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AN ABSTRACT OF THE THESIS OF Vincent 'Nolinan Ast Jr. for the Master of 

Science in Applied Science presented July 14, 1972. 

Title: 	 Entropy Reduction of English Text Using Variable 

Length Grouping 

APPROVED 	 BY MEMBERS OF THE THESIS COMMITTEE: 

Robert Rempfer, Chairman 

It is known that the entropy of English tl~xt can be reduced by 

arrangi.ng the text into groups of two or more letters each. The higher 

the order of the groL1ping the greater is the entropy reduction. Using 

this principle in a computer text compressing system brings about diffi ­

cu1ties, however, because the number of entries rE.quired in the trans­

laUon table increases exponentially with group size. This experiment 

examined the possibility of using a t·canslation table containing only 

http:arrangi.ng
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selected entries of all group sizes with the expectation of obtaining 

a substantial entropy reduction with a relatively small table. 

An expression was derived that showed that the groups which 

should be included in the table are not necessarily those that occur 

frequently but rather occur more frequently than would be expected 

due to random occurrence. This was complicated by the fact that any 

grouping affects the frequency of occurrence of many other related 

groups. An algorithm was developed in which the table originally starts 

with the regular 26 letters of the alphabet and the space. Entries, 

which consist of letter groups, complete words, and word groups, are 

then added one by one based on the selection criterion. After each 

entry is added adjusanents are made to account for the interaction of 

the groups. This algorithm was programmed on a computer and was run 

using a text sample of about 7000 words. 

The results showed that the entropy could easily be reduced down 

to 3 bits per letter with a table of less than 200 entries. With about 

500 entries the entropy could be reduced to about 2.5 bits per letter. 

About 60% of the table was composed of letter groups, 42% of 

single words and 8% of word groups and indicated that the extra compli­

cations involved in handling word groups may not be worthwhile. 

A visual examination of the table showed that many entries were 

very much oriented to the particular sample. This mayor may not be 

desirable depending on the intended use of the translating system. 
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CHAPTER I 

INTRODUCTION 

In recent years there has been considerable use of the computer' in 

applications which require the storage of large amounts of alphabetic 

data. For example, with computer assisted instruction complete courses 

are programmed and stored on a computer system which then feeds the in­

formation in bite-size pieces to students sitting before a typewriter 

keyboard or a cathode ray tube (1). In another example, abstracts of 

scientific publications can be stored in a computer system along with 

keywords which allow a user to research hundreds of journals by merely 

sitting at a console (2). 

One of the considerations in the design of such systems is eco­

nomically providing enough machine storage space to hold the large 

amount of data required. Clearly, any method which would reduce the 

amount of data to be stored without degrading the performance of the 

system would be advantageous. One such technique of reduction is the 

topic of this paper. 

I. CONVENTIONAL STORAGE TECHNIQUES 

Present day business computers, such as the IBM 360 series or the 

Honeywell 200 series, have a memory structure in which magnetic cores 

are arranged in small stacks, called bytes, of nine cores each, the 

whole memory commonly consisting of thousands to hundreds of thousands 
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of such bytes. The reader is referred to the individual manuals for 

specific details (3,4) • 

. Each core is always magnetized to saturation in one of two possible 

states. Because of this binary property each core is able to store one 

binary digit, or one "bi til of information. 

In storing alphabetic data the Honeywell 200 uses only 6 of the 

bits in each byte. Since each bit has 2 possible states, the whole byte 

6has 2 or 64 possible states. Each state corresponds to one of 64 char­

acters making up the character set or alphabet for the machine. (IBM 

has provisions for using 8 bits of each byte giving a 256 character set, 

8since 2 equals 256.) The character set usually consists of the letters 

A through Z, the numerals 0 through 9, the blank, and a series of special 

symbols such as the comma, period, ampersand, etc. 

Because of the tremendous cost of core storage it is usually used 

only for storing programmed instructions for the machine and for storing 

only the data which is currently being processed. The bulk of the data 

is stored on mass storage devices such as disks or drums which typically 

have a capacity of millions to billions of bytes (5). 

II. S,!'ORAGE AND ENTROPY 

Reduction of Storage 

One way to reduce the number of bi t.s req'Jired to store data on a 

machlne would be to simply adopt a smaller character set. For example, 

a set with only 32 characters would require only 5 bits per character. 

It is doubtful whether 32 characters would be sufficient, however, since 

it allows only 5 additional cha..'acters over the 26 letters and the space. 
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The older Teletype system uses such an arrangement by making the numer­

a1s and punctuation "upper case" and the letters "lower case" (6). The 
...f\,,'dV'/

actual data transmission becomes somewhat greater ~ 5 bits per char­

acter, however, since additional characters must be transmitted to 

control the shifting of cases. 

Another example of storage reduction is employed on the IBM 1130 

system (7). Rather than the byte the standard unit of storage is the 

"word" consisting of 16 bits. Using the IBM 8-bit code or the Honey-

well 6-bit code only 2 characters can be stored per word. However, by 

using a 40 character alphabet and a modulo 40 arithmetic, 1130 users are 

able to store 3 characters per word which averages 5 1/3 bits per char­

acter. 

Entropy Considerations 

Equally Probable Events. If there are n possible outcomes of an 

event, all equally probable, the entropy, H, is defined by: 

H = 10g2 n 

or: H = -10g2 P 

where p equals lin and is the probability of the occurrence of any given 

outcome. The reader is referred to any standard text on information 

theory (8,9,10,11,12,13). 

The unit of entropy is the "bit", the derivation of the term being 

similar to that for the magnetic cores. The entropy, or the information 

content, of an event is the number of YES/NO questions that must be 

answered in order to determine the outcome of the event. For example, 

the entropy of one member of a 64 character alphabet is: 
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H = lbg 642 

which is 6, meaning that it requires 6 YES/NO questions to be answered 

or 6 .magnetic cores to be properly magnetized in order to determine the 

particular character. 

Entropy figures with fractional bits can be considered as averages 

over several events. For example, the entropy of a 40 character alpha­

bet is: 

H = 1082 40 

which is approximately 5.322 bits per character. Three such characters 

would have an entropy of 15.97 bits or almost 16 bits. It can be seen 

that the IBM 1130 scheme mentioned earlier of packing 3 characters per 

l6-bit word is quite efficient. 

The entropy figure of a group of alphabetic characters, therefore, 

provides a theoretical figure for the number of bits required for stor­

age. Since any storage system need not, and usually can not, be 100 

per-cent efficient, the actual storage required will usually be greater 

than that given by the entropy figure. It cannot be less, however; this 

is one of the principle theorems of communications theory. 

If the alphaoet would be restricted to just the letters A through 

Z and the space, the entropy would be: 

log 27 = 4.75 bits per character.2 

Unequally Probable Events. In the preceding discussion no mentlon 

was made that in a typical sample of characters such as from a passage 

of English text, the frequency or probability of occurrence is not the 

same for all members of the alphabet. The true entropy is defined by 

computing the entropy for each member and taking a weighted average: 
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where Pi is the probability of occurrence of the ith member of an alpha­

bet of n characters. 

Determining the probability of occurrence of the members must be 

done by actual count of a typical sample. Results by Shannon (14) show 

that the entropy of 27-letter English text is about 4.03 bits per char­

acter. Using the Huffman code (13), 27-letter English has actually been 

coded with an average of 4.12 bits per character. A user of such a 

scheme would need only a 27 entry coding table and a simple translating 

prograt:l. 

In addition to the unequal distribution of English letters there 

is also a Markov effect in that the probability of occurrence of any 

character depends on what character it follows. Shannon again shows 

that considering this property the entropy of 27-letter English is about 

3.42 bits per character. A translating scheme would require the task of 

2building a 27 or 729 entry coding table. 

Further estimates by Shannon show that if the Markov analysis is 

expanded to include the effects of the previous 2. characters, the en­

tropy is about 3.0. A translating scheme, however, would require a 

table with 27 3 or almost 20,000 entries. While such a table could be 

built it is now leaving the realm of simplicity in that it would require 

a large amount of computer core storage for operation. 

Final estimates by Shannon show that ultimately, the entropy of 

27-letter English may be reduced to less that 1.3 bits per character 

taking into account large strings of letters preceding each given letter. 
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The conclusion seems to be, then, that although the entropy of 

English text can be reduced from 4.75 bits down to 1.3 bits, a prac~ 

tical translating device using a Markov table could not reduce the stor­

age requirements much below 3.4 bits per character otherwise the size of 

the table would be prohibitive. 

III. VARIABLE LENGTH GROUPING 

Preliminary studies by the author showed that a frequency table of 

two-letter groups had many entries which did not occur at all even with 

a moderate sample. For example: GX, ZN, QA, QB, etc. The effect was 

even more noticeable with three- and four-letter groups. In addition to 

this there were also many which occurred only a few times throughout the 

whole sample. 

Because of this property I thought that perhaps it would be poss­

ible to build a two-letter translating table containing only the fre­

quently used groups. If a group was encountered during the translation 

which was not in the table it could be handled on an individual char­

acter basis. The result might be a large reduction in the table size at 

the expense of only a slight increase in entropy. 

