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Abstract

Thin film arrays of molecules or supramolecules are actiNgests of investigation
because of their potential value in electronics, chemical sensitalysis, and other
areas. Scanning probe microscopes (SPMs), including scanning turmetnogcopes
(STMs) and atomic force microscopes (AFMs) are commonly used ttie

characterization and metrology of thin film arrays. As opposé@itsmission electron
microscopy (TEM), SPMs have the advantage that they can oftenahakevations of
thin films in air or liquid, while TEM requires highly speciakizéechniques if the
sample is to be in anything but vacuum. SPM is a surface nignagchnique, while
TEM typically images a 2D projection of a thin 3D sample. Additignaariants of

SPM can make observations of more than just topography; for iestawagnetic force

microscopy measures nanoscale magnetic properties.

Thin film arrays are typically two-dimensionally periodic. perfect, infinite two-
dimensionally periodic array is mathematically constrained kanigeto one of only 17
possible 2D plane symmetry groups. Any real image is both famte imperfect.
Crystallographic Image Processing (CIP) is an algorithmRbarier transforms a real
image into a 2D array of complex numbers, the Fourier coeffeciehtthe image
intensity, and then uses the relationship between those coeffimdnts ascertain the
2D plane symmetry group that the imperfect, finite imagedstrikely to possess, and

then adjust those coefficients that are symmetry-related so as to gezfeghtmetry. A



Fourier synthesis of the symmetrized coefficients leadsperfectly symmetric image
in direct space (when accumulated rounding and calculation errorgnared). The
technique is, thus, an averaging technique over the direct spacereyal data that
were selected from the thin film array. The image must havediety in two

dimensions in order for this technique to be applicable.

CIP has been developed over the past 40 years by the elecysiallagraphy

community, which works with 2D projections from 3D samples. Anyoplee sample,

whether it is 2D or 3D has an “ideal structure” which is tihecttire absent any crystal
defects. The ideal structure can be considered one average Uniraehgated by
translation into the whole sample. The “real structure” is &mahsample containing
vacancies, dislocations, and other defects. Typically the @foalectron and other
types of microscopy is examination of the real structure, asdtéed structure of a
crystal is already known from X-ray crystallography. Higésalution transmission
electron microscope image based electron crystallography, osthibe hand, reveals

the ideal crystal structure by crystallographic averaging.

The ideal structure of a 2D thin film cannot be easily in aiapatselective fashion
examined by grazing incidence X-ray or low energy electron adifftn based
crystallography. SPMs straightforwardly observe thin filmgirect space, but SPM
accuracy is hampered by blunt or multiple tips and other unavoidabienestt errors.

Especially since the film is often of a supramolecular sysidrose molecules are
i



weakly bonded (via pi bonds, hydrogen bonds, etc.) both to the substrate anH to ea
other, it is relatively easy for a molecule from the filmaidhere to the scanning tip

during the scan and become part of the tip during subsequent observation.

If the thin film array has two-dimensional periodicity, CIRiignique and effective tool
both for image enhancement (determination of ideal structure) atttefquantification
of overall instrument error. In addition, if a sample of known 2Daggkeity is scanned,

CIP can return information about the contribution of the instrument itself to the.image

In this thesis we show how the technique is applied to imagéscotlimensionally
periodic samples taken by SPMs. To the best of our knowledge, abisdver been
done before. Since 2D periodic thin film arrays have an ideal tgteudhat is
mathematically constrained to belong to one of the 17 plane syyngreups, we can
use CIP to determine that group and use it for a particularBctefé averaging
algorithm. We demonstrate that the use of this averagingithlgoremoves noise and
random error from images more effectively than translationabgueg, also known as
“lattice averaging” or “Fourier filtering”. We also demonstrate the ability to correct
systematic errors caused by hysteresis in the scanningspro@dese results have the
effect of obtaining the ideal structure of the sample, avegagat the defects
crystallographically, by providing an average unit cell which, whenstated,

represents the ideal structure.



In addition, if one has recorded a scanning probe image of a 2D pesadigle of
known symmetry, we demonstrate that it is possible to use theeFaoefficients of
the image transform to solve the inverse problem and calculate the point fsjoicteuh
(PSF) of the instrument. Any real scanning probe instrument ddpam the ideal PSF
of a Dirac delta function, and CIP allows us to quantify this depmas far as point
symmetries are concerned. The result is a deconvolution of trectie#f tip”, which
includes any blunt or multiple tip effects, as well as theat$f caused by adhesion of a

sample molecule to the scanning tip, or scanning irregularitietated to the physical

tip.

We also demonstrate that the PSF, once known, can be used on a second image taken by
the same instrument under approximately the same experingentdtions to remove

errors introduced during that second imaging process.

The preponderance of two-dimensionally periodic samples as subjec&Pdf
observation makes the application of CIP to SPM images a valuable techniquadb ext
a maximum amount of information from these images. The improvedutes of
current SPMs creates images with more higher-order Fourifficoa@s than earlier,
“softer” images; these higher-order coefficients are eajpg@menable to CIP, which

can then effectively magnify the resolution improvement createleltgr hardware.

iv



The improved resolution combined with the current interest in supramadecul
structures (which although 3D usually start building on a 2D pergdi@ace) appears

to provide an opportunity for CIP to significantly contribute to SPM image processing
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1. Introduction
1.1 Overview

This thesis is intended to first describe an existing method afenprocessing,
“crystallographic image processing” (CIP), which historicdls been used to extract
information from high resolution transmission electron microscopyTEMR) images
of periodic objects, and then to show that this same technique cattexseful
information from certain scanning probe microscopy (SPM) images.

The application of this technique to SPM images has two signifivaméfits.
First, if the SPM image is of a sample that is two-dimensionally peridascthtesis will
show that CIP can help extract signal from noise. This is dorevénraging the unit
cells together, which suppresses noise and random error in the. ifrragslational
averaging of periodic image elements is a well-known techniqueevewCIP adds
additional processing steps. In addition to translational averagfingnit cells, by
determining the plane group symmetry of the sample and enforcingythanetry upon
the uncorrected image one can enhance detail over and abovativaatlaveraging.
Certain systematic errors such as image bow or a trapezbgiattion can also be
eliminated by CIP. Averaging techniques suppress the image of any adtas dethe
sample, which may or may not be desirable depending upon what theisuser
investigating. The CIP technique is well-known for electron mi@pgcthis thesis is

intended to show its value for SPM as well.



Second, as will be discussed below, an SPM instrument has attip itheally a
point but often is multiple points or an irregular shape — and knowledgéeof t
configuration of this tip is essential in interpreting an SPMge This information is
most useful if it can be obtained while the tipims situ, (installed in a working
instrument) There are existing techniques such as blind reconstruction [1] for
ascertaining this shape, as well as direct examination By &€anning electron
microscopy). This thesis will show that CIP can be used to mhle shape
determination by taking advantage of the symmetry of a highlypgiercalibration

sample, and is a unique and valuable approach for making this determination.



2. Crystallographic Image Processing
2.1 The Fourier Transform

The Fourier transform is an integral transform that operates on a complewtiuncti
of n variables to produce another complex functiom gariables. Since images can be
considered two-dimensional density functionss 2 for image processing, and given
the monotonic nature of a monochrome density function (this thesis doégsaats
color or false-color images) the input function is real-valuederathan complex. The
output of the transform is complex although certain inputs will foatteof the
imaginary components of the output to zero.

There are equivalent formulations of the Fourier transform. Thisstinels use

the “crystallographic convention” in which the direct transform is:

F(H,K) :I f (X, y)exp@a(xH + yK))dxdy (2.1)

that takes the complex functiémn what is commonly referred to as “real space” to the
complex functionF in what is called “reciprocal space” or “Fourier space”, dmal t

inverse transform is:

f(xY) :IF(H,K)exp(—27zi(Hx+ Ky))dHdK (2.2)

Note the negative sign in the exponential is the only computationaretiffe.

The two functiond(x,y) and F(H,K) are known as “Fourier transform pairs” [2]. The



variablesx andy can be viewed as components of a two-dimensional vector in real
space, whildH andK are components of a vector in reciprocal space. As used in CIP, an
HK vector represents a particular crystallographic direction in the sampl

There are other conventions regarding the exact definition of theieF
transform. In one common convention sometimes used by physicistxgbeeatial
portion of the forward Fourier transform &™ while the inverse transform has an
exponential o&”™. Fourier pairs retain their relationship regardless of which coiovent
is used, but the same convention must be consistently applied to one problem

The Fourier transform operates on continuous functions and generateslyy)us
continuous result. Image processing is done on a discrete two-dimérasiayeaof real
numbers that correspond to the intensity of the associated pixelu@a can also be
assigned to color, which is disregarded here). The DiscreteeFdransform (DFT) is
the applicable technique for discrete functions. In one dimension, cothgaF®urier

Transform:

F(H) :j f (x) exp(2ri (xH ))dx (2.3)
to the Discrete Fourier Transform:
F(H) = f(x)exp(@ri (1) @4

where N is the number of discrete data poixtsinput. The Fast Fourier Transform

(FFT) is the usual implementation of the DFT algorithm, ass icamputationally



efficient, although recent improvements in computer speed have to degree
alleviated the need for the most efficient algorithm possible.

The Fourier transform as applied to crystallographic imageegssing maps real
space to a spatial frequency space (usually referred ‘tee@procal space” in image
processing, or “Fourier space”). The data (output from the DFhjsrreciprocal space
is a 2D array of complex numbers, indexed byHkhandK components. This data is
most easily visualized (and plotted) in polar form. The complex nummberthe form
re'’ instead ofx+iy. Ther coordinate in this case is the amplitude of the transform at
this H,K) point and the is the phase. If the sample is periodic, which is the usual cas
when CIP is used, the amplitude of the reciprocal space awataics spots
(mathematical points in the ideal case) that correspond tolgpatiadicities in the real
space data.

An image containing two-dimensional periodicities in ¥handy directions of
real space will thus have a regular two-dimensional spot pattethe amplitude
coordinate of Fourier space. The symmetry information preseaniobject is also
present in the Fourier transform.

A plot of a Fourier transform of a real-space image usuallywshonly
information about the amplitude portion of the transform. What oneisé®s intensity
and location of the spots. The intensity corresponds to the squareaofphicude of the
Fourier coefficient. The phase portion of the coefficient, which pessiinformation

about the two-dimensional translational symmetry of the latiscdully half of the

5



information output of a Fourier transform, and is certainly used B @@lis more
critical than amplitude) but is typically not plotted as an imageause it conveys little
information to the human eye. See the right portion of figure 2.5rf@xample of a

phase plot.

2.2 An early use of Fourier analysis of an image

Aaron Klug received the 1982 Nobel Prize in Chemistry “for higetigpment of
crystallographic electron microscopy and his structural eluoidatif biologically
important nucleic acid-protein complexes” [3].

Klug was investigating the structure of viruses and had turned tirazle
microscopy with the intent of using direct images. Many ofirtieges were difficult to
interpret because the depth of field of the instrument (as pealyin electron
microscopy) permitted the entire vertical depth of the samplapfear in focus,
essentially creating a two-dimensional projection of the thmeensional object. The
resulting image was a superposition of the image of the frotit back wall, and
internal structure of the object (Figure 2.1).

His solution involved taking the Fourier transform of the image.



Figure 2.1

(a) Original electron microscope image;

(b) amplitude portion of diffraction pattern of
image with selected spots circled; note there is a
vertical mirror line through the center (shown
red), and the uncircled spots form a close, but
not exact, mirror reflection of the circled spots;

(c) inverse Fourier reconstruction using just circlgd
spots.

>

figure from [3]

Because one of Klug's samples was largely periodic with dinensional
symmetries, (a spiral structure extracted from a phage)yitius Fourier transform
consisted of symmetric patterns of spots mixed with noise. Mgsifisantly, since
Klug’'s image was the projection of the front wall and back wathefvirus on top of
one another, both of which were two-dimensional periodic in naturb, little or no
internal structure between, the Fourier transform was visiblyemgo of two mirror-
image symmetric patterns of spots (see Figure 2.1). Klug’s solutiorovgatett one set
of spots, eliminate the other set (along with the noise), arfdrpea reverse Fourier
transform on the result. This procedure produced a clear images aifahe walls of

the structure.



Any two dimensional image can be Fourier transformed, and usefuhiation
can be extracted even if the image is nonperiodic. CIP depends upaaiqity to be
useful and cannot address nonperiodic samples. Even though Klug's sample was
periodic, his technique did not constitute CIP. But it is an illustration of the powes of th
Fourier transform in extracting and presenting information about thedpmsty of an

image.

