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Abstract: In this paper, the two-echelon multi-period multi-product location–inventory problem
with partial facility closing and reopening is studied. For each product and period, plants serve
warehouses, which serve consolidation hubs, which service customers with independent, normally
distributed demands. The schedule of construction, temporary partial closing, and reopening of
modular capacities of facilities, the continuous-review inventory control policies at warehouses, the
allocation of customer demands to hubs, and the allocation of hubs to warehouses are determined.
The service levels for stockout at warehouses during lead time and the violation of warehouse and
hub capacities are explicitly considered. The proposed mixed-integer non-linear program minimizes
the weighted summation of the number of different facilities and logistical costs, so that the number of
different facilities can be controlled. Since the proposed model is np-hard, the multi-start construction
and tabu search improvement heuristic (MS-CTSIH) with two improvement strategies and the
modified MS-CTSIH incorporating both strategies are proposed. The experiment shows that the
two improvement strategies appear non-dominated, and the modified MS-CTSIH yields the best
results. The comparison of the modified MS-CTSIH and a commercial solver on a small instance
shows the efficiency and effectiveness of the modified MS-CTSIH. The sensitivity analyses of problem
parameters are performed on a large instance.

Keywords: location–inventory problem; multi-period facility location problem; multi-product;
modular capacitated facility location problem; tabu search

1. Introduction

Efficient distribution network design and logistics management strategies can help
enterprises improve their market competitiveness, save costs, conserve energy, and reduce
emissions. The main tradeoff in the design is to choose between several smaller-sized
facilities or a few larger-sized facilities to serve customer demands [1]. To serve customers
in urban areas, warehouse facilities have a considerable impact on the effectiveness of urban
freight distribution systems. Freights, which are transported by various transportation
modes and vehicles, are consolidated at warehouses on trucks, which in turn deliver
products to final customers in urban areas. The shortcomings of warehouses in single-
echelon distribution systems result from their positions typically far from final customers
and the constrained urban traffic network. Note that an echelon refers to a facility type [2].
To resolve such shortcomings of single-echelon systems, consolidation hub facilities are
added between warehouse facilities and final customers. The hubs are employed to
consolidate freight delivered from warehouses on bigger trucks and load consolidated
freight into smaller trucks for product distribution to final customers in cities [3,4]. The
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resulted two-echelon distribution system for city logistics [5] essentially yields the increase
in costs due to additional operations at hubs, which can be counterbalanced by freight
consolidation, reduction in empty truck trips, the economy of scale in transportation,
enhancement of mobility and sustainability, and improvement of urban quality of life [3–5].

This paper addresses the two-echelon multi-period multi-product location–inventory
problem in which plants are fixed but warehouses and hubs can be opened at potential sites.
As shown in Figure 1, plants ship products to warehouses, which consolidate shipments
and transport selected items to hubs, which deliver orders to individual customers. A set of
modular capacity levels can be used at each of the two echelons, and the modular capacities
can be temporarily closed and subsequently reopened over time. The permanent closing of
modular capacities is not allowed. Demands of individual customers are assumed to be
mutually statistically independent (of each other and over time) and normally distributed.
Continuous-review policies are used at warehouses and service levels can be selected
relative to stockouts during lead times and facility capacity violations. An application
of this problem is a temperature-controlled freight distribution system, where products
are classified into three product types, ambient, chilled, and frozen foods, with different
temperature requirements at warehouses, hubs, and transportation. An example is a cold
chain and non-cold chain distribution system by a logistics company.
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A mixed-integer non-linear program is formulated. A multi-start construction and
tabu search improvement heuristic (MS-CTSIH) with two improvement strategies (i.e., MS-
CTSIH (strategy 1) and MS-CTSIH (strategy 2)) and the modified MS-CTSIH are proposed.
A sensitivity analysis relates the weight of the total number of located facilities to objective
function and the number of located facilities in a comparison of MS-CTSIH (strategy 1),
MS-CTSIH (strategy 2), and the modified MS-CTSIH in order to determine the best heuristic.
The quality of the best heuristic solution and its run time are compared, respectively, with
the optimal solution prescribed by a commercial solver, GAMS/BARON, and its run time
on a small instance. The best heuristic solution on the small instance is used to portray
its feasibility and the solution characteristics. Lastly, sensitivity analyses relating certain
problem parameters such as service level and demand, standard deviation to objective
function, and number of located facilities are presented.

The remainder of this paper is organized as follows. A literature review of related
studies is provided in Section 2. The problem description, notations, and proposed math-
ematical model are presented in Section 3. Section 4 describes the proposed multi-start
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construction and tabu search improvement heuristic. The experimental design for the com-
putational analysis and the discussion of experimental results are described in Section 5.
Finally, conclusions and suggestions for future research are given in Section 6.

2. Literature Review

In the single-echelon facility location problem, the optimal number and locations of
only one facility type such as warehouse are determined, whereas in the two-echelon facility
location problem, the optimal number and locations of two facility types such as warehouse
and consolidation hub are determined. The facility capacity and its installation costs are
non-linearly related due to its economy of scale, given that the share of common resources
in the installation can help reduce the costs. As such, the capacity sizing is considered a
variable. When the available capacity sizes of a facility are a pre-defined set of discrete
values, the modular capacitated facility location problem results [6,7]. Optimal facility
locations based on current parameters such as customer demands and unit operating costs
may be suboptimal in the long term because these parameters can change over the planning
horizon. It is expected that newly located facilities can operate for a long period until
changes in parameters cause these facilities to be too costly when compared with a new set
of located facilities [8]. As such, one should incorporate the dynamism of decisions into the
modular capacitated facility location problem, yielding dynamic (or multi-period) facility
location problems [9]. Shulman [7] proposed an algorithm to determine a time schedule and
discrete capacity sizes of facilities over the planning horizon. Dias et al. [10] proposed an
efficient primal-dual heuristic for a dynamic location problem with opening, closure, and re-
opening of facilities over the planning horizon. Jena et al. [11,12] consider four adjustments
of capacities of existing facilities over the planning horizon, given seasonal/permanent
demand shifts: (i) opening or closing facilities in certain periods; (ii) increasing or de-
creasing the capacities of existing facilities; (iii) temporarily closing facilities, reopening
these at later periods; or (iv) relocating capacities among different facilities. Jena et al. [13]
extend this work by considering multiple product types, round-up capacity constraints,
and multiple modular capacity levels. Jena et al. [14] developed Lagrangian heuristics
based on sub-gradient and bundle algorithms for large-scale problems.

Furthermore, the facility location-allocation decisions and inventory control decisions
are typically considered in sequence. The inventory control decisions for a warehouse
rely on the assigned demands from allocated hubs, which in turn depend on the assigned
customer demands. Frequently, facility location-allocation decisions focus on finding the
minimal fixed costs and direct transportation costs without accounting for the effect of
customer assignment on the ordering costs and inventory holding costs at facilities. As such,
there is great potential to optimize the distribution system costs by simultaneously solving
facility location-allocation and inventory control problems. The works on the joint location–
inventory problem employ different inventory control policies, such as continuous-review
inventory control policy [15,16], periodic-review policy [17], power-of-two policy [18], and
an infinite-horizon policy [19]. In this paper, we assume a continuous-review policy for each
product, where a fixed order quantity is ordered from the plant when the inventory level
of a product at a located warehouse is less than or equal to a reorder point [15]. The work
on continuous-review location–inventory problems can be classified based on whether
and how inventory capacity is considered. The uncapacitated problem is considered in
Daskin et al. [20] and Shen et al. [21]. The capacitated problem is considered in Miranda and
Garrido [15,22]. A deterministic inventory capacity constraint to accommodate the mean
assigned demands is employed by Miranda and Garrido [22]. A more stringent capacity
constraint accounting for the impact of safety stock, demand incurred during the lead time,
and order quantity is considered in Ozsen et al. [23]. A chance constraint accounting for
the level of service associated with inventory capacity violations and stockouts during
lead times is employed in Miranda and Garrido [15] and Punyim et al. [16]. A single
prespecified capacity level at each facility is assumed in Miranda and Garrido [15,22]
and Ozsen et al. [23], whereas multiple prespecified capacity levels at each facility are
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assumed in Punyim et al. [16]. Miranda and Garido [15] and Punyim et al. [16] incorporate
vehicle capacity restrictions in determining order quantities by using a maximum order
quantity constraint.

Works on the two-echelon location–inventory problem include those by Vidyarthi
et al. [24], Park et al. [25], and Shahabi et al. [26]. Vidyarthi et al. [24] consider a multi-
product two-echelon location–inventory problem accounting for risk pooling effects by
consolidating the safety stock inventory of retailers at distribution centers. Park et al. [25]
consider a two-echelon location–inventory problem where the number and locations of
supplies and distribution centers are determined. Shahabi et al. [26] consider a single-
product single-period two-echelon location–inventory problem where the locations of
plants and warehouses are determined.

Table 1 classifies the relevant literature on the joint location–inventory problem and the
dynamic facility location problem according to six problem features: (i) single/two echelon,
(ii) single/multi-period, (iii) single/multi-product, (iv) single/multi modular capacity level,
(v) whether capacity relocation is allowed, and (vi) whether temporary partial capacity
closing and reopening is considered. Table 1 also shows the associated mathematical
formulation types and solution methods. The models in the dynamic facility location
problem are mixed-integer programs (MIP), whereas the models in the location–inventory
problem are mostly non-linear. The employed solution methods are categorized into
two categories: (i) analytical methods such as Lagrangian relaxation (LR) and (ii) heuristics
such as tabu search and LR-based heuristic. As can be seen from Table 1, to the best of our
knowledge, there is no study on multi-period joint location–inventory problems. In recent
years, the dynamic facility location problem with temporary partial closing and reopening
has received more attention. Our work fills the research gap by tackling the two-echelon
multi-product joint dynamic location–inventory problem with temporary partial closing
and reopening.

The tabu search algorithm has been shown to be effective and efficient for combina-
torial optimization [27]. It integrates a hill-climbing search technique based on a set of
elementary moves, and a heuristic to avoid the stops at local optima and the occurrence of
cycles. The tabu search was initially created with a constant tabu tenure by Glover [28,29].
The proper choice of tabu tenure is critical to the success of the algorithm. The tabu tenure
should be sufficiently long to prevent cycles but short enough such that the search is not
overly constrained [27]. There are works that developed tabu search algorithms to tackle the
facility location problem, such as Hoefer [30], Al-Sultan and Al-Fawzan [31], Sun [32], and
Punyim et al. [16]. Hoefer [30] and Al-Sultan and Al-Fawzan [31] studied the uncapacitated
facility location problem. Hoefer [30] compared two approximation algorithms, a local
search, a tabu search, and the volume algorithm with randomized rounding on different
benchmark instances. It was concluded that the tabu search algorithm is preferred over the
others, as it achieved best solution quality in a reasonable amount of time. Al-Sultan and
Al-Fawzan [31] showed that the tabu search can find the known optimal solutions for all
standard test instances, and it is efficient in terms of time compared to existing algorithms
in the literature. Sun [32] proposed the tabu search for the capacitated facility location
problem. He found that the tabu search outperformed the Lagrangian method and the
surrogate/Lagrangian heuristic method in terms of both solution quality and CPU time
on randomly generated instances and standard test instances from the literature. Punyim
et al. [16] developed the tabu search heuristic for the location–inventory problem with
stochastic inventory capacity with the assumptions of a single echelon, a single product,
and a single period. There are four algorithmic parameters: customer assignment rule,
facility swap type, open facility selection rule, and close facility selection rule. The best
combination of algorithmic parameters yielding the best performance was identified. It
was found that the tabu search can achieve the solution with a tighter optimality gap and
much less CPU time than a commercial solver on a small instance. Our proposed heuristic
is an extension of the tabu search by Punyim et al. [16] and the identified best combination
of algorithmic parameters were also employed in our proposed heuristic.
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Table 1. Summary of literature on joint location–inventory problem and dynamic facility location problem.