Generalizing on this principle I thought it possible "to include in 

this table the frequently used three-, four-, and even higher order let­

ter groups and enjoy the advantages of even greater entropy reduction 

and yet have a translating table of reasonable size. Finally, there 

would be no need to limit it only to letter groups, but complete words 

and even word groups could be included. The entries in this table plus 

the original 27 letters could all be considered as members of a huge 
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alphabet. 

This thesis describes the process by which such a table or alpha­

bet was built. The biggest problem was determining which groups should 

make up the table. What is meant by a "frequently used group"? Will 

the presence of a certain group in the table influence the effectiveness 

of another group? 

Another objective is to determine the relation between entropy re­

duction and table size. How low will the entropy go? Is there an opti­

mum table size? 

Finally, as an additional point of interest, what proportion of 

the table will consist of letter groups, what proportion of words, and 

what proportion of word groups? 



CHAPTER II 


DEVELOPMENT OF THE ALGORITHM 


I. CALCULATION OF CHANGE OF ENTROPY 


Total 	EntroH 

Starting with the definition of entropy given earlier, namely: 

the entropy per character of an actual sample of text can be written: 

H=-~
fu 

wheret 

N = number of entries in the alphabet 

x. = number of occurrences of the ith letter 
1 

~ = total number of characters in the sample. 

The total entropy ~f the entire sample, HT, is then H times ~: 

Expanding the logarithmic quantity: 

~ =-~ Xi (log2 Xi - log2 'T) 

~ ~ Xi log2 'T -~ Xi log2 Xi 
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But the 10g2 ~ is a constant and can be pulled out of the summation. 

Also: 

~ xi is simply "To 

Therefore: 

Or in expande~ notation: 

Forming a Gro~ 

Suppose now that the first two letters of the alphabet are con­

sidered as a group, this group now being considered a new "letter" in 

the alphabet. The number of occurrences of this group in the sample will 

be called x • The following conditions now would be true:A

1. 	 Individual occurrences of the first letter of the alphabet now 

occur only xl - x times.A 

2. 	 Similarly the second letter occursx - x times.2 	 A 

3. There are now only ~ - x "letters" in the entire sample.A 

The new entropy, 'liT, is: 

The Change in Ent~ 


The change in entropy is: ~~ = HT - ~. 
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AH=Xrr 10g2 (Xrr - xA) - xA 10g2 (Xrr - XA) - Xrr 10g2 Xrr­

xl 10g2 (xl - xA) + xA 10g2 (xl - xA) + xl 10g2 X ­1 

x2 10g2 (x2 - xA) + xA 10g2 (x2 - xA) + x2 10g2 X ­2 

XA 10g2 xA 

Notice that all terms beyond x2 have cancelled. Combining terms: 

Ali = [10g2 (Xrr - xA) 10g2 xJXrr 


xl [10g2 (xl - xA) 10g2 Xl] 


Because of the original choice in the order of subtraction a positive ~H 

means that the total entropy will increase and a negative ~H indicates a 

decrease. 

-. 
Generalization 

This process can be expanded to a grouping of the first n letters 

of the alphabet. (Where n is not to be confused with N, the total num­

ber of letters in the alphabet.) The following will be true: 

1. The frequency of the new group is x ' A 

2. The individual occurrences are xl - xA' ••. , xn - xA' 

3. There will be ~ - (n - 1) x "letters" in the sample.A 
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Using the same development as before, it is found that: 

~ - (n - 1) x xl ­A xA -x 
:K.r 1 xl

6.H=:K.r 10g2 10g2 

- x - xx2 xA n A +x 10g -x 10g2 2 n 2 xx2 A 

(xl - xA) (x2 - x ) • . . (x - x ) 
xA 10g2 

A n A
n-l (1)(:K.r - xA) xA 

Although this derivation assumed the grouping of the first n 

letters of the alphabet, the actual sequencing of the alphabet is arbi­

trary and so the derivation is valid for the grouping of any n letters. 

The derivation fails, however, when any letter in a group is repeated; 

this will be discussed later. 

II. THE GROUPING CRITERION 

Selecting an Entry 

The purpose of the preceding derivation has been to develop a 

criterion to determine whether or not there would be an advantage in 

including a given letter group in a machine translation table. If the 

AM of a particular grouping is negative this means that if this group 

would be included in the translation table the number of bits required 

to code this group would be less than the number of bits required to 

code the individual members making up the group; the number of bits 

saved in the entire sample being AH. On the other hand if the 6H is 

positive it would require more bits to code the group than to code the 

members; hence, such a grouping should not be included. 

The importance of equation 1 is that with a given sample of text 
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it is possible to predict the effect of any possible grouping before 

actually performing the grouping. The ideal procedure for building a 

table, then, would be to compute the ~ of all possible groupings im­

mediately discarding any with a positive~. The choice for the first 

new entry into the alphabet might be the one with the most negative ~. 

Interaction of Entries 

The next choice of entry would seemingly be the group with the 

next lowest~. Proceeding in this fashion one would simply select en­

tries in increasing order of OM until the total entropy of the sample 

was sufficiently low or until the table reached a pre-determined size. 

Unfortunately this is not possible because the grouping process changes 

the frequency of occurrence of many of the other characters in the al ­

phabet and therefore changes the 6H of many other potential groupings. 

Four particular cases can be illustrated by examples: 

1. 	 If the new group is, say, TH and occurs b times then the fre­

quency of occurrence of individual T's and H's is each reduced 

by b thereby affecting the 6H of all other groups containing T 

or H. 

2. 	 If the'new group is TH then the possible group, THE, which 

originally was a three letter word is now only a two letter 

word since the group, TH, is now itself a "letter". The 6H of 

THE is thereby affected. 

3. 	 The original THE has as subgroups TH and HE. Binding TH to­

gether now eliminates any further consideration of possible HE 

binding. The only HE's remaining in the sample are those 
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which were not associated with a leading T (such as the SHE), 

so the ~H of HE is affected. 

4. In addition, all grouping causes a slight decrease in x ' the
T 

total number of characters in the sample, which will have some 

effect on every ~. 

Because of this interaction it is necessary to recompute all the 

~ts before selecting the next entry. Since the computation of all the 

~ts is a lengthy process, the time required to build the alphabet is 

greatly increased. Moreover, the only way the effects of case 3, above, 

can be determined is by actually scanning the text sample, again a 

lengthy process. 

III. THE BASIC ALGORITHM 

Tables 

The process to be described requires a computer with a large memo­

ry in which can be stored three tables: the alphabet table, the text 

sample, and the group table; in addition to the program. 

Alphabet Table. This table initially contains only the basic al-­

phabet but will grow as new groups are added. The space allocation 

must, therefore, be large enough to contain the anticipated- number of 

entries of the final alphabet. Each entry consists of the particular 

letter (or letter group) along with a count of the number of times it 

occurs in the text sample. 

Text Sample. This tahle contains the complete sample of text 

being analyzed together with a mechanism for combining letters into 

groups. 
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Group Table. This table ideally contains all two-, three-, four-, 

and higher order letter groups, including complete words and word 

groups. Obviously, such a table would require an impossible amount of 

memory so some assumptions are made which limit the entries as will be 

described later. Associated with each entry is a frequency count as in 

the alphabet table. 

The Process 

The first step is to scan the group table computing the~ for 

each group and selecting the entry that is most negative. See flow 

chart in Figure 1. 

The next step is to transfer the selected group from the group 

table to the alphabet table;. 

Finally the text sample is scanned and, at every occurrence of the 

selected group components, grouping marks are set. In addition, every 

letter 'and letter group associated with the selected group is examined 

and its count in the alphabet table or group table is decreased by one. 

With the grouping accomplished and all tables adjusted the process 

can then be repeated. 

IV. FURTHER CONSIDERATIONS 

Simplification of 6H Calculation 

Need for Simplification. The previous derivation of 6H, while 

correct, requires the time consuming calculation of several logarithms 

for each entry. In addition, the expression was lengthy and difficult 

to analyze. Furthermore, it was not valid for repeated occurrences of 
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Start 

Load text 
sample table 

Load group 
table 

Compute 6H 
for every 
entry in 
group table 

Select entry 
wi th most 
negative ~H 

Move selected 
entry to al­
phabet table 

Adjust 
tables 

Figure 1. Flow chart of the basic algorithm used for building 
the alphabet table. 
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the same letter. These problems can be lessened somewhat by making the 

assumption that the frequency of occurrence of the new group is much 

smaller than that of the components making up the group. The reason­

ab1eness of this assumption will be discussed later. 

Derivation. Equation 1 can be rewritten: 

(Xl - xA) (x2 - xA) " (x - xA)n 
------~--~~--~n--~l--------

(~ - xA) xA 

Assume: 

Then: 

Using the first term of the logarithmic expansion: 

Note the natural base. Changing to base 2: 
-. 