2.3 Symmetry

A crystal, by definition, is a three-dimensional array of idm&ttatomic units
called “unit cells” extending in all directions. The unit cellsm be made up of one atom
or thousands, but they are arranged regularly so that, disregardacesuaind defects,
an observation made from a particular location in any uniti€@tlentical to the same
observation from the same location in any other unit cell. This isontrast to an
amorphous solid, a glass, in which there is no long-range orderechttims. The
definition of the unit cell of a particular crystal is arbiyrathere are an infinite number
of possible unit cells, but generally the simplest cell thdtibéts the maximum
symmetry is agreed upon. Geometry limits the possible arnaegts of unit cells in a
crystal to a finite number of “lattices”.

The lattice is a mathematical construct. To quantify locationthe lattice, a
linear basis is constructed for the crystal by placing thgiroat one corner of a unit
cell and choosing three different edges that share the origiress that are generally

labeled asa, b andc. See Figure 2.2. These axes need not be orthogonal nor does the
8



unit length have to be the same for each axis. The angles between the aaseue,

S andy.
C ; —— ;
Figure 2.2. A three-dimensional unit cell.
Standard right-hand axes; angles can be
orthogonal and unit lengths equal,, need not ba.
B (04 \ b (from http://xrayweb.chem.ou.edWniversity of
Oklahoma)
a

This provides a convenient way to describe the location of atomswitéiunit
cell; analogous to Cartesian coordinates; one normalizes thg, esdgeb,andc are the
unit vectors for the crystal. The length of each is 1 but thatein Cartesian space it is
not necessary tha = b = c. Then the location of each atom is its fractional distance
along the edge of each axis.

In addition to the direct lattice already described, ih&dpful to describe a
“reciprocal lattice”. This is a three-dimensional mathecahtonstruct analogous to the
direct lattice but it exists in Fourier space. The thmeeakr basis vectors are callat
b*, and c* and each one is perpendicular to the face of the unit cell naorthe
corresponding real space unit vector. Note that the reciprocad sgators are only
parallel to real space vectors when the crystal symmetrguisc, tetragonal or

9



orthorhombic. The units of reciprocal space are of inverse lengthby definition the
spacing between lattice points is the inverse of the correspospate between real
space points.

Ideal crystals possess symmetry — that is, after cettanslations, rotations,
reflections, inversions, or rotoinversions are performed, the crystah a new
orientation, and it is indistinguishable from the old orientation. &dll rcrystals have
defects that prevent strict symmetry, but are reasonably close to syenmet

Symmetry is mathematically described by the specifroraetry operations that
leave the crystal unchanged. When the symmetries of alkhgste been ascertained it
can be assigned to a space group. For three dimensional objeatsalvipessible
symmetries (including translational) are accounted for, tlaeeeonly 230 possible
space groups. This is a mathematical limitation imposed byy#wenetry of three
dimensional space.

Although objects in real space exist in three dimensions, theircporje exist in
two dimensions, and symmetry exists in 2D as well and can b&asdyrguantified.
There are also physical entities such as thin films and sgrfaicmaterials that have
features in three dimensions but present a two-dimensional aspeet observer, and
their symmetry can be described this way. The vital reasonGAlaycan produce useful
results is that there are only 17 possible space groups in twasions, analogous to
the 230 space group limitation in three dimensions. (One of thegrdps, thepl

group, describes an object that has only translational symmethygsi no rotation,
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mirror, or glide elements and thus there are 16 space groups in nvensions that
have a higher symmetry.) Therefore if one is curious as tcsttlueture of a two-
dimensional film or surface and knows that it is periodic: (1l i fact that the
structure must possess one of these 17 possible symmetries, smth@gxtent that it
does not, it must vary from periodicity, because of either expetaherror, a defect in
the structure, or a false assumption that the structure is periodic.

The plan of attack of CIP is to (through Fourier analysis) akenperfect image,
ascertain which of the 17 groups most closely matches its syymed correct the

image by “enforcing” the correct symmetry.

2.3.1 The two-dimensional space groups

There are various nomenclatures to describe space groups. The ionafnat
Tables for Crystallography [4] use Hermann-Mauguin symbols. Hmebal itself
communicates information about the centering type of the conventiehhahra the
symmetry of the group. The initial lettep™means the lattice is “primitive”, meaning
there is only one lattice point per cell. A centered lattidl witial letter “c” has two
lattice points per cell in two dimensions and can potentiallydseribed with a simpler
primitive lattice, but at the cost of disregarding some synyregments. See Figure

2.3 and Table 2.1.
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Figure 2.3. Drawings of the 17 two-dimensional gpgoups with ordering slightly different from
Intl Tables for Crystallography.

http://www.science.smith.edu/departments/Geology/MiPlane_Patterns.pdSmith College

12




Table 2.1. List of the 17 two-dimensional planeuyps.

i

7

group short Hermann-Mauguin symbol comments

number

1 pl no symmetry other than translation

2 p2 four twofold axes

3 pm no rotations, two parallel mirror lines

4 pg aspmwith glides instead of mirrors

5 cm can describe with primitive cell but with
less symmetry; two parallel mirrors, tw
glides between mirrors

6 p2mm two perpendicular mirrors, twofold axe
where mirror lines intersect

7 p2mg two parallel mirrors, two glides
perpendicular to mirrors, twofold axes
on glides

8 p2g99 two glides in each of two perpendicula
directions, twofold axes on glides

9 c2mm non-primitive cell; two perpendicular
mirrors, a twofold axis not on a mirror,
two that are on mirrors

10 p4 two fourfold axes, one twofold axis, no
reflections

11 p4mm asp4 with four mirrors, two glides

12 p4gm asp4 with two mirrors, multiple glides

13 p3 three threefold axes, no reflections

14 p3ml three threefold axes, mirrors through
each one, glides parallel to mirrors

15 p31lm three threefold axes, mirrors but one a
without a mirror, multiple glides

16 p6 one sixfold axis, two threefold, three
twofold, no reflections

17 p6mm asp6 with six mirrors, six glides

Any periodic two-dimensional image must fit into one of these categories.

There is a subset of the unit cell of a space group callechfyennetric unit”; it

is the smallest closed part of the space group that cafl bil space by application of

the symmetry operations. The asymmetric unit, combined with ghimmetry

operations, contains enough information to recreate the entire lrmhdeherefore the
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entire crystal. The higher the symmetry of the plane groupsrttadler the relative size
of the asymmetric unit.

The multiplicity of a group refers to the “general position” withine unit cell,
which is an arbitrary locus not on a symmetry element, and isutmder of times that
the locus will be copied within the unit cell as a result of all of the symyroperations.
Intuitively, it is a measure of the “quantity of symmetryatta particular space group
has. A highly symmetric group g6mmand its general position has a multiplicity of 12.
The asymmetric unit ghémmhas an area of 1/12 of the area of the whole unit cell, a
reciprocal relationship that holds for any primitive group.

As stated earlier, the plan of CIP is to take a periodic imntagat it as a two-
dimensional array of pixels, and ascertain its plane group. Ored)eds used in the
CRISP program of Calidris, Inc., uses the Fast Fourier Transform (Fiplenmantation
of the Discrete Fourier Transformation (DFT) to operate onirttage. The resulting
transform has peaks or spots corresponding to periodicities in tige.ihese spots,
which exist in reciprocal space, are matched to a possible aealplattice; either

automatically or by human intervention.

2.4 Implementation of CIP

One possible sequence of operations to actually perform CIP is as follows.
1. Create a reciprocal latticeTake an image or portion of image as "ax22"
array of pixels, each with a value representing the gragsctnsity of the image at

that point. This is an array of integers. In order to calculed@wo dimensional Fourier
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transform of this array, use one of the Fast Fourier Transfoptementations of the

Discrete Fourier Transform. Following is the form of the DFT:

FHK) =Y S f(xy)expea(’i +¥) @5)

The FFT is known as a computationally efficient algorithm falcw@ating this
transformation. The resulting transform is axX22" array of complex numbers. A
complex number can be expressed either in the fofnbi wherea is the real part and
b is the imaginary part, or in the forne'” wherer is the magnitude of the complex
number on an Argand diagram amés the phase angle. These are related by:

b (2.6)
@ = arctan—
a

(where the principal value of the arctangent functianges from#2 ton/2)

For the purposes of CIP the"” format is most useful and each ordered pair of the
array contains the amplitude of the Fourier component and the phasecahhlze
viewed as a two-dimensional array of complex numbers or two arrays of real sumber

Plot an image of the FFT (in order for the user to see andhterth) as a pixel
at eachx*-y* location with the pixel intensity equal to the square of the anagipart
of the transform at that point. Assuming the original image keamtdimensional
periodicity, the FFT image will consist of bright spots (mixdthwoise and transforms

of nonperiodic elements). The left portion of Figure 2.4 is an example.
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2. Characterize the reciprocal latticEhe spots form a lattice in reciprocal space.
There are two tasks to perform with these spots. The first &ccurately determine
their location. This is done with existing software that findspbaks in the amplitude
components of the two dimensional array, although the location canebeified with
subpixel interpolation and by fitting the peaks to a grid by a least-squatkedi5].

Determining the exact location of the amplitude peaks is patlguimportant
when one considers that this location is also used to identify the phhge associated
with the spot, and the values of the phases do not peak but can vafigasitjy from
pixel to pixel. (One can plot an image of the phases sinuléing usual image of the
amplitudes, but the “spots” are not conspicuous or in some cases nongxigtes a
one pixel error in the location of the amplitude peak, which may natlgrenpact the
amplitude value itself, can result in a significant error in the phase.

Figure 2.5 shows an STM image on the left (this image wildmn and analyzed
later in the thesis), the Fourier amplitude squared in the middtethe Fourier phase
on the right. The spots are clearly visible in the amplitude plotirnvigible to the

human eye in the phase plot.
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Figure 2.4. Two presentations of a Fourier tramsfdion of a simulated HRTEM image of
MgO(111) (eft) image of the amplitude portion of the Fouriens@rmation (black/white
inverted for readability). One of the spots in kbwer left has a small red arrow pointing it
out.(ight) the vicinity of the marked spot, showing pixel-pixel data at and around the spot,
amplitude on the top, phase on the bottom. Notgteat differences between phases in adjagent
pixels.

Figure from CRISP program, Calidris Inc.

Figure 2.5. left) STM image of izCoPc on graphite, image analyzed with CIP
in chapter 4;¢ente) plot of Fourier amplitude component squared efshme
image; (ight) plot of Fourier phase component of same imadse feolor
corresponds to phase which ranges from -180 tadégbfees.
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The second task is to index the spots, in other words to selecpph@paate
reciprocal lattice vectors. There are algorithms for autiontettice detection — however
the human eye is an excellent detector of patterns, and theamskbel two particular
spots withHK indices and so select the lattice manually. Typically one @soibe two
spots nearest to but not collinear with the central spot and askgmsas (1,0) and
(0,1). Once this assignment has been madeHkéndices of the remaining spots are
compelled and the lattice parameters for the reciprocal dag@it; b*, and y*) are
determined.

Each spot now has six pieces of information associated witk x*-y* location
in reciprocal space, itelK index, its amplitude component and its phase component.
These last two components are the raw material for CIP.

The determination of these lattice parameters also deterthi@eggpe of lattice.
An object with two-dimensional periodicity can be organized in one of Gné
possible two-dimensional lattices. Figure 2.6 shows the four prariditices as well as

one centered lattice.
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This lattice determination is made while looking at the recadrdettice but it

applies to both the reciprocal lattice and the image (reak¥pattice. The image will

likely have noise, which if random does not interfere with the symymieut may also

have distortions in the x-y directions that can make both the reakaipiocal lattices

appear to have less symmetry than the actual sample possesses.

3. Make a symmetry assumptioks stated before, there are only 16 possible

higher symmetry plane groups (groups that possess point symnetrtgnés higher

than the identity, i.e. nqtl) to which a two dimensional periodic object can belong.

Each one of these groups constrains the relationships betweEauther coefficients,
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both amplitude and phase, of various spots in various ways. In some cases there is a null
constraint. For instance in the casep® symmetry, there is no constraint on the
amplitudes but all phases must be 0 or 180 degrees. As an exampléaigiilya
symmetric group, in the case pémmnot only do the phases have to be 0 or 180
degrees, but both the phases and the amplitudes of any spbkainfust equal the
phases and amplitudes of spotskat-i-K), (-H-K H), (K H), (H -H-K), (-H-K K), as
well as (H, -K).