Research Work
Problem Features

Formulation Solution Methods
Echelon Period Product Capacity

Level
Relocate
Capacity

Temporary Partial Capacity
Closing and Reopening

Joint Location–Inventory Problem

Daskin et al. (2002) [20] Single Single Single Single N/A N/A INLP Lagrangian relaxation (LR)

Shen et al. (2003) [21] ” ” ” ” ” ” INLP, IP Column generation

Miranda and Garrido (2004, 2006)
[15,22] ” ” ” ” ” ” MINLP Heuristic based on LR and

sub-gradient method

Teo and Shu (2004) [19] ” ” ” ” ” ” IP Column generation

Ozsen et al. (2008) [23] ” ” ” ” ” ” INLP LR

Correia and Captivo (2003) [6] Single Single Single Multi N/A N/A MIP LR

Zhang and Unnikrishnan (2016) [17] ” ” ” ” ” ” MICQ Outer approximation

Punyim et al. (2018) [16] ” ” ” ” ” ” MINLP Tabu search

Vidyarthi et al. (2007) [24] Two Single Multi Single N/A N/A MINLP LR

Park et al. (2010) [25] Two Single Single Single N/A N/A INLP LR

Keskin and Üster (2012) [18] ” ” ” ” ” ” MINLP Heuristic

Shahabi et al. (2014) [26] ” ” ” ” ” ” MICQ Outer approximation

Dynamic Facility Location Problem

Dias et al. (2007) [10] Single Multi Single Single No No MIP Primal-dual heuristic

Shulman (1991) [7] Single Multi Single Multi No No MIP LR

Jena et al. (2015) [11] Single Multi Single Multi Yes Yes MIP CPLEX solver

Silva et al. (2021) [1] ” ” ” ” ” ” MIP Heuristics

Jena et al. (2015) [12] Single Multi Multi Multi Yes Yes MIP CPLEX solver

Jena et al. (2016; 2017) [13,14] ” ” ” ” ” ” MIP LR-based heuristic

Joint Dynamic Location–Inventory Problem

Our work Two Multi Multi Multi No Yes MINLP Heuristic

Note: INLP = integer non-linear program; MIP = mixed-integer linear program; MINLP = mixed-integer non-linear program. MICQP = mixed-integer conic quadratic program. The
ditto mark means the same as what has been written above.
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3. Proposed Mathematical Formulation

The problem description is first given, followed by the notations and the proposed
mathematical model.

3.1. Problem Description

For each product and period, a single plant is assumed to serve a set of warehouses,
which serve a set of hubs, which in turn serve the final customers with stochastic demands.
The customer demands are normally distributed and independent. The demands are
independent across different customers and over time. Warehouses cannot directly serve
the final customers. Each customer is served by a single hub for each product and period.
Each hub is served by a single warehouse for each product and period. The problem
parameters such as customer demands vary over the planning horizon. Facility location-
allocation and modular capacity selection decisions are made for warehouses and hubs
for each product and period. We adopt the terms “open capacity”, “temporarily closed
capacity”, and “existing capacity” of a facility in this paper, according to Jena et al. [13].
The open capacity is available for use. The temporarily closed capacity is temporarily not
available for use and can be reopened later. The existing capacity is the combination of the
open and temporarily closed capacity. Over the planning horizon, the permanent closing of
capacity is not allowed in the proposed model. That is, for each product, a located facility
has an open capacity level lp and an existing capacity level np (denoted by capacity levels
(lp, np)) in period t−1, and capacity levels (l, n) in period t. The following constraints are
imposed: 0 ≤ lp ≤ np, 0 ≤ l ≤ n, and 1 ≤ np ≤ n (i.e., the existing capacity of a facility
in period t cannot be lower than that in period t − 1). Five facility location and modular
capacity adjustment costs are considered: (i) construction cost, (ii) operating fixed cost,
(iii) non-operating fixed cost, (iv) reopen cost, and (v) temporary close cost.

Inventory control decisions are made at the warehouses for each product and period.
There are no inventory control decisions for hubs, as these are deployed for freight transfer
and consolidation. The continuous-review policy is assumed at warehouses. The capacity
restrictions of vehicles in transportation from plants to warehouses can be adopted as
maximum order quantity constraints at warehouses [15]. The user-specified lower limit of
the implied maximum order quantity and the user-specified upper limit of reorder points
from Punyim et al. [16] are employed. The level of service associated with the unfulfilled
demands during the lead time for warehouses and the level of service associated with
the capacity violation at the peak demands for warehouses and hubs are considered. The
overall open capacity constraints for combined products at warehouses and hubs for each
period are modeled.

3.2. Notations

The notations for deterministic parameters and decision variables are given.

3.2.1. Deterministic Parameters

F1 = Set of candidate warehouses.
F2 = Set of candidate hubs.
F = Set of candidate facilities F1∪ F2.
CL = Set of modular capacity levels = {0, 1, . . . , NCL}.
G = Set of products.
C = Set of customers.
T = Set of time periods.
Nt = Number of days in period t.
W = Weight of total number of different located facilities over the planning horizon.
α = Probability of unfulfilled demand during the lead time at warehouses.
β = Maximum probability of inventory capacity violation at warehouses.
γ = Maximum probability of violation of daily throughput capacity at hubs.
z1−α= The lower 100(1 − α) percentage points of standard normal distribution.
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dij = Roadway distance between nodes i and j.
rUL = A fraction of inventory capacity as a practical upper limit of reorder point at warehouses.
rLL = A fraction of maximum order quantity as a lower limit of the implied maximum
order quantity.

For each facility i and period t:

AllCapi,t = Overall open capacity for combined products at facility i ∈ F in period t.

For each product g:

lig and nig = Initial open capacity level and initial existing capacity level at facility i.
RCwg = Unit transportation cost between plant and warehouse w (USD/product unit/day).
TCig = Unit transportation cost for vehicles based at facility i ∈ F (USD/distance unit/
product unit).
OCwg = Fixed ordering cost at warehouse w (USD/order).
HCwg = Unit holding cost at warehouse w (USD/product unit/day).
LTwg = Lead time that the plant takes to fulfill an order from warehouse w (day).

For each customer c, product g, and period t:

µcgt and σ2
cgt = Mean and variance of stochastic daily demand of customer c (independent

and normally distributed across products, customers, and periods) (product unit/day and
(product unit/day)2).

For each facility i, modular capacity level l, and product g:

Capilg = Facility capacity (inventory capacity for warehouse and daily throughput capacity
for hub) for l open capacity levels (product unit).
Qwlg

max = Maximum order quantity which can be set as the vehicle capacity from the plant
to warehouse w with l open capacity levels (product unit).
CONilg = Cost for constructing l capacity levels (USD).
OFilg = Operating fixed cost with l open capacity levels during a period (USD).
NFilg = Non-operating fixed cost to maintain l temporarily closed capacity levels during a
period (USD).
Reopenilg = Cost to reopen l capacity levels (USD).
Closeilg = Cost to temporarily close l capacity levels (USD).

For each facility I, product g, and period t:

flp,l,np,n
igt = Capacity adjustment cost (USD) to change from open and existing capacity

levels (lp, np) in period t − 1 to (l, n) in period t, calculated from Equation (1) [13]:

flp,l,np,n
igt = CONi,ncon,g + OFi,nof,g + NFi,nnf,g + Reopeni,nreo,g + Closei,nclo,g (1)

where:

ncon = n − np Capacity levels to be constructed in period t.
nof = l Open capacity levels to be operated in period t.
nnf = n − l Temporarily closed capacity levels to be maintained in period t.
nreo = max{0, (l − lp)-(n − np)} Capacity levels to be reopened in period t.
nclo = max{0, (lp − l) + n − np} Capacity levels to be closed temporarily in period t.

For example, for located facility i serving product g with open and existing capacity
levels (0,2) in period t − 1 and the capacity levels (1,4) in period t, the associated capacity
adjustment cost is f 0,2,1,4

igt with ncon= 2, nreo = 0, and nclo = 1. Table 2 illustrates additional
examples of ncon, nreo, and nclo for determining the capacity adjustment cost.

3.2.2. Decision Variables

The decision variables are described as follows.

yyi = 1 If facility i ∈ F is established over the planning horizon; and 0 otherwise.
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yi,g,t
lp,l,np,n = 1 If facility I ∈ F changes its capacity levels (lp, np) in period t − 1 to (l, n) in

period t for product g; and 0 otherwise ∀lp ≤ np, l ≤ n, np ≤ n.
xcgt
(w,l,n),(h,l̂,n̂)

= 1 If product-g period-t demand of customer c is served by hub h with capacity

levels (l̂, n̂), which is served by warehouse w with capacity levels (l, n); and 0 otherwise.
RPwgt; SSwgt; Qwgt = Reorder point; safety stock; order quantity for product g at warehouse
w in period t (product unit).
EDigt and VDigt = Mean and variance of Digt, daily product-g demand served by facility
i ∈ F in period t (product unit/day and (product unit/day)2).
AllCapi,t = Overall open capacity of combined products at facility i ∈ F in period t (product unit).

Table 2. Capacity adjustment cost for facility i serving product g in period t.