Note also that xl - x xl" Making a similar assumption regardingA ~ 

x2 , " .. , xn (and therefore ~): 
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XA]
+Xn -x + 
n 

(2) 


The entire expression inside the brackets reduces to, simply, x ' 
A 

Dividing each x term by ~: 

(3) 

But xl/~ is simply the probability of occurrence of xl' Similarly 

for x2 ••• x ' and xA' Therefore:n 

(4) 


Discussion. Equation 4 is interesting in that the numerator of 

the fraction is simply t!le probability that the group would occur at 

random considering the probability of occurrence of its components, The 

denominator is the.actual probability of occurrence. 

Notice that there is only one logarithm. With over 6000 items in 

the group table and nearly 600 expected cycles of operation there will 

be nearly four million ~ calculations. By using the simplified formula 

at least three logarithms per calculation or over 12 million logarithm 

calculations would be eliminated. At several milliseconds per logarithm 

the result would be the saving on many hours of precious computer time, 

The reader will also recall that the original deri\ration of cqua­
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tion 1 was not valid for multiple occurrences of the same letter in a 

group. It can easily be verified that the derivation of this special 

case is quite similar to the original case and when simplified becomes 

the same as equation 4. Therefore, the programming would be further 

simplified using equation 4 since there are no special cases to con­

sider. 

Justification. The validity of equation 4 depends on the assump­

tion that a particular group occurs much less often than any of its com­

ponents. Preliminary experiments by the author showed that for three­

and four-letter groups this was generally true and the error introduced 

averaged less than 5% for the former and less than 2% for the latte~. 

However, the error was much greater for two-letter groups, averaging 

about 35%. In all cases the estimated value was higher (less negative) 

than the true value. Since the purpose of the bH figure is to determine 

the order of entry into the alphabet, the effect of the error would be 

simply to delay the entry of a particular group. 

Since the policy of selecting entries according to 6H ranking was 

chosen only because it seemed like the reasonable thing to do, and 

since, as will be shown shortly, the actual bH contribution of all en­

tries in the alphabet table are constantly fluctuating, the effect of 

delaying an entry due to 6H error is almost impossible to analyze. 

Errors in bH of 5% or less are almost certain to be masked by other ef­

fects. The only area that may cause some concern is the 35% error in 

the two-letter groups. However, if the final results show that the 

overall contribution of two-letter groups is small, then even this con­

cern may be minimal. 
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Taking all these factors into consideration, I decided to use the 

simpler formula, actually equation 3, for calculation of ~H. 

Method of Grouping 

In determining the ~H of a group, the components initially are 

single letters; however, as the alphabet grows the components of a group 

may themselves be other groups. Problems may then arise in that it may 

be possible to group a potential entry in several different ways. For 

example, suppose the alphabet contains the entries: HIS, IS, T and TH 

(among all the others). To determine the ~ of THIS the grouping could 

either be T HIS or TH IS, each grouping possibly giving a different ~H. 

Ideally, all possible groups should be tried but this would be ex­

tremely time consuming and difficult to program. The procedure used 

here is that which would probably be used by a typical translator which 

is always to take as large a bite as possible going from left to right. 

(The division would then be, in this example, TH IS.) Any sacrifice in 

entropy reduction must, therefore, be considered as a property of the 

translator and not as error in the experiment. 

Modification of the Algorithm 

Discussion was made earlier concerning the effect of a new entry 

into the alphabet on the ~ of the remaining potential entries. The 

effect of such an entry on the other entries already in the alphabet 

should also be examined. Four cases will be shown with examples: 

1. 	 Groups which are contained in the new group. For example, THE 

enters the alphabet; what happens to the AH of TH which is al ­

ready in the alphabet? The frequency of free TH's, xTH ' is 
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reduced. The frequency of free T'S and H's is not affected so 

PTPH/PTH increases. (PT is the probability of occurrence of 

the letter T, etc.) The magnitude of 6H for the TH decreases 

and the sign could even become positive. 

2. 	 Groups which contain the new group. TH enters, what happens 

to THE? ~HE remains constant but the fraction inside the log 

is now PTHPE/PTHE rather than PTPHPE/PTHE' PTH > PTPH (a re­

quirement for TH to enter). The log term, and therefore AH, 

becomes less negative. 

3. 	 Groups which overlap the new group. HE enters, what happens 

to TH? The fraction PTPH/P decreases since some free H~sTH 

were used up. Therefore the 6H becomes more negative. 
" 

4. 	 Groups which are not related to the new groups. The fraction 

n-1. . 2 ff d 1 b 11x lx2 ••• xn/ ~ 	 xA ~n equat~on , a ecte on y y a sma 

decrease in x will 	increase and the log will gradually be­T 

come less negative. 

This examination shows that in cases 1,2, and 4, especially 1 and 

2, the contribution of an alphabet entry to the total entropy reduction 

is diminished and could even increase the entropy. For this reason the 

basic algorithm is expanded so that after a new entry is placed into the 

alphabet, the 6H of all other entries in the alphabet (except single let ­

ters) is re-computed. Any entry who's AH exceeds that of the most re­

cent entry is removed and returned to the group table; the tables are 

readjusted and the text is regrouped. Later on, of course, this group 

may be returned to the alphabet. A flow chart of this modified a1go­

rithm is shown in Figure 2. 
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Load 
tables 

Compute ~ 
for every 
entry in 
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to group 
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Adjust 
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Figure 2, Flow chart of the modified algorithm used in this 
experiment. 
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When to Stop the Process 

Theoretically, the most efficient (and totally useless) alphabet 

would be one which had only one entry, the whole sample; the total en­

tropy would be zero! The transl.ator could handle only one message--the 

sample. 

This cannot happen here because of some limitations placed on the 

entries in the group table as will be described in the next chapter. 

What will happen is that the program will run until all entries having a 

negative ~ have entered the alphabet. On test runs using very small 

samples of text~ this occurred in a rather short time. 

Using a large sample, unfortunately, it may not be economical, ~n 

terms of computer time, to allow the program to run to completion. It 

was hopefully assumed that the graph of the relation between entropy and 

table size would decay rather quickly and then gradually level off. 

Periodic printouts from the computer during the run would allow the op­

erator to observe the progress and terminate the run after the curve ap­

peared to level off. 



CHAPTER III 

IMPLEMENTATION CONSIDERATIONS 

I. THE MACHINE A~~ THE PROGRAM 

The computer used for this. project was a Honeywell 1250 with 

131,072 bytes of memory. The memory cycle time of this machine is 1.5 

microseconds per byte. As described earlier, each byte consists of nine 

bits, of which, six are used for actual data storage. The seventh and 

eighth bits, called word marks and item marks respectively, are used for 

identifying field boundaries. The ninth bit is used by the machine for 

error checking purposes. 

The memory was divided into four areas as shown in Figure 3, The 

program was stored in the first 8000 positions. The alphabet table 

started at 25000 and expanded downward. The text sample began at 25000 

and loaded upward and the group table began at the top end of memory and 

loaded downward, the two tables almost meeting at about 78000. To 

text sample group tablealpha 
table 

° 32K 65K 98K l3lK 

Figure 3. Computer memory utilization used in the experiment. 
(Cross-hatched area was used for the program.) 
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assure the greatest possible efficiency in working with individual char­

acters the program was written in assembly language. 

The program was designed so that whenever an entry was added to or 

removed from the alphabet table it was printed out together with the 

computed 6H figure. Also, at the beginning of the run and after every 

50 entries into the alphabet table the complete alphabet table was 

printed out together with the frequency and entropy of each entry. As 

each entry was printed it was also punched out on a card so the cards 

could be used for later machine analysis. 

Since this experiment was to require over 15 hours to run, a re­

start capability was included. At regular intervals during the run the 

operator could cause the entire memory to be written out and saved on 

magnetic tape. If the main memory were accidentally destroyed due to 

mechanical failure or power failure, it could be rebuilt and the program 

restarted from the point at which the most recent save was performed. 

II. TEXT SAMPLE 

Initial Preparation 

The text sample used in this experiment was a selection of about 

7000 words from a United States history text, The Democratic Experience, 

by Niebuhr and Sigmund. 

The text was punched onto standard 80 column cards using columns 6 

through 80. The first five columns were reserved for a card number so 

the cards ~ould be re-sequenced in case the decl< should accidentally be 

dropped. In order to preserve the original word spacing a continuous 

format was used; that is, punching continued from the end of one card 
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onto the beginning of the next with no regard to word boundaries. The 

only exception is that each paragraph began on a new card, indented five 

spaces. All numerals and punctuation were included even though they 

were not used in this particular experiment. 

Input Editing 

At the beginning of the run all the cards containing the text were 

read into the text table during which the following editing took place: 

1. 	 All characters other than the letters A through Z and the 

blank were suppressed. 

2. 	 To simplify the delimiting of words all single blanks were 

changed to double blanks. Each blank could then be thought· of 

as a '~alf blank". Between each pair of words there would be 

two "half blanks", one belonging to each word. 

3. 	 With the period suppressed, all sentences would terminate with 

a double blank. Therefore, all occurrences of double blanks 

were replaced with blank--period--blank. Each blank ("half 

blank") delimited its associated word and the period delimited 

the two sentences without actually belonging to either sen­

tence. Although these periods appeared as part of the text 

sample table, they were not included in any of the character 

counts. 

4. 	 All strings of blanks, such as those occurring between para­

graphs, were reduced to double blanks and handled as such. 

