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Abstract 
 

Thin film arrays of molecules or supramolecules are active subjects of investigation 

because of their potential value in electronics, chemical sensing, catalysis, and other 

areas. Scanning probe microscopes (SPMs), including scanning tunneling microscopes 

(STMs) and atomic force microscopes (AFMs) are commonly used for the 

characterization and metrology of thin film arrays.  As opposed to transmission electron 

microscopy (TEM), SPMs have the advantage that they can often make observations of 

thin films in air or liquid, while TEM requires highly specialized techniques if the 

sample is to be in anything but vacuum.  SPM is a surface imaging technique, while 

TEM typically images a 2D projection of a thin 3D sample. Additionally, variants of 

SPM can make observations of more than just topography; for instance, magnetic force 

microscopy measures nanoscale magnetic properties. 

 
Thin film arrays are typically two-dimensionally periodic.  A perfect, infinite two-

dimensionally periodic array is mathematically constrained to belong to one of only 17 

possible 2D plane symmetry groups.  Any real image is both finite and imperfect.  

Crystallographic Image Processing (CIP) is an algorithm that Fourier transforms a real 

image into a 2D array of complex numbers, the Fourier coefficients of the image 

intensity, and then uses the relationship between those coefficients to first ascertain the 

2D plane symmetry group that the imperfect, finite image is most likely to possess, and 

then adjust those coefficients that are symmetry-related so as to perfect the symmetry. A 
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Fourier synthesis of the symmetrized coefficients leads to a perfectly symmetric image 

in direct space (when accumulated rounding and calculation errors are ignored).  The 

technique is, thus, an averaging technique over the direct space experimental data that 

were selected from the thin film array. The image must have periodicity in two 

dimensions in order for this technique to be applicable. 

 
CIP has been developed over the past 40 years by the electron crystallography 

community, which works with 2D projections from 3D samples.  Any periodic sample, 

whether it is 2D or 3D has an “ideal structure” which is the structure absent any crystal 

defects.  The ideal structure can be considered one average unit cell, propagated by 

translation into the whole sample.  The “real structure” is an actual sample containing 

vacancies, dislocations, and other defects.  Typically the goal of electron and other 

types of microscopy is examination of the real structure, as the ideal structure of a 

crystal is already known from X-ray crystallography. High resolution transmission 

electron microscope image based electron crystallography, on the other hand, reveals 

the ideal crystal structure by crystallographic averaging. 

 

The ideal structure of a 2D thin film cannot be easily in a spatially selective fashion 

examined by grazing incidence X-ray or low energy electron diffraction based 

crystallography.  SPMs straightforwardly observe thin films in direct space, but SPM 

accuracy is hampered by blunt or multiple tips and other unavoidable instrument errors. 

Especially since the film is often of a supramolecular system whose molecules are 
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weakly bonded (via pi bonds, hydrogen bonds, etc.) both to the substrate and to each 

other, it is relatively easy for a molecule from the film to adhere to the scanning tip 

during the scan and become part of the tip during subsequent observation.  

 

If the thin film array has two-dimensional periodicity, CIP is a unique and effective tool 

both for image enhancement (determination of ideal structure) and for the quantification 

of overall instrument error. In addition, if a sample of known 2D periodicity is scanned, 

CIP can return information about the contribution of the instrument itself to the image. 

  

In this thesis we show how the technique is applied to images of two dimensionally 

periodic samples taken by SPMs. To the best of our knowledge, this has never been 

done before. Since 2D periodic thin film arrays have an ideal structure that is 

mathematically constrained to belong to one of the 17 plane symmetry groups, we can 

use CIP to determine that group and use it for a particularly effective averaging 

algorithm. We demonstrate that the use of this averaging algorithm removes noise and 

random error from images more effectively than translational averaging, also known as 

“lattice averaging” or “Fourier filtering”.  We also demonstrate the ability to correct 

systematic errors caused by hysteresis in the scanning process.  These results have the 

effect of obtaining the ideal structure of the sample, averaging out the defects 

crystallographically, by providing an average unit cell which, when translated, 

represents the ideal structure.   
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In addition, if one has recorded a scanning probe image of a 2D periodic sample of 

known symmetry, we demonstrate that it is possible to use the Fourier coefficients of 

the image transform to solve the inverse problem and calculate the point spread function 

(PSF) of the instrument. Any real scanning probe instrument departs from the ideal PSF 

of a Dirac delta function, and CIP allows us to quantify this departure as far as point 

symmetries are concerned. The result is a deconvolution of the “effective tip”, which 

includes any blunt or multiple tip effects, as well as the effects caused by adhesion of a 

sample molecule to the scanning tip, or scanning irregularities unrelated to the physical 

tip.  

 

We also demonstrate that the PSF, once known, can be used on a second image taken by 

the same instrument under approximately the same experimental conditions to remove 

errors introduced during that second imaging process.  

 

The preponderance of two-dimensionally periodic samples as subjects of SPM 

observation makes the application of CIP to SPM images a valuable technique to extract 

a maximum amount of information from these images. The improved resolution of 

current SPMs creates images with more higher-order Fourier coefficients than earlier, 

“softer” images; these higher-order coefficients are especially amenable to CIP, which 

can then effectively magnify the resolution improvement created by better hardware.  
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The improved resolution combined with the current interest in supramolecular 

structures (which although 3D usually start building on a 2D periodic surface) appears 

to provide an opportunity for CIP to significantly contribute to SPM image processing. 
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1. Introduction 

1.1 Overview 
 

This thesis is intended to first describe an existing method of image processing, 

“crystallographic image processing” (CIP), which historically has been used to extract 

information from high resolution transmission electron microscopy (HRTEM) images 

of periodic objects, and then to show that this same technique can extract useful 

information from certain scanning probe microscopy (SPM) images. 

The application of this technique to SPM images has two significant benefits. 

First, if the SPM image is of a sample that is two-dimensionally periodic, this thesis will 

show that CIP can help extract signal from noise. This is done by averaging the unit 

cells together, which suppresses noise and random error in the image. Translational 

averaging of periodic image elements is a well-known technique; however CIP adds 

additional processing steps. In addition to translational averaging of unit cells, by 

determining the plane group symmetry of the sample and enforcing that symmetry upon 

the uncorrected image one can enhance detail over and above translational averaging. 

Certain systematic errors such as image bow or a trapezoidal distortion can also be 

eliminated by CIP. Averaging techniques suppress the image of any actual defects in the 

sample, which may or may not be desirable depending upon what the user is 

investigating. The CIP technique is well-known for electron microscopy; this thesis is 

intended to show its value for SPM as well. 
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Second, as will be discussed below, an SPM instrument has a tip that is ideally a 

point but often is multiple points or an irregular shape – and knowledge of the 

configuration of this tip is essential in interpreting an SPM image. This information is 

most useful if it can be obtained while the tip is in situ, (installed in a working 

instrument). There are existing techniques such as blind reconstruction [1] for 

ascertaining this shape, as well as direct examination by SEM (scanning electron 

microscopy). This thesis will show that CIP can be used to make this shape 

determination by taking advantage of the symmetry of a highly periodic calibration 

sample, and is a unique and valuable approach for making this determination. 
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2. Crystallographic Image Processing 

2.1 The Fourier Transform 
 
The Fourier transform is an integral transform that operates on a complex function 

of n variables to produce another complex function of n variables. Since images can be 

considered two-dimensional density functions, n = 2 for image processing, and given 

the monotonic nature of a monochrome density function (this thesis does not discuss 

color or false-color images) the input function is real-valued rather than complex. The 

output of the transform is complex although certain inputs will force all of the 

imaginary components of the output to zero. 

There are equivalent formulations of the Fourier transform. This thesis will use 

the “crystallographic convention” in which the direct transform is: 

 

∫ += dxdyyKxHiyxfKHF ))(2exp(),(),( π  (2.1) 

 
that takes the complex function f in what is commonly referred to as “real space” to the 

complex function F in what is called “reciprocal space” or “Fourier space”, and the 

inverse transform is: 

 

∫ +−= dHdKKyHxiKHFyxf ))(2exp(),(),( π  (2.2) 

 
Note the negative sign in the exponential is the only computational difference. 

The two functions f(x,y) and F(H,K) are known as “Fourier transform pairs” [2]. The 
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variables x and y can be viewed as components of a two-dimensional vector in real 

space, while H and K are components of a vector in reciprocal space. As used in CIP, an 

HK vector represents a particular crystallographic direction in the sample. 

There are other conventions regarding the exact definition of the Fourier 

transform. In one common convention sometimes used by physicists the exponential 

portion of the forward Fourier transform is e-2πi while the inverse transform has an 

exponential of e2πi. Fourier pairs retain their relationship regardless of which convention 

is used, but the same convention must be consistently applied to one problem 

The Fourier transform operates on continuous functions and generates a (usually) 

continuous result. Image processing is done on a discrete two-dimensional array of real 

numbers that correspond to the intensity of the associated pixel (a value can also be 

assigned to color, which is disregarded here). The Discrete Fourier Transform (DFT) is 

the applicable technique for discrete functions. In one dimension, compare the Fourier 

Transform: 

 
( ) ( ) exp(2 ( ))F H f x i xH dxπ= ∫        (2.3) 

 
to the Discrete Fourier Transform: 
 

1

0

( ) ( )exp(2 ( ))
N

n
n

nH
F H f x i

N
π

−

=

=∑        (2.4) 

 
where N is the number of discrete data points xn input. The Fast Fourier Transform 

(FFT) is the usual implementation of the DFT algorithm, as it is computationally 
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efficient, although recent improvements in computer speed have to some degree 

alleviated the need for the most efficient algorithm possible. 

The Fourier transform as applied to crystallographic image processing maps real 

space to a spatial frequency space (usually referred to as “reciprocal space” in image 

processing, or “Fourier space”). The data (output from the DFT) in this reciprocal space 

is a 2D array of complex numbers, indexed by the H and K components. This data is 

most easily visualized (and plotted) in polar form. The complex number is in the form 

reiθ instead of x+iy. The r coordinate in this case is the amplitude of the transform at 

this (H,K) point and the θ is the phase. If the sample is periodic, which is the usual case 

when CIP is used, the amplitude of the reciprocal space array contains spots 

(mathematical points in the ideal case) that correspond to spatial periodicities in the real 

space data. 

 An image containing two-dimensional periodicities in the x and y directions of 

real space will thus have a regular two-dimensional spot pattern in the amplitude 

coordinate of Fourier space. The symmetry information present in an object is also 

present in the Fourier transform. 

A plot of a Fourier transform of a real-space image usually shows only 

information about the amplitude portion of the transform. What one sees is the intensity 

and location of the spots. The intensity corresponds to the square of the amplitude of the 

Fourier coefficient. The phase portion of the coefficient, which provides information 

about the two-dimensional translational symmetry of the lattice, is fully half of the 
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information output of a Fourier transform, and is certainly used in CIP (it is more 

critical than amplitude) but is typically not plotted as an image because it conveys little 

information to the human eye. See the right portion of figure 2.5 for an example of a 

phase plot. 

 

2.2 An early use of Fourier analysis of an image 
 

Aaron Klug received the 1982 Nobel Prize in Chemistry “for his development of 

crystallographic electron microscopy and his structural elucidation of biologically 

important nucleic acid-protein complexes” [3]. 

Klug was investigating the structure of viruses and had turned to electron 

microscopy with the intent of using direct images. Many of the images were difficult to 

interpret because the depth of field of the instrument (as is typical in electron 

microscopy) permitted the entire vertical depth of the sample to appear in focus, 

essentially creating a two-dimensional projection of the three dimensional object. The 

resulting image was a superposition of the image of the front wall, back wall, and 

internal structure of the object (Figure 2.1). 

His solution involved taking the Fourier transform of the image.  
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Because one of Klug’s samples was largely periodic with two-dimensional 

symmetries, (a spiral structure extracted from a phage virus), the Fourier transform 

consisted of symmetric patterns of spots mixed with noise. Most significantly, since 

Klug’s image was the projection of the front wall and back wall of the virus on top of 

one another, both of which were two-dimensional periodic in nature, with little or no 

internal structure between, the Fourier transform was visibly made up of two mirror-

image symmetric patterns of spots (see Figure 2.1). Klug’s solution was to select one set 

of spots, eliminate the other set (along with the noise), and perform a reverse Fourier 

transform on the result. This procedure produced a clear image of one of the walls of 

the structure. 

Figure 2.1 
(a) Original electron microscope image; 
(b) amplitude portion of diffraction pattern of 

image with selected spots circled; note there is a 
vertical mirror line through the center (shown in 
red), and the uncircled spots form a close, but 
not exact, mirror reflection of the circled spots; 

(c) inverse Fourier reconstruction using just circled 
spots. 

figure from [3]  
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Any two dimensional image can be Fourier transformed, and useful information 

can be extracted even if the image is nonperiodic. CIP depends upon periodicity to be 

useful and cannot address nonperiodic samples. Even though Klug’s sample was 

periodic, his technique did not constitute CIP. But it is an illustration of the power of the 

Fourier transform in extracting and presenting information about the periodicity of an 

image. 

2.3 Symmetry 
 

A crystal, by definition, is a three-dimensional array of identical atomic units 

called “unit cells” extending in all directions. The unit cells can be made up of one atom 

or thousands, but they are arranged regularly so that, disregarding surfaces and defects, 

an observation made from a particular location in any unit cell is identical to the same 

observation from the same location in any other unit cell. This is in contrast to an 

amorphous solid, a glass, in which there is no long-range order of the atoms. The 

definition of the unit cell of a particular crystal is arbitrary, there are an infinite number 

of possible unit cells, but generally the simplest cell that exhibits the maximum 

symmetry is agreed upon. Geometry limits the possible arrangements of unit cells in a 

crystal to a finite number of “lattices”.  

The lattice is a mathematical construct. To quantify locations in the lattice, a 

linear basis is constructed for the crystal by placing the origin at one corner of a unit 

cell and choosing three different edges that share the origin as axes, that are generally 

labeled as a, b and c. See Figure 2.2. These axes need not be orthogonal nor does the 
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unit length have to be the same for each axis. The angles between the axes are labeled α, 

β and γ. 

This provides a convenient way to describe the location of atoms within the unit 

cell; analogous to Cartesian coordinates; one normalizes the edges, so a, b, and c are the 

unit vectors for the crystal. The length of each is 1 but note that in Cartesian space it is 

not necessary that a = b = c. Then the location of each atom is its fractional distance 

along the edge of each axis. 

 In addition to the direct lattice already described, it is helpful to describe a 

“reciprocal lattice”. This is a three-dimensional mathematical construct analogous to the 

direct lattice but it exists in Fourier space. The three linear basis vectors are called a*, 

b*, and c* and each one is perpendicular to the face of the unit cell normal to the 

corresponding real space unit vector. Note that the reciprocal space vectors are only 

parallel to real space vectors when the crystal symmetry is cubic, tetragonal or 

Figure 2.2. A three-dimensional unit cell.  
Standard right-hand axes; angles can be 
orthogonal and unit lengths equal,, need not be. 
(from http://xrayweb.chem.ou.edu, University of 
Oklahoma) 
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orthorhombic. The units of reciprocal space are of inverse length and by definition the 

spacing between lattice points is the inverse of the corresponding space between real 

space points. 

Ideal crystals possess symmetry – that is, after certain translations, rotations, 

reflections, inversions, or rotoinversions are performed, the crystal is in a new 

orientation, and it is indistinguishable from the old orientation. All real crystals have 

defects that prevent strict symmetry, but are reasonably close to symmetric. 

Symmetry is mathematically described by the specific symmetry operations that 

leave the crystal unchanged. When the symmetries of a crystal have been ascertained it 

can be assigned to a space group. For three dimensional objects, when all possible 

symmetries (including translational) are accounted for, there are only 230 possible 

space groups. This is a mathematical limitation imposed by the geometry of three 

dimensional space. 

Although objects in real space exist in three dimensions, their projections exist in 

two dimensions, and symmetry exists in 2D as well and can be similarly quantified. 

There are also physical entities such as thin films and surfaces of materials that have 

features in three dimensions but present a two-dimensional aspect to the observer, and 

their symmetry can be described this way. The vital reason why CIP can produce useful 

results is that there are only 17 possible space groups in two dimensions, analogous to 

the 230 space group limitation in three dimensions. (One of these 2D groups, the p1 

group, describes an object that has only translational symmetry; it has no rotation, 
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mirror, or glide elements and thus there are 16 space groups in two dimensions that 

have a higher symmetry.) Therefore if one is curious as to the structure of a two-

dimensional film or surface and knows that it is periodic: (1) it is a fact that the 

structure must possess one of these 17 possible symmetries, and (2) to the extent that it 

does not, it must vary from periodicity, because of either experimental error, a defect in 

the structure, or a false assumption that the structure is periodic.  

The plan of attack of CIP is to (through Fourier analysis) take an imperfect image, 

ascertain which of the 17 groups most closely matches its symmetry, and correct the 

image by “enforcing” the correct symmetry. 