Period t − 1 Period t ncon nof nnf nreo nclo

Open and Existing Modular
Capacity Levels (lp, np)

Open and Existing Modular
Capacity Levels (l, n) =n − np =l =n − l = max{0, (l − lp)

− (n − np)}
max{0, (lp − l)

+ n − np}

(0, 2) (1, 2) 0 1 1 1 0

(0, 2) (1, 3) 1 1 2 0 0

(0, 2) (1, 4) 2 1 3 0 1

3.3. Mathematical Model

We propose a mixed-integer non-linear formulation. Objective (2) minimizes z, the
weighted summation of the number of different located facility locations over the planning
horizon and the total estimated cost (EC). EC is composed of the first-echelon cost in (3) and
the second-echelon cost in (4). The first term in (3) is the warehouse capacity adjustment
cost; the second term is the ordering and holding costs for continuous-review policies at
warehouses; and the third term is the direct transportation costs from plants to warehouses
and between warehouses and hubs. The first term in (4) is the hub capacity adjustment
cost, and the second term is the direct transport cost between hubs and customers.

minz =
2

∑
v=1

zv =
2

∑
v=1

(W ∑
i∈Fv

yyi + ∑
t∈T

∑
g∈G

ECv
gt) (2)

EC1
gt = ∑

i∈F1
∑

np∈CL

NCL
∑

n=n1

np
∑

lp=0

n
∑

l=0
f i,g,t
lp,l,np,n·y

i,g,t
lp,l,np,n

+Nt ∑
w∈F1

(
OCwg
Qwgt
·EDwgt + HCwg(

Qwgt
2 + z1−αLTwg

√
VDwgt)

+Nt ∑
w∈F1

NCL
∑

n=1

n
∑

l=1
∑

h∈F2

NCL
∑

n̂=1

n̂
∑

l̂=1
∑

c∈C

(
RCwg + TChg·2dhc

)
·µcgt·xcgt

(w,l,n),(h,l̂,n̂)

(3)

EC2
gt = ∑

i∈F2
∑

np∈CL

NCL

∑
n=n1

np

∑
lp=0

n

∑
l=0

f i,g,t
lp,l,np,n·y

i,g,t
lp,l,np,n+Nt ∑

w∈F1

NCL

∑
n=1

n

∑
l=1

∑
h∈F2

NCL

∑̂
n=1

n̂

∑̂
l=1

∑
c∈C

(
TCwg·2dwh

)
·µcgt·xcgt

(w,l,n),(h,l̂,n̂)
(4)

Constraint (5) guarantees the product demand of each customer in each period is
served by a hub, which is served by a warehouse. Different hubs can serve a customer, and
different warehouses can serve a hub for different products. Constraint (6) relates capacity
adjustment variables in periods t − 2 and t − 1 (i.e., yi,g,t−1

lp,l,np,n) to those in periods t − 1 and

t (i.e., yi,g,t
l,lp,n,np) at warehouses and hubs. From Constraint (6), for product g, period t − 1,

and facility i with its open and existing capacity levels l and n, the existing capacity level
of facility i in period t cannot be lower than that in period t − 1, and the existing capacity
of facility i in period t − 1 cannot be lower than that in period t − 2. That is, a modular
capacity level cannot be permanently closed. Constraint (6) also enforces that for each
period t and product g, facility i can have its open capacity level l ranging from 0 to its
existing capacity level n. Then, the number of temporarily closed capacity levels at facility i
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for product g and period t is n-l. Constraint (7) initializes the open and existing capacity
levels in period 0. Note that the initial (i.e., period 0) open and existing capacity levels for
facility i and product g are lig and nig. For each product, period, and facility, Constraint (8)
ensures that at most one capacity adjustment variable is selected. Constraints (9) and (10)
are the relationships between demand allocation variables and facility capacity adjustment
variables in each period.

∑
w∈F1

NCL

∑
n=1

n

∑
l=1

∑
h∈F2

NCL

∑̂
n=1

n̂

∑̂
l=1

xcgt
(w,l,n),(h,l̂,n̂)

= 1 ∀c, g, t (5)

n

∑
np=0

np

∑
lp=0

yi,g,t−1
lp,l,np,n =

NCL

∑
np=n

np

∑
lp=0

yi,g,t
l,lp,n,np ∀i ∈ F; n ∈ CL; l = 0, . . . , n; g ∈ G; t = 2, . . . , |T| (6)

NCL

∑
n=0

n

∑
l=0

yi,g,1
lig ,l,nig ,n = 1 ∀i ∈ F, g ∈ G (7)

NCL

∑
np=0

NCL

∑
n=np

np

∑
lp=0

n

∑
l=0

yigt
lp,l,np,n ≤ 1 ∀i ∈ F, g, t (8)

xcgt
(w,l,n),(h,l̂,n̂)

≤
NCL

∑
np=0

np

∑
lp=0

yw,g,t
lp,l,np,n and xcgt

(w,l,n),(h,l̂,n̂)
≤

NCL

∑
np=0

np

∑
lp=0

yh,g,t
lp,l̂,np,n̂

∀w ∈ F1; h ∈ F2; c ∈ C; g ∈ G; t ∈ T; n ∈ CL; n̂ ∈ CL; l = 0, . . . , n; l̂ = 0, . . . , n̂ (9)

yw,g,t
lp,l,np,n ≤ ∑

c∈C
∑

h∈F2

NCL

∑̂
n=0

n̂

∑̂
l=0

xcgt
(w,l,n),(h,l̂,n̂)

and yh,g,t
lp,l,np,n ≤ ∑

c∈C
∑

w∈F1

NCL

∑̂
n=0

n̂

∑̂
l=0

xcgt
(w,l̂,n̂),(h,l,n)

∀w, h, g, t, lp, np, l, n (10)

For each product and period, Constraints (11) and (12) are stochastic capacity chance
constraints at warehouses and hubs, respectively. Constraint (11) is based on Miranda
and Garrido [15]. Figure 2 illustrates the continuous-review inventory control policy for
commodity g at warehouse w with l open capacity levels in period t. When the inventory
level Iwgt falls below the reorder point RPwgt, an order quantity Qwgt is triggered, which
will be received after the lead time LTwg. When an order is submitted to the warehouse,
the inventory level should cover the stochastic demand during the lead time (Dwgt LTwg)
with probability 1 − α: Prob(Dwgt LTwg ≤ RPwgt) = 1 − α. Standardizing Dwgt LTwg in
this inequality yields Constraint (18), which determines reorder points and safety stocks.
The stochastic inventory capacity chance constraints ensure that the peak inventory level
(RPwgt − Dwgt LTwg + Qwgt) at the order arrival is within the inventory capacity Capwlg at
the warehouse with probability 1 − β: Prob(RPwgt − Dwgt LTwg + Qwgt ≤ Capwlg) ≥ 1 −
β. Substituting (18) and standardizing Dwgt LTwgt in this inequality yields Constraint (11).
We propose Constraint (12), which is the chance constraint ensuring that the served daily
demand is within the daily throughput capacity at hubs with probability 1 − γ:

Prob(Dhgt ≤
NCL

∑
np=0

NCL

∑
n=np

np

∑
lp=0

n

∑
l=0

Caph,l,g·y
h,g,t
lp,l,np,n)≥ 1− γ. Standardizing Dhgt in this inequality yields :

Prob(Z ≤

NCL
∑

np=0

NCL
∑

n=np

np
∑

lp=0

n
∑

l=0
Caph,l,g·y

h,g,t
lp,l,np,n − EDhgt√

VDhgt

)≥ 1− γ.

That is,

NCL
∑

np=0

NCL
∑

n=np

np
∑

lp=0

n
∑

l=0
Caph,l,g·y

h,g,t
lp,l,np,n − EDhgt√

VDhgt

≥ z1−γ, and this leads to Constraint (12).
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Figure 2. Continuous-review inventory control policy for product g at warehouse w with l open
capacity levels in period t.

For each product, period, and facility, Constraints (13) and (14) determine the means
and variances, respectively, of served daily demands. Constraint (15) is the maximum order
quantity constraint at warehouses. In Constraint (16), the left-hand side is the implied
maximum order quantities from Constraint (11). From the computational experience in
the single-echelon single-period single-product location–inventory problem by Punyim
et al. [16], the implied max order quantity can be a small and impractical value, so the user-
specified lower limits of the implied max order quantities are proposed. Constraint (17)
enforces reorder point upper limits at warehouses. Constraint (19) enforces the overall open
facility capacity for combined products. Constraints (20) and (21) are bound constraints.
Constraint (22) together with Objective (2) determines yyi.

Qwgt + (z1−α + z1−β)LTwg

√
VDwgt ≤

NCL

∑
np=0

NCL

∑
n=np

np

∑
lp=0

n

∑
l=0

Capw,l,g·y
w,g,t
lp,l,np,n ∀w, g, t (11)

EDhgt + z1−γ

√
VDhgt ≤

NCL

∑
np=0

NCL

∑
n=np

np

∑
lp=0

n

∑
l=0

Caph,l,g·y
h,g,t
lp,l,np,n ∀h, g, t (12)

NCL

∑
n=1

n

∑
l=1

∑
h∈F2

NCL

∑̂
n=1

n̂

∑̂
l=1

∑
c∈C

µcgtx
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(w,l,n),(h,l̂,n̂)

= EDwgt and ∑
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NCL

∑
n=1

n

∑
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NCL

∑̂
n=1

n̂

∑̂
l=1

∑
c∈C
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cgt
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= EDhgt ∀w, h, g, t (13)

NCL

∑
n=1

n

∑
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∑
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NCL

∑̂
n=1

n̂

∑̂
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∑
c∈C

σ2
cgtx
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∑
c∈C
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RPwgt ≤ rUL
NCL

∑
np=0

NCL

∑
n=np

np

∑
lp=0

n

∑
l=0

Capw,l,gyw,g,t
lp,l,np,n ∀w, g, t (17)

RPwgt= EDwgt·LTwg + SSwgt and SSwgt= z1−αLTwg

√
VDwgt ∀w, g, t (18)

TotCapi,t = ∑
g∈G

NCL

∑
np=0

NCL

∑
n=np

np

∑
lp=0

n

∑
l=0

Capi,l,g·y
i,g,t
lp,l,np,n ≤ AllCapi,t ∀i ∈ F, t (19)

xcgt
(w,l,n),(h,l̂,n̂)

∈ {0, 1} ∀w, h, l, n, l̂, n̂, j, g, t and yi,g,t
lp,l,np,n ∈ {0, 1} ∀i ∈ F, lp, np, l, n, g, t (20)

EDigt ≥ 0, VDigt ≥ 0 ∀i ∈ F1 ∪ F2, g, t and yyi ∈ {0, 1} ∀np, n, lp, l, g, t (21)

yi,g,t
lp,l,np,n ≤ yyi ∀i ∈ F, g ∈ G, t ∈ T, np ∈ CL, n ∈ CL\{0}, lp = 0, . . . , np; l = 0, . . . , n (22)

Since (3), (11), (12), (16) and (18) are non-linear, the formulation is a mixed-integer
non-linear program (MINLP). Note that Constraints (11), (15) and (18) are adapted from
Miranda and Garrido [15]. Constraints (16) and (17) are based on Punyim et al. [16].
The costs of partially closing and reopening modular capacity levels in Constraints (3)
and (4) and facility capacity adjustment Constraints (6)–(8) are based on Jena et al. [13].
Our contributions in the formulation include the extension of the single-echelon single-
period single-product location–inventory formulation with the single-level objective by
Miranda and Garrido [15] and Punyim et al. [16] to the two-echelon multi-period multi-
product location–inventory formulation and the incorporation of dynamic facility capacity
adjustment variables allowing partial facility closing and reopening based on Jena et al. [13].
We propose the coupling constraints on the overall open capacity of combined products in
Constraint (19). We propose the stochastic daily throughput capacity chance constraints
at hubs in Constraint (12). We also propose the first term in Objective (2) and Constraint
(22) to account for the number of different facilities over the planning horizon in which the
formulation by Jena et al. [13] does not capture.