Therefore, there was no delimiting of paragraphs in the text 

sample table. 
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Table Structure 

As each character of the edited text was loaded into the text 

table, the item mark bit of that character was set. This indicated that 

the text was composed of individual characters. When the run began and 

grouping occurred, the groups .were indicated by removing all the item 

marks of a group except for the one over the left hand character of the 

group. The right hand end of a group need not be marked since the next 

character beyond would be the beginning of a new group and would, there­

fore, have an item mark. Figure 4 shows an example of text first in its 

original form and then after the group, TION, was formed. Characters 

having the item mark bits set are indicated with an "i". 

i I 
i i i i i i i i 1 1 i i i i i i i i i i i i i i i i i i I 
A NAT I o N A L REG U L A T I o N WAS 

I' 

i i i i i i i i i i i i i i i i i i i i i i 
A NAT ION A L R E G U L A T ION WAS 

Figure 4. Example of text storage showing the use of item marks 

before and after the group, TION; was formed. 


III. THE ALPHABET TABLE 

Structure 

The alphabet table can best be described by looking at Figure 5 

which shows a small sample taken at the termination of the run. Each 
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wiw wiw w iwwiw 
o 5 T A K 1 4 T A 1 N 0 2 4 6 T 0 6 S T Rue 
'---J ' I "---' ' , , I \:J '----' , I 

v,--_.....;

~I i 
frequency letter 
count group 
~~------~,,~------_I 

one entry 

Figure 5. Sample taken from the alphabet table. 

entry consists of a letter (in this case, T), or a letter group (TAK, 

TAIN, STRUC) with a word mark over the leftmost character. To the left 

of each such field is a numeric count of the number of occurrences of 

that group. The count field has a word mark on the left end and an item 

mark on the right. It can be noticed that the entries are in alphabeti­

cal sequence, the table going from right to left. 

At the beginning of the run, of course, the only entries were A 

through Z and the blank. Each of these initial entries had a four digit 

count field initially set to zero. The proper counters were incremented 
-. 

as the text sample table, desc~ibed previously, was loaded. 

Binary Search 

Since the running of this program would requir.e millions of refer­

ences to the alphabet table, it is necessary to be able to find an item 

in the shortest time possible. For this reason I decided to use the 

method known as the binary search. 

In the normal binary search, the item to be located is compared 



28 

with the item in the middle of the table. The result of the comparison 

determines whether the desired item is above or below this mid-point; 

that is, it tells in which half of the table the item is located. Next 

the mid-point of the particular "half" is selected and the process re­

peated. Each cycle of the process halves the area of search and the 

process continues until the area is reduced down to a single item. It 

can readily be seen that the number of cycles required to find an item 

in a table of n items is simply log2 n. A 1000 item table, for example, 

requires only 10 search cycles to retrieve an item. 

Because of the variable item length structure of the alphabet 

table it was necessary in this program to modify the standard binary 

search. Each time a mid-point was selected it was necessary to scan the 

immediate area until an item mark was found then compared with the entry 

to the right. 

Table Maintenance 

The use of the binary search requires that all items in the table 

be in alphabetical sequence. Therefore, when a new item was added to 

the table this sequence had to be preserved. This was accomplished by 

first performing .a binary search. Even though the item was not yet in 

the table, the search found the point at which the item was to be in­

serted. Next, every character in the table from the low end up to the 

insertion point was moved downward to make room for the new item which 

was then inserted. Fortunately, on this machine, the entire "moving 

down" could be accomplished with a single instruction. 

To remove or delete an i.tem from the table it was necessary only 

to use a binary search to locate the item then "move up" the lower part 
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of the table enough positions to overlay the old entry. 

IV. GROUP TABLE 

The structure of the group table was identical to that of the al­

phabet table except that it was much larger. Look-up was also accom­

plished by an identical binary search. 

Because of the difficulty in determining the frequencies of thou­

sands of groups. the table was initially loaded from a tape which had 

been prepared earlier and will be described in the next section. 

Since no items were ever to be added to the group table. the addj 

delete capability was not included. When an item was "removed" from Fhe 

group table (to be placed in the alphabet table) it was not really re­

moved, but its count field was simply set to zero. Similarly an item 

was "restored" to the group table by merely restoring the count field. 

V. PREPARATION OF THE GROUP TAPE 

Requirements 

Although the original concept of the group table was that it would 

contain all groups-of all sizes it is obvious that such a table would be 

prohibitively large. Therefore, in order to have a table which would fit 

into about 50,000 memory positions, some editing was required. 

The first requirement was that no letter groups were allowed which 

extended over word boundaries. The assumption is that the letters with­

in a given word were not influenced by the letters within a n6ighboring 

word and therefore would not form useful groups. {Work done by Newman 

and Gerstman (IS) indicates that this might not be entirely true, how­



30 

ever.) Groups larger than a word were allowed only if they were groups 

of complete words. Similarly, word groups which extended across sen­

tence boundaries were not allowed. 

Initial attempts at building a group tape indicated that the table 

was still much too large and further reduction was necessary. I noticed 

that a large percentage of the table consisted of entries which occurred 

only a few times. By eliminating all entries which occurred less than 

five times the table was finally reduced to a size which would fit into 

the allowable memory. Whether or not this cut-off would have an effect 

on the eventual alphabet table depended on the relation between this 

cut-off and the frequency distribution of the groups. This will be dis­

cussed in later chapters. 

Method of Preparation 

The first step in the tape preparation was to read in the text 

sample from cards and write out all possible 40 character groups onto a 

work tape. The cards were the ones described earlier in reference to 

the loading of the text sample table. The previously described editing 

of the card data was also employed. The groups written out were such 

that each group consisted of a single new character from the card plus 

the 39 previous characters. The first group, therefore, consisted of 

characters 1 through 40; then the next group included characters 2 

through 41; the next, :3 !:hrough 43; and so forth. The figure, 40, was 

chosen because of programming considerations but proved to be of no 

limitation in itself as will be seen. 

As the first step in fulftlling the editing requirements, given 
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earlier, any 40 character group which began with a period or a double 

blank was suppressed from the work tape. 

After the entire work tape was built it was sorted into alpha­

betical sequence using a standard utility routine supplied by Honeywell. 

The effect of the sorting was to collect all like groups together. 

The next step was to read in the sorted work tape and count the 

occurrences of each set of like groups or parts of groups and write out 

onto another work tape. The process was as follows: Forty counters 

were used, one corresponding to each character position in a group. 

Whenever a group was read that was identical to the previous group all 

counters were incremented by one. If only the first n characters were 

identical, a record consisting of the first n+l characters of the old 

group was written out together with the contents of the (n+l)st counter. 

Additional records were then written for the n+2, n+3 positions on up to 

40. All counters from one to n were incremented by one; all counters 

above n were reset to one. 

In addition, another suppression routine prevented the following 

groups from being written out: 

1. 	 Items ending with a double blank since the second blank would 

belong to tee next word and groups were not to cross word 

boundaries. 

2. 	 Items ending with a period since groups were not to cross 

sentences. 

3. 	 Items containing a double blank that did not begin and end 

with a blank. If a group did begin and end with a blank it 

would have be~n a complete word or possibly group of words, 
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which was allowed. 

4. Items whose counter was less than five. 

Since parts of groups were held in memory as others were written 

out, the output tape was again out of sequence. The final step, then, 

was to re-sort the tape, the result being the complete group tape. 

Since the memory requirements were not large the entire process 

was performed on a smaller machine, a Honeywell 1200 with a 32K memory. 

The programs were written in Fortran. 

VI. ADJUSTMENT OF TABLES 

As was described in the last chapter, whenever an entry was added 

to or removed from the alphabet table, the remaining entries in all the 

tables may have required adjustment. This process is now examined itl 

detail. 

Adding an Entry to the Alphabet 

Once a new group had been added to the alphabet the program scan­

ned "down the text sample until the first occurrence of this group was 

found. Figure 6 shows an example of the group, PRESENT, being pro­

cessed. The com~onents of this group (PRES, EN and T) are each located 

in the alphabet table and their corresponding counters each decremented 

by one. All the other items listed in Figure 6 are then located in the 

group table and similarly decremented. (The symbol, A, indicates a 

blank.) It will be noted that each of these items are composed of two 

or more groups, at least one of which is contained in PRESENT and at 

least one of which is n.ot. The reason for the decrementing, of course, 

is that after PRESENT is formed into one group then all the other items 
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iiiiii "i iii i i 
A A THE A ARE PRE SEN TAT I V E S A A 0 F A A 

Affected groups: E N 
E N T 

ARE PRE S E N T A 
ARE PRE SEN ENTATIV 

E N TAT I V E S A 
REP RES 
REP RES E N T 

T A 
PRE S TAT I V 

PRESEN 
 TAT I V E S A 

Figure 6. Example from the text table of the group, PRESENT, 
being formed showing all the related groups which are affected. 

listed will no longer be candidates for possible grouping. Groupings 

which completely contain the new group, such as REPRESENT, are still 

possible, however, and so these groups are not decremented. 