 
2.3.1 The two-dimensional space groups 

 
There are various nomenclatures to describe space groups. The International 

Tables for Crystallography [4] use Hermann-Mauguin symbols. The symbol itself 

communicates information about the centering type of the conventional cell and the 

symmetry of the group. The initial letter “p” means the lattice is “primitive”, meaning 

there is only one lattice point per cell. A centered lattice with initial letter “c” has two 

lattice points per cell in two dimensions and can potentially be described with a simpler 

primitive lattice, but at the cost of disregarding some symmetry elements. See Figure 

2.3 and Table 2.1. 
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Figure 2.3. Drawings of the 17 two-dimensional space groups with ordering slightly different from 
Intl Tables for Crystallography. 
http://www.science.smith.edu/departments/Geology/Min_jb/Plane_Patterns.pdf, Smith College  
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Table 2.1. List of the 17 two-dimensional plane groups. 

group 
number  

short Hermann-Mauguin symbol comments 

1 p1 no symmetry other than translation 

2 p2 four twofold axes 

3 pm no rotations, two parallel mirror lines 

4 pg as pm with glides instead of mirrors 

5 cm can describe with primitive cell but with 
less symmetry; two parallel mirrors, two 
glides between mirrors 

6 p2mm two perpendicular mirrors, twofold axes 
where mirror lines intersect 

7 p2mg two parallel mirrors, two glides 
perpendicular to mirrors, twofold axes 
on glides 

8 p2gg two glides in each of two perpendicular 
directions, twofold axes on glides 

9 c2mm non-primitive cell; two perpendicular 
mirrors, a twofold axis not on a mirror, 
two that are on mirrors 

10 p4 two fourfold axes, one twofold axis, no 
reflections 

11 p4mm as p4 with four mirrors, two glides 

12 p4gm as p4 with two mirrors, multiple glides 

13 p3 three threefold axes, no reflections 

14 p3m1 three threefold axes, mirrors through 
each one, glides parallel to mirrors 

15 p31m three threefold axes, mirrors but one axis 
without a mirror, multiple glides 

16 p6 one sixfold axis, two threefold, three 
twofold, no reflections 

17 p6mm as p6 with six mirrors, six glides 

 
 
Any periodic two-dimensional image must fit into one of these categories. 
 

There is a subset of the unit cell of a space group called the “asymmetric unit”; it 

is the smallest closed part of the space group that can fill all of space by application of 

the symmetry operations. The asymmetric unit, combined with the symmetry 

operations, contains enough information to recreate the entire unit cell and therefore the 
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entire crystal. The higher the symmetry of the plane group, the smaller the relative size 

of the asymmetric unit. 

The multiplicity of a group refers to the “general position” within the unit cell, 

which is an arbitrary locus not on a symmetry element, and is the number of times that 

the locus will be copied within the unit cell as a result of all of the symmetry operations. 

Intuitively, it is a measure of the “quantity of symmetry” that a particular space group 

has. A highly symmetric group is p6mm and its general position has a multiplicity of 12. 

The asymmetric unit of p6mm has an area of 1/12 of the area of the whole unit cell, a 

reciprocal relationship that holds for any primitive group. 

As stated earlier, the plan of CIP is to take a periodic image, treat it as a two-

dimensional array of pixels, and ascertain its plane group. One method, as used in the 

CRISP program of Calidris, Inc., uses the Fast Fourier Transform (FFT) implementation 

of the Discrete Fourier Transformation (DFT) to operate on the image. The resulting 

transform has peaks or spots corresponding to periodicities in the image. These spots, 

which exist in reciprocal space, are matched to a possible reciprocal lattice; either 

automatically or by human intervention.  

2.4 Implementation of CIP 
 

One possible sequence of operations to actually perform CIP is as follows. 

1. Create a reciprocal lattice. Take an image or portion of image as a 2n x 2n 

array of pixels, each with a value representing the gray-scale intensity of the image at 

that point. This is an array of integers. In order to calculate the two dimensional Fourier 
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transform of this array, use one of the Fast Fourier Transform implementations of the 

Discrete Fourier Transform. Following is the form of the DFT: 
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The FFT is known as a computationally efficient algorithm for calculating this 

transformation. The resulting transform is a 2n x 2n array of complex numbers. A 

complex number can be expressed either in the form a + bi where a is the real part and 

b is the imaginary part, or in the form reiφ where r is the magnitude of the complex 

number on an Argand diagram and φ is the phase angle. These are related by: 

2 2

arctan

r a b

b

a
ϕ

= +

=
         (2.6) 

(where the principal value of the arctangent function ranges from –π/2 to π/2) 
 
For the purposes of CIP the reiφ format is most useful and each ordered pair of the 

array contains the amplitude of the Fourier component and the phase. This can be 

viewed as a two-dimensional array of complex numbers or two arrays of real numbers. 

Plot an image of the FFT (in order for the user to see and interact with) as a pixel 

at each x*-y*  location with the pixel intensity equal to the square of the amplitude part 

of the transform at that point. Assuming the original image had two-dimensional 

periodicity, the FFT image will consist of bright spots (mixed with noise and transforms 

of nonperiodic elements). The left portion of Figure 2.4 is an example. 
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2. Characterize the reciprocal lattice. The spots form a lattice in reciprocal space. 

There are two tasks to perform with these spots. The first is to accurately determine 

their location. This is done with existing software that finds the peaks in the amplitude 

components of the two dimensional array, although the location can be fine-tuned with 

subpixel interpolation and by fitting the peaks to a grid by a least-squares method [5].  

Determining the exact location of the amplitude peaks is particularly important 

when one considers that this location is also used to identify the phase value associated 

with the spot, and the values of the phases do not peak but can vary significantly from 

pixel to pixel. (One can plot an image of the phases similar to the usual image of the 

amplitudes, but the “spots” are not conspicuous or in some cases nonexistent.) Thus a 

one pixel error in the location of the amplitude peak, which may not greatly impact the 

amplitude value itself, can result in a significant error in the phase. 

Figure 2.5 shows an STM image on the left (this image will be seen and analyzed 

later in the thesis), the Fourier amplitude squared in the middle, and the Fourier phase 

on the right. The spots are clearly visible in the amplitude plot but invisible to the 

human eye in the phase plot. 
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Figure 2.5. (left) STM image of F16CoPc on graphite, image analyzed with CIP 
in chapter 4; (center) plot of Fourier amplitude component squared of the same 
image; (right) plot of Fourier phase component of same image, false color 
corresponds to phase which ranges from -180 to 180 degrees. 

 

Figure 2.4. Two presentations of a Fourier transformation of a simulated HRTEM image of 
MgO(111) (left) image of the amplitude portion of the Fourier transformation (black/white 
inverted for readability). One of the spots in the lower left has a small red arrow pointing it 
out.(right) the vicinity of the marked spot, showing pixel-by-pixel data at and around the spot, 
amplitude on the top, phase on the bottom. Note the great differences between phases in adjacent 
pixels. 

Figure from CRISP program, Calidris Inc. 
 

2 nm-1 
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The second task is to index the spots, in other words to select the appropriate 

reciprocal lattice vectors. There are algorithms for automatic lattice detection – however 

the human eye is an excellent detector of patterns, and the user can label two particular 

spots with HK indices and so select the lattice manually. Typically one chooses the two 

spots nearest to but not collinear with the central spot and assigns them as (1,0) and 

(0,1). Once this assignment has been made, the HK indices of the remaining spots are 

compelled and the lattice parameters for the reciprocal lattice (a*, b*, and γ* ) are 

determined. 

Each spot now has six pieces of information associated with it: its x*-y*  location 

in reciprocal space, its HK index, its amplitude component and its phase component. 

These last two components are the raw material for CIP.   

The determination of these lattice parameters also determines the type of lattice. 

An object with two-dimensional periodicity can be organized in one of only five 

possible two-dimensional lattices. Figure 2.6 shows the four primitive lattices as well as 

one centered lattice.  
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This lattice determination is made while looking at the reciprocal lattice but it 

applies to both the reciprocal lattice and the image (real space) lattice. The image will 

likely have noise, which if random does not interfere with the symmetry, but may also 

have distortions in the x-y directions that can make both the real and reciprocal lattices 

appear to have less symmetry than the actual sample possesses. 

3. Make a symmetry assumption. As stated before, there are only 16 possible 

higher symmetry plane groups (groups that possess point symmetry elements higher 

than the identity, i.e. not p1) to which a two dimensional periodic object can belong. 

Each one of these groups constrains the relationships between the Fourier coefficients, 

Figure 2.6. The five two-dimensional Bravais lattices.  The square, hexagonal, rectangular and 
oblique lattices are primitive. The centered rectangular lattice is a centered lattice, and can also 
be considered a rhombic (primitive) lattice, in which case the basis vectors are the two equal line 
segments marked with double hash marks.  No other lattices are possible in two dimensions. 
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both amplitude and phase, of various spots in various ways. In some cases there is a null 

constraint. For instance in the case of p2 symmetry, there is no constraint on the 

amplitudes but all phases must be 0 or 180 degrees. As an example of a highly 

symmetric group, in the case of p6mm not only do the phases have to be 0 or 180 

degrees, but both the phases and the amplitudes of any spot at (H K) must equal the 

phases and amplitudes of spots at (K -H-K), (-H-K H), (K H), (H -H-K), (-H-K K), as 

well as (-H, -K).  

The sample, if periodic, must belong to one of these groups. Each group is tested 

in turn, although for computational efficiency if the reciprocal axes are close to 90 

degrees the hexagonal groups (p3, p3m1, p31m, p6, p6mm) are not tested, while if the 

axes are close to 60 degrees the square (p4, p4mm, p4gm) and rectangular (pm, pg, cm, 

p2mm, p2mg, p2gg, c2mm) groups are not tested. 

3.1 Find the origin. Given the lattice parameters, a unit cell is implicitly defined 

in the reciprocal lattice. This defines the size of the unit cell in the image. However, the 

correct origin, about which the plane symmetry group constraints apply to the Fourier 

coefficients, must be located in real space (the image). The origin may be at specific 

points or along certain mirror or glide lines. Each of these possible locations is tested, 

and for each location the “residuals” of the amplitude and phase components are 

calculated for the Fourier components.  

The residuals are an objective measure of difference between the symmetry of the 

selected plane group and the actual data.  
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is the formula for phase residuals.  

In each case, the summation can be taken over every H, K value in reciprocal 

space for which a nonzero coefficient exists; often coefficients with small amplitudes 

are disregarded. A lower limit can be placed on the amplitude component, with 

coefficients having a smaller amplitude left out of the sum. This is for ease of 

computation and because low-amplitude coefficients contribute very little to the visual 

image. 

 The obs subscript refers to value from the DFT calculation and the sym subscript 

is the predicted coefficient once an origin has been selected. In the case of the amplitude 

calculation, the formula expresses the residual as a simple sum of absolute differences 

divided by the sum of the actual values. The phase calculation is a little more complex 

in that the difference values in the numerator are weighted by a factor w that is usually 

the amplitude of that spot [6] and the denominator is the sum of those weighting factors 

(see equation 2.8).  
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When all possible origins have been tested, the position with the overall lowest 

residual is selected as the origin of the unit cell. That position’s residuals are stored and 

will be compared later against the residuals of the other plane groups as an indication of 

the likelihood of that symmetry being the correct one for the sample. 

To summarize, these important quantities (residuals) are the difference between 

the observed amplitudes and phases taken from the calculated reciprocal lattice array 

and the amplitudes and phases that would exist if the origin of the assumed plane group 

were set at the assumed location. This set of difference calculations is repeated for each 

plane group that is being tested; the results are then compared. 

3.2 Choose a group. Further work is necessary to find totally objective criteria for 

this decision. The determination of a non-subjective means of selection of the correct 

plane group is in progress. Although residuals are a reproducible (within the same 

algorithm) quantification of difference, it is not sufficient to merely choose the plane 

group with the smallest residual.  

It is tempting to pick the group with the lowest residual and assign that group as 

the best match (and in many cases of course it is). Clearly low residuals for a particular 

group indicate that the symmetry of the image closely matches the symmetry of that 

group. However in many cases the residuals for several groups are roughly similar and 

the best pick is not the absolute lowest, but the group from this collection that has the 

highest multiplicity, if it is a subgroup of the one with the lower multiplicity.  
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As an example, every image with p3m1 symmetry also has p3 symmetry, but the 

converse it not true; p3 does not imply p3m1. Thus any object that actually possesses 

p3m1 symmetry will have low residuals for p3m1 but will also have low p3 residuals. It 

may happen that the p3 residuals are actually lower than those for p3m1 by a small 

amount; but p3m1 is the correct choice nonetheless. 

Some weighting scheme that accounts for the multiplicity of the various groups is 

necessary. One approach would be that of Kanatani [7] who was commenting on a 

method of quantifying two-dimensional symmetry put forth by Zabrodsky [8]. Although 

Zabrodsky’s model has more in common with point symmetry than the crystallographic 

symmetry that this thesis addresses, it has the same problem with what Kanatani 

describes as the “hierarchy” of symmetries, in which one symmetry is a subset of the 

other, which can lead to misidentification of the best symmetry.  

Kanatani examines the case of fitting irregular polygons to polygons with various 

levels of symmetry and suggests a calculation involving degrees of freedom, which vary 

with the various levels of symmetry. His model calls on the geometric Akaike 

information criterion (AIC) and appears to give a theoretical justification and a 

quantifiable measure for when to select a higher level of symmetry than raw data would 

immediately suggest. 

The program CRISP makes the plane group selection automatically (although it 

can be overridden by the user). As the program is designed for the TEM community its 
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choices are optimized for the types of symmetry an electron crystallographer is likely to 

encounter. This is not necessarily optimum for SPM users. 

4. Enforce the selected symmetry. When a decision has been made as to which 

plane group is the best match, the Fourier coefficients (which will be approximately 

correct by virtue of the match) are adjusted. Amplitudes that are supposed to be equal 

for symmetry reasons are forced equal; phases that are supposed to be equal or 180 

degrees out of phase are forced into this configuration; and a new, reconstructed unit 

cell using these corrected Fourier coefficients is generated in real space.  

2.5 Imaging 
 

Every imaging instrument, whether an optical telescope or an electron 

microscope, is intended to observe internal detail of an object. Real objects exist in 

three dimensions and their detail can be represented by a three-dimensional density 

function. This density function is often of mass but could be charge, magnetic dipole 

moment, or whatever physical quantity the imaging instrument can measure. The 

internal detail that is available to an imaging instrument is called contrast and can be 

represented by a two-dimensional density function. 

 The simplest object, a point source, can be represented as a delta function (thus 

having no internal detail at all). Any real world object with detail, observed at visible 

wavelengths, has a flux of visible light that varies across the object (although a star can 

be treated as a point source in many astronomical contexts). Similarly a TEM sample, 

from the point of view of the instrument, has a field of electrostatic potential energy 
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from the atoms in the sample, which varies across the sample, providing contrast when 

imaged with electrons that are scattered at this potential. Crystalline samples in 

particular have periodic variations in contrast if viewed with capable instruments and 

because of the periodicity in real space, their images can be processed in particularly 

useful ways. 

An ideal instrument would perform an exact linear transformation of the density 

function of the object to an image, changing only the Cartesian coordinates according to 

the magnification of the instrument.  

 
i(Mx,My) = o(x,y)  (2.9) 

 

where M is magnification.  

In other words, an ideal instrument maps a point to a point. A real instrument 

maps a point to an extended area. The transformation from object plane to image plane 

is described by the point spread function, which defines how one point in the object is 

spread out onto the image. Consider a point source in the object plane that can be 

described as a delta function δ(x,y). Using the notation from van Dyck [9], 

������, �	
 � ���, �	  (2.10) 

where the operator ������, �	
 � ���, �	 transforms the infinitely sharp object δ into a 

blurred image p. Any real instrument maps δ onto a smeared area of the image plane. 

We will assume for now that p is itself radially symmetric (i.e. it transforms a point into 

a circular disk whose density varies only with distance from the center) and constant 
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across the object plane (translation invariant); in reality certain aberrations, for example 

coma, show that with many types of optical or electron instrument p becomes 

asymmetric with distance from the center of the object. The point spread function is 

usually associated with optical and electron imaging instruments, but the concept 

applies to SPMs as well. We will consider the point spread function of SPMs as 

virtually translation invariant given the design of their imaging process and demonstrate 

with an example. 

Given that any extended object is made up of many points located at various 

places in the object plane, any point in the image plane of a real instrument may contain 

contributions from different points in the object plane. If we call the density function of 

the extended object o(r) where r is a vector in two dimensions, again following van 

Dyck’s treatment, the entire object is a weighted integral of delta functions:  


��	 � � 
���	��� � ��	 ��� (2.11) 

and the image is  

���	 � � 
���	������ � ��	
 ��� �  � 
���	��� � ��	��� (2.12) 
 
which is the mathematical definition of the convolution o ⊗⊗⊗⊗ p; intuitively, since each 

point in the image is formed from the point spread function as it is applied to many 

points in the object, the total image, expressed as a function of two variables, is the 

convolution of the object density function and the point spread function. Note that in the 

case of an ideal instrument, the point spread function reverts to a delta function and 

therefore the image equals the object, as it must. 
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Let o(r) represent the object, p(r) the point spread function, and i(r) the image. 

The convolution theorem states that given 

i(r) = o(r) ⊗⊗⊗⊗ p(r)  (2.13) 
 
where ⊗⊗⊗⊗ represents the convolution operator, then  
 
I(g*) = O(g*)P(g*) (2.14) 
 
where I, O, and P are the Fourier transforms of their respective functions. The ability to 

calculate with products instead of integrals means that computationally it is in some 

ways easier to deal with these relationships in Fourier space than in real space (there are 

also other advantages of Fourier space to be discussed when dealing with periodic 

objects).  