4. Proposed Multi-Start Construction and Tabu Search Improvement Heuristic

Since the proposed MINLP is np-hard, we propose a multi-start construction and
tabu search improvement heuristic (MS-CTSIH) to solve the problem. The proposed
heuristic is composed of two stages: construction and improvement. The construction stage
generates a feasible solution from the bottom up, i.e., a feasible second-echelon solution is
constructed and becomes input to the construction of a feasible first-echelon solution. The
construction stage relies on the order of candidate facilities stored in facility_sequence(v,g,t).
For the initial multi-start iteration (i.e., multi-start iteration 0), facility_sequence(v,g,t) is
in descending order of the maximum capacity, so that the larger facilities are located to
serve demand nodes. For the remaining multi-start iterations, facility_sequence(v,g,t) are
randomly ordered. Based on the selected improvement strategy s with nested tabu search
procedure calls as shown in Table 3 and discussed in Section 4.2, the improvement stage
iteratively searches for an improved feasible second-echelon solution, then iteratively
searches for an improved feasible first-echelon solution. The improvement stage is repeated
until no improved solution is found (Algorithm 1).

Algorithm 1: MS-CTSIH(strategy s)
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Table 3. Nested tabu search procedures after performing a feasible move for improvement strategies.

Tabu Search Procedure
Improvement Strategy

1 2

Swap_Demand_Node(v,g,t,s) None Insert_Demand_Node(v,g,t,s)

Replace_Facility(v,g,s) None Insert_Demand_Node(v,g,t,s) for t = t_enter, . . . ,
|T|Swap_Demand_Node(v,g,t,s) for t = t_enter, . . . , |T|

Replace_Facility(v,s) None Insert_Demand_Node(v,g,t,s) for g∈G, t = t_enter, . . . ,
|T|Swap_Demand_Node(v,g,t,s) for g∈G, t = t_enter, . . . , |T|

Add_Facility(v,g,s) None
Insert_Demand_Node(v,g,t,s) for t = t_enter, . . . ,

|T|Swap_Demand_Node(v,g,t,s) for t = t_enter, . . . ,
|T|Replace_Facility(v,g)

Add_Facility(v,s) None
Insert_Demand_Node(v,g,t,s) for g∈G, t = t_enter, . . . ,

|T|Swap_Demand_Node(v,g,t,s) for g∈G, t = t_enter, . . . ,
|T|Replace_Facility(v,s) for g∈G

Note: t_enter = the first period in the current solution affected by implementing a facility move.

The proposed tabu search improvement algorithms are the extensions of the algorithm
by Punyim et al. [16], which is based on Nagy and Salhi [33], Tuzun and Burke [34], and
Crainic et al. [2]. Our algorithmic contribution is on the extension to incorporate the two-
echelon, multi-period, and multi-product aspects and allow temporary partial closing and
reopening of modular capacities of warehouses and hubs.

A destroy and repair approach is proposed in the improvement stage to ensure the
feasibility over the planning horizon. It destroys the affected part in the current solution
after a move changing a facility location and reconstructs the current feasible solution. For
example, for a hub addition move that locates an additional hub in period 2 for product g1,
the affected part in the current solution includes the set of hub locations serving product g1,
the associated open and existing capacity levels, and the allocated product g1 customers in
period 2 onwards. The affected part also includes the set of hubs allocated to warehouses
for product g1 in period 2 onwards. The proposed procedure will destroy these affected
parts in the current solution and reconstruct the feasible current solution by calling the
relevant construction procedure that relies on facility_sequence(v,g,t) in the current multi-
start iteration.

As discussed in Section 5.2.1, since MS-CTSIH (strategy 1) and MS-CTSIH (strategy
2) appear non-dominated on our problem instances, MS-CTSIH is modified such that
both strategies are incorporated to yield a best result. The initial solution obtained from
the construction stage is used in the improvement stage with both strategies. The best
solution found from the two strategies is reported. The modified MS-CTSIH is shown
below (Algorithm 2).

Algorithm 2: Modified MS-CTSIH
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     while (an improved solution is found) 

 

The additional notations are first defined, followed by the common procedures and 

descriptions of the construction stage and improvement stage. 

Additional Variables for the Current Solution 

LFg,tv = The set of located facilities for echelon v, product g, and period t (facilities are ware-

houses if v = 1 and hubs if v = 2); UFg,tv = Fv\LFg,tv. 

Nigtallocated = The set of demand nodes serviced by facility i F for product g and period t, 

i.e., customers serviced by hub h in the second-echelon problem, and hubs serviced by 

warehouse w in the first-echelon problem.  

L_Fgv = The set of located facilities for echelon v and product g; U_Fgv = Fv\L_Fgv. 

L__Fv = The set of located facilities for echelon v; U__Fv = Fv\L__Fv.  

ocligt and ecligt = Open and existing modular capacity levels for facility iF, product g, and 

period t.  

EnterPig = The earliest period that facility iF is constructed to serve product g, e.g., hub 

h1 is located from periods 3 to 10 to serve product g1; then EnterPh1,g1 = 3.  

Enter_Pi = The earliest period that facility iF is constructed to serve any product. 

z = The objective value of the current solution.   

z*= The objective value of the best solution found so far. 

z’*= The objective value corresponding to the best move. 

Algorithmic Variables 

tabui = The last iteration number that a move of node i (demand or facility location) is 

prohibited. 

tenure = Number of iterations that a move is prohibited. 

freqig = The frequency that facility i  F enters L_Fgv (i.e., unlocated facility i becomes a 

located facility serving product g) in the current solution.  

freqi = The frequency that facility i enters L__Fv in the current solution.  

Algorithmic Parameters 

max_it2 = Maximum number of non-improvement iterations.  

div_it2 = Number of non-improvement iterations to activate the diversification procedure 

in the facility replacement phase (note that div_it2 < max_it2). 

MS_iterations = Number of multi-start iterations. 
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The additional notations are first defined, followed by the common procedures and
descriptions of the construction stage and improvement stage.

Additional Variables for the Current Solution
LFg,t

v = The set of located facilities for echelon v, product g, and period t (facilities are
warehouses if v = 1 and hubs if v = 2); UFg,t

v = Fv\LFg,t
v.

Nigt
allocated = The set of demand nodes serviced by facility i ∈ F for product g and period

t, i.e., customers serviced by hub h in the second-echelon problem, and hubs serviced by
warehouse w in the first-echelon problem.
L_Fg

v = The set of located facilities for echelon v and product g; U_Fg
v = Fv\L_Fg

v.
L__Fv = The set of located facilities for echelon v; U__Fv = Fv\L__Fv.
ocligt and ecligt = Open and existing modular capacity levels for facility i ∈ F, product g, and
period t.
EnterPig = The earliest period that facility i ∈F is constructed to serve product g, e.g., hub h1
is located from periods 3 to 10 to serve product g1; then EnterPh1,g1 = 3.
Enter_Pi = The earliest period that facility i ∈ F is constructed to serve any product.
z = The objective value of the current solution.
z*= The objective value of the best solution found so far.
z′* = The objective value corresponding to the best move.
Algorithmic Variables
tabui = The last iteration number that a move of node i (demand or facility location)
is prohibited.
tenure = Number of iterations that a move is prohibited.
freqig = The frequency that facility i ∈ F enters L_Fg

v (i.e., unlocated facility i becomes a
located facility serving product g) in the current solution.
freqi = The frequency that facility i enters L__Fv in the current solution.
Algorithmic Parameters
max_it2 = Maximum number of non-improvement iterations.
div_it2 = Number of non-improvement iterations to activate the diversification procedure
in the facility replacement phase (note that div_it2 < max_it2).
MS_iterations = Number of multi-start iterations.

4.1. Stage I: Construction

The construction stage constructs an initial feasible solution for echelon v by calling
Construct_Solution(v). The initial second-echelon solution (v = 2) is determined first, and
the located hubs become the demand nodes for warehouses in the first-echelon problem.
Construct_Solution(v) iteratively builds a feasible solution for product g and period t by calling
Build_Feasible_Solution(v,g,t) for each product g and period t. The open and existing capacity
levels of located facilities in period t − 1 can be adjusted in period t with associated capacity
adjustment costs flp,l,np,n

igt. The objective function zv for echelon v is determined (see Equation
(2)). The best solution found in echelon v is set to this current solution. After the initial solution
is constructed, the frequency counters (freqig and freqi) are initialized for tabu search in Stage
II to keep track of how often each facility enters the current solution (i.e., how often facility i
serving product g is removed from U_Fg

v and inserted into L_Fg
v and how often facility i is

removed from U__Fv and inserted into L__Fv). Then, freqig and freqi are used in the diversification
procedures to diversify the current solution in the facility replacement phase (Algorithm 3).

Algorithm 3: Construct_Solution(v)
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Construct_Solution(v) calls the procedure Build_Feasible_Solution(v,g,t), which in 

turn calls Allocate_Demand_Nodes(v,g,t) and Determine_Inventory_Policies(g,t). These 
are briefly described in the following sections.  

4.1.1. Procedure Build_Feasible_Solution(v,g,t) 

The procedure Build_Feasible_Solution(v,g,t) takes the set of located facilities in the 

previous period LFg,t−1v, their open and existing capacity levels, and facility_sequence(v,g,t) 

as input. The procedure sequentially selects a facility i from facility_sequence(v,g,t) where 

the facilities in LFg,t−1v are considered first and the other unlocated facilities are considered 

according to their orders in the sequence. The selected facility i is located by inserting i 

into LFg,tv with its greatest feasible open capacity ocligt with respect to Constraint (19) (i.e., 

constraint of overall open capacity of combined products). The existing capacity level ecligt 

is max{ocligt, ecli,g,t−1}, which implies that the existing modular capacity level cannot be per-

manently closed (i.e., ecligt ≥ ecli,g,t−1). The number of temporarily closed capacity levels is 

ecligt − ocligt, and the number of new modular capacity levels to be constructed is ecligt − 

ecli,g,t−1. The feasibility of LFg,tv is checked by calling Allocate_Demand_Node(v,g,t). These 

steps are iterated until all demand nodes are served (Algorithm 4). 
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Construct_Solution(v) calls the procedure Build_Feasible_Solution(v,g,t), which in
turn calls Allocate_Demand_Nodes(v,g,t) and Determine_Inventory_Policies(g,t). These
are briefly described in the following sections.

4.1.1. Procedure Build_Feasible_Solution(v,g,t)

The procedure Build_Feasible_Solution(v,g,t) takes the set of located facilities in the
previous period LFg,t−1

v, their open and existing capacity levels, and facility_sequence(v,g,t)
as input. The procedure sequentially selects a facility i from facility_sequence(v,g,t) where
the facilities in LFg,t−1

v are considered first and the other unlocated facilities are considered
according to their orders in the sequence. The selected facility i is located by inserting
i into LFg,t

v with its greatest feasible open capacity ocligt with respect to Constraint (19)
(i.e., constraint of overall open capacity of combined products). The existing capacity level
ecligt is max{ocligt, ecli,g,t−1}, which implies that the existing modular capacity level cannot be
permanently closed (i.e., ecligt ≥ ecli,g,t−1). The number of temporarily closed capacity levels
is ecligt − ocligt, and the number of new modular capacity levels to be constructed is ecligt
− ecli,g,t−1. The feasibility of LFg,t

v is checked by calling Allocate_Demand_Node(v,g,t).
These steps are iterated until all demand nodes are served (Algorithm 4).