The sample, if periodic, must belong to one of these groups. Each grtespers
in turn, although for computational efficiency if the reciproca¢saare close to 90
degrees the hexagonal group8,(p3mi, p31m, p6, p6mmare not tested, while if the
axes are close to 60 degrees the squefep4mm, p4gjmand rectangulampn, pg, cm,
p2mm, p2mg, p2gg, c2mgroups are not tested.

3.1 Find the originGiven the lattice parameters, a unit cell is implicitlyirozsd
in the reciprocal lattice. This defines the size of the wailitic the image. However, the
correct origin, about which the plane symmetry group constraints &pphe Fourier
coefficients, must be located in real space (the image). Tha onay be at specific
points or along certain mirror or glide lines. Each of these podsitégions is tested,
and for each location the “residuals” of the amplitude and phase contpoae
calculated for the Fourier components.

The residuals are an objective measure of difference betweswyrtimetry of the

selected plane group and the actual data.
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Aes - (27)
2| Aws(H . K))|
H,K
is the formula for amplitude residuals and
ZW(H ) K) ’ ¢obs(H , K) - (osym(H ’ K)‘
Pres =" (2.8)

> W(H,K)

is the formula for phase residuals.

In each case, the summation can be taken over é{ely value in reciprocal
space for which a nonzero coefficient exists; often coefficiestts small amplitudes
are disregarded. A lower limit can be placed on the amplitweponent, with
coefficients having a smaller amplitude left out of the surisTis for ease of
computation and because low-amplitude coefficients contribute \tteytb the visual
image.

Theobssubscript refers to value from the DFT calculation andsymesubscript
is the predicted coefficient once an origin has been selected. In the dasewiplitude
calculation, the formula expresses the residual as a simplefsabsolute differences
divided by the sum of the actual values. The phase calculat@lfitie more complex
in that the difference values in the numerator are weightexdfagtorw that is usually
the amplitude of that spot [6] and the denominator is the sum of theaghting factors

(see equation 2.8).
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When all possible origins have been tested, the position with thalloldsvest
residual is selected as the origin of the unit cell. That posstiresiduals are stored and
will be compared later against the residuals of the other plangps as an indication of
the likelihood of that symmetry being the correct one for the sample.

To summarize, these important quantities (residuals) are fieeedice between
the observed amplitudes and phases taken from the calculated rddipitom=a array
and the amplitudes and phases that would exist if the origin of shenad plane group
were set at the assumed location. This set of differencela@ns is repeated for each
plane group that is being tested; the results are then compared.

3.2 Choose a groufrurther work is necessary to find totally objective criteria for
this decision. The determination of a non-subjective means of seleftibe correct
plane group is in progress. Although residuals are a reproduciblen(ith same
algorithm) quantification of difference, it is not sufficientrteerely choose the plane
group with the smallest residual.

It is tempting to pick the group with the lowest residual and adbigt group as
the best match (and in many cases of course it is). €learlresiduals for a particular
group indicate that the symmetry of the image closely matt¢teesyimmetry of that
group. However in many cases the residuals for several groupsugtdy similar and
the best pick is not the absolute lowest, but the group from this cmtig¢btit has the

highest multiplicity, if it is a subgroup of the one with the lower multiplicity.
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As an example, every image wpmlsymmetry also hag3 symmetry, but the
converse it not trugp3 does not implyp3ml Thus any object that actually possesses
p3mlsymmetry will have low residuals f@3mlbut will also have low3residuals. It
may happen that thp3 residuals are actually lower than those p@m1by a small
amount; bup3mlis the correct choice nonetheless.

Some weighting scheme that accounts for the multiplicity of thewsagroups is
necessary. One approach would be that of Kanatani [7] who was comgnent a
method of quantifying two-dimensional symmetry put forth by Zabrodsky [8joAgh
Zabrodsky’s model has more in common with point symmetry thaaryis¢éallographic
symmetry that this thesis addresses, it has the same protitbmvhat Kanatani
describes as the “hierarchy” of symmetries, in which one stmyns a subset of the
other, which can lead to misidentification of the best symmetry.

Kanatani examines the case of fitting irregular polygons to polygthsvarious
levels of symmetry and suggests a calculation involving degrees of freadhich vary
with the various levels of symmetry. His model calls on the gamnékaike
information criterion (AIC) and appears to give a theoretical fiogtion and a
guantifiable measure for when to select a higher level of symriean raw data would
immediately suggest.

The program CRISP makes the plane group selection automataligugh it

can be overridden by the user). As the program is designeldef@&M community its

23



choices are optimized for the types of symmetry an electsatatiographer is likely to
encounter. This is not necessarily optimum for SPM users.

4. Enforce the selected symmeWyhen a decision has been made as to which
plane group is the best match, the Fourier coefficients (whidhbeilapproximately
correct by virtue of the match) are adjusted. Amplitudes tieas@pposed to be equal
for symmetry reasons are forced equal; phases that are suppdsedegual or 180
degrees out of phase are forced into this configuration; and a nemstected unit

cell using these corrected Fourier coefficients is generatedl ispaee.

2.5 Imaging

Every imaging instrument, whether an optical telescope or antralec
microscope, is intended to observe internal detail of an object. dRgadts exist in
three dimensions and their detail can be represented by adihremesional density
function. This density function is often of mass but could be changgnetic dipole
moment, or whatever physical quantity the imaging instrument roaasure. The
internal detail that is available to an imaging instrumertdaited contrast and can be
represented by a two-dimensional density function.

The simplest object, a point source, can be represented as &udetian (thus
having no internal detail at all). Any real world object with detébserved at visible
wavelengths, has a flux of visible light that varies acrbesobject (although a star can
be treated as a point source in many astronomical contexts)ai8i a TEM sample,

from the point of view of the instrument, has a field of electrimsfaitential energy
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from the atoms in the sample, which varies across the sample, pgoemwhtrast when
imaged with electrons that are scattered at this potentigistalline samples in
particular have periodic variations in contrast if viewed with bepastruments and
because of the periodicity in real space, their images canolsessed in particularly
useful ways.

An ideal instrument would perform an exact linear transfoonatif the density
function of the object to an image, changing only the Cartesiadicat#s according to

the magnification of the instrument.
i(Mx,My) = o(x,y) (2.9)

whereM is magnification.

In other words, an ideal instrument maps a point to a point. Ainsalment
maps a point to an extended area. The transformation from objeettplanage plane
is described by the point spread function, which defines how one point aibjéne is
spread out onto the image. Consider a point source in the objectthktnean be

described as a delta functiéx,y). Using the notation from van Dyck [9],

[[6Ce, )] = p(x,y) (2.10)
where the operatdi{§(x, y)] = p(x,y) transforms the infinitely sharp objetinto a
blurred imagep. Any real instrument maps onto a smeared area of the image plane.
We will assume for now thatis itself radially symmetric (i.e. it transforms a poinbint

a circular disk whose density varies only with distance fromctdrger) and constant
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across the object plane (translation invariant); in realityacegberrations, for example
coma, show that with many types of optical or electron instrunpetecomes
asymmetric with distance from the center of the object. Thet gpiread function is
usually associated with optical and electron imaging instnisnebut the concept
applies to SPMs as well. We will consider the point spread imaf SPMs as
virtually translation invariant given the design of their imggimocess and demonstrate
with an example.

Given that any extended object is made up of many points locateariatis
places in the object plane, any point in the image plane of astalment may contain
contributions from different points in the object plane. If we daldensity function of
the extended object g(wherer is a vector in two dimensions, again following van

Dyck’s treatment, the entire object is a weighted integral of delta functions

o(r) = [o()E(r—1")dr (2.11)
and the image is

i(r)=[o()I[(r—=r)]dr' = [o()p(r—1r")dr (2.12)
which is the mathematical definition of the convolutm® p; intuitively, since each
point in the image is formed from the point spread function asapdied to many
points in the object, the total image, expressed as a functionoofaviables, is the
convolution of the object density function and the point spread function. Note that in the
case of an ideal instrument, the point spread function reverts tdaafaettion and

therefore the image equals the object, as it must.
26



Let o(r) represent the objegp(r) the point spread function, am@) the image.
The convolution theorem states that given
i(r) = o(r) ® p(r) (2.13)
where® represents the convolution operator, then
I(g") = O(g*)P(g) (2.14)
wherel, O, andP are the Fourier transforms of their respective functions. Bhigyao
calculate with products instead of integrals means that computbtiines in some
ways easier to deal with these relationships in Fourier shandrt real space (there are
also other advantages of Fourier space to be discussed whemgdedh periodic
objects).

One complication is that unless the point spread fungon= p(r,d) is radially
symmetric, i.e. constant with respect@pits Fourier transfornP will be complex-
valued. To see that a radially symmetric function only has cealponents to its

transform, consider that the Fourier transform

F(H,K) :I f (X, y)exp@ad(xH + yK))dxdy (2.15)

can be restated (using the Euler formula) as

F(H,K) f (X, y)[cos(2r (xH+ yK)}+ isin(Zz &kH+ yK))dxdy (2.16)

= Iemire_ plane

Since a radially symmetric function has o dependence, points that are

equidistant from the origin are equal. In particular, points equidi$tam the origin
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that are 180 degrees apart must be equal. ks = f(-x,-y) and the integral can be

taken over just one half of the plane as:

F(H,K) = fiar_pane f (6 V)[COS(2r (XH+ yK))+ cos(@ 4 xH- yK ))Hxdy
(2.17)
f (%, y)[isin(2r (xH + yK))+ isin(2r € xH- yK))]dxdy

+Iha|f _ plane
Since the sine is an odd function, the imaginary terms drop out, leawipghe
real cosine terms. This fact is analogous to the factc#r@trosymmetric crystals have

Fourier phases restricted to O or 180 degrees.

2.6 Application of CIP to High-Resolution Transmission Electron Microscope
Images

The first application for CIP (and in fact the reason it wasgented) was the
processing of high resolution transmission electron microscopgesnaf periodic
samples.

When seeking HRTEM images, one finds that amplitude contrast infeges-
contrast or diffraction contrast, i.e. bright-field and dark-fieldges) do not provide
atomic-level resolution. A sample that is too thin exhibitseliimplitude contrast;
amplitude contrast in a thin sample has been compared [9] tongnagylass plate of
variable thickness in an optical microscope; but a sample thick etopgbvide useful

amplitude contrast also suffers from dynamic scattering that hampelstien.
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The technique of choice for a crystalline sample is phase comraging, in
which the sample is very thin and the direct beam is combined svitiaay diffracted
beams as possible. The diffracted beams have been phase-sbdtedirey to the
contrast transfer function (CTF) and the resulting interfer@noeides contrast in the
image plane, depending upon the amount of defocus (a perfectly focuegpel ais no
contrast in this circumstance).

The resulting image is essentially a set of interferéncges, and visually does
represent a “picture” of the sample. The lattice fringes coravegtrong visual
impression that one is looking directly down the atomic planes. $hist correct.
However, if the sample is periodic and symmetric, i.e. crys&llCIP can extract
information from the HRTEM image. Given a set of images takam fvarious angles
the user can reconstruct the three-dimensional structure of the sample.

Any periodic and symmetric sample is a suitable targeCfBrinvestigation. If
the complete three-dimensional structure is already known in flagt, image
enhancement that CIP can provide even to a single periodic imagelasdy that
structure.

An example is the work of Oku [10]. He was seeking details ofatoenic
position of boron and dopant atoms in large highly regular arrangethenight to be

made of icosohedral boron substructures connected to form buckyball-like ssucture
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He took HRTEM images of these structures, seen below in FRureBoth
images are highly periodic in two dimensions but have noise andimaria sample
thickness. Both images are taken at nearly the Scherzer defodukus show electron
potential directly. The BsAl,«Cu gimage was taken with a 1250 kV instrument with
resolution of 0.12 nm and thed¥ image was taken with a 400 kV instrument with a

resolution of 0.17 nm.
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Figure 2.7. HRTEM images oleft) B1gsAl> Cuy g along [211]
direction; tight) BsegY along [111] direction. [Oku]

Oku used CRISP to process the images. He applied standardciijtees and
enforcedc2mmsymmetry on the BsAl, ¢Cu g image, pbmmsymmetry on the Y
image. The prior knowledge of the resolution limit of the microscepedled Oku to
confidently disregard Fourier coefficients of an order greatertti@nesolution limit of

the microscope, converted to reciprocal space. The noise redgcti@ai in figure 2.8,
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which is the BosAl,6Cui g image of figure 2.7 with a small area c2mmenforced
image superimposed.