One complication is that unless the point spread function p(r) = p(r,θ) is radially 

symmetric, i.e. constant with respect to θ, its Fourier transform P will be complex-

valued. To see that a radially symmetric function only has real components to its 

transform, consider that the Fourier transform  

 

∫ += dxdyyKxHiyxfKHF ))(2exp(),(),( π      (2.15) 

 
can be restated (using the Euler formula) as 
 

_( , ) ( , )[cos(2 ( )) sin(2 ( ))]entire planeF H K f x y xH yK i xH yK dxdyπ π= + + +∫  (2.16) 

 
Since a radially symmetric function has no θ dependence, points that are 

equidistant from the origin are equal. In particular, points equidistant from the origin 
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that are 180 degrees apart must be equal. Thus f(x,y) = f(-x,-y) and the integral can be 

taken over just one half of the plane as: 

 

_

_

( , ) ( , )[cos(2 ( )) cos(2 ( ))]
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half plane

half plane

F H K f x y xH yK xH yK dxdy
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∫

∫
 (2.17) 

  
 Since the sine is an odd function, the imaginary terms drop out, leaving only the 

real cosine terms. This fact is analogous to the fact that centrosymmetric crystals have 

Fourier phases restricted to 0 or 180 degrees. 

 

2.6 Application of CIP to High-Resolution Transmission Electron Microscope 
Images 
 
 The first application for CIP (and in fact the reason it was invented) was the 

processing of high resolution transmission electron microscopy images of periodic 

samples. 

When seeking HRTEM images, one finds that amplitude contrast images (mass-

contrast or diffraction contrast, i.e. bright-field and dark-field images) do not provide 

atomic-level resolution. A sample that is too thin exhibits little amplitude contrast; 

amplitude contrast in a thin sample has been compared [9] to imaging a glass plate of 

variable thickness in an optical microscope; but a sample thick enough to provide useful 

amplitude contrast also suffers from dynamic scattering that hampers resolution. 
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The technique of choice for a crystalline sample is phase contrast imaging, in 

which the sample is very thin and the direct beam is combined with as many diffracted 

beams as possible. The diffracted beams have been phase-shifted according to the 

contrast transfer function (CTF) and the resulting interference provides contrast in the 

image plane, depending upon the amount of defocus (a perfectly focused image has no 

contrast in this circumstance). 

The resulting image is essentially a set of interference fringes, and visually does 

.represent a “picture” of the sample. The lattice fringes convey a strong visual 

impression that one is looking directly down the atomic planes. This is not correct. 

However, if the sample is periodic and symmetric, i.e. crystalline, CIP can extract 

information from the HRTEM image. Given a set of images taken from various angles 

the user can reconstruct the three-dimensional structure of the sample.  

 Any periodic and symmetric sample is a suitable target for CIP investigation. If 

the complete three-dimensional structure is already known in part, the image 

enhancement that CIP can provide even to a single periodic image can clarify that 

structure.  

An example is the work of Oku [10]. He was seeking details of the atomic 

position of boron and dopant atoms in large highly regular arrangements thought to be 

made of icosohedral boron substructures connected to form buckyball-like structures. 
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He took HRTEM images of these structures, seen below in Figure 2.7. Both 

images are highly periodic in two dimensions but have noise and variation in sample 

thickness. Both images are taken at nearly the Scherzer defocus and thus show electron 

potential directly. The B105Al2.6Cu1.8 image was taken with a 1250 kV instrument with 

resolution of 0.12 nm and the B56Y image was taken with a 400 kV instrument with a 

resolution of 0.17 nm. 

 

 Oku used CRISP to process the images. He applied standard CIP techniques and 

enforced c2mm symmetry on the B105Al2.6Cu1.8 image, p6mm symmetry on the B56Y 

image. The prior knowledge of the resolution limit of the microscopes enabled Oku to 

confidently disregard Fourier coefficients of an order greater than the resolution limit of 

the microscope, converted to reciprocal space. The noise reduction is clear in figure 2.8, 

Figure 2.7. HRTEM images of (left) B105Al 2.6Cu1.8 along [211] 
direction; (right) B56Y along [111] direction. [Oku] 
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which is the B105Al2.6Cu1.8 image of figure 2.7 with a small area of c2mm-enforced 

image superimposed. 

Oku’s processed images are shown in figure 2.9. Superimposed upon the 

processed images are Oku’s proposed locations for the boron structures. The location of 

the dopant atoms in the B105Al 2.6Cu1.8 on the left in the figure is particularly clear 

because of CIP; they are barely visible in figure 2.7 (left) 

 

Figure 2.8. The same image as 
figure 2.7 (left side) with a 
superimposed area (indicated by 
arrows) which has been CIP-
enforced to c2mm symmetry. 

Figure 2.9. CIP-enforced images of samples in Figure 2.7, with proposed 
dopant molecule locations illustrated. (left) c2mm enforced B105Al 2.6Cu1.8  

(right) p6mm enforced B56Y. The color schemes (blue on the left, orange 
on the right) are for visual clarity; these are grayscale images. 
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 Oku also calculated simulated images of these specimens, shown in figure 2.10. 

They closely resemble the CIP-enforced HRTEM images, including the doping atoms 

(although the B105Al 2.6Cu1.8 real and CIP-enforced image contains some elongation 

along the x-axis not present in the calculated image) , supporting the likelihood that the 

CIP processed images represent something close to physical reality. 

The application of CIP to these HRTEM images of three-dimensional objects is 

analogous to the intended application of CIP to SPM images. The single 2D projection 

of this 3D sample is the sole input to the CIP procedure. The procedure benefited from 

the prior knowledge of resolution limit and some knowledge of the sample. Similarly 

CIP can be usefully applied to SPM images with some prior knowledge. 

  

Figure 2.10. Simulated images of (left) B105Al 2.6Cu1.8  (right) B56Y, and dopants. 
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2.7 CIP applications to Scanning Probe Microscope images 
 

Scanning probe microscopy (SPM) is the collective term for a completely 

different design of imaging instrument whose two main variants are scanning tunneling 

microscopy (STM) and atomic force microscopy (AFM).  

The idea of applying Fourier filtering to SPM images is not new. In 1987 Park 

and Quate filtered noise out of the Fourier transforms of their images as a means of 

improving image quality [11]. However they did not enforce any crystallographic 

restrictions on the Fourier coefficients.  

The principle behind these instruments appears very simple – a probe is made to 

approach the surface of the sample, almost touching it, and is then scanned across the 

surface in a raster pattern while the response of the probe is recorded. Not only is the 

engineering that enables this to take place at the atomic level demanding, the very 

definition of “touch” has to be examined in some detail. The probe itself is not a passive 

instrument. The data observed comes from interactions between relatively few atoms in 

the sample and relatively few atoms in the probe (in the case of STM), so the nature of 

the probe is inextricably part of the observing process.  

The physics behind STM compels tunneling current (the quantity being measured) 

to travel almost completely through one atom in the tip, the one closest to the sample. 

STM is able to image atomic level detail, including defects, for a conducting sample. 

The requirement that the sample be conducting is a significant limitation. 
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AFM is able to image nonconducting samples because the parameter being 

measured is minute differences in force, rather than differences in tunneling current. 

There are variants of AFM including magnetic force microscopy (MFM) and piezo 

force microscopy (PFM) that operate similarly but are measuring minute differences in 

other types of force. The most general AFM instrument measures interatomic forces 

between the tip and the sample. AFM tips need not be conducting; typical tips are 

silicon or silicon nitride.  

STM requires surfaces to be atomically flat with occasional steps and for most 

samples requires ultra-high vacuum for atomic resolution (graphite is an exception and 

can be resolved in ambient conditions). AFM can observe rougher surfaces. AFM can 

be operated in contact mode, which was the condition of early experiments. Better 

resolution is found with non-contact mode, in which the cantilever carrying the tip is 

deliberately vibrated at a frequency at or near its resonant frequency. The tip is scanned 

at constant height above the sample and interatomic forces acting on the tip slightly 

change the phase and/or resonant frequency of the cantilever. Either the amplitude or 

frequency of the oscillating cantilever is the output data. 

A recent paper by L. Gross [12] describes a detailed observation of pentacene 

using frequency modulated AFM. This is unusual in that the molecule is not part of a 

crystal lattice, it is alone on the substrate. In the past attempts at imaging single 

molecules resulted in unacceptable distortion to the molecule being observed. Gross 

prepared tips by picking up a single CO molecule that adhered to the apex, with the 
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oxygen atom protruding as the actual tip and found under cold UHV conditions that he 

could image the pentacene clearly, including the hydrogens. 

 

2.7.1 Scanning Tunneling Microscopy 
 

The STM was invented by Gerd Binnig and Heinrich Rohrer in 1982 (for which 

they shared the 1986 Nobel Prize in Physics with Ernst Ruska, the inventor of the 

transmission electron microscope five decades earlier).  

The instrument consists of a tip, generally made out of a transition metal and as 

sharp as possible (more on this below), bonded to three orthogonal piezoelectric 

transducers [13] two of which respond to applied voltages by changing the location of 

the tip so as to scan in a raster pattern in the x- and y- directions across an electrically 

conductive sample.  

The third transducer, in the z-direction plays a somewhat different role. A 

mechanical linkage brings the tip into close approach to the sample and a bias voltage 

on the order of ±1 volt is applied to the tip with respect to the sample. The tip is slowly 

Figure 2.11 
diagram of an 
STM. 
Creative Commons 
- Wikipedia 
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lowered under computer control until, when the distance between tip and sample is a 

few atomic diameters, a current begins to flow between tip and sample. Figure 2.11 is a 

block diagram of a typical STM. 

This current flows because of quantum mechanical tunneling between tip and 

sample across the potential barrier of the gap (which may be vacuum, air or other gas, 

or in some cases liquid). If the work function Ф is large compared to the absolute value 

of bias voltage then the barrier is essentially rectangular (see Fig. 2.12) and the quantum 

mechanical solution for current is relatively simple.  

� �  ����2��� (2.18) 

where z is the distance from the sample and κt = (2mΦ)½/ħ. The strong distance 

dependence means the atom at the tip closest to the sample carries most of the tunneling 

current, even if the tip is relatively blunt, because at least one atom is likely to protrude 

and thus contain most of the tunneling current [14]. There is relatively little interaction 

between other atoms in the tip and more distant atoms in the sample. 

 

 
 

The value of the current is fed back into the z-piezo as negative feedback. For 

imaging purposes, there are two modes of operation for an STM. Constant current mode 

uses the feedback information to move the tip vertically so as to maintain constant 

Fig. 2.12 
If Ф >> | eVt| the trapezoidal barrier 
can be approximated as a rectangle 

from Giessbl 2003 
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current and uses the tip height as data output. Constant height mode, or topographic 

mode, attempts to keep the tip at the same position and uses the varying current value as 

the data output. Constant height mode is faster but requires a flatter surface, or there is a 

risk of tip crash.  

In either case the tunneling current depends upon the local density of states 

(LDOS) of the sample at the Fermi level so the image is a real-space representation of 

the electrons on the surface of the sample.  

2.7.2 Atomic Force Microscopy 
 
 A significant shortcoming of STM is the requirement that the sample be 

electrically conductive. A later instrument, the atomic force microscope (figure 2.13), 

does not have this disadvantage. 

The AFM was invented in 1986 by 

Binnig, Quate and Gerber [15]. It is a scanning 

instrument with a tip whose x-y motion is 

controlled by piezoelectric ceramics and rastered 

across the sample in a fashion similar to an 

STM.  

The tip is either bonded to the end of a 

cantilever, or the tip and cantilever are an 

integrated piece of material. Various methods of measuring the cantilever position have 

been tried. Commonly today a laser is focused on the back of the cantilever, and as the 

Figure 2.13. AFM tip and cantilever 
diagram. 
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probe moves over the sample, motion of the tip/cantilever is translated into deflection of 

the reflected laser light that is observed by a set of photodiodes. The cantilever is 

designed to be rigid in two directions and soft in the third direction (usually the z-

direction). 

The physical operation of the instrument is similar to an STM in that a mechanical 

link brings the probe close to the sample in the z-direction, then piezos bring the tip 

close enough to begin sensing atomic forces. Now, however, the instrument is 

measuring the minute interatomic forces instead of measuring a current. At long 

distances these forces are attractive van der Waals forces, which increase as distance 

decreases. As the distance decreases beyond an equilibrium point, Pauli repulsion 

begins to repel the atoms, increasing at appreciable rate. An early but still useful model 

is the Lennard-Jones approximation for interatomic potential energy: 

 
12 6

( ) 4V r
r z

σ σ
ε
    = −    
     

 (2.19) 

 
where ε is the depth of the potential well, σ is the distance at which V (the potential 

energy) is zero and r is separation between the atoms. This model was devised in 1924 

by John Lennard-Jones and is an easily calculated approximation to interatomic forces. 

The force is the space derivative of this curve. 

The instrument can be operated with the cantilever static (DC mode) which is 

usually a “contact” mode; this means the tip is close enough to the sample that there is a 

repulsive force between the tip and sample [16]. The spring constant of the cantilever 
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should be less than the spring constant of the chemical bonds of both the sample and the 

tip (if greater the tip is likely to rearrange atoms in either the tip or the sample) [17]. 

The resonant frequency of the cantilever must also be substantially higher than the 

highest frequency expected in the input signal by the variation in the sample as it is 

scanned.  

More commonly it is operated in an AC mode in which the cantilever operates at 

or near its resonant frequency. This is usually either a “noncontact” mode that leaves 

the tip further away from the sample, in range of attractive forces between tip and 

sample rather than repulsive; or “tapping” mode that periodically brings the tip close 

enough to the sample to experience repulsive forces. The cantilever must have a stiffer 

spring constant or risk being pulled into the sample. The absolute magnitude of the 

forces is less than contact mode, making measurement more challenging. 

Unlike STM, in which the quantity being measured (tunneling current) is 

monotonic with respect to distance from the sample, the fact that interatomic force 

switches direction as the distance decreases means the AFM feedback mechanism must 

be more sophisticated. The slope of the AFM force vs. distance curve over most of the 

distance range is also less steep than the STM tunneling current vs. distance curve, 

which intrinsically makes it more difficult to extract signal from noise. Figure 2.14 

shows the AFM datum, force, (in nanoNewtons) and the STM datum, tunneling current, 

(in nanoAmperes) as a function of distance in nanometers. 
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Tunneling current used in STM can be expressed as: 
 

2
0( ) tzI z I e κ−=          (2.20) 

 
where κt is a constant and z is distance from sample. 
 
The force curve used in AFM is more complex and can be approximated by 
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       (2.21) 

 

the derivative of the Lennard-Jones potential.  

Most tunneling current flows through a single atom in the STM tip because the 

current-vs.-distance curve is so steep. The interatomic force-vs.-distance curve is much 

less steep, thus more distant atoms in the tip and sample influence one another in an 

Fig. 2.14. Plot of tunneling current and force (typical 
values) as a function of distance z between center of 
front atom of tip and plane defined by centers of atoms 
of surface layer. See text for formulas [Giessibl] 

tunneling current  
(STM datum) 

total force 
(AFM datum) 
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AFM. Consequently a much greater number of sample atom/tip atom pairs interact 

complicating the attempt to resolve atoms. 

The quartz cantilever used in AFM is a high quality oscillator in the sense that its 

Q = (energy stored in oscillator)/(energy lost per cycle) is very high. In other words, the 

cantilever is very lightly damped. Initially, investigators plotted the amplitude change 

(“amplitude modulation AFM”) to see the topography, but because of the high Q of 

quartz, the amplitude of an oscillation changes very slowly in response to a stimulus. 

Frequency modulation AFM (FM-AFM) maintains a constant amplitude of cantilever 

vibration and varies the driving frequency; the driving frequency is the quantity plotted. 

2.8 Aberrations 
 

The ideal tip for general SPM observation would be a needle with one atom at the 

end. To the extent that this ideal is not reached, the fidelity of the image is suspect.  

In crude terms, the intent of an SPM observation is measurement of the 

topography of a sample by “pressing” against it with a sharp tip and scanning that tip 

across the sample. (The actual definition of “pressing” depends upon the type of SPM. 

If an STM, “contact” begins when the tip is close enough to the sample that measurable 

tunneling current begins to flow, 0.4 to 0.7 nanometers. The tip of an AFM operating in 

noncontact mode can be many nanometers from the sample.) If the sample in fact 

consists of a series of sharp tips and the SPM tip is irregularly shaped (rather than 

sharp), what is actually observed is convolution of the topography of the tip and the 

sample.  
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 A significant amount of investigation has been made into the exact nature of the 

influence of an irregular tip on an image [18, 19]. 

A significant source of error in SPM is that fact that the piezoelectric transducers 

that move the tip in the x-y direction are subject to hysteresis and creep [20]. A perfect 

transducer exhibits a displacement exactly proportional to the applied voltage, with a 

linear relationship between voltages and displacements. A perfect transducer will 

always exhibit the same displacement for the same voltage.  

A real transducer will not exactly return to the same displacement when the same 

voltage is applied. Since SPMs typically scan their samples in a rectangular raster, the 

hysteresis causes successive horizontal lines to start from slightly different points, 

skewing what was presumed to be a rectangular array into a parallelogram.  

Creep occurs because there are remnant domains in a piezoelectric crystal that do 

not immediately respond to applied voltage but do so over time. This creates a low-

frequency error as the piezo quickly deflects most of its range in response to an applied 

voltage but then drifts slowly in the same direction until ultimate deflection is reached. 

For example, if the mode of the raster scan is that horizontal scan is rapid in the x-

direction and the vertical scan is slower in the y-direction, ideally the vertical deflection 

will be linear as the probe scans sideways quickly. Creep will cause the rate of that 

vertical deflection to change as the probe scans sideways, an error that will be repeated 

periodically once every horizontal scan. 
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3. CIP as applied to an SPM image 

3.1 Fluorinated cobalt phthalocyanine 

 

The organic molecule shown in most of the images of this thesis is cobalt(II) 

1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,26-hexadecafluoro-29H,31H-phthalocyanine, or 

fluorinated cobalt phthalocyanine (F16CoPc). It is a derivative of phthalocyanine, which 

is a cyclic compound whose structural formula is shown in Figure 3.1. The 

phthalocyanine group is commonly abbreviated Pc in chemical formulas. The molecule 

itself is H2Pc. 