Algorithm 4: Build_Feasible_Solution(v,g,t)

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 36 
 

Algorithm 4: Build_Feasible_Solution(v,g,t) 

Set UFg,tv = facility_sequence(v,g,t)\LFg,t−1v 

Set temp_fac_list = LFg,t−1v 

Do 

     Step 1: if temp_fac_list       

                      for cl = NCL to 1 

                           for i temp_fac_list 

                                if  LFg,tv  {i} and ocligt = cl satisfy constraints (19)                          

                                     Remove i from temp_fac_list and insert i into LFg,tv.   

                                     Set ocligt = cl and ecligt = max{ocligt, ecli,g,t−1}.                                                   

                                     Go to Step 3. 

     Step 2: if UFg,tv    

                      for cl = NCL to 1 

                           for i UFg,tv 

                                if  LFg,tv  {i} and ocligt = cl satisfy constraints (19)                          

                                     Remove i from UFg,tv and insert i into LFg,tv.  

                                     Set ocligt = cl and ecligt = max{ocligt, ecli,g,t−1}.  

                                     Go to Step 3.   

     Step 3: Call Allocate_Demand_Nodes(v,g,t) to obtain Nigtallocated i  LFg,tv. 

while (there is an unserved demand node for product g, period t, and echelon v) 

If v = 1, then call Determine_Inventory_Policies(g,t).  

Insert I into LFg,tv, set ocligt = 0 and ecligt = ecli,g,t−1 for i  LFg,t−1v\LFg,tv. 

 

After all demand nodes are served, if the first echelon (v = 1) is under consideration, 

and the inventory control policies for warehouses are determined by calling Deter-

mine_Inventory_Policies(g,t). Note that in the second-echelon solution (v = 2), there is not 

any inventory in consolidation hubs. At the end of Build_Feasible_Solution(v,g,t), there 

are three tasks. First, the remaining located facility i in period t−1, if any, is updated as a 

temporarily closed facility, i.e., ocligt = 0 and ecligt= ecli,g,t−1. Second, any redundant open ca-

pacity levels and redundant existing capacity levels in the current solution are eliminated. 

However, the existing capacity level of a located facility in period t cannot be lower than 

that in period t − 1 (see Equation (6)). Third, the estimated cost ECgtv is determined from 

Equations (3) and (4). Note that the procedure Build_Feasible_Solution(v,g,t) is employed 

in the construction stage and also in the improvement stage for reconstructing a feasible 

solution. 

4.1.2. Procedure Allocate_Demand_Nodes(v,g,t) 

Given LFg,tv, the demand nodes are sequentially allocated to these facilities with the 

least transportation cost while maintaining feasibility (Constraints (12)–(14), (16) and (17)) 

to determine Nigtallocated iLFg,tv. The demand nodes are allocated in descending order of 

the demand size. For the first echelon (v = 1), the transportation cost for warehouse w to 

serve hub h is (RCwgt +TCwgt 2dwh)EDhgt. For the second echelon (v = 2), the transportation 

cost for hub h to serve customer c is TChgt 2dhccgt. After the procedure is completed, if 

there is any unserved demand node, the procedure returns infeasibility. To satisfy Con-

straints (9) and (10), if there is a located facility i that does not serve any demand node 

(Nigtallocated =), its open capacity is set to zero (ocligt = 0) (Algorithm 5).  

  

After all demand nodes are served, if the first echelon (v = 1) is under considera-
tion, and the inventory control policies for warehouses are determined by calling Deter-
mine_Inventory_Policies(g,t). Note that in the second-echelon solution (v = 2), there is not
any inventory in consolidation hubs. At the end of Build_Feasible_Solution(v,g,t), there
are three tasks. First, the remaining located facility i in period t−1, if any, is updated
as a temporarily closed facility, i.e., ocligt = 0 and ecligt= ecli,g,t−1. Second, any redundant
open capacity levels and redundant existing capacity levels in the current solution are
eliminated. However, the existing capacity level of a located facility in period t cannot be
lower than that in period t − 1 (see Equation (6)). Third, the estimated cost ECgt

v is deter-
mined from Equations (3) and (4). Note that the procedure Build_Feasible_Solution(v,g,t) is
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employed in the construction stage and also in the improvement stage for reconstructing a
feasible solution.

4.1.2. Procedure Allocate_Demand_Nodes(v,g,t)

Given LFg,t
v, the demand nodes are sequentially allocated to these facilities with the

least transportation cost while maintaining feasibility (Constraints (12)–(14), (16) and (17))
to determine Nigt

allocated ∀i ∈ LFg,t
v. The demand nodes are allocated in descending order of

the demand size. For the first echelon (v = 1), the transportation cost for warehouse w to
serve hub h is (RCwgt + TCwgt·2·dwh)·EDhgt. For the second echelon (v = 2), the transportation
cost for hub h to serve customer c is TChgt·2·dhc·µcgt. After the procedure is completed,
if there is any unserved demand node, the procedure returns infeasibility. To satisfy
Constraints (9) and (10), if there is a located facility i that does not serve any demand node
(Nigt

allocated = ∅), its open capacity is set to zero (ocligt = 0) (Algorithm 5).

Algorithm 5: Allocate_Demand_Node(v,g,t)
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sert_Demand_Node(v,g,t,s), Swap_Demand_Node(v,g,t,s), Replace_Facility(v,g,s), Re-

place_Facility(v,s), Add_Facility(v,g,s), and Add_Facility(v,s) (Algorithm 7).  

  

4.1.3. Procedure Determine_Inventory_Policies(g,t)

For the first echelon (v = 1), given known EDwgt and VDwgt, the optimal order quantity
Qwgt can be approximated by Karush–Kuhn–Tucker conditions [35] as shown in Equation
(23), guaranteeing the feasibility of Constraints (11) and (15).

Qwgt = min{(2OCwg·EDwgt/HCwg)
1/2, Qmax

wlg , Capwlg − (z1−α + z1−β)·LTwg·(VDwgt)
1/2} (23)

The reorder points RPwgt and safety stocks SSwgt are determined from Constraint (18)
(Algorithm 6).

Algorithm 6: Determine_Inventory_Policies(g,t)
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4.2. Stage II: Improvement 

The improvement stage improves the current solution for echelon v based on the im-

provement strategy s by calling Improve_Solution(v,s). Improvement strategy 2 involves 

different nested tabu search procedure calls after performing a feasible move as shown in 

Table 3, whereas improvement strategy 1 does not call any nested tabu search procedure. 

The improvement stage calls Improve_Solution(echelon 2, s) to improve the second-eche-

lon solution, which becomes input to Improve_Solution(echelon 1, s) to improve the first-

echelon solution. The procedure Improve_Solution(v,s) improves the echelon-v solution 

by iteratively calling six tabu search procedures based on improvement strategy s: In-

sert_Demand_Node(v,g,t,s), Swap_Demand_Node(v,g,t,s), Replace_Facility(v,g,s), Re-

place_Facility(v,s), Add_Facility(v,g,s), and Add_Facility(v,s) (Algorithm 7).  
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4.2. Stage II: Improvement

The improvement stage improves the current solution for echelon v based on the
improvement strategy s by calling Improve_Solution(v,s). Improvement strategy 2 involves
different nested tabu search procedure calls after performing a feasible move as shown
in Table 3, whereas improvement strategy 1 does not call any nested tabu search proce-
dure. The improvement stage calls Improve_Solution(echelon 2, s) to improve the second-
echelon solution, which becomes input to Improve_Solution(echelon 1, s) to improve
the first-echelon solution. The procedure Improve_Solution(v,s) improves the echelon-v
solution by iteratively calling six tabu search procedures based on improvement strat-
egy s: Insert_Demand_Node(v,g,t,s), Swap_Demand_Node(v,g,t,s), Replace_Facility(v,g,s),
Replace_Facility(v,s), Add_Facility(v,g,s), and Add_Facility(v,s) (Algorithm 7).

Algorithm 7: Improve_Solution(v,s)
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The sub-procedures to find the best feasible demand node move in Insert_Demand_
Node (v,g,t,s) and Swap_Demand_Node(v,g,t,s) are find_best_demand_node_insertion_
move(v,g,t) and find_best_demand_node_swap_move(v,g,t), which are described in the
next sub-sections.

Sub-Procedure find_best_demand_node_insertion_move(v,g,t)

The sub-procedure iteratively determines the best feasible insertion move, which
is to remove demand node j* from Ni*,g,t

allocated and insert j* into Ni’*,g,t
allocated with the

feasibility of Constraints (16) and (17) for echelon v = 1 and the feasibility of Con-
straints (12), (16) and (17) for v = 2. The other constraints are not affected by this move
(Algorithm 9).

Algorithm 9: Sub-procedure find_best_demand_node_insertion_move(v,g,t)
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4.2.2. Procedures Replace_Facility(v,g,s) and Add_Facility(v,g,s)

Replace_Facility(v,g,s) tries replacing each currently located facility i ∈ L_Fg
v enter-

ing in period t_enter = EnterPig and serving product g by each unlocated facility i’ ∈
U_Fg

v. The affected parts of the current solution from period t_enter to |T| for prod-
uct g are destroyed and repaired by calling Build_Feasible_Solution(v,g,t) such that i ∈
UFgt

v, j ∈ LFgt
v, and EnterPi’,g = t_enter. The procedure Replace_Faciltiy(v,g,s) calls the

nested tabu search procedures according to improvement strategy s (see Table 3) after
implementing a feasible move. Furthermore, the diversification procedure is employed
in Replace_Facility(v,g,s) to escape from the local optimum by diversifying the current
solution. If the diversification activation criterion (i.e., it2 = div_it2) is satisfied, the diversifi-
cation procedure tries replacing half of the located facilities i∈ L_Fg

v with greater freqig with
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unlocated facilities j ∈ U_Fg
v with lower freqjg. The affected parts in the current solution

are destroyed from the first affected period to |T| and repaired by calling Build_Feasible_
Solution(v,g,t).

Add_Facility(v,g,s) tries adding each unlocated facility i ∈ U_Fg
v to serve product g

by entering it at each existing entering period t_enter ∈{EnterPjg ∀j ∈ L_Fg
v}. The destroy

and repair approach similar to that in Replace_Facility(v,g,s) is employed. The procedure
Add_Faciltiy(v,g,s) calls the nested tabu search procedures according to the improvement
strategy s as shown in Table 3. Replace_Faciltiy(v,g,s) and Add_Facility(v,g,s) share common
steps, as shown below (Algorithm 11).