Oku’s processed images are shown in figure 2.9. Superimposed upon the
processed images are Oku’s proposed locations for the boron stru€hedscation of
the dopant atoms in the;8Al,¢Cu g on the left in the figure is particularly clear

because of CIP; they are barely visible in figure 2.7left)

Figure 2.8. The same image as
figure 2.7 (left side) with a
superimposed area (indicated by
arrows) which has been CIP-
enforced tac2mmsymmetry.

Figure 2.9. CIP-enforced images of samples in E@uU¥, with proposed
dopant molecule locations illustrateteff) c2mmenforced BosAl, sCuy g

(right) pemmenforced BgY. The color schemes (blue on the left, orange
on the right) are for visual clarity; these areygile images.

31



Oku also calculated simulated images of these specimens, shown in figure 2.10.
They closely resemble the CIP-enforced HRTEM images, including theglafmms
(although the BsAl.¢Cuy g real and CIP-enforced image contains some elongation
along the x-axis not present in the calculated image) , supporting the likelihodtkethat t
CIP processed images represent something close to physical reality.

The application of CIP to these HRTEM images of three-dimensional objects is
analogous to the intended application of CIP to SPM images. The single 2D projection
of this 3D sample is the sole input to the CIP procedure. The procedure benefited from
the prior knowledge of resolution limit and some knowledge of the sample. Similarly

CIP can be usefully applied to SPM images with some prior knowledge.

Figure 2.10. Simulated images &dff) B1gsAl ¢Cuy g (right) BsgY, and dopants.
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2.7 CIP applications to Scanning Probe Microscope images

Scanning probe microscopy (SPM) is the collective term foctompletely
different design of imaging instrument whose two main variargsscanning tunneling
microscopy (STM) and atomic force microscopy (AFM).

The idea of applying Fourier filtering to SPM images is nav.n@ 1987 Park
and Quate filtered noise out of the Fourier transforms of theigesas a means of
improving image quality [11]. However they did not enforce any diggtaphic
restrictions on the Fourier coefficients.

The principle behind these instruments appears very simple — a pnolaelésto
approach the surface of the sample, almost touching it, and is #u@mesgcacross the
surface in a raster pattern while the response of the probedsled. Not only is the
engineering that enables this to take place at the atomét demanding, the very
definition of “touch” has to be examined in some detail. The probéigsot a passive
instrument. The data observed comes from interactions betwetwetgléew atoms in
the sample and relatively few atoms in the probe (in the caS&M]j, so the nature of
the probe is inextricably part of the observing process.

The physics behind STM compels tunneling current (the quantity being measured)
to travel almost completely through one atom in the tip, the onestlts the sample.
STM is able to image atomic level detail, including defectsaf@onducting sample.

The requirement that the sample be conducting is a significant limitation.
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AFM is able to image nonconducting samples because the parametgr bein
measured is minute differences in force, rather than differeéncesneling current.
There are variants of AFM including magnetic force microscdgi#M) and piezo
force microscopy (PFM) that operate similarly but are mne&ag minute differences in
other types of force. The most general AFM instrument messoteratomic forces
between the tip and the sample. AFM tips need not be conductingaltyms are
silicon or silicon nitride.

STM requires surfaces to be atomically flat with occasiotegdssand for most
samples requires ultra-high vacuum for atomic resolution (graghéie exception and
can be resolved in ambient conditions). AFM can observe rougher surfdelel can
be operated in contact mode, which was the condition of early expesinizstter
resolution is found with non-contact mode, in which the cantilever carityie tip is
deliberately vibrated at a frequency at or near its resoreguéncy. The tip is scanned
at constant height above the sample and interatomic forces actitite tip slightly
change the phase and/or resonant frequency of the cantilever. theh@mplitude or
frequency of the oscillating cantilever is the output data.

A recent paper by L. Gross [12] describes a detailed observatipantécene
using frequency modulated AFM. This is unusual in that the molesuletipart of a
crystal lattice, it is alone on the substrate. In the p#smats at imaging single
molecules resulted in unacceptable distortion to the molecule beirgveds Gross

prepared tips by picking up a single CO molecule that adherdtetapex, with the
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oxygen atom protruding as the actual tip and found under cold UHV conditanke

could image the pentacene clearly, including the hydrogens.

2.7.1 Scanning Tunneling Microscopy

The STM was invented by Gerd Binnig and Heinrich Rohrer in 1982 (fachwhi
they shared the 1986 Nobel Prize in Physics with Ernst Ruska, teetanvof the
transmission electron microscope five decades earlier).

The instrument consists of a tip, generally made out of a tamstietal and as
sharp as possible (more on this below), bonded to three orthogonal lgntzoe
transducers [13] two of which respond to applied voltages by charwnigdation of
the tip so as to scan in a raster pattern in the x- and ytidire@cross an electrically
conductive sample.

The third transducer, in the z-direction plays a somewhat diffexdat A
mechanical linkage brings the tip into close approach to the samgla bias voltage

on the order of £1 volt is applied to the tip with respect to thepanihe tip is slowly

Control voltages for piezotube

Figure 2.11
diagram of an
STM.
Creative Commons|
- Wikipedia

Tunneling Distance control
current amplifier and scanning unit

Piezoelectric tube
with electrodes

Data processing
and display



lowered under computer control until, when the distance between tip ampiesana
few atomic diameters, a current begins to flow between tip angdlsaFigure 2.11 is a
block diagram of a typical STM.

This current flows because of quantum mechanical tunneling bettigeand
sample across the potential barrier of the gap (which maydeing air or other gas,
or in some cases liquid). If the work functidnis large compared to the absolute value
of bias voltage then the barrier is essentially rectanguwdarkg. 2.12) and the quantum
mechanical solution for current is relatively simple.

[ = e~ 2KeZ (2.18)
where z is the distance from the sample amd= (2m®)”“/A. The strong distance
dependence means the atom at the tip closest to the sampe paost of the tunneling
current, even if the tip is relatively blunt, because at leasatom is likely to protrude
and thus contain most of the tunneling current [14]. There isvelatittle interaction

between other atoms in the tip and more distant atoms in the sample.

I E— Fig. 2.12

()] eV If ® >> | e\ the trapezoidal barrier
() can be approximated as a rectangle
from Giessbl 2003

<—Z——

The value of the current is fed back into the z-piezo as wegkgedback. For
imaging purposes, there are two modes of operation for an STM. Gbasteent mode

uses the feedback information to move the tip vertically so as tetaimaconstant
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current and uses the tip height as data output. Constant height modpognaphic
mode, attempts to keep the tip at the same position and uses ting caryent value as
the data output. Constant height mode is faster but requires adlafi@ce, or there is a
risk of tip crash.

In either case the tunneling current depends upon the local dens#tates
(LDOS) of the sample at the Fermi level so the image eahspace representation of

the electrons on the surface of the sample.

2.7.2 Atomic Force Microscopy

A significant shortcoming of STM is the requirement that Hample be
electrically conductive. A later instrument, the atomic fordgeroscope (figure 2.13),
does not have this disadvantage.

The AFM was invented in 1986 by

Detector and
Feedback

Electronics Binnig, Quate and Gerber [15]. It is a scanning

Photodiode instrument with a tip whose x-y motion is
y Laser
TN controlled by piezoelectric ceramics and rastered

across the sample in a fashion similar to an

Sample Surface -_.___‘:__I Cantilever & Tip

STM.

PZT Scanner

The tip is either bonded to the end of a
Figure 2.13. AFM tip and cantilever

diagram.

cantilever, or the tip and cantilever are an
integrated piece of material. Various methods of measunmgadntilever position have

been tried. Commonly today a laser is focused on the back ofritiewer, and as the
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probe moves over the sample, motion of the tip/cantilever is tradstab deflection of
the reflected laser light that is observed by a set of photaliddee cantilever is
designed to be rigid in two directions and soft in the third direqusmally thez-
direction).

The physical operation of the instrument is similar to an STM in that a meahanic
link brings the probe close to the sample in the z-direction, theosiging the tip
close enough to begin sensing atomic forces. Now, however, theinestr is
measuring the minute interatomic forces instead of measuriegr@nt. At long
distances these forcese attractive van der Waals forces, which increase ascksta
decreases. As the distance decreases beyond an equilibrium @aihtrépulsion
begins to repel the atoms, increasing at appreciable ratearAnbat still useful model

is the Lennard-Jones approximation for interatomic potential energy:

S ORHI

wheree is the depth of the potential wed,is the distance at whicH (the potential
energy) is zero andis separation between the atoms. This model was devised in 1924
by John Lennard-Jones and is an easily calculated approximatioeratomic forces.
The force is the space derivative of this curve.

The instrument can be operated with the cantilever static (D@e)ywhich is
usually a “contact” mode; this means the tip is close enougdtetsample that there is a

repulsive force between the tip and sample [16]. The spring constdmt chntilever
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should be less than the spring constant of the chemical bonds of badimiple and the
tip (if greater the tip is likely to rearrange atoms ithei the tip or the sample) [17].
The resonant frequency of the cantilever must also be substafhigiier than the
highest frequency expected in the input signal by the variatidgheirsample as it is
scanned.

More commonly it is operated in an AC mode in which the catileperates at
or near its resonant frequency. This is usually either a “norcdntende that leaves
the tip further away from the sample, in range of attradiivees between tip and
sample rather than repulsive; or “tapping” mode that periodicallygbrthe tip close
enough to the sample to experience repulsive forces. The cantilegeihave a stiffer
spring constant or risk being pulled into the sample. The absolute todeymf the
forces is less than contact mode, making measurement more challenging.

Unlike STM, in which the quantity being measured (tunneling current)
monotonic with respect to distance from the sample, the fact ntexiomic force
switches direction as the distance decreases means thee®llatCk mechanism must
be more sophisticated. The slope of the AFM force vs. distance auevanost of the
distance range is also less steep than the STM tunneling cus.edistance curve,
which intrinsically makes it more difficult to extract sig§feom noise. Figure 2.14
shows the AFM datum, force, (in nanoNewtons) and the STM datum, tunoetiemnt,

(in nanoAmperes) as a function of distance in nanometers.
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Fig. 2.14. Plot of tunneling current and force {tgb
values) as a function of distanzbetween center of
front atom of tip and plane defined by centerstofres
of surface layer. See text for formul&&essibl]

Tunneling current used in STM can be expressed as:
| (2) = 1,67 (2.20)
wherex; is a constant anzlis distance from sample.

The force curve used in AFM is more complex and can be approximated by
60° 125"
[ F-%)

the derivative of the Lennard-Jones potential.

Most tunneling current flows through a single atom in the STM tgalse the
current-vs.-distance curve is so steep. The interatomic ¥@tegistance curve is much

less steep, thus more distant atoms in the tip and sample idlo@ecanother in an
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AFM. Consequently a much greater number of sample atom/tip atoms ipgeract
complicating the attempt to resolve atoms.

The quartz cantilever used in AFM is a high quality oscillatadhe sense that its
Q = (energy stored in oscillator)/(energy lost per cyclegry high. In other words, the
cantilever is very lightly damped. Initially, investigators pldttae amplitude change
(“amplitude modulation AFM”) to see the topography, but because ofiithe Q of
quartz, the amplitude of an oscillation changes very slowly iporese to a stimulus.
Frequency modulation AFM (FM-AFM) maintains a constant amplitudeaotilever

vibration and varies the driving frequency; the driving frequency is the quantitgglot

2.8 Aberrations

The ideal tip for general SPM observation would be a needle with one atom at the
end. To the extent that this ideal is not reached, the fidelity of the imagspescs.

In crude terms, the intent of an SPM observation is measureofetite
topography of a sample by “pressing” against it with a stiprand scanning that tip
across the sample. (The actual definition of “pressing” depends hpdype of SPM.

If an STM, “contact” begins when the tip is close enough to theleatimat measurable
tunneling current begins to flow, 0.4 to 0.7 nanometers. The tip of an &devating in
noncontact mode can be many nanometers from the sample.) If tipée sanfact
consists of a series of sharp tips and the SPM tip is irndégudhaped (rather than
sharp), what is actually observed is convolution of the topography dfpttand the

sample.
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A significant amount of investigation has been made into the esfate of the
influence of an irregular tip on an image [18, 19].

A significant source of error in SPM is that fact that thezpelectric transducers
that move the tip in the x-y direction are subject to hysteesgiscreep [20]. A perfect
transducer exhibits a displacement exactly proportional to theéedpgbltage, with a
linear relationship between voltages and displacements. A pdriawducer will
always exhibit the same displacement for the same voltage.