  The two hydrogen atoms in the central cavity of the Pc ring can be replaced by an 

atom of a transition metal forming a coordination complex (Figure 3.2). The resulting 

molecule is stable and poorly soluble in water. Most of these compounds are brightly 

colored and some have been used for decades as a dye. In particular the complex 

formed with copper is inexpensive as a bulk compound and is manufactured in large 

lots. The Sigma-Aldrich catalog has 88 entries for various phthalocyanine compounds. 

Figure 3.1. Phthalocyanine 
(H2Pc), structural formula. 

Figure 3.2. Cobalt phthalocyanine 
(CoPc), structural formula. 
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Many of the metal phthalocyanines also are n-channel semiconductors and are 

being investigated as components in thin-film organic field-effect transistors [21]. 

Replacing the 16 outer hydrogen atoms by halogen atoms increases both the carrier 

mobility and the stability of the compound in air [22]. Figure 3.3 is a sketch of F16CoPc. 

Thin films of halogenated metal phthalocyanines have been observed to form 

monolayers on silver and graphite. There is some evidence that at lower temperatures 

these monolayers consist of molecules stacked partially or wholly on-end, whereas at 

room temperature the plane of the molecule appears to be parallel to the substrate [23]. 

The images shown in this thesis, with one exception, appear consistent with the 

flat orientation. The exception is the image is that called M16, whose Fourier 

coefficients imply at least the possibility that the molecule is oriented partially on end.  

3.1.1 Possible orientation of molecule on M16 

 Although it does not devalue the worth of M16 as a calibration standard (which is 

based on the HOPG Fourier coefficients predominating), one can also make an 

observation about the symmetry of the image which (per conversations with Prof. 

Moeck at Portland State) leads to a suggested orientation of the F16CoPc molecule on 

Figure 3.3. Sketch of fluorinated cobalt 
phthalocyanine. The outside circles (light 
blue if image is color) represent fluorine 
atoms. They have replaced the hydrogen 
atoms that are normally in this location. 
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the substrate: that it may be standing at least partially on end. This has been observed at 

low temperatures for copper phthalocyanine thin films [23]. 

 By comparing the large number of Fourier coefficients in M16 to the few 

coefficients of a pure graphite image, it is clear that some trace of the organic molecule 

is present in the image. However if we choose the reciprocal lattice axes as seen in 

figure 3.4, with an angle between them of 63.7°, it is clear that this array cannot have 

p4mm symmetry, which is what would be expected for a F16CoPc molecule that lies flat 

on an HOPG substrate. This in fact is how we will analyze this image later in this thesis, 

by concentrating on the HOPG substrate that is manifesting itself with these axes. 

However, if the molecule were aligned with the underlying HOPG but partially 

turned on its end, three of the four mirror lines of the molecule’s 4mm point symmetry 

would be broken while one may remain intact. One would then expect to observe the 

p1m1 and p11m settings to have differing residuals, as well as the two settings of pg and 

cm.  

Figure 3.4. M16 reciprocal lattice with 
axes consistent with p3m1 symmetry. 
Angle between axes is 63.7°. 
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 If we choose a set of rectangular axes as shown in figure 3.5, we find this to be 

the case as shown in figure 3.6, which shows the residuals for M16 as well as a 1.5 unit 

cell reconstruction with symmetry p1m1. Note that for those plane groups with differing 

settings in the x and y direction (pm, pg, cm) the residuals are in fact much lower for 

those plane groups with settings in the y direction rather than the x direction. The 

reconstructed image with c1m1 enforced does show a definite two-lobed structure. 

 It is also interesting that the image M17 that was taken to the best of our 

knowledge at approximately the same time under similar experimental conditions and 

visually resembles M16 does not show the same two-lobed structure when c1m1 is 

enforced. 

 

Figure 3.5. M16 reciprocal 
lattice with a different set of 
reciprocal axes, consistent with 
a centered unit cell. Angle 
between axes is 89.2°. 

Figure 3.6. (left) Showing residuals for M16 using the 
centered axes in figure 3.5. (right) Contour plot of 
approximately 1.5 unit cells. Note two-lobed structure. 
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3.2 Fluorinated cobalt phthalocyanine on HOPG 
 

We demonstrate here a specific application of CIP to an STM image. The image 

seen in figure 3.7 is this section’s primary subject of analysis. It is a layer of F16CoPc 

molecules on highly-oriented pyrolytic graphite (HOPG) taken at the Technical 

University of Chemnitz. The sample was imaged under ultra high vacuum (UHV) 

conditions with a temperature of 20 K. The sample is cooled with a liquid helium flow 

cryostat; however in this instrument the tip cannot be cooled and remains at room 

temperature [24]. The tip has a bias of +1.0 volt with respect to the sample.  

 HOPG is well known to be a hexagonal crystal with p6mm plane symmetry in the 

(0001) orientation, which is visibly not the configuration of this image. It is also well 

known that STM images of HOPG have p3m1 symmetry [25]. This is because of the 

way layers of graphite nest on top of one another. Alternating carbon atoms in each 

hexagonal ring are either on top of another atom (α atoms) or on top of a vacancy (β 

Fig 3.7 STM image of F16CoPc on 
HOPG; the cause of the slight clockwise 
skew of the image is unknown but CIP 
will remove it. 
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Figure 3.9 (left) CIP analysis of pure 
graphite image from figure 3.8. Note 
p3m1 symmetry selection on left and list 
of only six Fourier coefficients above the 
amplitude threshold of 50 (unitless value 
representing intensity, range of 0-10000). 
(right) Contour plot of two unit cells. 

atoms). The existence or absence of an underlying atom changes the density of states 

for electrons in the top layer. Since the STM current depends upon the local density of 

states (LDOS), alternating carbon atoms have large differences in current.  

For the purposes of comparison, figure 3.8 is an image of pure HOPG, without 

any organic molecule layer, taken at the Technical University of Chemnitz. An initial 

CIP analysis of this image shown in Figure 3.9 shows no high-order Fourier coefficients 

and suggests p3m1 symmetry. Note the right half of Figure 3.9, which is a list of those 

Fourier coefficients above an amplitude cutoff and shows only six coefficients. (The 

Figure 3.8 (left) 
STM image of 
pure HOPG taken 
with same 
instrument as the 
image in figure 
3.7;( right) Fourier 
transform of 
image, black/white 
reversed. 
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cutoff in this case is a value of 50 on a dynamic range of 0 to 10,000 for intensity). This 

is far fewer than the coefficients observed when the image in Figure 3.7 is analyzed 

with CIP with the same amplitude cutoff; that image has between 53 and 56 Fourier 

coefficients, depending upon exactly which location in the image is analyzed, indicating 

the presence of something other than graphite in that image.  

3.3 Possible orientation of the molecule 
 
The fact that one has prior knowledge of the molecule forming the layer is a 

significant clue that allows one to suggest the particular type of symmetry to enforce 

upon the image with a high likelihood of representing the physical reality. This is 

especially true in this case because the molecule is known to interact weakly with an 

HOPG substrate. This potentially allows the recovery of a significant portion of lost 

information. This information recovery is of course only as good as the prior knowledge 

and does not preclude the possibility that the molecule has elected an unusual alignment 

on the substrate, or that the molecule is significantly deformed. But presuming that this 

is not the case, we observe first that the F16CoPc molecule alone has two dimensional 

4mm point symmetry if lying flat on a substrate (see figure 3.3); that is to say, it can be 

rotated 90 degrees without change and can be reflected through any of the four mirror 

lines (horizontal, vertical, and two diagonal) without change. These mirror lines are the 

two-dimensional projection (projected when lying flat) of the mirror planes that exist in 

the three-dimensional molecule. Since the visual translational symmetry of Figure 3.7 is 

virtually square, it suggests that the molecules are aligned in a square array. However 
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the repeating motif of the image bears little resemblance to the molecule. It is likely 

[24] that this is the result of a blunt tip containing multiple mini-tips. The idea here is to 

treat that tip as a “black box” and see what information can be recovered from the 

image. 

If the F16CoPc molecule is not distorted on the HOPG substrate, the two-

dimensional arrangement of the organic molecule layer could potentially have a 

symmetry as high as p4mm, shown in Figure 3.10, in which case we would expect to 

see two sets of two perpendicular mirror lines, oriented at 45 degrees, as well as two 

rotation centers around which a 90 degree rotation is a symmetric operation (known as a 

type 4 rotation center), or a site symmetry of 4mm. A cursory examination of the raw 

image shows no such mirror lines, nor are there conspicuous rotation centers. 

 

The raw image is 1771 pixels on each side. The implementation of the discrete 

Fourier transform (DFT) in the software used in this section (CRISP [26]) samples 

either square areas of an image with a side equal to a power of 2, or circular areas with a 

diameter equal to a power of 2. We have found that the square sample results in Fourier 

transform plots with rectangular artifacts aligned with the sides of the sample due to 

Figure 3.10. Drawing of F16CoPc 
molecules arranged with p4mm 
symmetry; note this is a possible 
alignment, not necessarily observed. 
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edge effects, and that circular samples have “cleaner” Fourier transforms and provide 

adequate results. The software also allows the user to select one irregular area in the 

image to be “grayed out”; set to the average pixel level of the rest of the image. 

The Fourier transform of an aperiodic function is itself aperiodic. But when the 

transform is applied to a periodic function, the output is discrete. In the particular case 

of a two-dimensional periodic array, if the periodicity is mathematically perfect and 

infinite), the transform f(x,y) → F(H,K) results in an array of mathematical points. A 

real periodic image of course departs from perfection but the Fourier transform output 

will largely be concentrated in “spots”. 

Figure 3.11 shows the amplitudes of the two-dimensional DFT as applied to three 

separate 1024-pixel diameter samples taken in different parts of the image; one at the 

top center and two in the lower left and right corners respectively. Figure 3.7 appears 

uniform across the array. The DFT images below confirm that; there is no obvious 

difference in spot location or intensity between the three areas, and CIP using any of the 

Figure 3.11. Amplitude portion of DFT of the raw image in figure 3.7, taken from three separate 
areas in the image. Note similarity between the DFTs, implying that the image is very uniform. 
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three gives virtually identical results (see Table 3.1). Also note the number of spots 

visible in all of the Fourier transforms and compare with figure 3.8, the Fourier 

transform of pure HOPG. This confirms that Figure 3.7 is more than just graphite. 

 

  Sample area 1 Sample area 2 Sample area 3 

a* (arbitrary units) 7.4 7.5 7.5 

b* (arbitrary units) 7.8 7.8 7.8 

γ* (degrees) 84.0 84.4 84.3 

3.4 Processing of the image 

These transforms (and the others in this chapter) were calculated using the 

program CRISP. The images of the Fourier transform were black/white reversed in 

order to show the detail more accurately. The output extends in theory to infinity in both 

the x* and y* directions but the long range periodic information is concentrated near the 

origin of the reciprocal lattice. 

The next step in CIP is to take the Fourier transform (one of the three above was 

chosen arbitrarily) and ascertain the dimensions of the reciprocal lattice. The calculation 

of the transform is done automatically. The selection of the axes also can be done 

automatically in the CRISP program, subject to override by the user, who may manually 

index the observed lattice.  

Before proceeding with axis selection (either automatically by software or 

manually) the user may choose to manually filter out higher-order Fourier coefficients, 

which correspond to shorter range periodic information. This is done by restricting the 

Table 3.1. Dimensions of the reciprocal lattice selected for each of the three sample areas; note they 
are almost identical, showing that the Fourier amplitudes of the sample are translation invariant. 
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analysis to points in the interior of a circle around the reciprocal space origin. To do this 

is to make a subjective judgment as to the validity of higher-order coefficients, but one 

can make a semi-quantitative justification for the filtering by considering the smallest 

feature likely to be visible in the molecule.  

For this section we chose a circle with a radius of 100 pixels. Figure 3.12 shows 

reciprocal axes overlaid on a Fourier transform. 

The blue and yellow axes represent the x* and y* reciprocal axes respectively that 

have been proposed by the program. The user is expected to visually compare the 

alignment and scale of the proposed axes with the displayed spots, using the unique 

discernment of the human eye in order to verify that the software is finding the correct 

lattice and has not been misled by noise.  

Figure 3.12. Same Fourier 
transform as Figure 3.11 
(enlarged) overlaid with 
the program’s selection for 
reciprocal lattice axes. 
x* axis 
y* axis 
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The decision to restrict the analysis to a circle around the origin of reciprocal 

space is essentially a decision to filter out higher-order Fourier coefficients, since those 

by definition are the coefficients that are distant from the origin. In the particular case of 

this image, we have tested both the 100 pixel circle used and a 512 pixel circle that 

covers the full reciprocal image and have found little or no difference in the results. In 

both cases we obtain 58 Fourier coefficients for p4mm symmetry (subject in both cases 

to the same dynamic range amplitude cutoff) and the residuals are almost identical: 28.1 

for the RA% of both the 100 and 512 pixel selection, and a phase residual of 34.2 for 

the 100-pixel circle and 34.7 for the 512-pixel circle. However for other images the 

decision to filter out higher-order coefficients may assist in removing aperiodic 

information and noise. We do not believe there is a perfect solution other than to 

anticipate the smallest feature likely to be observed in the sample (perhaps a bond 

length) and disregard any periodic feature in the image smaller than that. 

The heart of the program and essence of CIP is the process that follows. One 

wants to ascertain which of the 17 plane groups the raw image best matches. Although 

the human eye can again make a rough estimate, by taking advantage of computational 

power one can simply test all of the groups, considering all possible origins throughout 

a unit cell for all groups. 

The output of CRISP and other CIP programs actually differentiates between 21 

settings of the plane groups rather than the 17 plane groups in their standard setting. 

This is because for groups pm, cm, and pmg that incorporate a single mirror line, and for 
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group pg that incorporates a single glide line, the same group can be viewed as with 

either the x-axis or the y-axis parallel to the single line. The selection of axis orientation 

changes the residuals for various Fourier coefficients, and thus output is displayed for 

the two different orientations, but each of these different settings is still only one plane 

group. 

The groups p3, p3m1, p31m, p6, and p6mm by definition have lattices with axes 

inclined at 120 degrees in direct space. The translational symmetry along those axes 

supports symmetry elements 3 or 6 at the origin. The axes in reciprocal space have a 60 

degree angle. The remaining groups (with the exception of the p1 and p2 groups) have 

an overall rectangular appearance with 90 degree angles between the axes, this time in 

both real and reciprocal space. CRISP and other CIP programs make a first decision 

about which subset of potential plane groups to follow based upon the overall alignment 

of the reciprocal axes. In this case, the angle of 95.9 degrees in direct space is close 

enough to 90 degrees that 15 groups with an overall rectangular orientation are the ones 

chosen for further calculation. 

It is important to note that if the angle between the axes is not close to either 90 or 

60 degrees, the only logical plane groups are p1 or p2; that is to say, for p1 no 

symmetry exists at all other than translational symmetry, the simple two-dimensional 

periodic repetition of a pattern, while for p2 there exists a set of 2 fold rotations. 

In order to identify an origin, CIP software in general starts from a random point 

and tests every pixel of the unit cell in real space to find the point (and its translation 
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symmetric equivalents) about which the symmetry is best (or least broken). For certain 

symmetry groups, there is no one point but there are lines of symmetry along which the 

origin can be located. Once an origin is found, residuals are calculated for that plane 

group as described earlier in this thesis.  

Once the residuals have been calculated for each of the possible plane groups 

(again this is an objective procedure), the somewhat subjective decision of which plane 

group fits the data best can begin.  

Plane groups are not equal in the sense of “quantity of symmetry” that they 

contain. This is best seen by considering the “multiplicity” that in the case of a primitive 

unit cell is the number of times that the “general position” (any location not lying on a 

symmetry element) is replicated in the unit cell as a result of the symmetry operations 

associated with that group. In other words, if one takes an arbitrary point in the unit cell 

it is the number of copies of that point that can be found elsewhere in the cell. With the 

exception of p1, each group also contains “special positions”, the term for a location on 

a symmetry element, e.g. on a rotation axis, on a mirror line, etc. Special positions have 

a lower multiplicity than the general position since they are not transformed by the 

element on which they reside, but there are only a finite number of special positions 

whereas there are an infinite number of general positions in any unit cell. In the case of 

a 2D image, the number of general positions is finite (since the number of pixels is 

finite) but still much greater than the number of special positions. This justifies the 

conclusion that general position multiplicity is a good measure of quantity of symmetry. 
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For a centered plane group (cm or c2mm) the number of copies of the general 

position that can be obtained for the primitive cell counterpart pm or p2mm, must be 

multiplied by 2, the number of primitive cells in the unit cell. The result is the 

multiplicity.  

 In general, between two plane groups with similar residuals, the plane group that 

contains general positions of higher multiplicity would be preferred over one with lesser 

multiplicity. The reasoning is that a group with a high multiplicity general position 

(such as p4mm with its multiplicity of 8) has eight different positions in the cell that, 

when symmetry is enforced, will have their intensities averaged, as opposed to a low 

multiplicity group (such as p2, which has a multiplicity of 2). 