Algorithm 11: Replace_Facility(v,g,s)/Procedure Add_Facility(v,g,s)
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g and echelon v. For each period t_enter  {EnterPjg j  L_Fgv} (i.e., each entering period 

The sub-procedures to find the best feasible facility move in Replace_Facility(v,g,s) and
Add_Facility(v,g,s) are find_best_facility_replacement_move(v,g) and find_best_facility_
addition_move(v,g), which are described in the next sub-sections.

Sub-Procedure find_best_facility_replacement_move(v,g)

The sub-procedure iteratively determines the best feasible facility replacement move
for product g and echelon v. A facility replacement move removes I from L_Fg

v with its enter-
ing period t_enter = EnterPig, removes i’ from U_Fg

v, destroys the current solution from period
t_enter to |T|, and repairs the current solution by calling Build_Feasible_Solution(v,g,t)
such that i ∈ UFgt

v, i’ ∈ LFgt
v, and EnterPi’,g = t_enter. The destroy and repair approach

is employed because simply replacing i by i’ greatly impacts the feasibility of the current
solution from period t_enter to |T| (Algorithm 12).



Sustainability 2022, 14, 10569 19 of 32

Algorithm 12: Sub-procedure find_best_facility_replacement_move(v,g)
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Sub-Procedure find_best_facility_addition_move(v, g) 

The sub-procedure iteratively determines the best feasible addition move for product 

g and echelon v. For each period t_enter  {EnterPjg j  L_Fgv} (i.e., each entering period 

Sub-Procedure find_best_facility_addition_move(v,g)

The sub-procedure iteratively determines the best feasible addition move for prod-
uct g and echelon v. For each period t_enter ∈ {EnterPjg ∀j ∈ L_Fg

v} (i.e., each entering
period of a located facility in the current solution), an addition move allows an unlocated
facility I ∈ U_Fg

v to enter the current solution in period t_enter. This move destroys the
current solution from period t_enter onwards and repairs the current solution by calling
Build_Feasible_Solution(v,g,t) such that i ∈ LFgt

v. The destroy and repair approach is
employed because the demand allocations are required to re-allocate demands to the new
set of located facilities from period t_enter onwards (Algorithm 13).

Algorithm 13: Sub-procedure find_best_facility_addition_move(v,g)
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4.2.3. Procedures Replace_Facility(v,s) and Add_Facility(v,s)

Replace_Facility(v,s) tries replacing each currently located facility i ∈ L__Fv serving
all products by each unlocated facility j ∈ U__Fv. Replace_Facility(v,s) is similar to Re-
place_Facility(v,g,s). The destroy and repair approach in Replace_Facility(v,s) considers
all products over the affected periods, whereas that in Replace_Facility(v,g,s) considers
only product g. The nested tabu search procedures in Replace_Facility(v,s) thoroughly
search the feasible region for all products according to improvement strategy s as shown in
Table 3, whereas those in Replace_Facility(v,g,s) search the feasible region only for product
g. The diversification procedure employed in Replace_Facility(v,s) tries replacing half
of located facilities i ∈ L__Fv with greater freqi by unlocated facilities i’ ∈ U__Fv with
lower freqi′ .

Add_Facility(v,s) tries adding each unlocated facility i ∈ U__Fv to serve any product
by entering it at each existing entering period t_enter∈{Enter_Pj ∀j ∈ L__Fv}. The destroy
and repair approach in Add_Facility(v) considers all products over the affected periods.
The nested tabu search procedures in Add_Facility(v,s) thoroughly search the feasible
region for all products according to improvement strategy s (see Table 3). Note that
Replace_Facility(v,s) and Add_Facility(v,s) can perform better than Replace_Facility(v,g,s)
and Add_Facility(v,g,s) when the weight of total number of different located facilities W is
relatively high (Algorithm 14).
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Algorithm 14: Replace_Facility(v,s)/Procedure Add_Facility(v,s)
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Sub-Procedure find_best_facility_addition_move(v) 

Sub-Procedure find_best_facility_addition_move(v)

The sub-procedure iteratively determines the best feasible addition move for all
products in echelon v. For each period t_enter∈{Enter_Pj ∀j ∈ L__Fv} (i.e., each entering
period of a located facility in the current solution), an addition move allows an unlocated
facility i ∈ U__Fv to enter the current solution in period t_enter. This move destroys the
current solution from period t_enter onwards and repairs the current solution by calling
Build_Feasible_Solution(v,g,t) ∀g ∈ G such that i ∈LFgt

v (Algorithm 16).
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Algorithm 16: Sub-procedure find_best_facility_addition_move(v)
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5. Computational Experiences

The proposed heuristic is implemented in C++. The computational experiments were
conducted on a desktop computer with a 1.80 GHz Intel Core i7 processor and 16 GB of
RAM. First, the data are described, followed by computational results.

5.1. Data

Since there are no standard test problems for the considered problem, the large and
small problem instances are developed as follows.

5.1.1. Large Problem Instance

Three product types (g1–g3), five periods (t1–t5), and three modular capacity levels
(l1–l3) are considered. The mixed random and clustered configuration of customer data
from Solomon [36] (nodes 1–100) is employed (x and y coordinates within the respective
ranges (0, 95) and (3, 85)). The mean customer demands µc,g1,t1, µc,g2,t1, and µc,g3,t1 are
the respective C1, R1, and RC1 demands in Solomon [36]. The coefficient of variation of
0.5 is employed to determine the demand variances. The mean demands for other periods
(t2 to t5) are assumed µc,g,t = f (t,g) µc,g,t1, where f (t,g) is a multiplicative factor for the
mean demand of product g in period t, as shown in Table 4. There are three demand
profiles for the three products. Product g1 has demand profile 1 representing an increasing
trend over the horizon by the constant growth rate of 10 percent per period. Product g2
has demand profile 2 representing a fluctuating trend by the growth rates of 20, 20, −10,
and −10 percent per period for periods t2, t3, t4, and t5, respectively. Product g3 has
demand profile 3 representing a fluctuating trend by the growth rates of −10, −10, +20,
and +20 percent per period for periods t2, t3, t4, and t5, respectively.

Table 4. Factor f (t, g) for the large problem instance.

Period g1 g2 g3

1 1 1 1

2 1.1 1.2 0.9

3 1.21 1.44 0.81

4 1.331 1.296 0.972

5 1.4641 1.1664 1.1664

There are 20 candidate warehouses and 20 candidate hubs. The x and y coordinates of
candidate hubs are randomly generated from the ranges (0, 95) and (3, 85), respectively.
These ranges cover the urban area where customers are located. The x and y coordinates in
the ranges (−12, 105) and (−12, 100), respectively, cover the study area, which is composed
of the urban area in the center and the suburban area in the outer area. The x and y
coordinates of candidate warehouses are randomly generated from this outer area. Table 5
shows the x and y coordinates for candidate facilities. Table 5 also shows the values of
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a single modular capacity (Capw,l1,g and Caph,l1,g) and associated operating fixed costs
(OFw,l1,g and OFh,l1,g) for all products. The facility capacities and operating fixed costs for
two and three modular capacity levels are two and three times as much, respectively, as
those for one capacity level, e.g., Capw,l2,g = 2*Capw,l1,g. For warehouses, the maximum
order quantity Qmax

wlg is assumed 0.25Capwlg.

Table 5. Data of candidate warehouses and hubs.

Warehouse x y Capw,l1,g OFw,l1,g Hub x y Caph,l1,g OFh,l1,g

w1 −11 63 250 400 h1 1 7 90 200

w2 30 −4 200 200 h2 3 68 70 100

w3 13 93 250 400 h3 91 27 90 200

w4 49 90 250 400 h4 66 36 90 200

w5 102 23 200 200 h5 42 82 70 100

w6 47 −4 300 600 h6 12 58 110 300

w7 31 92 250 400 h7 74 51 90 200

w8 −6 10 200 200 h8 31 18 70 100

w9 100 65 250 400 h9 33 83 90 200

w10 66 −12 200 200 h10 19 63 70 100

w11 −3 26 300 600 h11 18 31 110 300

w12 −2 77 250 400 h12 35 21 90 200

w13 99 71 200 200 h13 29 63 70 100

w14 7 −10 250 400 h14 58 71 90 200

w15 87 88 250 400 h15 89 47 90 200

w16 99 47 250 400 h16 1 48 90 200

w17 70 97 200 200 h17 59 56 70 100

w18 −8 38 200 200 h18 19 69 70 100

w19 90 −6 200 200 h19 65 16 70 100

w20 105 11 250 400 h20 30 30 90 200

For all warehouses and products, the unit transport costs from plants to warehouses
RCwg are USD 1/product unit/day, unit transport costs from warehouses to hubs TCwg
are USD 0.05/distance unit/product unit, unit ordering costs OCwg are USD 50/order,
unit holding costs HCwg are USD 1/product unit/day, and lead times LTwg are 1 day. For
all hubs and products, the unit transport costs from hubs to customers TChg are USD
0.075/distance unit/product unit. For all facilities and periods, the overall capacities
(AllCapwt and AllCapht) are 10,000 product units. For all facilities, capacity levels, and
products, the construction costs (CONilg), non-operating fixed cost (NFilg), temporary close
costs (Closeilg), and reopen costs (Reopenilg) are assumed to be generated by multiplying
OFilg with 10, 0.2, 0.25, and 0.5, respectively. There is not any located facility at period 0 for
all products, i.e., lig = nig = 0 ∀i ∈ F, g ∈ G.

The service level for stockout during lead time (1 − α), that for inventory capacity
violation at warehouses (1 − β), and that for the daily throughput capacity violation at
hubs (1 − γ) is 97.5%. The other problem parameters are rUL = 0.9 and rLL = 0.5. The
employed algorithmic parameters are max_it2 = 5 and div_it2 = 4.

5.1.2. Small Problem Instance

The small problem instance is created based on the large problem instance. The first
two products (g1, g2), the first three periods (t1, t2, t3), two modular capacity levels (l1,
l2), the first three candidate warehouses (w1, w2, w3), the first three candidate hubs (h1,
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h2, h3), and the first nine customers (customers one to nine) of the large problem instance
are considered. There are two demand profiles for the two products, as shown in Table 6.
Product g1 has a fluctuated demand profile by the growth rates of −25 and +33.33 percent
per period for periods t2 and t3, respectively. Product g2 has an increasing demand profile
by the growth rates of 50 and 33.33 percent per period for periods t2 and t3, respectively.
The other data for the small instance are the same as those for the large problem instance.

Table 6. Factor f (t, g) for the small problem instance.

Period g1 g2

1 1 1

2 0.75 1.5

3 1 2

5.2. Experimental Results

The comparison of the two improvement strategies on the large instance is presented
in order to determine the best strategy. The solution from the proposed heuristic and
the analytical solution from a commercial solver on the small problem instance are then
compared. The best solution found on the small instance is examined. Lastly, the sensitivity
analyses are performed on the large problem instance.