A real transducer will not exactly return to the same digplant when the same
voltage is applied. Since SPMs typically scan their sampl@srectangular raster, the
hysteresis causes successive horizontal lines to start dligitly different points,
skewing what was presumed to be a rectangular array into a paralielogra

Creep occurs because there are remnant domains in a piezoelgstal that do
not immediately respond to applied voltage but do so over time. Téadesra low-
frequency error as the piezo quickly deflects most of its rangesponse to an applied
voltage but then drifts slowly in the same direction until ulter@eflection is reached.
For example, if the mode of the raster scan is that horizocaal is rapid in the x-
direction and the vertical scan is slower in the y-direction|liddee vertical deflection
will be linear as the probe scans sideways quickly. Credpcuaiise the rate of that
vertical deflection to change as the probe scans sidewagstaarthat will be repeated

periodically once every horizontal scan.
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3. CIP as applied to an SPM image
3.1 Fluorinated cobalt phthalocyanine

The organic molecule shown in most of the images of this thesisbat(l1)
1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,26-hexadecafludigd2d-phthalocyanine, or
fluorinated cobalt phthalocyanine;§EoPc). It is a derivative of phthalocyanine, which
is a cyclic compound whose structural formula is shown in Figure Bhk
phthalocyanine group is commonly abbreviated Pc in chemical formulasndleeule

itself is HPc.

ey
G S

Figure 3.1. Phthalocyanine Figure 3.2. Cobalt phthalocyanin
(H,Pc), structural formula. (CoPc), structural formula.

[¢)

The two hydrogen atoms in the central cavity of the Pc rindbeaeplaced by an
atom of a transition metal forming a coordination complex (Fi@u2¢. The resulting
molecule is stable and poorly soluble in water. Most of these comparaedorightly
colored and some have been used for decades as a dye. In pattieutamplex
formed with copper is inexpensive as a bulk compound and is manufactuseden |

lots. The Sigma-Aldrich catalog has 88 entries for various phthalocyanine compounds
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Many of the metal phthalocyanines also arehannel semiconductors and are
being investigated as components in thin-film organic fieldegefteansistors [21].
Replacing the 16 outer hydrogen atoms by halogen atoms inctaatbethe carrier

mobility and the stability of the compound in air [22]. Figure 3.3 is a sketchyGbPc.

Figure 3.3. Sketch of fluorinated cobalt
phthalocyanine. The outside circles (light
blue if image is color) represent fluorine
atoms. They have replaced the hydrogen
atoms that are normally in this location.

Thin films of halogenated metal phthalocyanines have been observednto for
monolayers on silver and graphite. There is some evidence tlmaveat temperatures
these monolayers consist of molecules stacked partially or wbhoignd, whereas at
room temperature the plane of the molecule appears to be parallel to the s[#&&trate

The images shown in this thesis, with one exception, appear congigtetite
flat orientation. The exception is the image is that called M1bBose Fourier

coefficients imply at least the possibility that the molecule is orientéiihaon end.

3.1.1 Possible orientation of molecule on M16

Although it does not devalue the worth of M16 as a calibration stafahrch is
based on the HOPG Fourier coefficients predominating), one cannm&e an
observation about the symmetry of the image which (per conversatiohnsPvaf.

Moeck at Portland State) leads to a suggested orientation ofdbeF€ molecule on
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the substrate: that it may be standing at least partiallponTéis has been observed at
low temperatures for copper phthalocyanine thin films [23].

By comparing the large number of Fourier coefficients in M16 to féve
coefficients of a pure graphite image, it is clear that swawe of the organic molecule
is present in the image. However if we choose the reciprotteelaaxes as seen in
figure 3.4, with an angle between them of 63.7°, it is cleartthstarray cannot have
p4mmsymmetry, which is what would be expected for@BPc molecule that lies flat
on an HOPG substrate. This in fact is how we will analyze this image lates thesis,

by concentrating on the HOPG substrate that is manifesting itselfheile tixes.

Figure 3.4. M16 reciprocal lattice with
axes consistent with3mlsymmetry.
Angle between axes is 63.7°.

turned on its end, three of the four mirror lines of the molecdigspoint symmetry
would be broken while one may remain intact. One would then expetistryve the
plmlandpllmsettingsto have differing residuals, as well as the two settinggyaind

cm
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If we choose a set of rectangular axes as shown in figurev8.8nd this to be
the case as shown in figure 3.6, which shows the residuals foapMd@ll as a 1.5 unit
cell reconstruction with symmetplm1 Note that for those plane groups with differing
settings in thex andy direction pm, pg, crpthe residuals are in fact much lower for
those plane groups with settings in thalirection rather than th& direction. The
reconstructed image wittiimlenforced does show a definite two-lobed structure.

It is also interesting that the image M17 that was talcerthe best of our
knowledge at approximately the same time under similar expeamemditions and

visually resembles M16 does not show the same two-lobed strucheeocimlis

enforced.

Figure 3.5. M16 reciprocal
lattice with a different set of
reciprocal axes, consistent with
a centered unit cell. Angle
between axes is 89.2°.
Figure 3.6. left) Showing residuals for M16 using the
centered axes in figure 3.%5ight) Contour plot of
approximately 1.5 unit cells. Note two-lobed struet
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3.2 Fluorinated cobalt phthalocyanine on HOPG

We demonstrate here a specific application of CIP to an STenEhe image
seen in figure 3.7 is this section’s primary subject of analltsis a layer of izCoPc
molecules on highly-oriented pyrolytic graphite (HOPG) takenthe&t Technical
University of Chemnitz. The sample was imaged under ultra high vaguuiv)
conditions with a temperature of 20 K. The sample is cooled witjuia helium flow
cryostat; however in this instrument the tip cannot be cooled anding at room

temperature [24]. The tip has a bias of +1.0 volt with respect to the sample.

. § Fig 3.7 STM image of CoPc on

HOPG; the cause of the slight clockwis
X ‘ ‘ \ skew of the image is unknown but CIP
f will remove it.

HOPG is well known to be a hexagonal crystal ya@mmplane symmetry in the

1]

(0001) orientation, which is visibly not the configuration of this imdges also well
known that STM images of HOPG hap8mlsymmetry [25]. This is because of the
way layers of graphite nest on top of one another. Alternating caoons in each
hexagonal ring are either on top of another ataratoms) or on top of a vacandy (
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atoms). The existence or absence of an underlying atom chang#sngigy of states
for electrons in the top layer. Since the STM current depends upooctiedensity of
states (LDOS), alternating carbon atoms have large differences intcurre

For the purposes of comparison, figure 3.8 is an image of pure HOH®GUIV
any organic molecule layer, taken at the Technical Univedditghemnitz. An initial
CIP analysis of this image shown in Figure 3.9 shows no high-ordeeFgouosfficients
and suggestg3mlsymmetry. Note the right half of Figure 3.9, which is adisthose

Fourier coefficients above an amplitude cutoff and shows only siXiaeats. (The

Figure 3.8 left)
STM image of
pure HOPG taken
with same
instrument as the
image in figure
3.7;(right) Fourier
transform of
image, black/white
reversed.

. R

Figure 3.9 left) CIP analysis of pure
graphite image from figure 3.8. Note
p3mlsymmetry selection on left and list
of only six Fourier coefficients above the
amplitude threshold of 50 (unitless value
representing intensity, range of 0-10000).
(right) Contour plot of two unit cells.
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cutoff in this case is a value of 50 on a dynamic range of 0 to 1@®00fiensity). This
is far fewer than the coefficients observed when the imagegurd-3.7 is analyzed
with CIP with the same amplitude cutoff; that image has betvi&eand 56 Fourier
coefficients, depending upon exactly which location in the imageab/zed, indicating

the presence of something other than graphite in that image.

3.3 Possible orientation of the molecule

The fact that one has prior knowledge of the molecule formindayer is a
significant clue that allows one to suggest the particular oypgymmetry to enforce
upon the image with a high likelihood of representing the physicéityre@his is
especially true in this case because the molecule is knownet@gt weakly with an
HOPG substrate. This potentially allows the recovery of afgigni portion of lost
information. This information recovery is of course only as good agribeknowledge
and does not preclude the possibility that the molecule has etettatusual alignment
on the substrate, or that the molecule is significantly defdriBat presuming that this
is not the case, we observe first that thgCBPc molecule alone has two dimensional
4mmpoint symmetry if lying flat on a substrate (see figu);3hat is to say, it can be
rotated 90 degrees without change and can be reflected through thaeyfofir mirror
lines (horizontal, vertical, and two diagonal) without change. Theser lines are the
two-dimensional projection (projected when lying flat) of the miplanes that exist in
the three-dimensional molecule. Since the visual translationahstmy of Figure 3.7 is

virtually square, it suggests that the molecules are alignadsguare array. However
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the repeating motif of the image bears little resembldaodie molecule. It is likely
[24] that this is the result of a blunt tip containing multiple rtiips. The idea here is to
treat that tip as a “black box” and see what information can d@veeed from the
image.

If the FRgCoPc molecule is not distorted on the HOPG substrate, the two-
dimensional arrangement of the organic molecule layer could mdtgnbiave a
symmetry as high ag4mm shown in Figure 3.10, in which case we would expect to
see two sets of two perpendicular mirror lines, oriented ategffees, as well as two
rotation centers around which a 90 degree rotation is a symmetratiopgknown as a
type 4 rotation center), or a site symmetry4hm A cursory examination of the raw

image shows no such mirror lines, nor are there conspicuous rotation centers.

Figure 3.10. Drawing of sCoPc
molecules arranged wifdmm
symmetry; note this is a possible
alignment, not necessarily observed

The raw image is 1771 pixels on each side. The implementation digtrete
Fourier transform (DFT) in the software used in this sectionl$€R26]) samples
either square areas of an image with a side equal to a power of 2, or cireatawdh a
diameter equal to a power of 2. We have found that the square sasydts in Fourier
transform plots with rectangular artifacts aligned with tites of the sample due to
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edge effects, and that circular samples have “cleaner’ Fauwaesforms and provide
adequate results. The software also allows the user to selearemdar area in the
image to be “grayed out”; set to the average pixel level of the rest of the image.

The Fourier transform of an aperiodic function is itself aperidglit. when the
transform is applied to a periodic function, the output is discretthd particular case
of a two-dimensional periodic array, if the periodicity is matagcally perfect and
infinite), the transfornf(x,y) — F(H,K) results in an array of mathematical points. A
real periodic image of course departs from perfection but the Fdraresform output
will largely be concentrated in “spots”.

Figure 3.11 shows the amplitudes of the two-dimensional DFT asdgplthree
separate 1024-pixel diameter samples taken in different piatke image; one at the
top center and two in the lower left and right corners respégctiFegure 3.7 appears
uniform across the array. The DFT images below confirm thatetis no obvious

difference in spot location or intensity between the threesasnd CIP using any of the
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Figure 3.11. Amplitude portion of DFT of the rawdge in figure 3.7, taken from three separate
areas in the image. Note similarity between the §kmplying that the image is very uniform.
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three gives virtually identical results (see Table 3.1). Alste the number of spots

visible in all of the Fourier transforms and compare with Bg®:8, the Fourier

transform of pure HOPG. This confirms that Figure 3.7 is more than just graphite.

Table 3.1. Dimensions of the reciprocal latticeestdd for each of the three sample areas; note th
are almost identical, showing that the Fourier atogés of the sample are translation invariant.

ey

Sample area 1

Sample area 2

Sample area 3

a* (arbitrary units)

7.4

7.5

7.5

b* (arbitrary units)

7.8

7.8

7.8

v* (degrees)

84.0

84.4

84.3

3.4 Processing of the image

These transforms (and the others in this chapter) were cattulaiag the

program CRISP. The images of the Fourier transform were bladk/vversed in

order to show the detail more accurately. The output extends in theory to infinityin bot

thex* andy* directions but the long range periodic information is concentraadthe

origin of the reciprocal lattice.

The next step in CIP is to take the Fourier transform (one dhtke above was

chosen arbitrarily) and ascertain the dimensions of the recigatite¢. The calculation

of the transform is done automatically. The selection of the alke can be done

automatically in the CRISP program, subject to override by the user, whmarayally

index the observed lattice.

Before proceeding with axis selection (either automagicdy software or

manually) the user may choose to manually filter out higher-drderier coefficients,

which correspond to shorter range periodic information. This is domeskrycting the



analysis to points in the interior of a circle around the recipsqEate origin. To do this
is to make a subjective judgment as to the validity of higher-aalficients, but one
can make a semi-quantitative justification for the filteringcoysidering the smallest
feature likely to be visible in the molecule.