One should also keep in mind the point symmetry of the underlying molecule and 

attempt some reasonable accommodation to the likely arrangement of that molecule in 

an array. In the case of the transition metal phthalocyanine seen here, p4mm would be a 

likely arrangement if the molecule is not distorted by interaction with the substrate (a 

substrate that has, in the case of HOPG, p3m1 symmetry).  

Figure 3.13 shows the output from the CRISP program after residual calculations. 

On the left is a list of the 21 settings of the 17 plane groups (in the notation here, the 

pm, pg, cm, and pmg groups are each treated as two separate settings depending upon 

whether the mirror/glide line is oriented in the x or y direction) the residuals for that 

group, where applicable, and the Ao/Ae figure of merit (described below). (Another 

notation difference in CRISP is the abbreviated notation for what are known in the 
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International Tables for Crystallography [4]as p2mm, p2mg, p2gg, c2mm, p4mm, p4gm 

and p6mm groups as pmm, pmg, pgg, cmm, p4m, p4g, and p6m.) 

Note that the hexagonal groups are not considered; their residuals are blank. The 

column labeled RA% is the amplitude residual. The column labeled φRes is the phase 

residual. The column labeled Ao/Ae is a different figure of merit for the plane group; it 

is meaningful only for the six groups that have “systematic absences”, that is certain 

Fourier coefficients for which the innate geometry of the group requires that reflections 

from the symmetry-related locations in the unit cell cancel out, in other words have zero 

amplitude. In reality experimental error and thermal agitation prevent these amplitudes 

from actually going to zero. Ao/Ae is the observed amplitude of these expected zero 

reflections divided by the sum of the amplitude of the other, permitted reflections. It 

will be zero in a perfect sample. 

 

 
 
 
 
 
 

Figure 3.13. The left portion of the image is a list of possible 
plane groups and, where applicable, their residuals; in the center a 
reconstruction of the image enforcing whatever symmetry is 
highlighted in blue on the left (p1 in this case). 

This is a real space 
reconstruction 
applying p1; 
circled, one can see 
the molecule 
beginning to take 
shape as 
successively higher 
plane symmetries 
are enforced. 
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Note that when the Ao/Ae ratio is over 1.0 for each of the applicable groups, it 

makes it relatively unlikely that these are the proper symmetry for this sample. This 

leaves p1, p2, the two pm groups, pmm, p4, and p4mm as viable candidates.  

The p1 group is an interesting case because it is the group that asserts there is no 

point symmetry in the unit cell and no overall symmetry other than translational; in 

other words a two-dimensional array with only p1 symmetry is not symmetric other 

than the ability to translate. This also means that enforcing p1 symmetry is equivalent to 

the well-known technique of translational averaging. Such enforcement effectively 

sums the real-space amplitudes of all the unit cells together and divides by the number 

of unit cells, averaging noise and other random fluctuations across all cells while 

enhancing the truly translationally periodic elements of the image.  

The noise suppression advantage of CIP is due to the additional averaging that 

takes place at the various symmetry elements, and in fact is more pronounced as the 

plane group is of higher symmetry. The demonstration of this is made clear by 

observing this p1 reconstruction (shown in the center of figure 3.13) which expresses 

how the image can be averaged without any additional contribution from CIP. Notice 

that the appearance of the reconstruction is not greatly different from the raw image unit 

cell; the irregularities of shape are preserved (as they must be in group p1). 

The enforcement of plane group p2 is shown in figure 3.14 and has a calculated 

phase residual of 19.3 degrees, which is the only meaningful residual for p2 since for 

this group there are no amplitude symmetry relations between the various Fourier 
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coefficients, other than the Friedel pair relationship F(h,k) = F(-h,-k) which is a 

mathematical consequence of the Fourier transform. This is considered a low residual in 

electron crystallography, and in fact proves that the raw image has a degree of p2 

symmetry, i.e. there exist points about which the image can be rotated 180 degrees with 

little change (if the p2 symmetry were perfect, there would be no change). The 

enforcement of that symmetry results in the image shown in the center of figure 3.14, 

and one can begin to see in the circled cross (one of two that appears in the image) the 

outline of what could represent a cross-shaped molecule with 4mm symmetry. Note that 

the effect of this enforcement is simply to equate the number of pixels on either side 

(180 degrees apart) of a 2-fold rotation axis. 

 Figure 3.14 also shows the “phase map”, which is the multi-colored panel on the 

right side of the figure. This is a view of approximately two unit cells in real space and 

is a plot in which the x,y position represents a tentative location for the origin, and the 

color corresponds to the phase residual if the original were at that location. Since the 

goal of CIP is to minimize residuals, a valley in this map represents a good origin. The 

contours of the phase map help the user see how sensitive the residuals are to original 

location.  
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Although the low residual for p2 and the visibly logical reconstruction is 

encouraging, the remaining plane groups have many more symmetry elements than p2 

so it is helpful to move on to them. 

We see relatively low residuals for the two pm groups and the pmm group. But 

their multiplicity is low compared to the p4 and p4mm that do in fact have higher 

residuals. The highest multiplicity within this selection of groups, 8, is a property of the 

p4mm group. Because of the fact that p4mm contains the mirror planes of the pm groups 

plus a 4-fold rotation point, the general position in the unit cell is copied seven times 

throughout the cell; thus eight copies of each general position exist. Special positions 

(which lie on a symmetry element) have lesser multiplicity. 

Figure 3.15 shows the results of enforcing p4 symmetry, which equates the pixels 

along any pair of axes 90 degrees apart from a 4-fold rotation point, but without 

enforcing any mirror lines. The result is beginning to look more like the phthalocyanine 

molecule, although without the bright center characteristic of cobalt phthalocyanine 

Figure 3.14 
Output from 
CRISP, same 
area of sample 
as Fig. 3.13 but 
with p2 group 
chosen for 
enforcement. 

p2 enforces site 
symmetry 2 on 
the periodic 
motif 
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[27]. The molecule in this image also has subtle differences on opposite sides of where 

one would expect two of the mirror lines to be, along the longitudinal axes of the 

extended “arms” of the molecule. Since the molecule itself has 4mm point symmetry we 

assume a tip asymmetry causes the lack of mirror symmetry. 

Figure 3.16 shows several results when p4mm symmetry is enforced, the highest 

symmetry that this layer of molecules would have if the point symmetry of the isolated 

molecule, 4mm, were to be the site symmetry in the array. Notice immediately the 

bright spot at one 4-fold rotation point and a vacancy at the other 4-fold rotation point. 

This bright spot is in agreement with Hipps’ work that shows STM images of cobalt 

phthalocyanines have high tunneling current at the Co atom, which thus appears as a 

bright spot. It is encouraging that enforcing p4mm symmetry (that contains the known 

4mm symmetry of the solo molecule) results in an image consistent with what one could 

expect from a good STM image. 

Figure 3.16(d) collects and displays the periodic motif of each of the four 

different plane groups enforced in this section. 
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Figure 3.16b. Approximately 
four unit cells of p4mm 
enforced, axes inclined as in raw 
image. 

Figure 3.16a. 
Output from same 
area as figure 3.13 
with p4mm 
enforced. The 
periodic motif now 
has site symmetry 
4mm. 

Figure 3.15. 
Same area as 
figure 3.13, p4 
enforced. The 
periodic motif 
now has site 
symmetry 4. 



64 
 

Figure 3.16c. Contour plots of 1.5 unit 
cells of the p4mm data with one 
molecule sketched in. The contour plot 
converts the intensity distribution of 
Fig. 3.16(b) into 64 levels, while the 
3D presentation clearly shows the 
peaks and valleys.  (from [23]) 

 

Figure 3.16d. Contour plots, 64 
levels, of the image after the four 
plane groups mentioned in this 
section enforced; approximately 
one periodic motif shown; 
clockwise from top left: p1, p2, 

p1 p2 

p4 p4mm 
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3.5 Translational averaging compared to CIP 
 

Figure 3.17 shows a simulated image of p4mm symmetry. The motif, a cross, has 

4mm point symmetry like the organic molecule discussed earlier. Figure 3.18 is the 

same image with the motif changed in each periodic location by the movement of a 

pseudorandom unit-sized chunk. There are the same number of dark pixels in each 

image. 

 

 
 

 
 

  
 
 
 

If one assumes that the undistorted image represents the “true” arrangement of the 

sample, and the right image is an observation that has been distorted by noise or random 

experimental error, it is interesting to process the distorted image and see how 

translational averaging and CIP perform. 

Figure 3.17 A p4mm 360 × 360 pixel 
artificially generated image.  

Figure 3.18. A 360 × 360 image that has 
been pseudorandomly distorted.  
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Translational averaging is the equivalent of enforcing p1 symmetry; once the 

lattice dimensions are determined, the individual unit cells are effectively laid on top of 

one another and averaged. Applying this to the right side of figure 3.18, the distorted 

image, results in figure 3.19. Figure 3.20 a closeup of the periodic motif. 

If one considers that the desired outcome is the “true” motif that is a pure black-

on-white cross, translational averaging does not do a bad job. The jagged edges of 

figure 3.18 are gone. However the prominent bright splotch in the lower left hand 

corner of the unit cell as well as the irregular shading of the cross is evidence that the 

pseudorandom distortions are not averaging into insignificance.  

 

 
 
 
 
 
 

Figure 3.19. The result of p1 
enforcement (translational averaging) 
on the distorted figure 3.18. 

Figure 3.20. Closeup of p1 
enforced unit cell. 
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Consider figure 3.21 (and the closeup of figure 3.22), the result of p4mm 

enforcement. The enforcement of the rotational and mirror symmetry of the plane group 

(taking advantage of our prior knowledge of the cross motif) results in an image much 

closer to the cross motif as it looked before distortion. The irregularities in the cross as 

well as the bright splotch are gone. Note that the averaging is only over 16 unit cells. 

The artifacts that remain are because of the necessity of selecting a finite area of real 

space with which to calculate the Fourier transform. 

 
 

 
 
 
 
 
  

Figure 3.21. After enforcement of 
p4mm symmetry. 

Figure 3.22. Closeup of p4mm 
enforced unit cell. 
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3.5.1 Effectiveness of CIP compared to translational averaging 
 

When the dispersion of “errors” is truly random (or as random as the 

pseudorandom number generators of Mathematica and Visual Basic allow) the relative 

advantage of CIP as compared to simple translational averaging becomes less apparent 

the larger the number of unit cells. This is to be expected as we are essentially 

observing the standard error of the location of the irregularity, and as sample size 

(number of unit cells) increases the standard error decreases:  

SE
n

σ
=           (3.1) 

 
where σ is the standard deviation of the distribution and n is sample size. 

 
 For a simple example consider repeating the above experiment with a 6x6 matrix 

of motifs instead of 4x4: 

 
 

 
 

 
 
 

Figure 3.23 Analogous to figure 3.17 above, 
using a 6 × 6 matrix instead of 4 × 4. 
Image size 512 × 512 pixels. 

Figure 3.24 Analogous to figure 3.18 above, 
using a 6 × 6 matrix instead of 4 × 4. 
Image size 512 × 512 pixels. 
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The same pseudorandom technique from Mathematica is used for the placement 

of the irregularities in Figure 3.24. But the fact that there are 36 cells instead of 16 

creates the visual impression that p1 averaging is much more successful. See Figures 

3.25 and 3.26 for the p1 results. Figures 3.27 and 3.28 show analogous results for p4mm 

enforcement. 

Although the translational averaging output is certainly closer to the “true” image 

in this case, examination of figure 3.26 shows subtle asymmetries that are not part of 

the undistorted image. In particular, the black body of the cross is far from uniform 

across its extent. This is not the case for figure 3.28, the p4mm enforced cell. Thus it is 

still fair to state that CIP has enhanced the value of the image over and above 

translational averaging.  

 The margin of superiority of p4mm enforcement over p1 enforcement grows 

smaller with increasing sample size, until with a large enough sample they might be 

visually indistinguishable. However p1 enforcement is unable to remedy systematic 

error. CIP, on the other hand, can correct for systematic error given some prior 

knowledge of the sample, as seen in Figures 3.29 through 3.35. These figures greatly 

increase the sample size and introduce some deliberate systematic error. 
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Figure 3.25. The result of p1 enforcement on 
the distorted figure 3.24. 
 

Figure 3.26. Closeup of p1 enforced 
unit cell. There is subtle asymmetry 
but this is close to the “true” motif. 

Figure 3.27. The result of p4mm 
enforcement on figure 3.24. 

Figure 3.28. Closeup of p4mm 
enforced unit cell. This is closer still. 
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 We now greatly increase the size of the array and use the same analysis. If all 

error is random, the result using CIP is virtually indistinguishable from the result of 

translational averaging. See figure 3.29 which shows an array of 50 rows and 50 

columns of crosses, while figure 3.30 is the same image with random distortions. (For 

both images the inset is to show the detail of the array, and is not processed by CIP). 

When we apply CIP to the image with random errors, and enforce first translational 

symmetry (p1) and then p4mm symmetry, the two corrected images in 3.31 are virtually 

identical regardless of whether p1 or p4mm symmetry is enforced. 

 This demonstrates that a sufficiently large number of random errors in an image 

can be efficiently averaged out by translational averaging. The similarity between the 

p1 results and the p4mm results is consistent with equation 3.1. Consider that the 

standard error of the location of the irregularity varies as 1/n½ where n is the sample 

Figure 3.29. 2048×2048 pixel image 
containing 50×50 crosses. 

Figure 3.30. Similar image containing 
crosses with one block of pixels displaced.  
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size. Enforcing a higher symmetric plane group means the standard error now varies as 

1/(n · multiplicity)½. As n gets larger, |σ/n½ - σ /(8n)½ | , which is the difference between 

the p1 standard error and the p4mm standard error, shrinks, with a limit of zero as n 

goes to infinity. 

However, systematic errors such as those caused by less than perfectly calibrated 

piezoelectrics that are not acting exactly proportional to each other cannot be remedied 

through translational averaging. CIP can deal with systematic error and is clearly 

advantageous if such error is present. 

Figure 3.32 shows another distorted image of 50 rows and 50 columns of crosses, 

but with a different type of distortion; a unit-sized chunk has been removed from a 

random location on each cross but replaced only on the upper arm of the cross. This 

introduces a bias into the array of crosses that is intended to simulate systematic error. 

Figure 3.31. Closeups of periodic motifs of CIP processed distorted image in 
Fig. 3.30. (left) p1 enforced (right) p4mm enforced. Note virtually no visible 
difference. 
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When this image is processed using CIP and enforcement of p1 and p4mm 

symmetries are compared, as we see in Figure 3.33 there is a subtle but clear difference 

in the quality of the resulting image. Enforcing the high symmetry of p4mm removes 

the asymmetry that is visible in the p1 image. We conclude CIP is valuable in removing 

systematic errors.  

  

Figure 3.32. Simulated systematic 
error. 2048×2048 pixel array of 50 
rows and columns of crosses, each 
one distorted by the removal of a 
random square which is relocated 
onto the top arm, introducing a bias. 
The inset shows a closeup of the 
crosses and is not part of the CIP 
input. 

Figure 3.33. (left) Periodic 
motifs of biased cross image 
after p1 enforcement; note 
banding around right arm of 
cross; (right) same image 
after p4mm enforcement, all 
arms of the cross are 
symmetrical. 
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3.6 CIP restoration of an image with systematic error 
 

 Figures 3.34 and 3.35 were taken by a PSIA (Park Systems) XE-120 AFM in the 

laboratory of Prof. Andres La Rosa at Portland State University. The images are of a 

Nanosurf BT00250 calibration grid intended for AFM use. The “islands” on the grid 

form a square lattice with a periodicity of 10 µm and have a measured height of 119 

nanometers (nominal 100 nm). The images were taken at approximately the same time, 

at room temperature and with the sample exposed to the atmosphere.  

 The instrument has a proprietary hardware closed-loop feedback system for the 

piezoelectric scanners in the x and y directions (it also has one for the z-direction 

piezo). “Closed-loop” is a generic term from control theory that refers to a system that 

uses feedback from the output to adjust input states, usually to maintain or stabilize a 

value. Piezoelectric crystals have natural hysteresis; thus an AFM raster scan that is 

intended to be rectangular can be an irregular quadrilateral absent correction. The 

feedback system is designed to correct this behavior.  

 Figure 3.34 is an image of the calibration grid made with the x-y feedback system 

on. Figure 3.35 was made with the feedback system deliberately turned off so as to 

create an image influenced by hysteresis. 

 No special efforts were made to level or otherwise prepare the sample; the intent 

was to create “quick and dirty” images so as to assess the value of CIP. The color 

difference from top to bottom across both images, which shows the z coordinate is 

changing from top to bottom, is evidence of sample tilt. 
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 Both images were processed with CIP. The closed-loop image in Figure 3.34, 

which is visibly more symmetric to the human eye, was enforced with p4mm symmetry. 

The residuals were low and the angle between the two reciprocal axes was 90.1 degrees. 

Figure 3.36 shows the Fourier transform and figure 3.37 shows the residuals for the 

various plane groups and a p4mm enforced image.  

 The closed-loop feedback of this instrument does in fact appear effective in 

correcting for hysteresis in that there is no visual nonlinearity in the x-y direction before 

or after CIP, but note that the p4mm enforced image also eliminates the sample tilt. 

Figure 3.34. AFM image of 
commercial calibrated sample, 
256×256 pixels, closed-loop 
scanning. 

Figure 3.35. AFM image of same 
sample, 256×256 pixels, open-loop 
scanning. 

10µm 10µm 

10µm 



76 
 

 

 

Processing the image with induced systematic error, Figure 3.35, required manual 

indexing of the Fourier transform due to blurring of the spots caused by the 

asymmetries of the image. That transform and a closeup of the central portion are 

shown in Figure 3.38 showing the blurring of the spots. 