It will also be noted that parts of groups, such as EPR, are not 

decremented, even though they probably exist in the group table, because 

EPR would have beeri previously decremented when the group RE or PRES was 

formed. 

Since letter groups are not allowed to extend over word boundaries 

all the groups shown are all included within the word, AREPRESENTATIVESA. 

Had the new group been a complete word the above procedure would have 

been the same except that the groupb procEssed v10uld have been groups 

of complete words. 

Since any group origin.ally occurring less than five times was 
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not included in the group table it is possible that a given item, such 

as ENTA in Figure 6, might not be found in the group table. The program 

took advantage of the fact that, in this case, ENTATIV and ENTATIVES6 

would also have been omitted, and so no lookup of these items would have 

been attempted. 

If a counter in the group table were ever decremented to zero, the 

item was considered as deleted, as was explained earlier. (The routine 

which computed 6H on the group table passed over such items.) If a 

counter in the alphabet table went to zero, however, the delete routine 

was automatically entered and the item was removed. 

After all the counters had been decremented, the new group was 

officially formed by removing all the item marks except the one on the 

left hand character. In this example, the item marks over the E and the 

T in PRESENT would have been renloved leaving only the one over the P. 

The scan of the text sample then resumed and the process was re­

peated. The actual groups processed may have been entirely different, 

however, since the next occurrence of PRESENT may have been PRESENTATION. 

Removing an Entry from the Alphabet 

If an item had to be removed from the alphabet due to a change in 

its 6H, the process described was reversed. 

When the desired group was found during the scan of the text table 

the first step was to re-group the old group into the largest subgroups 

possible. Item marks were set at the left end of each such subgroup. 

The same alphabet table and group table adjustments were made as 

before except that the counter for each entry was incremented by one 

rather than decremented. 



CHAPTER IV 


RESULTS AND DISCUSSION 


1. THE TABLES 


Text Sample Table 

The exact size of the text sample was not known until the text 

table was loaded. The initial printout showed that the table contained 

51143 characters. Inspection of the memory listing showed that the 

table required 51475 bytes. The difference of 332 is accounted for by 

the periods, which were not counted. Since the first and last charac­

ters of the sample were periods there were, therefore, 331 sentences in 

the sample. 

The total number of blanks was 14106. Since each word had a blank 

at each end there were, therefore, 7056 words. Of these 7056 pairs of 

blanks 331 would have occurred in the original sample at the ends of 

sentences. The re~aining 6722 were, therefore, added by the program. 

The total number of effective characters in the sample, therefore, was 

51143 minus 6722 or 44421. 

The Group Table 

The group table contained 6442 entries and required 47417 bytes of 

memory. Single-word groups accounted for 224 entries or about 3.5% of 

the total entries. A summation of the word frequencies totaled 4889, 

meaning that 70% of all words in the sample were contained in the group 
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table. The remaining 30% were lost because of the lower limit cutoff 

that was imposed. 

There were 93 two-letter groups or 1.4%, accounting for 915 double 

words of text. This would cover 26% of the sample assuming no overlap 

of groups. Since there was probably some overlap, the percentage would 

be less. 

There were only 12 three-word groups and only 1 four-word group, 

6THEA6ARTICLES660F66CONFEDERATION6, and none higher. This four-word 

group contained 34 letters meaning that the 40-letter restriction im­

posed during the building of the group tape had no limiting effect. 

II. THE ENTROPY REDUCTION 

Run History 

The printout of the complete history of the run is shown in the 

appendix in Table III. Each entry is terminated by a comma so it can be 

determined which entries end with a blank. Those beginning with a 

blank appear indented. The DELTA H column shows the amount of entropy 

reduction of the entire sample resulting from each entry. Notice that 

some entropy figures are positive quantities, and they are indented for 

clarity. These represent entries leaving the alphabet rather than en­

tering. 

It can be seen that the entropy changes are quite large at first 

and then become smaller. Toward the end of the run they are quite small 

and change rather slowly. Because of this, and since the program had 

already run for 15 hours, I decided to terminate the run after 600 

cycles of operation. 
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Alphabet Summary 

After every 50 entries had been added to the table a listing of 

the complete alphabet was automatically performed. These places are 

indicated in the run history as "checkpoints". The actual listings were 

too lengthy to be included in the appendix, but a summary of each list ­

ing is shown in Table I. 

TABLE I 

SUMMARY OF ENTROPY DATA TAKEN AT CHECKPOINTS 

DURING THE COMPUTER RUN 


Check- Total Total Total Entropy Correctd 
point Entries Groups Entropy per Char Entropy 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

27 
76 

124 
171 
216 
263 
313 
355 
399 
448 
493 
539 
584 

51143 
34477 
29837 
26635 
23679 
21918 
20268 
19292 
18217 
17219 
16484 
15843 
15222 

195954 
155659 
143632 
135816 
129628 
125059 
121156 
118313 
115671 
133466 
111521 
109975 
108787 

4.41 
3.50 
3.23 
3.06 
2.92 
2.82 
2.73 
2.66 
2.60 
2.55 
2.51 
2.48 
2.45 

4.08 
3.24 
2.99 
2.83 
2.70 
2.61 
2.53 
2.46 
2.41 
2.36 
2.32 
2.29 
2.26 

-. 

There were 13 listings; listing 0 was printed after the initial 

load before any grouping occurred. The table starts with the original 

27 characters and stops with 584. 

The "Total Groups" column is shown mainly for interest and it is 

not analyzed further. From the first entry, 51143, the total character 

count was determined since at this point each ttgroup" consisted of but 

a single character. At the end of the run each group consisted of an 
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average of about 3.4 characters. 

The figures in the "total entropy" column were obtained by actual 

summation of every entry in the alphabet and not simply an accumulation 

of 6H's since <as was discussed earlier) the 6H calculations used an 

approximation formula and the 6H's were subject to degeneration. The 

entropy per character was computed by dividing the total entropy by the 

number of effective characters in the text, seen earlier to be 44421. A 

graph of this figure plotted against table size is shown as the solid 

curve in Figure 7. 

Effect of the Double Blanks 

Since the text sample table contains extra blanks for ease in word 

delimiting, the effect has been that the computed entropy figures are 

somewhat high. No attempt was made in the program to correct these 

figures; however, it was possible to make some corrections and estimates 

at the end of the run. 

First, as was shown earlier, at the beginning of the run 6722 

blanks were added to the sample. By re-computing the initial total en­

tropy, considering 6722 fewer blanks, a figure of 181324 was obtained 

giving an entropy per character of 4.08 bits. This, incidentally, is 

very close to Shannon's estimate for single characters of 4.03 (14). 

At the end of the run a hand count of the remaining blanks in the 

memory listing was made. All single blanks except those next to a 

period were eliminated since a single blank lmplies that its partner was 

absorbed into a group which is, therefore, properly delimited. The only 

blanks counted, then, were one each of 273 pairs plus 168 next to 
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Figure 7. Graph of entropy per letter versus alphabet size. 

periods or 441 rather than an actual count of 2992. Recomputing on this 

basis yielded a total entropy of 100579 or an entropy per character of 

2.26 bits. 

It was interesting that the ratio of entropy correction in both 

cases was 0.92. Assuming that the correction at the other 11 points 

might have been roughly the same a second set of points was computed and 

shown as a dashed line in Figure 7. 



40 

Interpretation of the Curve 

The points along the right side of Figure 7 show the entropy esti ­

mates of Shannon for single-letter groups up to six-letter groups. It 

can be seen that with less than 100 items in the alphabet the entropy 

has already been reduced to that obtainable with a two-letter table. At 

200 and 300 entries it surpasses a three- and four-letter table respec­

tive1y. At 500 to 600 entries the entropy is further reduced although 

other factors may limit its usefulness as will be seen shortly. 

Equation of the Curve 

It was originally hoped that the curve would somewhere show a de­

finite leveling off point. One seemingly good point would be where the 

slope changes most rapidly, which is the point at which the third de­

rivitive goes to zero. However, the log log plot in Figure 8 produced 
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Figure 8. Lower curve of Figure 7 drawn on logarithmic scale. 
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almost a straight line, indicating that the data was basically exponen­

tial. Since none of the derivatives of an exponential go to zero, there 

seems to be no nice way to define where the curve levels off. 

By determining the slope and the intercept of the line in Figure 8 

the equation is found to be: 

10glO H = -.19 10glO N + .875 

where N is the number of entries in the alphabet. The original curve in 

Figure 7, then, has an equation: 

H = 10. 875 N -.19 

or roughly: 

5H = 7.5 I VNI 

III. DISTRIBUTION CURVES 

Group and Word Distribution 

An analysis of the run history in the appendix was made to deter-
I' 

mine what proportion of the entries consisted of letter groups, single 

words, double words, etc. The results are shown in Table II and on the 

graph in Figure 9. 

These results show that once the curve stabilizes the proportions 

remain fairly constant except for a sl~ght rise in letter groups toward 

the end. Of significance is the fact that letter groups and single 

words make up 90% to 95% of the table. The small remainder is composed 

essentially of two-word groups, and the higher order groups contribute 

virtually nothing. 