For this section we chose a circle with a radius of 100 pixajsuréi3.12 shows

reciprocal axes overlaid on a Fourier transform.

Figure 3.12. Same Fourier
transform as Figure 3.11
(enlarged) overlaid with
the program’s selection for|
reciprocal lattice axes.

X* axis

y* axis

The blue and yellow axes representth@ndy* reciprocal axes respectively that
have been proposed by the program. The user is expected to visually compare the
alignment and scale of the proposed axes with the displayed spots, using the unique
discernment of the human eye in order to verify that the software is finding tketcorr

lattice and has not been misled by noise.
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The decision to restrict the analysis to a circle around theénooigreciprocal
space is essentially a decision to filter out higher-order Rocwigfficients, since those
by definition are the coefficients that are distant from the origin. lipanicular case of
this image, we have tested both the 100 pixel circle used and a 51Zipilee that
covers the full reciprocal image and have found little or no @iffeg in the results. In
both cases we obtain 58 Fourier coefficientspmmsymmetry (subject in both cases
to the same dynamic range amplitude cutoff) and the resid@addraost identical: 28.1
for the RA% of both the 100 and 512 pixel selection, and a phase residd4aP for
the 100-pixel circle and 34.7 for the 512-pixel circle. However foemimages the
decision to filter out higher-order coefficients may assist @maving aperiodic
information and noise. We do not believe there is a perfect solution thiéwe to
anticipate the smallest feature likely to be observed in déineple (perhaps a bond
length) and disregard any periodic feature in the image smaller than that.

The heart of the program and essence of CIP is the process tbasfdDne
wants to ascertain which of the 17 plane groups the raw imagenb&tes. Although
the human eye can again make a rough estimate, by taking aglvaritcomputational
power one can simply test all of the groups, considering all possigias throughout
a unit cell for all groups.

The output of CRISP and other CIP programs actually diffetestiaetween 21
settings of the plane groups rather than the 17 plane groups rirstidredlard setting.

This is because for groupsn, cmandpmagthat incorporate a single mirror line, and for
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group pg that incorporates a single glide line, the same group canelesdias with
either the x-axis or the y-axis parallel to the single. liifee selection of axis orientation
changes the residuals for various Fourier coefficients, and thus asitpigplayed for
the two different orientations, but each of these different sstitsgtill only one plane
group.

The group93, p3m1 p31m p6, andp6mmby definition have lattices with axes
inclined at 120 degrees in direct space. The translational syynalehg those axes
supports symmetry elemer8or 6 at the origin. The axes in reciprocal space have a 60
degree angle. The remaining groups (with the exception gitlaadp2 groups) have
an overall rectangular appearance with 90 degree angles bdtweeaxes, this time in
both real and reciprocal space. CRISP and other CIP programsanfake decision
about which subset of potential plane groups to follow based upon the aligratient
of the reciprocal axes. In this case, the angle of 95.9 degresisect space is close
enough to 90 degrees that 15 groups with an overall rectangular o the ones
chosen for further calculation.

It is important to note that if the angle between the axes islose to either 90 or
60 degrees, the only logical plane groups jteor p2, that is to say, fopl no
symmetry exists at all other than translational symmelgy,simple two-dimensional
periodic repetition of a pattern, while fo2 there exists a set of 2 fold rotations.

In order to identify an origin, CIP software in general sttxdm a random point

and tests every pixel of the unit cell in real space to findothet (and its translation
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symmetric equivalents) about which the symmetry is best (st braken). For certain
symmetry groups, there is no one point but there are lines of syynah@tg which the
origin can be located. Once an origin is found, residuals are daltular that plane
group as described eatrlier in this thesis.

Once the residuals have been calculated for each of the possiide gotaups
(again this is an objective procedure), the somewhat subjectivéodeaisvhich plane
group fits the data best can begin.

Plane groups are not equal in the sense of “quantity of symmitay”they
contain. This is best seen by considering the “multiplicity” that in #se of a primitive
unit cell is the number of times that the “general positiony (acation not lying on a
symmetry element) is replicated in the unit cell as alred the symmetry operations
associated with that group. In other words, if one takes an arlyparyin the unit cell
it is the number of copies of that point that can be found elsewhéne cell. With the
exception ofpl, each group also contains “special positions”, the term for adocati
a symmetry element, e.g. on a rotation axis, on a mirror lioeSeecial positions have
a lower multiplicity than the general position since they rage transformed by the
element on which they reside, but there are only a finite humbeyeafat positions
whereas there are an infinite number of general positionsyimrahcell. In the case of
a 2D image, the number of general positions is finite (since the muohlmxels is
finite) but still much greater than the number of special positidbhss justifies the

conclusion that general position multiplicity is a good measure of quantity of etyynm
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For a centered plane groupn(or c2mn) the number of copies of the general
position that can be obtained for the primitive cell countenparbdr p2mm must be
multiplied by 2, the number of primitive cells in the unit célhe result is the
multiplicity.

In general, between two plane groups with similar residualgléme group that
contains general positions of higher multiplicity would be prefeorest one with lesser
multiplicity. The reasoning is that a group with a high multipfiajeneral position
(such agpdmmwith its multiplicity of 8) has eight different positions in thell that,
when symmetry is enforced, will have their intensities avestags opposed to a low
multiplicity group (such ap2, which has a multiplicity of 2).

One should also keep in mind the point symmetry of the underlying uteland
attempt some reasonable accommodation to the likely arrangemtait oholecule in
an array. In the case of the transition metal phthalocyanineheeep4mmwould be a
likely arrangement if the molecule is not distorted by intevactvith the substrate (a
substrate that has, in the case of HOpP&nlsymmetry).

Figure 3.13 shows the output from the CRISP program afteluedcalculations.
On the left is a list of the 21 settings of the 17 plane groupth@ notation here, the
pm pg, cm andpmggroups are each treated as two separate settings depending upon
whether the mirror/glide line is oriented in theor y direction) the residuals for that
group, where applicable, and tl@/Ae figure of merit (described below). (Another

notation difference in CRISP is the abbreviated notation for wieakiaown in the
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International Tables for Crystallography [4Jeg8mm, p2mg, p2gg, c2Zmm, p4mm, p4gm
andp6mmgroups apmm, pmg, pgg, cmm, p4m, pdgdpbm)

Note that the hexagonal groups are not considered; their resataditank. The
column labeledRA% is the amplitude residual. The column labejesis the phase
residual. The column labelekb/Aeis a different figure of merit for the plane group; it
is meaningful only for the six groups that have “systematicreidesg, that is certain
Fourier coefficients for which the innate geometry of the gregjires that reflections
from the symmetry-related locations in the unit cell cancelioutther words have zero
amplitude. In reality experimental error and thermal agitghi@vent these amplitudes
from actually going to zeroAo/Aeis the observed amplitude of these expected zero
reflections divided by the sum of the amplitude of the other, peanieflections. It

will be zero in a perfect sample.

Symm RA% opRes AolAe {+ Phaseogrigin map { p1 map
-
pz - 19.3 -
pr mlx 17.2 17.5 -
pm mly 17.2 Z8.4 -
pa als 22.3 27.7 1.7
pa aly 2.2 26.1 3.7 .
om mls 2P.6 22.8 2.2 This is a real space
NI s Tk reconstruction
P 1v.2 26.8 -
prg mln 23.2 32.5 3.7 | H 1
pra mly 22.3 35.8 1.7 applyingpd,
pag 33.7 33.8 2.5 i
o S THE Bis circled, one can see
pd 28.0 2.8 - | the molecule
b Tl 2 beginning to take
p4g 45.5 42.8 2.5
il l shape as
Eglm a=136 A b=132A y=959° Shift h=0.0  Shift k=0.0 successively higher
psi [ More ’W‘ Refine I Edit HK I Creat&_lmgl Close I plane symmetries
are enforced.

Figure 3.13. The left portion of the image is adipossible
plane groups and, where applicable, their residuathe center a
reconstruction of the image enforcing whatever sytnynis
highlighted in blue on the lefp{in this case).
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Note that when thé\o/Aeratio is over 1.0 for each of the applicable groups, it
makes it relatively unlikely that these are the proper synynfetrthis sample. This
leavespl, p2,the twopmgroups,pmm, p4andp4mmas viable candidates.

Theplgroup is an interesting case because it is the group thatsabsed is no
point symmetry in the unit cell and no overall symmetry other theamslational; in
other words a two-dimensional array with oy symmetry is not symmetric other
than the ability to translate. This also means that enfopirsymmetry is equivalent to
the well-known technique of translational averaging. Such enfawcereffectively
sums the real-space amplitudes of all the unit cells togatitedivides by the number
of unit cells, averaging noise and other random fluctuations actbsella while
enhancing the truly translationally periodic elements of the image.

The noise suppression advantage of CIP is due to the additional agetiaajfi
takes place at the various symmetry elements, and in facbris pronounced as the
plane group is of higher symmetry. The demonstration of this is mbede by
observing thigpl reconstruction (shown in the center of figure 3.13) which expresses
how the image can be averaged without any additional contribution@i®nNotice
that the appearance of the reconstruction is not greatly diffiecentthe raw image unit
cell; the irregularities of shape are preserved (as they must be inggoup

The enforcement of plane gropg is shown in figure 3.14 and has a calculated
phase residual of 19.3 degrees, which is the only meaningful residyz $omce for

this group there are no amplitude symmetry relations betweewateus Fourier
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coefficients, other than the Friedel pair relationskifn,k) = F(-h,-K which is a
mathematical consequence of the Fourier transform. This is coetsidéow residual in
electron crystallography, and in fact proves that the raw enfeas a degree qf2
symmetry,i.e. there exist points about which the image can be rotated 180 deggtees
little change (if thep2 symmetry were perfect, there would be no change). The
enforcement of that symmetry results in the image shown inahiercof figure 3.14,
and one can begin to see in the circled cross (one of two that sppélae image) the
outline of what could represent a cross-shaped moleculedmithsymmetry. Note that
the effect of this enforcement is simply to equate the numbpixefs on either side
(180 degrees apart) of a 2-fold rotation axis.

Figure 3.14 also shows the “phase map”, which is the multi-coloresl pa the
right side of the figure. This is a view of approximately tunit cells in real space and
is a plot in which the,y position represents a tentative location for the origin, and the
color corresponds to the phase residual if the original were alotaiton. Since the
goal of CIP is to minimize residuals, a valley in this mapeggnts a good origin. The
contours of the phase map help the user see how sensitive the sear@ut original

location.
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Symm RA% pRes Aolde {+ Phase originmap ¢ plmap .

: p2 enforces site
symmetry2 on

P mlx 17.2 17.5 - H H

pm o mly 17.2 28.4 - the periodic

pa aln 22.3 27.7 1.7 i

pa aly 23.2 28.1 3.7 motif

cm mly 27.6 22.8 2.2 )

on o mly 27.6 20.6 2.2 Figure 3.14

17.2 26.8 -

Fma mlx 29,3 35.5 3.7 Output from

pmg mly 22.3 35.8 1.7

pag 3.7 8.8 2.5 CRISP' same

= 2r.6 2.2 2.2

# BreeinE 2 area of sample

P 38,1 28,6 - as Fig. 3.13 but
i} 46.5 42.8 2.5 .

Eggl - » ~ | with p2 group

=

pEin a=138 A b=132 A y=959° Shift h=24.3  Shift k=78.4 ch?sen for

pé enforcement.

pen I wore | Tryal | Refine | Edithk | Createimg| Close |

Although the low residual fop2 and the visibly logical reconstruction is
encouraging, the remaining plane groups have many more symriestrgnes tharp2
so it is helpful to move on to them.

We see relatively low residuals for the twm groups and th@mmgroup. But
their multiplicity is low compared to thp4 and p4Ammthat do in fact have higher
residuals. The highest multiplicity within this selection of gro@ss a property of the
p4mmgroup. Because of the fact thitmmcontains the mirror planes of thengroups
plus a 4-fold rotation pointhe general position in the unit cell is copied seven times
throughout the cell; thus eight copies of each general position 8pistial positions
(which lie on a symmetry element) have lesser multiplicity.

Figure 3.15 shows the results of enforcpdgsymmetry, which equates the pixels
along any pair of axes 90 degrees apart from a 4-fold rotation pihtywithout
enforcing any mirror lines. The result is beginning to look mdetlhe phthalocyanine

molecule, although without the bright center characteristicadfalt phthalocyanine

61



[27]. The molecule in this image also has subtle differences onitppates of where
one would expect two of the mirror lines to be, along the longitudirak of the
extended “arms” of the molecule. Since the molecule itselfihmamspoint symmetry we
assume a tip asymmetry causes the lack of mirror symmetry.