Figure 3.36. (left) Fourier 
transform of figure 3.34, 
closed-loop image; (right) 
closeup of central portion of 
transform. 

Figure 3.37. (left) 
Residuals for 
closed-loop image 
of figure 3.34; 
(right) 
reconstructed image 
using p4mm 
enforcement. 
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The final result of CIP applied to Figure 3.35 is shown in Figure 3.39, which 

shows the residuals and a p4mm enforced reconstruction of the image. The residuals for 

p4mm are higher than for the closed-loop image, as to be expected: RA% of 20.6 vs. 

16.8, and φRes of 20.7 vs. 13.5, a consequence of the image asymmetry. The 

enforcement of p4mm symmetry is seen to successfully remove the artificially induced 

systematic error. 

  

Figure 3.38. (left) Fourier transform 
of figure 3.35; (right) closeup of 
central portion of transform 
showing blur. 
 

Figure 3.39. (left) 
Residuals for open-
loop image of figure 
3.35, showing higher 
values due to 
asymmetry; (right) 
reconstructed image 
using p4mm 
enforcement . 

(0,1) spot manually indexed 
(1,0) spot manually indexed 
 



78 
 

4. CIP as a technique for ascertaining the SPM tip 
 

Given a sample of known 2D periodicity, comparing the Fourier coefficients of 

an image of this sample before and after correction by symmetry enforcement offers a 

unique opportunity to calculate the distortions induced by the instrument.  

The image that is obtained by any real instrument is not perfect. There is noise as 

well as systematic distortions such as piezo hysteresis, bow, and drift. These problems 

are well known in SPM and there are existing techniques for correcting them. CIP 

applied to a known periodic sample is a unique and novel way to ascertain and correct 

for the distortions in a given experimental configuration. 

The effect of the instrument on a sample can be summarized in the point spread 

function (PSF), a term from optics that is applicable to any imaging system. If we 

define images and objects as 2D arrays of intensity, the image of an object is the 

convolution of that object with the PSF of the imaging instrument. The convolution 

theorem says therefore that Fourier transforms of the object and PSF can be multiplied 

to give the Fourier transform of the image.  

The idea here (shown mathematically in equations 4.1 through 4.6) is that the PSF 

can be obtained by dividing the Fourier transform of the image by that of the object and 

applying an inverse Fourier transform to the result. 

The idea of deconvoluting an SPM image to obtain tip information is not new. In 

1990 Snyder et al [19] investigated the causes of broadening and skewing of STM 

images caused by tip size and asymmetry. In particular they simulated images of 
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graphite that modeled elliptical tips with the major axis of the ellipse inclined at various 

angles to the scanning direction.  

They noticed that their simulations strongly resembled certain anomalous real 

images of graphite. They chose an actual image with skew and found that if they 

deconvoluted it with a particular elliptical tip function they produced a new image that 

looked like graphite. They then inferred that the actual tip must have had this elliptical 

geometry. 

We propose a systematic approach for tip inference involving CIP of images of a 

known calibration standard followed by PSF calculation. To the best of our knowledge 

this has never been done before. 

An ideal STM tip is a mathematical point; a slender cone that is axially symmetric 

and narrows to a single orbital at the tip, with all tunneling occurring through this one 

atom in a radially symmetric fashion (possibly an s-orbital, more commonly a d-

orbital.) An ideal AFM tip would be similarly shaped (although no tunneling takes place 

through the apex atom). Any real tip departs from this perfectly symmetric ideal. Tips 

can be double, multiple, or “blunt” (irregularly shaped) on a scale ranging from 

subatomic to macroscopic. A clear double-tip image is shown in Figure 4.1.  

Note that the entire SPM instrument introduces distortion – nonlinear piezos, 

nonperfect amplifiers in the electronics, etc. This thesis refers to the entire distortion as 

the “effective tip” and will attempt to mathematically summarize the distortions as the 

point spread function (PSF) of the tip. 
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The images to be studied are called “M16” and “M17” according to the 

nomenclature used in the laboratory. They are raw 512 by 512 pixel STM images of a 

layer of fluorinated cobalt phthalocyanine on highly oriented pyrolytic graphite 

(HOPG). They were taken at the Technical Institute of Chemnitz with an Omicron STM 

in constant current mode with a +1.0 volt bias on the tungsten tip, tunneling current of 

0.15 nA, under ultrahigh vacuum at 30 K. Under certain bias conditions (per 

conversation from K.W. Hipps, Washington State University to P. Moeck) organic 

Figure 4.2 Two STM images of 
F16CoPc on HOPG. (see text)  
 (left) M16 (right) M17  vacancies 

Figure 4.1 Classic image 
of DNA and debris 
showing a double tip 
artifact; 
 Weizmann Institute of 
Science, 
www.weizmann.ac.il 
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molecules on HOPG are nearly invisible to STM. Reference [28], coauthored by Hipps, 

describes a similar phenomenon involving a nickel porphyrin on HOPG. When M16 

and M17 are analyzed, their plane symmetry very much resembles that of HOPG, 

although the Fourier transforms of the images do in fact have higher-order coefficients, 

which is not the case for STM images of pure graphite (see Fig. 3.4) – thus some 

information about the organic molecule is present. They were taken during one 

experimental session and are, to the best of our knowledge, taken under very similar 

experimental conditions from different areas of the same sample. 

For the purpose of ascertaining the point spread function (which essentially 

comprises the effective tip) one needs a calibrated standard, ideally with high plane 

symmetry and able to encompass a large number of unit cells in an image.  

 HOPG with a surface layer that is a regular array of highly symmetric 

molecules may meet these requirements.  

Visual inspection of the above images shows vacancies, noise, some bowing, 

and in the case of M17 a scanning discontinuity a few lines from the top. The vacancies 

provide evidence of true molecular resolution (and are also evidence that the image is 

not pure HOPG, which seldom shows vacancies). If one assumes that the underlying 

sample of the above two images has p3m1 symmetry, with the exception of the 

vacancies any departure from that symmetry must be a result of the combined 

imperfections of the instrument. The PSF is a mathematical expression of this symmetry 

departure.  
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As seen in equations 2.11 and 2.12, an image is the convolution of the sample 

surface feature function with the effective tip function.  

i(r) = o(r) ⊗⊗⊗⊗ p(r)           (4.1) 

where r is a 2D vector in real space, i is the image, o is the object (sample), and p is the 

effective tip function. The r vector is theoretically continuous but given a pixellated 

image will be part of a discrete set of 2D vectors. By the convolution theorem, the 

Fourier transformation of the above functions changes the convolution operator to a 

simple multiplication in Fourier space. This allows algebraic manipulation to recover 

one of the right-side functions if the other (and the left side) is known. 

I(g*) = O(g*)P(g*)          (4.2) 
  

where g* is a vector in reciprocal space whose components are multiples of the 

reciprocal unit vectors a* and b*. Similarly to the r vector in real space, the g* vector is 

theoretically continuous but is actually exists only at discrete intervals, both because it 

is the transformation of a finite 2D array and more importantly because to the extent 

that o(r) is 2D periodic the amplitude component of its Fourier transform is a set of 

spots. 

It is customary to refer to the coordinates in 2D reciprocal space with the 

variables H and K. Rewriting (4.2) above for clarity, we obtain: 

Iraw(H,K) = Osample(H,K) • Ptip(H,K)      (4.3) 
  

Given Iraw(H,K), knowledge of either Osample(H,K) or Ptip(H,K) allows solution 

of the other. In particular, 
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P tip(H,K) = Iraw (H,K) / O sample(H,K)       (4.4) 
 

If the sample is a known calibration standard, preferably highly symmetrical, 

one can use this prior knowledge upon any SPM observation of this standard that 

appears reasonably close to reality. The already-known symmetry can be enforced, and 

these enforced Fourier coefficients can be taken as O sample(H,K). 

 The comparison of observed Fourier coefficients I with theoretical Fourier 

coefficients O is an opportunity to calculate Ptip(H,K). The inverse Fourier 

transformation of P will result in the point spread function ptip(x,y).  

The functions I and O are complex-valued functions of a discrete 2D array of 

integers. We seek ptip(x,y) ideally as a two-dimensional continuous function but our 

intermediate result Ptip(H,K) only has as many points in its domain as there are non-zero 

Fourier coefficients Iraw (H,K) and O sample(H,K). The result of the inverse Fourier 

transform that takes P to p should accurately describe the tip function. 

We treat M16 as such a calibration standard, of known symmetry and periodic on 

a molecular scale, because it is seen that the symmetry of the graphite is largely shown 

in the Fourier coefficients. The effect of molecular vacancies will be seen to average 

out. Given the prior knowledge that the sample is graphite and its plane group is p3m1 

one can enforce that symmetry and equate: 

Osample(H,K) = Isymmetry_enforced (H,K)       (4.5) 
 
Thus after the enforcing the plane symmetry of the known calibration sample, 

one can rewrite relation (4.4) as 
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Ptip(H,K) = Iraw (H,K) / Isymmetry_enforced(H,K)     (4.6) 
 
and thus obtain the Fourier transform of the point spread function for a 

particular scanning probe tip (actually the tip+instrument unit) and a particular set of 

experimental conditions of the SPM, provided I is of a known calibration standard.  

This estimate for Ptip(H,K) can now be used directly for correcting images of 

unknown samples that are recorded under the same conditions, including the same tip, 

as the image taken of the calibration sample. The respective relation is 

Icorrected_unknown (H,K) ≈ Iraw_unknown(H,K) / Ptip(H,K)                               (4.7) 
 

4.1 Calculations on image M16 

 
 
 
 
 
 
 
 

Figure 4.3. M16 on the left, 512x512 pixels, 18 
(vertical) x 20 (horizontal) unit cells. Its two-
dimensional Fourier transformation (black/white 
reversed for visibility) on the right, taken from a 512 
pixel diameter circle centered on the image. 

2 nm-1 
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The image in the right half of figure 4.3 is the Fourier transformation of M16. The 

vertical banding is a consequence of the visible horizontal raster scan lines in the raw 

image. The spots seen at the center derive from the periodic elements in the sample. 

They are clearly in an approximate hexagonal arrangement; i.e. the angle between lines 

joining them is approximately 60 degrees. This is evidence that the proper plane group 

for this sample is one of the hexagonal groups: p3, p3m1, p31m, p6, or p6mm. 

Figure 4.4 shows the next step in CIP as implemented in CRISP: selection of the 

reciprocal lattice. This is the same Fourier transform as figure 4.3 but with arrows 

overlaid showing the direction and unit size of the H and K axes. This lattice selection 

was made automatically by CRISP and was not overridden as it clearly matches the 

actual spacing of the spots. The numerical values shown for the reciprocal length of the 

axes is calibration dependent; the default settings for CRISP are what are used since the 

Figure 4.4. Output from CRISP. (left) Fourier 
transformation of M16 with reciprocal axes 
overlaid. (right) numerical values of the unit 
length of these axes. Note angle of 63.7 
degrees, close to what one would expect for the 
reciprocal of a hexagonal lattice. 
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ratio of the reciprocal lengths is what is significant for determining the plane group 

rather than absolute values. 

This confirms the visual observation that the axes are approximately 60 degrees 

apart and as seen in figure 4.5 CRISP tests just the hexagonal plane groups (as well as 

p2 which is always calculated, and p1which is translational averaging.) 

 

  The software has selected p3m1 as the most likely plane group. The residuals for 

this group are slightly higher than those for p3, but because the multiplicity of p3m1 is 6 

while that of p3 is only 3, there is a greater “quantity of symmetry” in p3m1 and it is the 

better choice.  

 Note that CRISP has selected “a = 28.0 Å, b = 28.0 Å” as the dimensions of the 

reciprocal lattice unit vectors. The “Å” shown as the dimension of the output is should 

be interpreted as inverse pixels. The size is consistent with a 512 pixel lattice with 18 

periods (28 ≈ 512/18). 

We now enforce that symmetry and look at the Fourier coefficients before and 

after enforcement in table 4.1. Amplitudes are denoted in scalar units, with a dynamic 

Figure 4.5. Left panel contains 
the list of plane groups with 
their residuals. Note that only 
the five hexagonal groups are 
tested.  
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range of up to 10000; this table is limited to coefficients with enforced amplitudes 

greater than 200 and contains 24 entries. The ratio of the amplitudes is a meaningful 

quantity when calculating the inverse Fourier transform; the actual value is irrelevant. 

 

Coordinates (reciprocal 

space) 

Fourier amplitudes (arbitrary 

units) Fourier phases (degrees) 

H K observed p3m1 enforced observed p3m1 enforced 

0 1 10000 7565 -10 -10 

1 0 9198 7565 10 10 

1 -1 3497 7565 -9 -10 

0 2 1550 850 38 57 

2 0 690 850 -148 -57 

2 -2 309 850 -83 57 

1 1 2072 1132 -167 180 

1 -2 788 1132 -14 180 

2 -1 537 1132 -71 180 

1 2 1374 561 87 106 

1 -3 138 561 118 -106 

2 1 1147 561 -116 -106 

2 -3 92 561 47 106 

3 -1 409 561 173 -106 

3 -2 207 561 46 106 

1 3 906 237 -175 -155 

1 -4 137 237 27 155 

3 1 258 237 122 155 

3 -4 43 237 -84 -155 

4 -1 61 237 130 155 

4 -3 15 237 156 -155 

2 2 592 238 176 180 

2 -4 86 238 23 180 

4 -2 36 238 -56 180 

 
The table columns marked “observed” are the Fourier transform of data gathered 

directly from the image. As discussed earlier, the transform results in a two-dimensional 

matrix of complex numbers. The amplitudes in the table are the magnitudes of those 

Table 4.1. 24 largest Fourier coefficients of M16 
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complex numbers, where the magnitude of a complex number x + iy is 2 2x y+ . If one 

expresses the complex number x + iy in the form reiθ, then the magnitude is r.  

The phases are the argument of the complex number, defined as the branch (-

180,180] expressed in degrees of arctangent(y/x) or alternatively as θ if the number is 

expressed in the form reiθ. The observed phase depends upon the origin selection, which 

is initially set to be the center of the real-space area selected for analysis. 

The Fourier amplitudes are absolute (although their unit is arbitrary) but the 

Fourier phases are relative to the selected origin. An origin shift shifts all the phases 

according to the formula φnew = φold + 360°(hx + ky) where h,k are the indexes of the 

coefficient and x,y is the shift in fractional coordinates [26]. 

With the exception of p1, each of the 17 plane groups has either a specific 

location or an axis (glide or mirror) along which the origin must be defined. The initial 

origin at the center of real space is unlikely to be at this location. Therefore for each 

plane group a CIP program tests each point in the unit cell as a potential origin. The 

Fourier coefficients are calculated at each tentative shifted position, and the position (or 

arbitrary location along a mirror/glide line) that has the lowest residuals (see equations 

2.7 and 2.8) is chosen as the origin. 

The columns marked “enforced” are the end result of crystallographic image 

processing. Various Fourier coefficients are grouped together with amplitudes and 

phases averaged. The groupings depend on the plane group selected. In the case of 

p3m1, these coefficients are related: (h k) (k -h-k) (-h-k h) (k h). Additional relationships 
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exist because the relation between (h k) and (k h) in particular means that the values for 

k and h can be permuted. For example, let h = 1 and k = 3 and note in rows 16 though 

21 of the table that these coefficients: (1 3) (1 -4) (3 1) (3 -4) (4 -1) (4 -3) are all 

grouped together. 

These grouped coefficients have the same enforced amplitude and enforced 

phases that are either the same or differ by 180 degrees. Certain groups of coefficients, 

those that contain values of h and k in which h = k restrict the phase to 0 or 180 degrees, 

again a requirement of p3m1. 

The two columns labeled “enforced” constitute a new set of Fourier coefficients 

that, when inverse Fourier transformed, will display a “corrected” image of the original 

sample. See figures 4.6 and 4.7 which show the corrected image, first with the 24 

strongest coefficients shown in the table, then with the 53 coefficients with amplitudes 

greater than or equal to 50 (in arbitrary units) 

Given these coefficients we can now compute the point spread function of the 

effective microscope tip by comparing the corrected coefficients to the raw coefficients. 

This is a simple division of complex numbers that takes two complex functions of the 

two dimensional integer array (H K) and yields a third complex function of (H K). 

Using equation 4.6,  

Ptip(H,K) =I raw (H,K) / Isymmetry_enforced(H,K)      (4.6) 
 
we get table 4.2 (in which the result is expressed as the reciprocal of Ptip for ease of later 

calculation): 
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  Table 4.2. Coefficients (24 largest) of the point spread function that was calculated when the STM 
image M16 was reconstructed with p3m1 symmetry enforced. 

Coordinate (Fourier 

space) 

Iraw(H,K) Isymmetry_enforced(H,K) 1/Ptip(H,K) 

H K (expressed in x + iy format) (in re
iθ 

format) 

0 1 9848.1 -1736.5 7450.1 -1313.6 0.757 0 

1 0 9058.3 1597.2 7450.1 1313.6 0.822 0 

1 -1 3453.9 -547.1 7450.1 -1313.6 2.163 -1 

0 2 1221.4 954.3 462.9 712.9 0.548 19 

2 0 -585.2 -365.6 462.9 -712.9 1.232 91 

2 -2 37.7 -306.7 462.9 712.9 2.751 140 

1 1 -2018.9 -466.1 -1132.0 0.0 0.546 -13 

1 -2 764.6 -190.6 -1132.0 0.0 1.437 -166 

2 -1 174.8 -507.7 -1132.0 0.0 2.108 -109 

1 2 71.9 1372.1 -154.6 539.3 0.408 19 

1 -3 -64.8 121.8 -154.6 -539.3 4.065 136 

2 1 -502.8 -1030.9 -154.6 -539.3 0.489 10 

2 -3 62.7 67.3 -154.6 539.3 6.098 59 

3 -1 -406.0 49.8 -154.6 -539.3 1.372 81 

3 -2 143.8 148.9 -154.6 539.3 2.710 60 

1 3 -902.6 -79.0 -214.8 -100.2 0.262 20 

Figure 4.6. Corrected image of M16 enforcing 
p3m1 symmetry using 24 coefficients with 
highest amplitude. 