Also shown is the percentage of two-letter groups. This was in­

cluded since there was some discussion in an earlier chapter on the use 
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TABLE II 

LETTER AND GROUP DISTRIBUTION TAKEN AT 
CHECKPOINTS DURING THE COMPUTER RUN 

Check- Total % Letter '70 I-word 70 2-word 70 Higher % 2-1tr 
point. Entries Groups Groups Groups· Groups Groups 

0 27 100.0 
1 76 71.1 25.0 2.6 1.3 0.0 
2 124 62.1 31.5 4.8 1.6 1.6 
3 171 59.1 35.1 3.5 2.4 1.8 
4 216 59.7 34.7 3.7 1.9 4.2 
5 263 56.7 36.9 4.9 1.5 3.4 
6 313 58.8 35.5 4.5 1.3 3.5 
7 355 59.2 34.1 5.6 1.1 3.4 
8 399 60.2 32.8 6.0 1.1 3.8 
9 448 62.7 30.1 6.2 .9 4.0 

10 493 64.3 29.0 5.9 .8 5.1 
11 539 66.0 27.3 5.9 .8 5.6 
12 584 66.4 26.7 6.2 .7 6.0 
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Figure 9. Graph of letter and word group distribution as a 

function of alphabet size. 
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of the simplified 6H approximation, in that there could be considerable 

error when applied to two-letter groups. It is seen that the percentage 

of such groups is quite small. 

Frequency Distribution 

To observe the effect of the low limit cut-off of five during the 

building of the group tape, a count was made of how many items in the 

alphabet occurred at given frequencies. These were compu~ed from the 13 

checkpoint listings. The results of selected tabulations are shown in 

Figure 10 as a frequency polygon. 

The actuai frequencies extend from 5 up to several thousand; how­

ever, everything of interest occurs only below about 20, so that is all 

that is shown. 

By observing the behavior of the curve in the known area one can 

make some guesses as to what might have happened in the area below five. 

It can be seen that with 76 items in the alphabet none occurred less 

than 9 times, the peak being around 12 or so. The cut-off apparently 

had no effect. At 171 items the peak has shifted to the left and it 

appears that a few items with a frequency less than 5 would have occurred 

if there had not been the cut-off. At 216 it's hard to tell what the 

curve is trying to do, but at 313 and beyond the curve is definitely 

peaking in the region below five. 

Had the cut-off not occurred, many low frequency items with a good 

~ probably would have gone into the alphabet and the entropy would, 

therefore, have been lower than that obtained here. 

On the other hand, it seems undesirable to include a large number 
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of low frequency items in the alphabet because many of these items might 

be found only in this particular sample. This thought opens up the 

whole area of sample sensitivity and is discussed briefly in the last 

chapter. 
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Figure l~. Graph of group frequency distribution at selected 
checkpoints during the computer run. 



CHAPTER V 


CONCLUSIONS AND RECOMMENDATIONS 


I. CONCLUSIONS 


Entropy Reduction 

'Considerable reduction in the entropy of English text can be ac­

complished with a relatively small table by grouping the text into vari ­

able length groups. Reducing the entropy to below 3 bits per character 

can be accomplished with an alphabet of less than 200 entries. Using a 

larger alphabet of around 500 words it may be possible to reduce the en­

tropy to below 2.5 bits. 

Because of the simplifications made these figures can oniy be 

taken as an estimate. Had the AH equation not been simplified and had 

the low frequency cut-off not been necessary, the entropy results would 

probably be even lower. However, if numerals and punctuation had been 

included the entropy would not be as low. Also, there will be an entro­

py increase due to losses in any coding scheme used in a translator. 

Table Content 

It is definitely worthwhile to include both letter groups and 

single words in the alphabet. I would doubt the use of word groups, 

however, since their contribution is small and involves extra progran,­

ming complexity. In any event, groups larger than two words are defi ­

nitely not worth handling. 
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II. RECOMMENDATIONS 


Changes in Procedure 

Accurate ~ Prediction. Since the percentage of two-letter groups 

in the alphabet was small, it suggests that the effect of the simplified 

~ equation on the total entropy reduction is minimal. It is possible, 

however, that the AH error is somewhat the cause of the low percentage, 

since the error of approximation has the greatest effect on two-letter 

groups. I would suggest that the next run incorporate the original 6H 

equation even though the computer time would be increased considerably. 

Comparison of the results, however, would indicate the degree of error 

and perhaps allow a decision to be made as to a preferred method. 

Elimination of Word Groups. Since I found that the contribution 

of word groups was small it would be worthwhile eliminating them from 

the processing thereby simplifying the programming in this area. The 

building of the group tape would also be speeded up since it would not 

be necessary to allow for the .large maximum group size of 40 characters. 

Use of Complete Alphabet. Since the ultimate goal of this exper­

ment is to develop a workable translating system the run should be made 

with the complete alphabet rather than just 27 letters. Since there is 

little redundancy in the numerals and punctuation their entropy is high; 

however, in normal text their 'usage is usually low. Their overall ef­

fect on the reduced Entropy remains to be seen. 

The Gronp Table and Sample Sensitivity 

'I'he one area that still requires considerable work is that of pre­

paring the group tape. Some editing is definitely required in order to 
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finish with a group table that will fit into memory. Yet, the arbitrary 

cut-off at five items left much to be desired. 

Closely related to this problem is the one of sample sensitivity 

which was not at all studied in this experIment. As more and more groups 

are taken from a particular sample and placed in the alphabet the more 

the alphabet becomes tailored to that one particular sample. This tai­

loring can be reduced only by insuring that the selected groups are truly 

representative samples of English itself and not just the particular 

sample. 

But where is the line to be drawn between "English itself" and a 

particular sample? And, perhaps, some sample dependence is desirable. 

If a translating system is to process only history text then the inclu­

sion of "pure history" words is desirable even though the system may now 

perform poorly with chemistry. A good translating system could have 

several alphabets in disk storage, and at the beginning of each message 

it could load into main memory the one tailored for a particular text. 

One method of building the group tape might be to build many tapes 

each from a different sample. Then, according to some statistically de­

termined criterion; select those groups which appear on most of the tapes 

and reject those which appear on only a few. How much diversity in the 

selection of the samples depends again on the intended diversity of the 

translating system. 
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APPENDIX 

The following pages are a computer printout showing all groups 

as they were going into or coming out of the alphabet table. The effect 

of each entry on the total entropy is also shown. 

Groups which appear to be indented one space are those which begin 

with a blank. All entries are followed by a comma. This comma is not 

part of the entry but was added by the program, so that it would be 

possible to teli which entries end with a blank. 

Entries leaving the alphabet are shown with a positive ~, which 

is also indented on the listing. 

Although entries are selected in order of increasing ~, an 

occasional item may appear out of sequence due to a particular grouping 

of the previous entry. 

It can be noted that a few entries do not have a ~ figure. These 

are groups which were "used up" forming other groups, and so were purged 

from the alphabet with no effect on the entropy. Single letters were 

not purged but were listed with an asterisk. (Q was the only case.) 

After every 50 cycles of operation a checkpoint listing was pro­

duced consisting of a complete alphabet printout. These printouts are 

not included here but the checkpoints are indicated on the listing. 
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TABLE III 

COi·lf'lJTCR Kur~ H151m~y 

ALPHA[~E T Lf: h<Y 	 DF. L T A 11 

THE .. 518/­
GOVEKN~Ern • 2633­

TIO"h 2026­
AND , 1664­
Of , 163li ­
STATES • 	 153~-
CON, 121/­
LEG 15LATUf~E, 931­

ING • 93b­
THE ARTICLLS O~ CONFEuERATIGN 'I ~19-
CONG~ESS , 82;;: ­
~vA5 • 816­

E.D 	 • 8 l't ­
lHAT • b10­
CONS T I TUT I Glj, tl09­
COl\l, 

CULl) .. 	 79<)-
IvH I Cd " 742­
TO • -/3'1-­
THE. 13d­

I-EUEI:':f\LlS, 	 714­
wlTH, 67d­
CON, 6't2­
I ('Ii , 	 65L­
FUR, b't't-
R[PRt:5E:1T, 62')-
POwE':(, ':>9..,­
~ilKl , ~5J-
DlLLCll,Trs, 53/­

LY 'I 505­
~';A SS ACHl} :::'1: T T ~ , 452­
THE MH I CL[~ , 451­

Ern, 449­
STI\Tl::. , 435­
CONVf:.f\.!T lUll. 42)­
PRO, 't 19­
POL I T I CAl., 415­
HOy,!:. vu< , 39'+­

IGHT, 3 u.­
I I V [ , 36ti ­
VIRG!f\dA , 36{)­

THEIR , 367­
FRCHI , 365­
MIEi< I ( t., , 	 3~'1--

CO"1HLf< (, 353­
PQPULA, 3'd­

6~~ 
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TABLE III--Continued 

ALPHAt~ET cJ! Tto/Y DLLTA Ii 

BY • 346­
CE NT~AL COVlRiH,'l:Ja. 34'. ­
CO~1Pr(OM I Sl:. • 
 333­
HA '-II L 1 UN. 332~ 


INDEPEND, 324­

CtlECK PO I tH 1 


RATIFICATION, 32()­
AUTHORITY, 311­

REVULJTION, 317­
corH HIErl TAL , 309­
NE~ YORK, 3U't-

NA 1 I D~;A'- , 302­

THl~, 
 299­
bE, 291­
HAD • 240­

VEf< .. 2Bu­
IN1Et..:E5T. 2.7'j ­

5Y5TEr,' , 26/-

COnf ~U[F AI 10:. , 2611.­
THE ART I C L c. oS (J f eX\) rEi) ERA T1 0 fl. 