Figure 3.16 shows several results wipdmmsymmetry is enforced, the highest
symmetry that this layer of molecules would have if the pgimtrnsetry of the isolated
molecule,4mm were to be the site symmetry in the array. Notice imnielglidhe
bright spot at one 4-fold rotation point and a vacancy at the other 4etaliton point.
This bright spot is in agreement with Hipps’ work that shows Siidges of cobalt
phthalocyanines have high tunneling current at the Co atom, which gpesra as a
bright spot. It is encouraging that enforcipgmmsymmetry (that contains the known
4mmsymmetry of the solo molecule) results in an image consisiéimtwaat one could
expect from a good STM image.

Figure 3.16(d) collects and displays the periodic motif of eachheffour

different plane groups enforced in this section.
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Symm RA% pRes An/Ae
Fl = = =
= o 19.3 -
Em nmlx 17.2 17.5 -
Em nly 17.2 20,4 -
P9 9ls 22.3 27.7 1.7
P9 aly 23.2 28.1 5.7
M Mk 27.6 22.8 2.2
oM mly 27.6 28.6 2.2
Ern 17.2 26.8 -
Fmg mlx 23.2 32.5 .7
ema mly 22.3 36.8 1.7
==1] 33.7 32.8 .5
(=u L] 27.6 34.2 2.2

Symm RA% gRes Ao/Ae
pl = % =
p2 - 19.3 -
pm mix 17.2 17.8 -
pm mly 17.2 208.4 -
pa alx 22.3 27.7 1.7
pa aly 23.2 26.1 3.7
cm mlx 27.6 22.8 2.2
en mly 27.6 20.6 2.2
prm 17.2 26.8 -
pmg mlw 23.2 32.5 8.7
pma mly 22.3 35.8 1.7
pag 33.7 33.8 2.5
=00 27.6 34.2 2.2
4 28.0 21.8 -
pda 46.5 42.8 2.5
p3
p3ml
p31im
p6&
pén

-l

™ More [ Try AN [

s Phasegrign mep (" pi map

Figure 3.15.

Same area as
figure 3.13,p4
enforced. The
periodic motif

now has site
symmetry4.
a=134 A p=134 A y=90.0° Shift h=239 Shift k=-102.3
Refine | EdtHiC | Createimg|  Close
(+ Phase griginmap ( plmap
Figure 3.16a.

a=134 A b=134 A y=290.0°

I~ More | TryAl

Refine | EdtHK

Output from same
area as figure 3.13
with p4mm
enforced. The
periodic motif now
has site symmetry
4mm

Shift h=23.9  Shift k=-102.3

Createimg|  Ciose |

Figure 3.16b. Approximately
four unit cells ofp4mm

enforced, axes inclined as in raw
image.
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Figure 3.16¢. Contour plots of 1.5 unift
cells of thepdmmdata with one
molecule sketched in. The contour plot
converts the intensity distribution of
Fig. 3.16(b) into 64 levels, while the
3D presentation clearly shows the
peaks and valleys. (from [23])

Figure 3.16d. Contour plots, 64
levels, of the image after the four
plane groups mentioned in this
section enforced; approximately
one periodic motif shown;
clockwise from top leftpl, p2,
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3.5 Translational averaging compared to CIP

Figure 3.17 shows a simulated imagepdmmsymmetry. The motif, a cross, has
4mm point symmetry like the organic molecule discussed earlier.r&iguL8 is the
same image with the motif changed in each periodic location bynthwement of a

pseudorandom unit-sized chunk. There are the same number of dark piealshin

+ 44+
44+
b4
+34++

Figure 3.17 Ap4mm360 x 360 pixel Figure 3.18. A 360 x 360 image that has
artificially generated image. been pseudorandomly distorted.

image.

If one assumes that the undistorted image represents the d&tra@gement of the
sample, and the right image is an observation that has been dibtorterte or random
experimental error, it is interesting to process the distomeage and see how

translational averaging and CIP perform.
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Translational averaging is the equivalent of enforgrgsymmetry; once the
lattice dimensions are determined, the individual unit cells &etefely laid on top of
one another and averaged. Applying this to the right side of figure 84 &ligtorted
image, results in figure 3.19. Figure 3.20 a closeup of the periodic motif.

If one considers that the desired outcome is the “true” motifishatpure black-
on-white cross, translational averaging does not do a bad job. The jadges of
figure 3.18 are gone. However the prominent bright splotch in the Iftehand
corner of the unit cell as well as the irregular shading otthss is evidence that the

pseudorandom distortions are not averaging into insignificance.

Figure 3.19. The result gfl Figure 3.20. Closeup @il

enforcement (translational averaging enforced unit cell.

on the distorted figure 3.18.

~—
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Consider figure 3.21 (and the closeup of figure 3.22), the resufi4ofm
enforcement. The enforcement of the rotational and mirror symrmokthe plane group
(taking advantage of our prior knowledge of the cross motif) resulis image much
closer to the cross motif as it looked before distortion. Theulagges in the cross as
well as the bright splotch are gone. Note that the averagingly over 16 unit cells.
The artifacts that remain are because of the necess#gl@tting a finite area of real

space with which to calculate the Fourier transform.

‘w a

Figure 3.21. After enforcement of Figure 3.22. Closeup @4mm
pAmmsymmetry. enforced unit cell.
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3.5.1 Effectiveness of CIP compared to translational averaging

When the dispersion of “errors” is truly random (or as random as the
pseudorandom number generators of Mathematica and Visual Basi¢ titovelative
advantage of CIP as compared to simple translational averbgaumnes less apparent
the larger the number of unit cells. This is to be expected easar@ essentially
observing the standard error of the location of the irregularity, @& sample size

(number of unit cells) increases the standard error decreases:

SE=-Z (3.1)

n

whereo is the standard deviation of the distribution ansl sample size.
For a simple example consider repeating the above experimérd @ik6 matrix

of motifs instead of 4x4:

++++++ +H++++
++++++ +++4++
++++++ +bttt+
++++++ bt
++++++ +++++4
++++++ Fbtdrtot

— Figure 3.23 Analogous to figure 3.17 above; | Figure 3.24 Analogous to figure 3.18 abovye;—
using a 6 x 6 matrix instead of 4 x 4. using a 6 x 6 matrix instead of 4 x 4.
Image size 512 x 512 pixels. Image size 512 x 512 pixels.
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The same pseudorandom technique from Mathematica is used for thmguace
of the irregularities in Figure 3.24. But the fact that theee 36 cells instead of 16
creates the visual impression timdt averaging is much more successful. See Figures
3.25 and 3.26 for thelresults. Figures 3.27 and 3.28 show analogous resulpg hom
enforcement.

Although the translational averaging output is certainly closer t&nhe” image
in this case, examination of figure 3.26 shows subtle asynamdlat are not part of
the undistorted image. In particular, the black body of the ceo$arifrom uniform
across its extent. This is not the case for figure 3.284hamenforced cell. Thus it is
still fair to state that CIP has enhanced the value of thegemover and above
translational averaging.

The margin of superiority op4mm enforcement ovepl enforcement grows
smaller with increasing sample size, until with a large en@aample they might be
visually indistinguishable. Howevgrl enforcement is unable to remedy systematic
error. CIP, on the other hand, can correct for systematic eiven gsome prior
knowledge of the sample, as seen in Figures 3.29 through 3.35. Thess {rpaty

increase the sample size and introduce some deliberate systenoatic err
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Figure 3.25. The result @fl enforcement on
the distorted figure 3.24.
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Figure 3.28. Closeup @4mm
enforced unit cell. This is closer still.




We now greatly increase the size of the array and useathe analysis. If all
error is random, the result using CIP is virtually indistinguishdldm the result of
translational averaging. See figure 3.29 which shows an afrd&0 oows and 50

columns of crosses, while figure 3.30 is the same image waitthom distortions. (For

4 1 B B o R e R e e SR TS
4+ QA OO0 0 0 0 0 0 5 0 - 0 0 A 0 0 0 0 A6 0 A A YA 0 A A N B A
+4++ B O
S0 A 6 A 0 A 5 A A 0 A S 5 5 A S 0 0 0 A 0 5 0 A 0 A A A 0 S O AR S
1t B b D ey
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+++ ottt
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Figure 3.29. 2048%x2048 pixel image Figure 3.30. Similar image containing
containing 50x50 crosst crosses wh one block of pixels displace

both images the inset is to show the detail of the array, and wowgssed by CIP).

When we apply CIP to the image with random errors, and enfostetrfanslational
symmetry(pl) and therp4mmsymmetry, the two corrected images in 3.31 are virtually
identical regardless of whethet or pAmmsymmetry is enforced.

This demonstrates that a sufficiently large number of randoonseir an image
can be efficiently averaged out by translational averaging.sirhgarity between the
pl results and the@gdmmresults is consistent with equation 3.1. Consider that the

standard error of the location of the irregularity varies a§ &here n is the sample
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size. Enforcing a higher symmetric plane group means the stbedar now varies as
1/(n - multiplicity)”. As n gets largels/n”- o /(8n)*| , which is the difference between
the p1 standard error and th@mmstandard error, shrinks, with a limit of zero as n
goes to infinity.

However, systematic errors such as those caused by less tfentlpealibrated
piezoelectrics that are not acting exactly proportional to edwr oainnot be remedied
through translational averaging. CIP can deal with systermatior and is clearly

advantageous if such error is present.

Figure 3.31. Closeups of periodic motifs of CIPqassed distorted image in
Fig. 3.30. left) p1 enforced fight) pAmmenforced. Note virtually no visible
difference.

Figure 3.32 shows another distorted image of 50 rows and 50 columnss#s;ros
but with a different type of distortion; a unit-sized chunk has beeroved from a
random location on each cross but replaced only on the upper arra ofos. This

introduces a bias into the array of crosses that is intended to simulateatizsezror.
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When this image is processed using CIP and enforcemepfl @ind p4mm
symmetries are compared, as we see in Figure 3.33 thesalldl@a but clear difference
in the quality of the resulting image. Enforcing the high swgtmynof pAmmremoves
the asymmetry that is visible in tipd image. We conclude CIP is valuable in removing

systematic errors.

Figure 3.32. Simulated systematic

: error. 2048x2048 pixel array of 50
rows and columns of crosses, each
one distorted by the removal of a
random square which is relocated
onto the top arm, introducing a bias.

+ + + The inset shows a closeup of the

crosses and is not part of the CIP

¥ i +++ input.
dnnnhEE T e e o

o

Figure 3.33.¢ft) Periodic
motifs of biased cross image
afterpl enforcement; note

banding around right arm of
. cross; (ight) same image
afterpdmmenforcement, all
arms of the cross are
symmetrical.
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3.6 CIP restoration of an image with systematic error

Figures 3.34 and 3.35 were taken by a PSIA (Park System4PBRAFM in the
laboratory of Prof. Andres La Rosa at Portland State UniverBitg.images are of a
Nanosurf BT00250 calibration grid intended for AFM use. The “islangsthe grid
form a square lattice with a periodicity of ih and have a measured height of 119
nanometers (nominal 100 nm). The images were taken at approxirietedgme time,
at room temperature and with the sample exposed to the atmosphere.

The instrument has a proprietary hardware closed-loop feedbaeknsimt the
piezoelectric scanners in the x and y directions (it alsoomasfor the z-direction
piezo). “Closed-loop” is a generic term from control theory thédrs to a system that
uses feedback from the output to adjust input states, usually tcamaantstabilize a
value. Piezoelectric crystals have natural hysteresis; thusFd raster scan that is
intended to be rectangular can be an irregular quadrilateral absesttion. The
feedback system is designed to correct this behavior.

Figure 3.34 is an image of the calibration grid made with théeedback system
on. Figure 3.35 was made with the feedback system deliberatadtaff so as to
create an image influenced by hysteresis.

No special efforts were made to level or otherwise preparsatingle; the intent
was to create “quick and dirty” images so as to assess the ga CIP. The color
difference from top to bottom across both images, which shows tl®rdicate is

changing from top to bottom, is evidence of sample tilt.
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Figure 3.34. AFM image of Figure 3.35. AFM image of same
commercial calibrated sample, sample, 256x256 pixels, open-loop
256x256 pixels, closed-loop scanning.

scanning.

