating specific voltage and frequency grid conditions.

This testing system provides programmable, customized

real-time simulations of frequency events, including

recreations of frequency events from the FEA. This

allows algorithms to be programmed into the RTAC and

rapidly tested against historical events in real-time, elim-

inating the need to wait for events to occur stochastically

on the grid.

VI. CONCLUSION

This document presents a process for evaluating the

ability of an algorithm to detect grid-significant fre-

quency events. The Algorithm Evaluation Environment

uses an event archive consisting of 135 PMU data sets

to quantify the ability of an algorithm to reproduce

the observations of industry experts. The event archive

includes examples of frequency events, near-events, and

non-events. Industry experts evaluate these examples

and classify each as either an event (over- or under-

frequency) or a non-event. This same set of events is then

evaluated by an algorithm, which also classifies each

as either an event or a non-event. These classifications

are then compared and validated by a set of evaluation

metrics. The algorithm parameters can then be tuned to

improve the metrics. Once the algorithm has been tuned,

it may then be used in a real-time event detection system.

The AEE was demonstrated using a frequency event

detection algorithm based on a least-squares linear re-

gression that produces a smoothed rate of change of

frequency, or slew rate. Once calculated, the algorithm

monitors the slew rate behavior to sense when fre-

quency deviations begin to occur. The algorithm has

four parameters that can be tuned to improve agreement

between the algorithm output and manually-classified

expert assessments. Algorithm behavior was analyzed

by sweeping each parameter while holding the other

parameters constant. Adjustments to the window size and

point separation threshold parameters each significantly

affected the detection performance. However, the series-

over threshold parameter had only a marginal effect on

the detection performance, though this is likely due to

the tuned values of the other parameters.
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