5.2.1. Comparison of Improvement Strategies

The proposed MS-CTSIH with two improvement strategies are performed on the
problem instances when using MS_iterations = 100 and varying W, the weight of total
number of located facilities. Table 7 shows the best objective values, multi-start iteration
numbers that found the best solution, the associated number of located facilities, and
total CPU time. Interestingly, MS-CTSIH (strategy 1) (no nested tabu search procedure
calls) outperforms MS-CTSIH (strategy 2) on the large instance at different values of W,
whereas MS-CTSIH (strategy 2) outperforms MS-CTSIH (strategy 1) on the small instance at
various W values. The modified MS-CTSIH that incorporates both improvement strategies
yields the best results with longer CPU time on the two problem instances at different
W values. Figure 3 shows the convergence characteristics of MS-CTSIH (strategy 1), MS-
CTSIH (strategy 2), and modified MS-CTSIH on the large problem instance for W = 0.
MS-CTSIH (strategy 2) is slower to converge than MS-CTSIH (strategy 1), as expected, and
the modified MS-CTSIH spends the longest time.
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Table 7. Best objective values, iteration that found best solution, and number of located facilities
(MS_iterations = 100).

(a) Large Problem Instance

W

MS-CTSIH (Strategy 1) MS-CTSIH (Strategy 2) Modified MS-CTSIH

Best
Obj.

(×108)
Iter.

No.
of

Fac.

Total
CPU
(h)

Best
Obj.

(×108)
Iter.

No.
of

Fac.

Total
CPU
(h)

Best
Obj.

(×108)
Iter.

No.
of

Fac.

Total
CPU
(h)

107 2.91525 0 18 1.12 2.95075 0 18 1.64 2.91418 0 18 2.94

106 1.25349 31 24 0.99 1.25802 31 24 0.87 1.24970 31 23 2.15

105 1.03294 77 27 1.06 1.03815 82 28 1.47 1.03294 77 27 2.06

0 1.00320 77 28 1.10 1.01086 77 29 1.51 1.00320 77 28 3.02

(b) Small Problem Instance

W

MS-CTSIH (Strategy 1) MS-CTSIH (Strategy 2) Modified MS-CTSIH

Best
Obj.

(×106)
Iter.

No.
of

Fac.

Total
CPU
(min)

Best
Obj.

(×106)
Iter.

No.
of

Fac.

Total
CPU
(min)

Best
Obj.

(×106)
Iter.

No.
of

Fac.

Total
CPU
(min)

107 38.4486 15 3 0.121 38.4284 15 3 0.324 38.4284 15 3 0.527

106 11.0912 0 4 0.139 11.0876 0 4 0.255 11.0876 0 4 0.463

105 7.49123 0 4 0.113 7.48756 0 4 0.250 7.48756 0 4 0.449

0 7.09123 0 4 0.113 7.08756 0 4 0.253 7.08756 0 4 0.440

The multi-start iterations can yield an improved solution on the large instance when
W is up to 106, implying that facility_sequence(v,g,t) in multi-start iteration 0 (i.e., in the
descending order of the maximum capacity) cannot yield the best solution. At W = 107, the
two strategies cannot find an improved solution over the 100 multi-start iterations. This
means that facility_sequence(v,g,t) in multi-start iteration 0 can yield the least number of
facilities on the large instance. However, this is not always the case, as Table 7b shows that
the multi-start iterations cannot yield an improved solution on the small instance when W
is up to 106 but can yield an improved solution when W = 107. From Table 7, as W decreases
from 107 to 0, the number of facilities is non-decreasing on the small instance and increases
on the large instance, as expected.

5.2.2. Comparison of Proposed Heuristic and Analytical Solution Method

The proposed MINLP model is implemented in the General Algebraic Modeling
System Integrated Development Environment (GAMS IDE) Release 27.2.0, and solved
by GAMS/BARON, a commercial solver, which solves the problem with the branch-and-
reduce algorithm. The modified heuristic with MS_iterations = 100 and the GAMS/BARON
solver is performed on the small instance with W = 107.

The GAMS/BARON solver, which employs the feasible solution from the construction
stage as an initial solution, takes 25.02 h to find a solution with the objective value of
4.16451 × 107 and the relative optimality gap of 13.10% (the lower bound of 3.62069 × 107).
The modified heuristic takes 0.527 min to find a solution with the objective value of
3.84284 × 107 and the relative optimality gap of 5.78%. The modified algorithm yields the
solution with the better relative optimality gap and much faster than GAMS/BARON. This
shows the efficiency and effectiveness of the proposed heuristic on a small instance.

5.2.3. Examination of Heuristic Solution on the Small Problem Instance

The best solution found by the modified MS-CTSIH on the small instance with W = 107

is examined to illustrate the feasibility and characteristics of the best solution found. From
Table 8, in the best solution found, the single warehouse w2 is constructed in period t1
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to serve both products. Hubs h1 and h3 are constructed in period t1 to serve product g1.
For product g2, only hub h1 is constructed in period t1 and hub h3 is constructed later in
period t2 to accommodate the increasing demand profile for product g2.

Table 9 shows that the total open capacities for combined products at facilities w2,
h1, and h3 are less than the specified overall open capacity of 10,000 product units for all
periods. Warehouse w2 and hub h3 have the increasing total open capacities, whereas
hub h1 has the constant total open capacity. These are results of the increasing trend of
total mean demands (298, 304.5, and 406 product units for periods t1, t2, and t3) and total
demand variances (1606.5, 1631.8, and 2901 for periods t1, t2, and t3).

From Table 8a, two modular inventory capacity levels for product g1 are constructed
at warehouse w2 in period t1 (i.e., 2 × 200 = 400 product units), and no additional modular
capacity is constructed in later periods. The construction cost of USD 400,000 for two modular
capacity levels for product g1 and the operating fixed cost of USD 40,000 for two capacity
levels for product g1 are incurred at warehouse w2 in period t1. The numbers of open
capacity levels for product g1 at warehouse w2 are constant (i.e., 2 levels = 400 product units)
over the planning horizon. This is not consistent with the demand profile of product g1
that has a demand drop in period t2. This is due to Constraint (11), where the left-hand side
is Qw2,g1,t2 + (z1−α + z1−β)*LTw2,g1*(VDw2,g1,t2)0.5 = 100 + (1.96 + 1.96)*1*(660.94)0.5 = 200.8
product units that requires two open modular capacity levels (Capw2,l2,g1 = 400 product
units) as opposed to one open capacity level (Capw2,l1,g1 = 200 product units) in order to
satisfy this constraint.

Table 8. Best solution founded on the small problem instance (W = 107).

(a) First-Echelon Solution

Period t1 t2 t3

Product g1 g2 g1 g2 g1 g2

located warehouse w2 w2 w2 w2 w2 w2

open inventory capacity, Capwlg 400 200 400 400 400 400

existing inventory capacity 400 200 400 400 400 400

served mean demand, EDwgt 190 108 142.5 162 190 216

served demand variance, VDwgt 1175 431.5 660.94 970.88 1175 1726

assigned hubs h1, h3 h1 h1, h3 h1, h3 h1, h3 h1, h3

construction cost 400,000 200,000 0 200,000 0 0

operating fixed cost 40,000 20,000 40,000 40,000 40,000 40,000

non-operated fixed cost 0 0 0 0 0 0

reopen cost 0 0 0 0 0 0

temporary close cost 0 0 0 0 0 0

transport cost (plants–warehouses), rcwgt 69,350 39,420 52,012.5 59,130 69,350 78,840

transport cost (warehouses–hubs) 310,677 122,266 181,804 236,650 310,677 381,074

holding cost, hcwgt 42,772.7 23,985.7 36,642 40,541.1 42,772.7 47,971.4

ordering cost, ocwgt 34,675 39,420 26,006.2 29,565 34,675 39,420

Continuous-Review Inventory Control Policy

order quantity, Qwgt 100 50 100 100 100 100

reorder point, RPwgt 257.19 148.71 192.89 223.07 257.19 297.43

safety stock, SSwgt 67.19 40.71 50.39 61.07 67.19 81.43
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Table 8. Cont.

(b) Second-Echelon Solution

Period t1 t2 t3

Product g1 g2 g1 g2 g1 g2

located hub h1 h3 h1 h1 h3 h1 h3 h1 h3 h1 h3

open max served daily
demand, Caphlg

180 180 180 180 90 180 90 180 180 180 180

existing max served daily demand 180 180 180 180 180 180 90 180 180 180 180

served mean demand, EDhgt 120 70 108 127.5 15 123 39 120 70 116 100

served demand variance, VDhgt 850 325 431.5 604.69 56.25 814.5 156.38 850 325 1062 664

assigned customers 4, 2,
8, 9, 7

6, 3,
1, 5 1–9 2–9 1 5, 4, 9,

7, 8, 2
1, 3,

6
4, 2, 8,

9, 7
6, 3,
1, 5

5, 8,
9, 2

3, 1, 4,
6, 7

construction cost USD 1K 200 200 200 0 0 0 100 0 0 0 100

operating fixed USD 1K 20 20 20 20 10 20 10 20 20 20 20

non-operated fixed cost USD 1K 0 0 0 0 2 0 0 0 0 0 0

reopen cost (USD 1K) 0 0 0 0 0 0 0 0 5 0 0

temporary close cost (USD 1K) 0 0 0 0 2.5 0 0 0 0 0 0

transport cost (hubs– customers)
(USD 1K) 431.0 341.6 415.1 479.9 72.2 452.1 189.9 431.0 341.6 407.9 486.8

Table 9. Total open capacities for combined products on the small problem instance.

Period Total Mean Demand
(Product Units/Day)

Total Demand Variance
(Product Units/Day)2

First-Echelon Facility Second-Echelon Facility

w2 h1 h3

g1 g2 all g g1 g2 all g all g all g all g

t1 190 108 298.0 1175 431.5 1606.5 600 360 180

t2 142.5 162 304.5 660.9 970.9 1631.8 800 360 180

t3 190 216 406.0 1175 1726 2901.00 800 360 360

A modular capacity level for product g2 is constructed at warehouse w2 in period t1,
and later an additional capacity level is constructed in period t2. This is consistent with the
increasing demand profile of product g2. The cost of USD 200,000 to construct a modular
capacity level for product g2 is incurred at warehouse w2 in periods t1 and t2. The cost of
USD 20,000 to operate a capacity level for product g2 is incurred at warehouse w2 in period
t1, and the cost of USD 40,000 to operate two capacity levels for product g2 is incurred in
periods t2 and t3.