PEoru. • 2 f.) 1­
DUT , 2'.6­
LCGISLA, 242­
OF THE, 237­

ON , 23:; ­
COLO:H. 237­
NO r<1-l w [ 5 T , 23,­
UNDE~ , 
 23'+­
DOCUVIENT , 231­
~'IH , zr;j­

OUC,'i, -. 2;> 7··· 

f}[h!E:U~. , 226­
ORO I ~IArKE , 225­
EACH • l23­
flF FA If<S , "::22­
STf<O"IC" 21Si­
ANTlflDERALISTS , 21 '~-

Lll..fHJ[, 211.1­
AL , 21~-
AND, 216­

THE ULCU\R{\ 1 101, Of- , 21 7­
H>U~ 11 OP, 213­
b f'u\ i'.~..:t I , 211..;­
BEL rEV tJ') T: 1;\ T • 210­
n1LL :)F !n ",til 5 , i.OJ­
HAJO~ITY , 2 u<~-

16ti 
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TABLE III--Continued 

ALPHAbET Er'.ilR Y DELTA H 

EXECJTIVE • 202­
PE.R. 201­
MOST • 200­

COUN1RY. 200­
IN. 200­

NOT • 204­
t-,AD I 5uN • 190­
ur~ITED STATlS, 18t..-

UlJ. 18b­
Ot 

REGULA. 188­
ALL Y • 187­

CHECKP'JIfH 2 

'CJOVERf"OR. 18·'-
DIFFtRErKE. IBS­
I r • ItU-

SUCH • 181­
Gf~EA T. 161­
PRES I [)EfH • 176­
rJ E... , 176­
JA"'E5 • 176­
AFTE~ , 1-/'3­
THEY • 17;::­
lH. 17CJ­
THE, 12u 
THERE. 17(;-

OPPO~:.dTlor~ • 17{J­
I r~ RL-.CJAtW 1 CJ ., 169­
HOU5E. 169-

APPR:lV , 16d­

OUT. '"; 167­
ECOrJJiVi I C. 167­
THU.;5ELVL'J ~ 16 -/­

NC[ • 166­
E5TI\~LI5H. 16L­
ITS ., 161­
i,l,OUl) ., 16(;-

CaUL:) • 16~-

CULD • 133 
SHOULD ., . 284­
VOlE, 15c)­
F 0 K [ I (,f'\; , 1 ~ t:­
JUDIC.ll\L. 15/-

APpal,'" I • 154­
50"\[ .. 153­
PR IrK 1 PLL .. 153­
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TABLE III--Continued 

ALPHA13ET ENTRY DELTA H 

AlION • 152­
~J E. S T , 151­
JOrlN • 151­
AGAINST. 151­
THE ARTICLES Or C)i'JFEI;Ef~pTICh. 1't9­
PLAN • 146­

PUBLIC. 1'd-
DO~lE5TIC • 1'tb-

t-FIC. 14lt­
EFFE(, 1't -,­
GENER, 144­
FAVOR. 14 i t­

cor.-: • lit j­

fJ\ ~ r<1 EF<: 5 • 14(:­
A£3L[ 'I lit0­

TRADE 'I 1'to­
m< 'I 140­

FAVO,:(, 126 
150­

RE:.VDLUTION, 2br,­

O-H: CK PG Ir IT 3 

REVOLJTICrl, 4'1 
T H [, I ~ 01\1\. 142­
[Lec. 14(J­
cor'>!TKUL. 140­

VI AI~ , 13':1­
THE LOviCk, 13 -/­
BRITISH. 136­
REPRE5[~TATIvES • 13:>­
AG~EED , 13 i.­

TER, -. 133­
fEl)Ef~AL .• 13 l t­

Dl. 133­
DC, 130­
fBEE001 , 132­
1·1U(H 'I 131­
THE~l , 13()­
EX. 12:1­
ALREAl'Y • 12. '1­

ACCEfll. !ij-
L[ADf.YS. 120­
CRlP..l, 1;>6­

ALL. 12:';­
FAVO~, 12'.­
PRC.WJ~), 12::'­

1 I Of\) S , U3­

http:L[ADf.YS
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ALPHAHE1 

IVE • 
lIVE. 

Pf<ClP:)S. 
lIONS. 
IVE • 
lIVE. 
I:N • 
AN. 
AR. 
WAfh 
ON. 
f:.r'w. 
TOwA~D • 

NUfv'lB[ ~. 
SPEC!. 
UN. 
PRE. 
UR. 
I:R. 
TER. 
NUf-ldE ~. 
ATE. 

FIKSr • 
ISSUE • 
GE:)R::JE • 
THESE • 

R[(O:.:,r~ 1. 

I~U~l13EH , 

'·lORE • 

THIRllEfJ , 

t3ALAN('c • 
AVE • 

TAX. '. 
ECT. 

lRIBU. 

TABLE III--Continued 

ENTI<Y DELTA H 

122­
114 


12)­
123­
122­

114 

12)­
13 "I­
l't 1­

93 

120­
132­
12:;­
12j­
llD­
115­
11:' ­
11~-

144­
66 


11 't 
11'}­
119­
11"(­
11b­
114­
11 't­
114­
11 't ­
113­
112­
112­
113­
lll-


CHECK pen ": T 4 


llu-
THE H".DCRAt 1~ IS , 11G­
~Ot:{Td • 11 1,; ­

lIES. 10') ­
GUS. 109­
VIS I C):'{ • 10d­
STRUt 10/­
f:.5S. 10/­

PI"",(JdLD1. 106­
SI\1PLY. 10,, ­
HD~KY • 11),-;­
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TABLE III--Continued 

ALPHAE:ET [lHkY DELTA H 

SHAYS • 103­
INTO .. 103­
.i ~1PO;.( T .. 103­
THE STATlS .. 10u­
AS • 99­

M10r--.G • 9b­
HUST , 9<:1­

CHECK, 97­
CAr-IE • 97­

TwO .. 97­
ITS CW"l, 97­
TO cil .. 9{)­
POLIC~ 9:;­
fvlONE Y , 9~-
LII<E , 94­
DEBT, <.j4t­

f:.S .. 93­
1 IE-. S • 7'd 

SE.CT Hm, 94­
ENC, ':14­

I NDEPCrlP[f,CE , lOL:­
RAT}F, 93­

AIED • 'Jl-
HIE (O(\IS 1 ITul I OJ i 91­• 

I'vlARKtT. 91­
LOC'<\L • 91­
WIT~JUT , 90­
HOTH , 89­
THKtE • 8~-
SECO'W, bl-

PROPEkTY , 87­
j'vq GH r , 8 .. ­
RIGHT. -. 137­

JGhT. 77 
supp, in-

THIS, 82­
JAY , 82­
YtAHS , fl.:::­
CALL t.t) , 82­
Sj\1ALL. tl't-


ALL, 5d 
ALL ~ 93­

SHIP, 81­
CH, 03­
ACK~ 3j­
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TABLE III--Continued 

ALPHAhET E~nRY LTA H 

PROVID, 81­
CLOSE , Sl-
WHO , 81­
SOUhh 80­
(vlEET, clO-
CENTKAL , 80­

MENT, 81­
IGHT, 79­

PERI::JD , 7'1­
EVERY , 79­

LAND , 7c,­
ALSO , 7d­

m'J, rl­
wORK, 7'i­

WAR, kO-
OLVEL> , 76­

CalL, 7&­
EC T 1 O'~S , 7/­

OVER , 7/­
t-UL, 76­

WHILE:. , 76­
wHEf'l , 17­
1-1 A T TER, 76­
r GUNL), 7b­
EVEN , 76­
~'J I L , 7'.;­

TIES, 7':.;­
STATE LEGISL~TUkES, 75­

TOf~S " 74­
T li"'\[: , 7':;;­
RESULT, 7'..>­

I:HH, l't-
Ar-{ (,U, -. 7"t-

CAUSE , 73­
A , <7'-f-

A Tl v[ , 7 it­

OTHE~, 7·t­
t"iAK [ , -14 ­
POINT, 73­
t~ Er~ , 73­
R[ "'1 A I N 1 7.:.­
fQUI\L , 72­
OR 1 (, [N , 11­

ITY , 70­
Af~Y , 10­

N[, "10­
III , 6<1­
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TABLE III--Continued 