Figure 4.7. Corrected image of M16 enforcing 
p3m1 symmetry using 53 coefficients. 
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1 -4 122.1 62.2 -214.8 100.2 1.730 128 

3 1 -136.7 218.8 -214.8 100.2 0.919 33 

3 -4 4.5 -42.8 -214.8 -100.2 5.512 -71 

4 -1 -39.2 46.7 -214.8 100.2 3.885 25 

4 -3 -13.7 6.1 -214.8 -100.2 15.800 49 

2 2 -590.6 41.3 -238.0 0.0 0.402 4 

2 -4 79.2 33.6 -238.0 0.0 2.767 157 

4 -2 20.1 -29.8 -238.0 0.0 6.611 -124 

 

4.2 Calculations on image M17 using the PSF from M16 
 

Now that we have calculated the presumed PSF of the tip by enforcing p3m1 

symmetry upon image M16 and comparing those coefficients with the raw image 

coefficients, one can examine image M17 (figure 4.8), taken at nearly the same time 

and under the same experimental conditions, and correct for the distortions of M17 

introduced by the tip + instrument combination by dividing those coefficients by the 

Fourier transform of the M16 PSF using formula 4.7 

 
 Icorrected_ unknown(H,K) ≈ Iraw_ unknown(H,K) / P tip(H,K)      (4.7) 
 

4.2.1 Zero values in the PSF 
 

We now must deal with the fact that since Ptip(H,K) appears in the denominator of 

this expression, if Ptip = 0 for any particular H,K pair the expression will not be defined. 

This will occur for any H,K for which the Fourier amplitude of the observation is zero 

(since Ptip(H,K) = Iraw (H,K) / Isymmetry_enforced(H,K)). One possible solution is to add a 

Wiener-filter type step to the process, by adding a small constant to each observation 

amplitude, simulating a bias, thus guaranteeing a finite solution [29].  
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There are two logical places in the process where this can be done: either in the 

calculation of the PSF itself: 

 
 in which case 
 
Ptip(H,K) =  Iraw (H,K) / Isymmetry_enforced(H,K)      (4.6) 
 
 becomes 
 
Ptip(H,K) = (Iraw (H,K)+kbias) / Isymmetry_enforced(H,K)     (4.8) 
 
that guarantees that Ptip(H,K) will be nonzero since Iraw (H,K) is nonnegative, or later, in 

the calculation of Icorrected_ unknown(H,K)  

 
 in which case 
 
Icorrected_ unknown(H,K) ≈ Iraw_ unknown(H,K) / Ptip(H,K)      (4.7) 
 
 becomes  
 
Icorrected_ unknown(H,K) ≈ Iraw_ unknown(H,K) / (Ptip(H,K)+kbias)    (4.9) 
 
that guarantees that Icorrected_ unknown(H,K) will remain finite. 

The second method involving only the calculation of Icorrected_ unknown(H,K) will be 

used here since it leaves the PSF unchanged for other purposes (such as real-space 

visualization of the tip) and since it is expected that the calculation of Icorrected_ 

unknown(H,K) is an approximation anyway. 

An alternative approach that will not be further pursued here would be to 

introduce a nonzero random noise knoise instead of kbias, which would eliminate the 

problem of biasing all coefficients in the same direction. 



93 
 

  

4.2.2 Production of corrected M17 coefficients 
 

The Fourier transform of M17 will of course consist of a two dimensional array of 

complex numbers. Although all coefficients in the array contribute to the final image 

that is produced after an inverse Fourier transform, the higher the amplitude of the 

coefficient, the greater the visual intensity of that particular contribution in real space. 

In practice, our experience has been that the 20 to 25 highest amplitude coefficients can 

produce an image indistinguishable to the eye from an image with more coefficients. 

It seems logical then to concentrate on the strongest coefficients of the image 

being worked on; we are using the 24 strongest for ease of calculation. This particular 

Figure 4.8. M17 on the left, its 
Fourier transform on the right based 
upon a 512-pixel diameter circle 
centered on the image. 
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set of 24 (H, K) indices will not be the same for every image, and the PSF calculated 

from the image of the calibrated sample should contain a large enough number of 

coefficients to insure there will be a P tip(H,K) value for each Iraw_ unknown(H,K) in the set 

of 24 strongest.  

 
 

Coordinate (Fourier 

space) 
Iraw_unknown (H,K) [M17] 1/Ptip(H,K) [from M16] Icorrected_unknown (H,K)  

H K amplitude phase  amplitude phase amplitude phase 
0 1 10000 -37 0.757 0 7570 -37 

1 0 9522 -89 0.822 0 7827 -89 

1 -1 3422 -45 2.163 -1 7402 -46 

1 1 2214 88 0.546 -13 1209 75 

0 2 1837 103 0.548 19 1007 122 

2 1 1341 -67 0.489 10 656 -57 

1 2 1055 -15 0.408 19 430 4 

1 3 774 130 0.262 20 203 150 

2 0 727 56 1.232 91 896 147 

1 -2 640 -57 1.437 -166 920 -223 

2 2 599 170 0.402 4 241 174 

2 -1 565 151 2.108 -109 1191 42 

3 6 526 59 0.175 2 92 61 

0 3 521 -65 0.388 9 202 -56 

3 -1 483 -113 1.372 81 663 -32 

2 -2 412 152 2.751 140 1133 292 

4 8 337 177 0.199 -1 67 176 

2 4 336 -175 0.305 -16 103 -191 

3 1 323 100 0.919 33 297 133 

1 4 307 -69 0.342 35 105 -34 

2 3 290 16 0.365 -47 106 -31 

2 6 289 -104 0.422 -3 122 -107 

3 2 264 -4 0.549 -64 145 -68 

3 7 235 -126 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 

  

Table 4.3. Coefficients (24 largest) of the Fourier transform of M17, with corresponding M16 PSF 
coefficient adjacent, showing resultant correction. Amplitudes are in arbitrary units (10000 max), 

phases in degrees. 
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We will produce a corrected image without any kbias , that means there is one 

problematic coefficient (3,7) for which the amplitude of M16’s Iobserved(3,7) = 0 (the 

phase of Iobserved(3,7) is 5 degrees but that is irrelevant). We propose to disregard this 

coefficient in the first approximation, produce an image, then show what that image 

would look like with an increasing value of this coefficient; then we will produce an 

image with a positive kbias. 

Figure 4.9 shows the corrected M17 image using the coefficients in the right two 

columns of Table 4.3 above. 

One can see the hexagonal lattice in the image. Processing this reconstructed 

image using CIP finds the actual angle between the reciprocal lattice axes to be 61.4 

degrees, and calculation of residuals finds p3m1 to be the best fit. See figure 4.10. 

Figure 4.9. Left, closeup of approximately 1.5 unit cells of M17 
corrected by the PSF of M16. Note the visible 120 degree symmetry. 
(right) same reconstruction scaled to match the original image. 
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We see in the penultimate column of table 4.3 that the amplitudes of the corrected M17 

coefficients range from a low of 67 to a high of 7827. These are arbitrary units, and 

matter only in relation to one another. Let us introduce the (3,7) coefficient with 

arbitrary amplitudes of 400 and 4000. Since M16’s Iobserved(3,7) = 0 the theoretical value 

of Icorrected_unknown (3,7) is infinite. The three results are shown in Figure 4.11. 

 

   
Icorrected_unknown(3,7) ignored Icorrected_unknown(3,7) = 400 Icorrected_unknown(3,7) = 4000 

 
 

Figure 4.11. Three presentations of 
M17 corrected by the M16 PSF with 
various amplitude values for an 
anomalous coefficient. 

Figure 4.10. Result of 
residual calculation 
for the reconstructed 
image of M17. The 
plane group p3m1 is 
slightly favored over 
the other hexagonal 
plane groups. 
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The anomalous Icorrected_unknown (3,7) coefficient introduces a single wave into the image.  

4.2.3 Production of corrected M17 coefficients using a bias 
 

The values for amplitude of Ptip range from 0 to approximately 5 (before the bias 

is applied – see table 4.2) for the range of H,K coefficients we are considering here. If 

we arbitrarily institute a bias of +1 and add that bias to each Ptip amplitude, and then 

recalculate 1/Ptip and apply that to the M17 coefficients we obtain a new set of corrected 

coefficients. 

 
 

Coordinate (Fourier 

space) 
Iraw_unknown (H,K) [M17] 1/(Ptip(H,K)+1+0i) Icorrected_unknown (H,K)  

H K amplitude phase  amplitude phase amplitude phase 
0 1 10000 -37 0.431 0 4308 -37 

1 0 9522 -89 0.451 0 4296 -89 

1 -1 3422 -45 0.684 -1 2340 -46 

1 1 2214 88 0.353 -13 782 75 

0 2 1837 103 0.354 19 650 122 

2 1 1341 -67 0.328 10 440 -57 

1 2 1055 -15 0.290 19 306 4 

1 3 774 130 0.208 20 161 150 

2 0 727 56 0.552 91 401 147 

1 -2 640 -57 0.590 -166 377 -223 

2 2 599 170 0.287 4 172 174 

2 -1 565 151 0.678 -109 383 42 

3 6 526 59 0.149 2 78 61 

0 3 521 -65 0.280 9 146 -56 

3 -1 483 -113 0.578 81 279 -32 

2 -2 412 152 0.733 140 302 292 

4 8 337 177 0.166 -1 56 176 

2 4 336 -175 0.234 -16 79 -191 

Table 4.4. Coefficients (24 largest) of the Fourier transform of M17, with a biased M16 PSF 
coefficient adjacent, showing resultant correction. Amplitudes have dynamic range with 10000 max, 

phases in degrees. 
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3 1 323 100 0.479 33 155 133 

1 4 307 -69 0.255 35 78 -34 

2 3 290 16 0.268 -47 78 -31 

2 6 289 -104 0.297 -3 86 -107 

3 2 264 -4 0.354 -64 94 -68 

3 7 235 -126 1.000 0 235 -126 

 
 

 

The image with this set of corrected coefficients is shown in figure 4.12. It is 

“muddier” than the image without the bias and there is a visible contribution from the 

(3,7) component which is to be expected. Comparing this image to the raw image 

(figure 4.8) it seems to be that the (3,7) component is a manifestation of the visible 

rastering in the raw image, in other words an artifact of the scanning process, and thus 

can be safely disregarded. 

Figure 4.12. Left, closeup of approximately 1.5 unit cells of M17 
corrected by the biased PSF of M16. Note that the hexagonal lattice 
is visibly less clear, see text for quantitative detail. (right) same 
reconstruction scaled to match the original image. 



 

This reconstructed image was also subjected to CIP and the residuals are notably 

higher, leading one to conclude

for this PSF coefficient is more effective.

Table 4.5 Residuals for two different reconstruction

 

without bias to PSF 
amplitudes (Fig. 4.9) 
with +1 bias to PSF 
amplitudes (Fig. 4.12) 

By indexing the actual FFT plot, shown in figure 4.1

closely associated with (3,7) is visibly part of the Fourier noise generated by the 

horizontal striations in the image.
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This reconstructed image was also subjected to CIP and the residuals are notably 

conclude that reconstruction without biasing out the zero value 

for this PSF coefficient is more effective. See table 4.5. 

Table 4.5 Residuals for two different reconstructions of M17 using M16’s PSF, first disregarding the 
zero PSF coefficient, then biasing it. 

p3 p3m1 
RA% φRes RA% φRes RA%

10.2 7.4 10.8 9.8 10.8

33.5 8.8 34.6 12.1 34.6

By indexing the actual FFT plot, shown in figure 4.13, we see that the spot most 

closely associated with (3,7) is visibly part of the Fourier noise generated by the 

horizontal striations in the image. 

Figure 4.13. The arrows point to the 
(3,7) spot in the FFT of M17. 

This reconstructed image was also subjected to CIP and the residuals are notably 

that reconstruction without biasing out the zero value 

first disregarding the 

p31m 
RA% φRes 

10.8 12.0 

34.6 11.9 

we see that the spot most 

closely associated with (3,7) is visibly part of the Fourier noise generated by the 
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4.3 Real space reconstruction of the effective tip PSF   
 

The fact that the point spread function ptip(x,y) represents the entity in real space 

with which the object is convoluted in order to produce an image means that the point 

spread function is the actual morphology of the physical tip (as amended by other 

instrumental distortions). 

The convolution of a periodic function with a nonperiodic impulse (in this case 

the tip) is periodic. We have a two-dimensional array Ptip(H,K) that is the Fourier 

transform of the PSF. Since our sample is periodic, we expect Ptip(H,K) to be periodic 

too. A density plot of one unit cell of 1/Ptip(H,K), the inverse of the transform of the 

effective tip, is shown in figure 4.14 

 When we inverse Fourier transform Ptip the result, ptip, is a periodic function as 

well, the period of which should be equal to the longest repeating unit in the sample 

(provided we are including the lowest order coefficients (0,1) and (1,0)).  Thus the unit 

cell would be similarly sized to the sample molecule. The motif of this function should 

be the representation ptip(x,y) of the tip that we seek. 
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When we perform this calculation for M16 the data is shown in table 4.6 and 

plotted in figure 4.15. Ten coefficients with maximum amplitude are shown (plotting 

more adds virtually no detail to the visual appearance), and several periodic motifs or 

approximately two units cells are plotted. The resulting elongated elliptical object is a 

representation in real space of the shape of the tip + instrument. If we assume that the 

Figure 4.14.  
Approximately 2.5 unit 
cells of the inverse PSF of 
the M16 effective tip. 

Figure 4.15. Approximately two unit cells of the M16 PSF. (left) density plot;  
(right) contour plot.  Length of arrow is approximately 1.5 nm as period of  
PSF is equal to that of M16. 
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periodicity in this image (shown by arrow) is equal to the unit cell dimension of M16, 

1.5 nm, we can estimate the dimension of the elliptical effective tip shown as 

approximately 1 nm long and 0.2 nm wide.  

 

 amplitude phase Ptip(H,K) 

H K raw symm raw symm ρ θ 

3 6 257 45 -159 -157 5711 -2 

1 3 906 237 -175 -155 3823 -20 

2 4 308 94 -21 -37 3277 16 

1 4 281 96 11 46 2927 -35 

2 3 353 129 76 29 2736 47 

0 3 500 194 -116 -107 2577 -9 

2 2 592 238 176 180 2487 -4 

1 2 1374 561 87 106 2449 -19 

2 6 45 19 55 52 2368 3 

2 1 1147 561 -116 -106 2045 -10 

0 1 10000 7565 -10 -10 1322 0 

1 0 9198 7565 10 10 1216 0 

This elongated elliptical image is dominated by several high order Fourier 

coefficients that are relatively unimportant in the transform of the original sample. 

Keeping in mind that each individual Ptip coefficient is calculated by Iraw/Isymmetrized at a 

particular H,K value, it is interesting that these prominent high-order coefficients have 

high amplitudes not because Iraw is high (quite the opposite), but because Isymmetrized is 

very low. 

 For example, for the high order (H,K) = (3,6), the amplitude of Iraw is only 257 

(arbitrary units) but the amplitude of Isymmetrized is much lower, at 45, thus the amplitude 

of Ptip(3,6) is very high, 5711 (normalized, arbitrary units). Compare that with the 

Table 4.6. 10 highest M16 PSF coefficients ranked by Ptip amplitude, plus data for (0,1) and (1,0) 
coefficients. 
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coefficient (H,K) = (0,1), which is a much stronger coefficient in the original image 

with an amplitude of 10000; but Isymmetrized(0,1) also has a high amplitude at 7565, 

therefore amplitude of Ptip(0,1) = 1322, about ¼ as strong as that of Ptip(3,6). 

 If we weight the Ptip coefficients according to their original amplitude strength in 

the raw image, we obtain a different set of 10 maximum amplitude coefficients, whose 

image is seen in figure 4.16. The length of this object is the same as the unweighted 

version in figure 4.15, but the width is considerably greater. 

Figure 4.17 shows close-ups of both unweighted and weighted periodic motifs for 

the M16 PSF. 

 

Figure 4.16. Approximately two unit cells of the M16 PSF after weighting coefficients as 
described in text. (left) density plot; (right) contour plot.   
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Table 4.7. Ten highest M16 coefficients ranked by Ptip amplitude after weighting by Iraw 
amplitude. 

 amplitude phase Ptip(H,K) 

H K raw symm raw symm amplitude phase 

0 1 10000 7565 -10 -10 6609 0 

1 0 9198 7565 10 10 5592 0 

1 1 2072 1132 -167 180 1896 13 

1 3 906 237 -175 -155 1732 -20 

1 2 1374 561 87 106 1683 -19 

0 2 1550 850 38 57 1413 -19 

2 1 1147 561 -116 -106 1173 -10 

1 -1 3497 7565 -9 -10 808 1 

2 2 592 238 176 180 736 -4 

3 6 257 45 -159 -157 734 -2 

 

Weighting the coefficients is an empirical procedure, not theoretical, that appears to 

change the model into a more reasonable representation of a tip. Further work is 

required to validate this model. 