The order quantities, reorder points, and safety stocks for each product at warehouse
w2 can be verified from Equations (23) and (18), respectively. The holding costs, ordering
costs, and transport costs from the plant to warehouses can be verified from the relevant
terms in Equation (3), as shown below:

hcwgt = Nt HCwg (Qwgt/2 + z1−α LTwg (VDwgt)1/2) (24)

ocwgt = Nt OCwg EDwgt/Qwgt (25)

rcwgt = Nt RCwg EDwgt (26)

To illustrate, for product g1 in period t1, these variables for warehouses w2 are
Qw2,g1,t1 = 100 product units, RPw2,g1,t1 = 257.19 product units, SSw2,g1,t1 = 67.19 product
units, hcw2,g1,t1 = USD 42,773, ocw2,g1,t1 = USD 34,675, and rcw2,g1,t1 = USD 69,350. These
are obtained by substituting z1−α = z1−β = 1.96, HCw2,g1 = 1, OCw2,g1 = 50, RCw2,g1 = 1,
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LTw2,g1 = 1 day, Qw2,l2,g1
max = 100, Capw2,l2,g1 = 400, EDw2,g1,t1 = 190, and VDw2,g1,t1 = 1175

into Equations (23), (18), and (24)–(26).
From Table 8b, two modular inventory capacity levels for product g1 are constructed

at hubs h1 and h3 in period t1 (i.e., 2 × 90 = 180 product units at h1 and h3), and no
additional modular capacity is constructed in later periods. The construction cost of
USD 200,000 for two modular capacity levels for product g1 and the operating fixed cost
of USD 20,000 for two capacity levels for product g1 are incurred at hubs h1 and h3 in
period t1. The numbers of open capacity levels for product g1 at hub h1 are constant
(i.e., two levels = 180 product units) over the planning horizon, whereas those at hub h3 are
two, one, and two levels for periods t1, t2, and t3, respectively. This is consistent with the
demand profile of product g1 that has a demand drop in period t2. One can examine the
feasibility of constraints (12) for hub h1 serving product g1 in the three periods, where the
left-hand sides (i.e., EDh1,g1,t + z1−γ (VDh1,g1,t)0.5) are 105.3, 29.7, and 105.3 product units
per day that require two, one, and two open capacity levels, respectively (i.e., the right-hand
sides are Caph1,l2,g1 = 180, Caph1,l1,g1 = 90, Caph1,l2,g1 = 180 product units, respectively). Note
that hub h2 serving product g1 with Caph1,l1,g1 =70 can be employed to satisfy Constraint
(12), but the total number of different located hubs will be increased by one and the objective
will also be increased by W = 107. The cost of USD 2500 to temporarily close a capacity
level, the cost of USD 2000 to maintain a temporarily closed capacity level, and the cost of
USD 10,000 to operate a capacity level for product g1 are incurred at hub h3 in period 2.
The cost of USD 5000 to reopen a capacity level and the cost of USD 20,000 to operate
two capacity levels for product g1 are incurred at hub h3 in period t3.

Two modular capacity levels for product g2 are constructed at hub h1 in period t1, and
no additional capacity level is constructed at hub h1 in later periods. A modular capacity
level for product g2 is constructed at hub h3 in period t2, and an additional capacity level
is constructed at hub h3 in period t3. This is consistent with the increasing demand profile
of product g2 with the peak demand at period t3. The cost of USD 200,000 to construct
two modular capacity levels for product g2 is incurred at hub h1 in period t1, and the cost
of USD 100,000 to construct an additional capacity level for product g2 is incurred at hub
h3 in periods t2 and t3. The cost of USD 20,000 to operate two capacity levels for product
g2 is incurred at hub h1 in all three periods. The costs of USD 10,000 and USD 20,000 to
operate one level and two levels for product g2 are incurred at hub h3 in periods t2 and
t3, respectively.

The customers are dynamically allocated to different hubs in different periods. For
product g1, the demand is dropped in period t2, and the demands in periods t1 and t3 are
the same. The customers are served by the same hubs in periods t1 and t3 (i.e., customers 4,
2, 8, 9, and 7 served by hub h1 and the others by h3), whereas in period t2 all customers
are served by hub h1 and only customer 1 is served by hub h3, which has a reduced open
capacity level. For product g2, all customers are served by hub h1 in period t1, and in later
periods the customers are allocated to hubs h1 and h3 differently in period t2 and t3. The
associated transport costs between hubs and customers are also shown in Table 8b.

5.2.4. Sensitivity Analysis

Using the modified MS-CTSIH, the sensitivity analyses of the service levels (1 − α,
1 − β, and 1 − γ), overall open inventory capacity of the combined products (AllCapw,t),
demand standard deviation, and W are performed on the large problem instance. Figure 4
shows the sensitivity analysis results. The service levels for unfulfilled demand during the
lead time at warehouses (1 − α), inventory capacity violation (1 − β), and daily throughput
capacity violation (1 − γ) are assumed equal. Given the other parameters being the same,
three levels of 1 − α = 1 − β = 1 − γ (0.65, 0.80, and 0.95), which correspond to 65%,
80%, and 95% service levels, respectively, are considered. From Figure 4a, given all else
being equal, as the service level increases from 65% to 95%, the objective function value,
the number of located warehouses, and the number of located hubs also increase. The
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greater-objective-function solution and the greater number of located facilities are traded
off with the increase in service level (i.e., more constrained problem).
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Five levels of overall open inventory capacity at each warehouse w (AllCapw,t) are
considered, given all other parameters being the same. From Figure 4b, given all else being
equal, the objective function value decreases (i.e., achieving a better solution) as AllCapw,t
increases (i.e., more relaxed constraints). The number of located warehouses is higher
at a lesser value of AllCapw,t, as expected. Five levels of standard deviation factor (SDF),
which is a multiplicative factor for the demand variance at each customer and product,
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are considered. From Figure 4c, as the SDF increases, the objective function value and the
number of located hubs also increase. From Figure 4d, the greater the W value the higher
the objective function value. As W increases, the number of located facilities decreases,
as expected.

5.2.5. Discussion

For the industry, the proposed model and heuristic can enable logistics companies to
make better strategic decisions on the siting and sizing of warehouses and hubs, and to
make better tactical decisions on demand node allocations and inventory control policies at
warehouses in order to service uncertain customer demands for different products over the
planning horizon. The logistics company can prepare the investment budget in each period
to construct the planned number of modular capacity levels at certain warehouses and hubs
to serve different products. They can prepare a proper plan (e.g., workforce planning) to
temporarily close down a certain number of modular capacity levels at certain facilities in a
certain period that is predicted to have a reduction in demand of certain products. Similarly,
they can also prepare a proper plan to reopen a number of modular capacity levels at some
warehouses and hubs in a period in which the demand of a product is predicted to be
bounced back. Furthermore, the customer allocation (customers allocated to hubs) and
the hub allocation (hubs allocated to warehouses) are different over different periods for
various products in order to achieve the least cost, while maintaining the feasibility of
diverse constraints such as the hub service level constraints (in terms of daily throughput
capacity violation) and maximum order quantity constraints. The logistics company can
control the inventories at warehouses for different products and periods by using the
optimal order quantities, reorder points, and safety stocks, all of which satisfy the specified
inventory service level constraints (in terms of inventory capacity violation and stockouts
during lead times).

The weight on the number of located facilities can be changed from a common constant
to facility-location-specific weights Wi ∀i ∈ F. The weight Wi can be set to the monetary
value of the spatial and physical impacts in terms of geologic, biologic, or geographic
features (e.g., land use, forest type, and habitat impacts) [37,38], or the monetary value
of the environmental impacts in terms of water, air, soils, ecosystems, and aesthetics [39]
when facility i is located. As such, the objective function can be modified as:

minz =
2

∑
v=1

zv =
2

∑
v=1

( ∑
i∈Fv

Wiyyi + ∑
t∈T

∑
g∈G

ECv
gt)

With this objective, the proposed model and heuristic can determine the best solution
that explicitly accounts for the spatial, physical, and environmental impacts in addition to
the economic impacts (i.e., facility, inventory, and transportation costs).

6. Conclusions

In this paper, the two-echelon multi-period multi-product location–inventory problem
with partial facility closing and reopening is studied. The modular capacity levels at
facilities can be temporarily and partially closed at a period and reopened in a later
period. For each product and period, a single plant is assumed to serve warehouses
that serve hubs, which in turn serve the final customers with independent and normally
distributed demands. The overall open capacity for combined products at a facility is
considered. Continuous-review inventory control decisions are made at located warehouses.
There are no such decisions for located hubs, which are employed for freight transfer and
consolidation. The problem parameters such as customer demands can vary over the
horizon. The proposed formulation is a mixed-integer non-linear model. The multi-start
construction and tabu search improvement heuristic is developed. Two improvement
strategies (with and without nested tabu search procedure calls) are proposed, and the
modified heuristic incorporating both strategies is developed. The comparison of two



Sustainability 2022, 14, 10569 30 of 32

improvement strategies in the tabu search improvement stage shows that MS-CTSIH
(strategy 1) and MS-CTSIH (strategy 2) are non-dominated on the small and large problem
instances at different values of W, the weight of the total number of located facilities. The
modified MS-CTSIH incorporating both improvement strategies yields the best results on
the small and large instances. The comparison of the modified MS-CTSIH and the exact
solution method on the small problem instance shows the effectiveness and efficiency of the
proposed heuristic. The modified MS-CTSIH spends 0.527 min to obtain the best solution
with the optimality gap of 5.78%, whereas the exact solution method spends 25.02 h to
obtain the best solution with the optimality gap of 13.10%. The best solution from the
small instance is thoroughly examined to illustrate the feasibility with respect to various
constraints. The small instance problem is used to portray how the construction costs,
operating fixed costs, temporary closing costs, non-operating fixed costs, and reopening
costs are incurred at a facility serving a product in a period according to changes in modular
capacity levels due to the associated demand profile. The inventory control policies at
warehouses in the best solution are also examined. The sensitivity analyses of the service
levels and overall open inventory capacity of the combined products, demand standard
deviation, and the weight of the total number of located facilities are performed to study
how the objective function value and the number of located facilities change with the
change in these problem parameters.

For the industry, the proposed model and heuristic can be used as a tool for logistics
companies to make better strategic decisions on the siting and sizing of warehouses and
hubs, and to make better tactical decisions on demand node allocations and inventory
control policies in order to service uncertain customer demands of different products
over the planning horizon in the urban goods distribution. The schedule of construction,
temporary partial closing, and reopening of modular capacities of warehouses and hubs to
serve various products allows the logistics company to prepare an appropriate plan such
as workforce management as well as the investment budget. With the continuous-review
inventory control policies at warehouses, the optimal order quantities, reorder points, and
safety stocks at warehouses for various products in different periods can be employed such
that the prespecified inventory service level constraints (in terms of inventory capacity
violation and stockouts during lead times) are satisfied. The demand node allocation
differs for different products in different periods and yields the least cost while diverse
constraints such as hub service level constraints (in terms of daily throughput capacity
violation) are satisfied. In addition to the economic impacts (i.e., facility, inventory control,
and transportation costs), the proposed model and heuristic can explicitly account for the
spatial, physical, and environmental impacts from the facility siting via the facility-location-
specific weight representing the monetary value of such impacts.

For future research, the proposed model and heuristic can be extended to explicitly
account for the monetary value of greenhouse gas emission from warehouse operation,
hub operation, and transportation. The other future research directions include the incor-
poration of different inventory control policies such as periodic review, the consideration
of correlated customer demands, and the integration of the vehicle routing problem into
the joint location–inventory problem.
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