ALPHAtEr ENTgy DELTA H 

CHECK PO U;T 6 

STATE GOVEh:i"i·1Ei·;TS, 69­
AT • b~-

EMBER, bH-
ACT, bd-

UP, 67­
CONSIST, 61­
ALN10ST , 67­

TAIN. 66­
TEMPT, 65­
IGN. 65­

THERE WAS, 65­
TERMS , 6~-
POPULATION , 6~-
IT fJAS. 6~-
HIS, 65­
DEPEND. 6:;;'­
APP, 6~-

APPOlhT. 10<;-
APpal i\jT, 19 
M-~ER I CA.N. 65­

EN. 6~-
EN • 1H 
ENC, 't3 
END, 46 
U\lCE , 95­

fW • 66­
VOTE() • 6<t-
OLUT I :J~;. 61.t-
POSt 64­
OANGE~ .. 6"t-
DH~[CT • -. 6lt­

ONl • 6]­
ONLY .. 6d­
WHERE • 63­
WH. 61 
v;HD .. 76­
WHO • 
OF- SO V F f< i .. >1 t : ,T • 63­
HHE~, 63­
INTf:.~t-ST, l'd-

HHfREST, 
EST, 64­

DECIS, 63­
t-ORE • 62.­
t-F£:.R, 62.­

F f~Ar·l, (d­
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TABLE lll--Continued 

ALPHAbET EfHRY DEUA H 

,THAN 62.­
REPRE5ENTATICJN p~ , 61­,FEvJ 61­
REST~, 60­
RATHER , 60­
AGR, 61­
PHIL, 60­
THROJGH, 5~-
THEi~E IfJERE , 59­
THERE, 47 
CO"1~ERCJAL .. 59­

lNG, 5b­

CHECKP(J H~T 7 

SPA I ''I. 59­
HELD , 5/j-
ArKE 58­, 
NCE , 5 
ANC£ , ~7 
CE , 5';'­
E:NU: , ~'t 
AD, 5b­
E.AS, 5'::1­

PASS, :';')­
TRANS, 5t~-,TOO 5/­
LEGISLATIVE .. 51­

fvlETH, 5&­
HAND, 5-'­

ALTH, 56­
WOULJ f3 E , 56­

,-:.POPULAR 5b­
POPULA " ~~ :;) 

(U~R, 5/­
MITT, 5:'>­
I OUSL Y .. 55­,THUS 5:>­
BASI, 5~/-

TH::;US~I .. 5'.­
JONS , 53­

,E:CTIO~5 3b 
TR[A, 53­

RAr~K .. :,j-
THl lOf!VUI T lOr! , 5}­,ON THE 5't­
50, :'>3­,E.l1lit:P 5]­
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TABLE III--Continued 

ALPhABET fNTRY DELTA H 

ESTIO~, 52­
ATI~NS , 52­

TOwN, 5l­
HAV~ , 52­

ISH, 52­
LON~ , 51­
ISSI, 51­
1(, 52­
ION , 5~-
ID, 5~-

DID, 5lt­
DURING, 53­
WITH TfIE, 51­
t-1EA(J, 51­
CO~MERCE , 51­
CO"'1"1ERC, 

SIX. 50­
SET , 50­
MIL, 50­

CESS, 4'1­
THERt, 4~-

AfJGE , iH.)­

AMP, 4~-

REGULATF , '~0-

PR~TE(T, 4{l-
PART , 'to-
INDI, 4d­

MEfW, 46­
MlDI, ltb­
£::XPt,~ I, -. 't 05­

SERV, 41­
LE , 47­
LAlt-i, It 7­
Ar~Y , 47­
ENCY , 4 "­
ll\l(E , 4/­
LESS , 46­
GRES5~ 'r':i­
£::5S, 44 
DGE , 't6­

NEv. GOVlf.:.~\r')l!H, ',i.)­
IN THE, 46­
FOR lH[, 41­
I 1'1P l·{ , 4&­

POR T I 0"" 4:)­
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TABLE III--Continued 

ALPHAbET ErnRY DELTA h 

OUNT, 45­
[JUC, 45­

SEVEK' 45­
COLO,~ I E5 , 45­

OLD , 44­
RO, 44­

FIN, 4'-t-
DIS, 44­

1ST, 44­
ERS • 44­
E55. 4~-

5TA. 4~-

PO""'E..(5 • 45­
SU, 4~-

PUl, 44­
LPH, 43­

JU, 43­
GOVE~MMENT SHOULD, 43­
GIV, 43­
OFFIe, 42­

lZED , 41­
r'H 5. 't!­

RI. 41­
SH, 41­
~·'A , 41­

AT, 41­
ORA. 42­

IRE:. • 41­
I'vIAR'I 42­

CtilCKPL 1i" T 9 

AL. -. 41­
CLA, 42­

ACY 42­'I 

AH, 42­
YEAf< , 41­
(OMPL, 40­
GEI~E "(ALL Y .. 'tU-

t-1ENlS , 39­
ELECfIOI,1 .. 40­

IlIon, tt 1­
NEVE..(, 39­
COULD '2E,. 39­
i::itEN .. 40­

OSE , 30­
ORI.)Et~ • 3(:)­

"1E R. 3)­
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ALPHAHET 


OCK, 
ACC, 

(RE, 
IF, 
1 T 1 , 
It·' .. 

IMPE.R. 
FEDEKALIST. 
FE:.Af~ 'I 

000. 
op, 

OPER, 
POR1, 

EFFEC1 'I 


EFFEC. 

IS£.:. 'I 

Af~E 'I 

REVOLUTIor~A,f-<Y 

ANT, 
TERRIT~mY 'I 

UND, 
lH, 

TH, 
THU~E, 

AL1H. 
THIR, 
PH[S5. 
ED£':'D • 
AIL, 
LVE , 

SLA, 
UPON , 

UNIO\j, -, 

I !'vIP E R , 
DO. 

lAK, 
AM. 

GAVE , 
Ef-JD, 

MEND., 
ECTIO\J~ , 
ANCE-_ 'I 

AG, 
ASS, 
HJ(iHIS , 

TABLE III--Continued 

Ein RY 

, 

CH[CKPC'H:T 10 

DELTA H 


3iJ~ 

39­
3()­

3d­
38­
40­

36 
3b­
38­
37­
3b­
52­
37­
38­

37­
37­
31­
36­
36­
35­
3:' ­

9 
26 
27 

41­
35­
3?­
3':1­
35­
36­
3:>­
3?­
3, ­
35­
34­
34­
34­
33­

3U 
33­
33­
33­
33­
33­
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TABLE III--Continued 

ALPHAbET Gl TJ-<Y DELTA ri 

URE , 32­
WE, 33­

E:.FF, 32­
f-US, 32­
fAC, 32­
AP, 32­

NATION, 32­
ELECT, 32­

lIL. 31­
IT. 32­
ITI, 26 
ITIES , 4!:i-
IA • 3~-
IAL , 34­
COLO~IAL , 32­
COLO~I; 


PLA, 31­
ULT, 31­
EL, 31­

ELEC, ':6 
ELY, ?/j-

DE:.Lf., 32­
AI~L!. 32­
ATELY , 31­
i::.NTLY , 31­
ACH, 31­

WA, 31­
SPE, 31­
SPEC!. 6'1­
MON, 31­
FOi<fvl, 31­
FAR, 31­

ARD, " 31­
corn !f';E.flT AL c(;r..;GKE~S, 31­

STATE, 30­
lER, 3U­
i::.PT, 3U­

FFh 30­
FO, 31­

URY , 2'1­
(ow.." 29­

THE RIGHT, 29­
SEE, 2(J­

INTEQE.5T5 , 29­
HWf'.1 H!L, 2::',­

WH, 2tl­
VERY , 2ti­
HY • 2B­
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TABLE III--Continued 

ALPHAbET ErnHY 	 D[lTA H 

CHECKPu I iH 11 

ClO, 	 2b­
, 	OD, 28­

COD, 2~ 
CHQ, 29­
TO THE • 2b­
THAT THE:. , 2tl­,D£..BTS 20­

I-W\ri. 27­
lOW, 30­
MAN, 27­,lNGS 	 27­
fUllY 	 21­•
fACT, 27­
EV, 27­

wON .. 27­
lAC", 21­,IS 21­

lOUS 21­
'" COLJl"> [,01 , 	 2 {­

CENT, 	 21­,BRAfKHES 	 27­
IES , 	 27­

TAXt:5 .. 2l­
lHt:N , 20­
SON 26­, 

26­
AlTH, 20­
llD, 2::1­
[Z, 2S­
[ZED , 2u 
ANI 51-1, 2S­

THERE, 	 25­
PROP)SED 	 2:' ­

1'\0\"" 

• 
PROPOS. 	 22 
OR , 25­
\riOR, 2?­
WORK. 35­
PO;~E~ TO 2S­• 
Hf~ , 	 2::1­
BR I, 	 37­

BRI. 1H 
ATT, 25­
ADD. 25­
FOR , 2~-

,FORCE 	 33­



64 

ALPHAGET 

ADV. 
TY • 
ST. 
STAlE. 
!::>Ef\T. 
ENC. 
TEN • 
STRUC. 
AY • 
ALS • 

TABLE ttt--Continued 

EN1RY D[L TA t-I 

25­
24­

-25­

'" .£.'t­

2 l t­
24­
24­
2 .. -
2''1"­

22 

CHE:..CKPOIHT 12 
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