Figure 4.17. Approximately one periodic motif of M16 PSF, contour plot.(left) unweighted; 
(right) weighted.   
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Figure 3.34 

Figure 3.35 

 

 We have tried the same technique on a different image, figure 

3.35, which is the open-loop AFM image of a square calibration grid 

(also shown in figure 3.34 as a closed-loop image). In this case Iobs/Isym 

yielded 39 usable coordinates for Ptip, many of them of high order, 

probably because of the sharp edges of the sample. The enforced 

symmetry was p4mm. The coordinates are shown in table 4.8 and the 

PSF is plotted in figure 4.18. It appears as a narrow tip with slight 

asymmetry around the tip (visible in the contour plot), which is 

consistent with a well-operating instrument with a good tip that has long-period 

hysteresis over the entire image. For comparison figure 4.19 shows a similar plot of the 

PSF of the closed-loop image of the same sample, figure 3.34, and table 4.9 shows its 

coefficients. The reconstructed tip appears sharper as one might expect with no 

hysteresis in the image. In both cases, closed- and open-loop, the dimension of the unit 

cell of the PSF (highlighted with arrows) is equal to the periodicity of the sample, here 

10 µm. 
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  amplitude phase Ptip [FT of PSF] 

H K obs symm obs symm ρ θ 
1 2 803 322 -50 0 2494 10 

0 4 570 285 153 180 2000 3 

1 -4 504 268 -160 180 1881 20 

7 1 635 365 -157 180 1740 19 

5 1 1115 708 -15 0 1575 17 

1 -2 485 322 -4 0 1506 -4 

0 6 433 300 10 0 1443 5 

0 2 1075 745 -37 0 1443 1 

5 0 1403 1029 36 0 1363 36 

3 1 1986 1568 167 180 1267 13 

1 4 338 268 161 180 1261 14 

9 0 367 301 35 0 1219 35 

0 8 255 211 -153 180 1209 7 

7 0 714 597 -173 180 1196 7 

3 0 2877 2414 178 180 1192 -2 

3 -1 1796 1568 -130 180 1145 50 

3 3 390 363 -38 0 1074 20 

5 -1 745 708 15 0 1052 15 

1 1 6926 6767 -26 0 1023 9 

0 1 10000 9942 -20 0 1006 0 

1 0 9884 9942 4 0 994 4 

1 -1 6609 6767 12 0 977 12 

3 -3 337 363 -22 0 928 -22 

1 -7 334 365 154 180 915 -26 

7 -1 313 365 -133 180 858 47 

1 3 1324 1568 173 180 844 12 

0 3 1951 2414 160 180 808 2 

0 7 481 597 -158 180 806 6 

8 0 167 211 110 180 791 -70 

0 9 235 301 14 0 781 8 

1 -3 1164 1568 -168 180 742 12 

4 -1 193 268 145 180 720 -35 

1 -5 487 708 4 0 688 4 

1 5 486 708 11 0 686 16 

0 5 656 1029 -13 0 638 4 

2 0 416 745 -58 0 558 -58 

6 0 167 300 -17 0 557 -17 

1 7 177 365 159 180 485 18 

4 1 38 268 -133 180 142 15 

 
 
 
 
 

Table 4.8 PSF calculation for figure 3.35 (open loop) 
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  amplitude phase Ptip [FT of PSF] 

H K obs symm obs symm ρ θ 
8 1 450 245 10 0 1837 10 

10 0 491 291 -5 0 1687 -5 

8 -1 398 245 -5 0 1624 -5 

8 0 799 496 -179 180 1611 1 

2 1 913 573 -177 180 1593 3 

2 0 1859 1200 -29 0 1549 -29 

4 -1 936 606 6 0 1545 6 

6 -1 720 468 176 180 1538 -4 

6 0 1071 722 -15 0 1483 -15 

4 0 1352 936 -179 180 1444 1 

6 1 663 468 -167 180 1417 13 

0 11 320 231 36 0 1385 36 

4 1 759 606 -1 0 1252 -1 

0 9 526 423 -166 180 1243 14 

2 -1 699 573 -162 180 1220 18 

1 9 384 316 20 0 1215 20 

1 -9 368 316 -34 0 1165 -34 

1 -7 628 556 167 180 1129 -13 

1 5 1144 1014 1 0 1128 1 

3 -5 337 302 179 180 1116 -1 

5 3 323 302 176 180 1070 -4 

1 7 588 556 175 180 1058 -5 

3 3 580 549 18 0 1056 18 

0 7 880 838 15 0 1050 15 

3 1 2109 2019 172 180 1045 -8 

1 3 2102 2019 169 180 1041 -11 

3 0 3244 3121 -8 0 1039 -8 

1 -3 2071 2019 -179 180 1026 1 

0 13 204 201 -159 180 1015 21 

0 5 1537 1517 179 180 1013 -1 

1 0 10000 9925 177 180 1008 -3 

1 -5 1020 1014 -13 0 1006 -13 

1 -1 6894 6878 -12 0 1002 -12 

1 1 6861 6878 0 0 998 0 

0 1 9849 9925 175 180 992 -5 

5 0 1497 1517 180 180 987 0 

8 1 450 245 10 0 1837 10 

10 0 491 291 -5 0 1687 -5 

8 -1 398 245 -5 0 1624 -5 

 

 

Table 4.9 PSF calculation for figure 3.34 (closed loop) 
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Figure 4.18. (left) Periodic motif density plot of PSF of open-loop figure 3.35; (right) 
Contour plot with length of one unit cell (10 µm) highlighted 

Figure 4.19. (left) Density plot of the periodic motif of the PSF of figure 3.34, closed-loop image 
(right) contour plot 
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5. Summary and Conclusion 
 

In this thesis we have shown that the technique of Crystallographic Image 

Processing, which was designed for the processing of high resolution (lattice fringe) 

images from TEMs, is also applicable to two-dimensional images of periodic samples 

taken by scanning probe microscopes. We demonstrated in this thesis that the use of the 

crystallographic averaging algorithm removes noise and random error from images 

more effectively than translational averaging. This was done by testing both CIP and 

translational averaging on simulated 512×512 pixel images with deliberately introduced 

random error, with motifs arranged in a 4×4 array and a 6×6 array. The results 

confirmed the effectiveness of CIP and the relationship between signal-to-noise ratio 

and sample size. We also created a 2048×2048 pixel simulated image with systematic 

error and showed the superior performance of CIP over translational averaging.   

We then applied the technique to an STM image of F16CoPc on HOPG which 

appeared to have been taken with a blunt, multiple or otherwise imperfect tip.  By 

selecting the only plane symmetry group (p4mm) compatible with the known point 

symmetry of the molecule (4mm) we were able to produce an image similar to other 

images of this molecule taken with tips lacking this type of defect.  We also 

demonstrated the ability to correct systematic errors caused by hysteresis in the AFM 

image of a calibration grid, by imaging the grid with and without the instrument’s 

closed-loop hysteresis correction operating. CIP was able to remove the visible non-

linearities in the image that had no hysteresis correction. This was effective even though 
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the amplitude residual for the non-linear image was 20.6% vs. 16.8% and the phase 

residual was 20.7° compared to 13.5°. 

Given a scanning probe image of a 2D periodic, highly symmetric known sample, 

we demonstrated that it was possible to use the Fourier coefficients of the image 

transform to solve the inverse problem and calculate the point spread function (PSF) of 

the instrument. This was done by crystallographically enforcing a suitable plane 

symmetry group on an STM image of F16CoPc on HOPG and dividing the Fourier 

transform of the original image (as it was output by the instrument) by the transform of 

the enforced image. The quotient is the Fourier transform of the instrumental PSF. Its 

inverse Fourier transform, when plotted in real space, represents the net effect that the 

microscope itself has on the object-to-image transaction. The plot of the ten highest-

amplitude Fourier coefficients shown in the thesis depicts an elongated “tip” with a 

possible “minitip” adjacent. (It was found that plotting more than the 10 highest-

amplitude Fourier coefficients adds virtually no visual detail.) 

We performed the same procedure on the two AFM images of a calibration grid, 

with and without hysteresis correction, and show that the real-space plot of the effective 

tip resembles a two-dimensional projection along the tip axis of a three-dimensional 

sharp tip, and is much sharper in the image which has hysteresis correction, supporting 

the conclusion that this real-space plot is representative of the actual instrument. 

We additionally demonstrated that the PSF, once known, could be used on a 

second image taken by the same instrument under essentially the same experimental 
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conditions to remove errors introduced during that second imaging process. This 

involves operating in Fourier space to divide out the contribution of the instrument. This 

was done with another STM image of F16CoPc which was taken under essentially the 

same experimental conditions, but is of a different area of the sample. Both this image, 

and the one from which the PSF was derived had vacancies and visible jitter. (This 

particular image also had a vertical discontinuity where a scanning parameter visibly 

changed.)  After performing the PSF correction, we applied CIP to the “before” image 

and “after” image, and were able to show significantly improved residuals after the PSF 

correction; the phase residual for the corrected image was 9.8° compared with 15.8° 

before correction, and the amplitude residual was improved from 55.2% to 10.8%.  This 

process is mathematically sound when applied to a second image with plane group 

symmetry the same as the calibration image; further work is to be done to justify using 

this process on all types of images.   

Further work is also in progress (which will apply to all uses of CIP for SPM 

images) to obtain a fully objective criterion, given a particular image, for choosing the 

plane symmetry group which should be enforced.   
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 Appendix A – Source code for simulated images 
 
Code used to generate the simulated images of crosses in Section 3. Code written in 
Visual Basic 2008 Express Edition. 

 
Public Class Crosses 
 
  Private Sub PictureBox1_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles PictureBox1.Click 
    Dim imagesize As Integer 
    imagesize = CInt(InputBox("Pixel size of image (power of 2)?")) 
    Dim im As New Bitmap(imagesize, imagesize) 
    Dim b As Graphics = Graphics.FromImage(im) 
    Dim crossl, crossw As Integer 
    Dim x, y As Integer 
    Dim DistortCross As MsgBoxResult 
    Dim BiasCross As MsgBoxResult 
    ' Dim BiasAmount As Integer 
 
    crossl = CInt(InputBox("Pixel length of cross, multiple of 10?")) 
    crossw = crossl \ 5 
 
    DistortCross = MsgBox("Do you want to distort the crosses?", MsgBoxStyle.YesNo) 
    Randomize() 
 
    If Not DistortCross Then 
      BiasCross = MsgBox("Do you want to bias the crosses?", MsgBoxStyle.YesNo) 
    End If 
    'If BiasCross Then 
    'BiasAmount = CInt(InputBox("Bias amount? (1 to 5)")) 
    'End If 
 
    b.Clear(Color.White) 
 
    ' x and y are the center 
    x = 10 + crossl \ 2 
    y = 10 + crossl \ 2 
 
    While y <= imagesize - 10 - crossl \ 2 
      While x <= imagesize - 10 - crossl \ 2 
        b.FillRectangle(Brushes.Black, x - crossl \ 2, y - crossw \ 2, crossl, crossw) 
        b.FillRectangle(Brushes.Black, x - crossw \ 2, y - crossl \ 2, crossw, crossl) 
        If DistortCross = MsgBoxResult.Yes Then 



116 
 

          Distort(x, y, crossl, b) 
        ElseIf BiasCross = MsgBoxResult.Yes Then 
          Bias(x, y, crossl, b) 
        End If 
        x = x + crossl + 10 
      End While 
      x = 10 + crossl \ 2 
      y = y + crossl + 10 
    End While 
 
    PictureBox1.Image = im 
    PictureBox1.Image.Save("C:\...crosses1.jpg", Imaging.ImageFormat.Jpeg) 
 
  End Sub 
   
  Private Sub PictureBox1_MouseEnter(ByVal sender As Object, ByVal e As 
System.EventArgs) Handles PictureBox1.MouseEnter 
    PictureBox1.BackColor = Color.Blue 
    PictureBox1.BorderStyle = BorderStyle.FixedSingle 
 
  End Sub 
  Private Sub Distort(ByVal x As Integer, ByVal y As Integer, ByVal l As Integer, ByRef f 
As Graphics) 
    ' x and y locate the center of the cross, each arm of which is 2 units wide, 10 units long. 
    ' Pick a random 1x1 square to turn white 
    ' Randomly choose to distort horiz or vert arm of cross. 
 
    Dim blankx, blanky As Integer 
 
    If Rnd() <= 0.5 Then 
      ' choose horizontal, x range from x-5 to x+4, y range from y-1 to y 
      blankx = CInt(Int((10 * Rnd()) - 5)) 
      blanky = CInt(Int((2 * Rnd()) - 1)) 
    Else 
      ' choose vertical, x range from x-1 to x, y range from y-5 to y+4 
      blankx = CInt(Int((2 * Rnd()) - 1)) 
      blanky = CInt(Int((10 * Rnd()) - 5)) 
    End If 
 
    ' Now blankx and blanky are number of units to offset from center. One unit = 
length/10 
 
    blankx = blankx * (l \ 10) 
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    blanky = blanky * (l \ 10) 
 
    f.FillRectangle(Brushes.White, blankx + x, blanky + y, l \ 10, l \ 10) 
 
    ' Now pick a random square adjacent to the cross to turn black 
 
    Dim blackx, blacky As Integer 
 
    If Rnd() <= 0.5 Then 
      'choose horizontal, x = -5, -4, -3, -2, 1, 2, 3, 4; y = -2 or 1 
      Do 
        blackx = CInt(Int((10 * Rnd()) - 5)) 
      Loop Until blackx < -1 Or blackx > 0 
      blacky = CInt(3 * Int(2 * Rnd()) - 2) 
    Else 
      'choose vertical, y = -5, -4, -3, -2, 1, 2, 3, 4; x = -2 or 1 
      Do 
        blacky = CInt(Int((10 * Rnd()) - 5)) 
      Loop Until blacky < -1 Or blacky > 0 
      blackx = CInt(3 * Int(2 * Rnd()) - 2) 
    End If 
 
    blackx = blackx * (l \ 10) 
    blacky = blacky * (l \ 10) 
 
    f.FillRectangle(Brushes.Black, blackx + x, blacky + y, l \ 10, l \ 10) 
 
  End Sub 
  Private Sub Bias(ByVal x As Integer, ByVal y As Integer, ByVal l As Integer, ByRef f As 
Graphics) 
    ' x and y locate the center of the cross, each arm of which is 2 units wide, 10 units long. 
    ' Pick a random 1x1 square to turn white 
    ' Randomly choose to distort horiz or vert arm of cross. 
 
    Dim blankx, blanky As Integer 
 
    If Rnd() <= 0.5 Then 
      ' choose horizontal, x range from x-5 to x+4, y range from y-1 to y 
      blankx = CInt(Int((10 * Rnd()) - 5)) 
      blanky = CInt(Int((2 * Rnd()) - 1)) 
    Else 
      ' choose vertical, x range from x-1 to x, y range from y-5 to y+4 
      blankx = CInt(Int((2 * Rnd()) - 1)) 
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      blanky = CInt(Int((10 * Rnd()) - 5)) 
    End If 
 
    ' Now blankx and blanky are number of units to offset from center. One unit = 
length/10 
 
    blankx = blankx * (l \ 10) 
    blanky = blanky * (l \ 10) 
 
    f.FillRectangle(Brushes.White, blankx + x, blanky + y, l \ 10, l \ 10) 
 
    ' Now pick a random square adjacent to the cross to turn black 
 
    Dim blackx, blacky As Integer 
 
    If Rnd() <= 0.0005 Then     ' JUST DO THE VERTICAL 
      'choose horizontal, x = -5, -4, -3, -2, 1, 2, 3, 4; y = -2 or 1 
      Do 
        blackx = CInt(Int((10 * Rnd()) - 5)) 
      Loop Until blackx < -1 Or blackx > 0 
      blacky = CInt(3 * Int(2 * Rnd()) - 2) 
    Else 
      'choose vertical, y = -5, -4, -3, -2, 1, 2, 3, 4; x = -2 or 1 
      Do 
        blacky = CInt(Int((10 * Rnd()) - 5)) 
      Loop Until blacky < -1 'Or blacky > 0 JUST DO THE TOP HALF 
      blackx = CInt(3 * Int(2 * Rnd()) - 2) 
    End If 
 
    blackx = blackx * (l \ 10) 
    blacky = blacky * (l \ 10) 
 
    f.FillRectangle(Brushes.Black, blackx + x, blacky + y, l \ 10, l \ 10) 
 
  End Sub 
 
End Class 
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Appendix B -- Complex number notation 
 
Complex numbers can be expressed in two equivalent formats.  
 
Let z = x + yi , a complex number.  
 
Then the real portion of z, Re(z) = x and the imaginary portion, Im(z) = y. The number z 
has a magnitude |z| = 2 2x y+  which is the “length” of the number. 

 
 
If one sets r = |z| and θ = arctangent (y/x) where a branch of the arctangent function is 
denoted, for example (-π,π] or [0,2π), then reiθ is a unique way of writing the number z. 
 
To convert back to x + yi notation, let x = r cos(θ) and y = r sin(θ). This is consistent 
with the Euler formula,  
 
eiθ = cos(θ) + i sin(θ) 
 
The benefit of the reiθ is apparent when complex numbers need to be multiplied and 
divided. Performing these operations on numbers notated x + yi is cumbersome and 
prone to human error due to the number of operations, while doing so on numbers 
notated reiθ requires merely adding or subtracting of θ and multiplying or dividing r. 
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