Both images were processed with CIP. The closed-loop image in Figure 3.34,
which is visibly more symmetric to the human eye, was enforcedpdittimsymmetry.
The residuals were low and the angle between the two reciprocal ax8€ dalegrees.
Figure 3.36 shows the Fourier transform and figure 3.37 shows the residuals for the
various plane groups anddmmenforced image.

The closed-loop feedback of this instrument does in fact appear effective in
correcting for hysteresis in that there is no visual nonlinearity in the »egtain before

or after CIP, but note that tlpdmmenforced image also eliminates the sample tilt.
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Figure 3.36.eft) Fourier
transform of figure 3.34,
closed-loop imageright)
closeup of central portion of
transform.

Symm  RA% pRes AolAe
Pl = = =
p2 5 12.3 -
pr mle B.86 7.8 -
pr mly 5.6 F.4 -
pa alw 6.7 23.1 2.7
pa aly &.7 35.8 2.1
cm omle 5.3 8.4 8.9
cm omly 5.2 8.8 4.9
=gty E.& 12.7 -
pra mle B.F 48.3 2.1
prmg mly 6.7 8.2 2.7
pag 2.5 38.8 2.7
s E.3 14.7 8.9
pd 16.8 153.4 -
pdg

P2

paml

pEim

p&

pEmM

Processing the image with induced systematic error, Figureré@sred manual
indexing of the Fourier transform due to blurring of the spots causedhdy

asymmetries of the image. That transform and a closeup ofettteak portion are

Figure 3.37.l¢ft)
Residuals for
closed-loop image
of figure 3.34;
(right)

reconstructed imageg
usingp4mm
enforcement.

shown in Figure 3.38 showing the blurring of the spots.
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The final result of CIP applied to Figure 3.35 is shown in Figure 3Bch
shows the residuals angpdmmenforced reconstruction of the image. The residuals for
p4mmare higher than for the closed-loop image, as to be expecteéd: 61A&20.6 vs.

16.8, andpRes of 20.7 vs. 13.5, a consequence of the image asymmetry. The
enforcement op4Ammsymmetry is seen to successfully remove the artificiakiuced

systematic error.

Figure 3.38.left) Fourier transform
of figure 3.35; fight) closeup of
central portion of transform
showing blur.

‘ (0,1) spot manually indexed
|. _ [~ (1,0) spot manually indexed

pl - = b

p2 - 18.7 -

pm mlx 8.8 7.7 -

pm mly 8.8 11.2 -

pa alx 18.9 21.4 2.8 .

pg aly 11.4 30.9 3.5 Figure 3.39.left)

cH "‘MJ-“ iy oay £55 Residuals for open-
::m B 98 = loop image of figure
pma ml# 11.4 38.6 3.5 3.35, showing higher
S RIS Sy B0 values due to

crim 11.6 21.1 1.@ asymmetry; (ight)
reconstructed image
pdg 30.8 33.8 8.0 usingp4mm

p3 enforcement .

p3ml

p31m

p6

pémM
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4. CIP as a technique for ascertaining the SPM tip

Given a sample of known 2D periodicity, comparing the Fourier coeiffgief
an image of this sample before and after correction by symraeforcement offers a
unique opportunity to calculate the distortions induced by the instrument.

The image that is obtained by any real instrument is no¢geifhere is noise as
well as systematic distortions such as piezo hysteresis, Imowgrédt. These problems
are well known in SPM and there are existing techniques foeaaorg them. CIP
applied to a known periodic sample is a unique and novel way to asaarthcorrect
for the distortions in a given experimental configuration.

The effect of the instrument on a sample can be summarizée ipoint spread
function (PSF), a term from optics that is applicable to anygimgasystem. If we
define images and objects as 2D arrays of intensity, the imaga abject is the
convolution of that object with the PSF of the imaging instrument. cimolution
theorem says therefore that Fourier transforms of the object@adh be multiplied
to give the Fourier transform of the image.

The idea here (shown mathematically in equations 4.1 through 4.6) ikelR2SF
can be obtained by dividing the Fourier transform of the image bytllae object and
applying an inverse Fourier transform to the result.

The idea of deconvoluting an SPM image to obtain tip information is matine
1990 Snyder et al [19] investigated the causes of broadening anchgkeivETM

images caused by tip size and asymmetry. In particular siraylated images of
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graphite that modeled elliptical tips with the major axishef ellipse inclined at various
angles to the scanning direction.

They noticed that their simulations strongly resembled certain @oam real
images of graphite. They chose an actual image with skew and tbahdf they
deconvoluted it with a particular elliptical tip function they prodlaenew image that
looked like graphite. They then inferred that the actual tip must hadehis elliptical
geometry.

We propose a systematic approach for tip inference involving Ciiaagfes of a
known calibration standard followed by PSF calculation. To thedfesir knowledge
this has never been done before.

An ideal STM tip is a mathematical point; a slender cone that is axyatignetric
and narrows to a single orbital at the tip, with all tunnelinguoing through this one
atom in a radially symmetric fashion (possibly sworbital, more commonly al-
orbital.) An ideal AFM tip would be similarly shaped (although no tunneling takes pla
through the apex atom). Any real tip departs from this peyfsgtihmetric ideal. Tips
can be double, multiple, or “blunt” (irregularly shaped) on a scahgimg from
subatomic to macroscopic. A clear double-tip image is shown in Figure 4.1.

Note that the entire SPM instrument introduces distortion — nonlineaosi
nonperfect amplifiers in the electronics, etc. This theserseb the entire distortion as
the “effective tip” and will attempt to mathematically suniima the distortions as the

point spread function (PSF) of the tip.
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Figure 4.1 Classic image
of DNA and debris
showing a double tip
artifact;

Weizmann Institute of
Science,
www.weizmann.ac.il

Figure 4.2 Two STM images of
F1sCoPc on HOPG. (see text)
(left) M16 (right) M17

vacancies

The images to be studied are called “M16” and “M17” according h® t
nomenclature used in the laboratory. They are raw 512 by 512 pikéli§dges of a
layer of fluorinated cobalt phthalocyanine on highly oriented pywlgraphite
(HOPG). They were taken at the Technical Institute of Chemith an Omicron STM
in constant current mode with a +1.0 volt bias on the tungsten tip, togroelirent of
0.15 nA, under ultrahigh vacuum at 30 K. Under certain bias conditions (per

conversation from K.W. Hipps, Washington State University to P. Moeojanic
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molecules on HOPG are nearly invisible to STM. Reference ¢2@lthored by Hipps,
describes a similar phenomenon involving a nickel porphyrin on HOPG. \Mién
and M17 are analyzed, their plane symmetry very much reseridesof HOPG,

although the Fourier transforms of the images do in fact haverkogtier coefficients,
which is not the case for STM images of pure graphite (see3Hy.— thus some
information about the organic molecule is present. They were takengdane

experimental session and are, to the best of our knowledge, takenvengesimilar

experimental conditions from different areas of the same sample.

For the purpose of ascertaining the point spread function (whicimtiadise
comprises the effective tip) one needs a calibrated standardy idat high plane
symmetry and able to encompass a large number of unit cells in an image.

HOPG with a surface layer that is a regular array of gighymmetric
molecules may meet these requirements.

Visual inspection of the above images shows vacancies, noise, saneg,
and in the case of M17 a scanning discontinuity a few lines fronoph& he vacancies
provide evidence of true molecular resolution (and are also evidesicthéhimage is
not pure HOPG, which seldom shows vacancies). If one assumesdhatderlying
sample of the above two images ha®ml symmetry, with the exception of the
vacancies any departure from that symmetry must be a resulhe combined
imperfections of the instrument. The PSF is a mathematical expressionyfrtimsetry

departure.
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As seen in equations 2.11 and 2.12, an image is the convolution of the sample
surface feature function with the effective tip function.

i(r) = o(r) ® p(r) (4.1)
wherer is a 2D vector in real spades the imageo is the object (sample), apds the
effective tip function. The vector is theoretically continuous but given a pixellated
image will be part of a discrete set of 2D vectors. By thevelution theorem, the
Fourier transformation of the above functions changes the convolution opierador
simple multiplication in Fourier space. This allows algebraanipulation to recover
one of the right-side functions if the other (and the left side) is known.

I(g*) = O(g*)P(g) (4.2)

where g* is a vector in reciprocal space whose components are multipléise of
reciprocal unit vectora* andb*. Similarly to ther vector in real space, tlgg vector is
theoretically continuous but is actually exists only at disdreéegvals, both because it
is the transformation of a finite 2D array and more importantlgabse to the extent
that o(r) is 2D periodic the amplitude component of its Fourier transform set af
spots.

It is customary to refer to the coordinates in 2D reciprocatespeith the
variablesH andK. Rewriting (4.2) above for clarity, we obtain:

lraw(H,K) = OsampidH,K) ¢ Pip(H,K) (4.3)

Givenlaw(H,K), knowledge of eithe©sampidH,K) or Pyip(H,K) allows solution

of the other. In particular,
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P tip(H,K) = lraw (H,K) / OsampiéH.K) (4.4)

If the sample is a known calibration standard, preferably higjrynsetrical,
one can use this prior knowledge upon any SPM observation of this standard tha
appears reasonably close to reality. The already-known sygnoatrbe enforced, and
these enforced Fourier coefficients can be takéd g, {H,K).

The comparison of observed Fourier coefficiehtsith theoretical Fourier
coefficients O is an opportunity to calculatePi(H,K). The inverse Fourier
transformation of will result in the point spread functiguy(X,y).

The functionsl and O are complex-valued functions of a discrete 2D array of
integers. We seeRp(X,y) ideally as a two-dimensional continuous function but our
intermediate resub;,(H,K) only has as many points in its domain as there are non-zero
Fourier coefficientsl;aw (H,K) and O sampidH,K). The result of the inverse Fourier
transform that takeB to p should accurately describe the tip function.

We treat M16 as such a calibration standard, of known symmearpexiodic on
a molecular scale, because it is seen that the symmetng gfaphite is largely shown
in the Fourier coefficients. The effect of molecular va@sevill be seen to average
out. Given the prior knowledge that the sample is graphite and its gianp isp3m1
one can enforce that symmetry and equate:

OsampidH,K) = I symmetry_enforcelH,K) (4.5)

Thus after the enforcing the plane symmetry of the known calibration sample,

one can rewrite relation (4.4) as
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Pip(H,K) = lraw (H,K) / lsymmetry_enforcdd, K) (4.6)

and thus obtain the Fourier transform of the point spread function for a
particular scanning probe tip (actually the tip+instrument umit) @ particular set of
experimental conditions of the SPM, providad of a known calibration standard.

This estimate folP;p(H,K) can now be used directly for correcting images of
unknown samples that are recorded under the same conditions, includimgnthéis

as the image taken of the calibration sample. The respective relation is

|corrected_unknow6H,K) ~ |raw_unknown(H,K) / Ptip(H,K) (4-7)

4.1 Calculations on image M16

2 nm?

Figure 4.3. M16 on the left, 512x512 pixels, 18
(vertical) x 20 (horizontal) unit cells. Its two-
dimensional Fourier transformation (black/white
reversed for visibility) on the right, taken fronba2
pixel diameter circle centered on the image.
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The image in the right half of figure 4.3 is the Fourier tramsé&tion of M16. The
vertical banding is a consequence of the visible horizontal recter lines in the raw
image. The spots seen at the center derive from the periodiergke in the sample.
They are clearly in an approximate hexagonal arrangementa.angle between lines
joining them is approximately 60 degrees. This is evidence thatrtiper plane group
for this sample is one of the hexagonal grop@sp3m1, p31m, p&rp6mm

Figure 4.4 shows the next step in CIP as implemented in CR&xtion of the
reciprocal lattice. This is the same Fourier transfornfigizge 4.3 but with arrows
overlaid showing the direction and unit size of HhandK axes. This lattice selection

was made automatically by CRISP and was not overridden cisaily matches the

h mil6FFT i from m5_orijpg, 512612 (1) = [@=] | E‘IEIEI Lattice refinement of m16_orijpg o || = |[= '

Detect Lattice "AB’ Modify Lattice "AB°
A=20.3A 2
| el H K A=ZL3A [ Megate A
= 1 0 B*=20.5A [~ Megate B
[ 2 0 1

¥'=837" [T Swap AB
- Centred Lattice "AB’
B e

I Refine I Close | [~ Modulated lattice

Figure 4.4. Output from CRISHeft) Fourier
transformation of M16 with reciprocal axes
overlaid. ¢ight) numerical values of the unit
length of these axes. Note angle of 63.7

degrees, close to what one would expect for the
reciprocal of a hexagonal lattice.

\ | ¥ Radius=256 |v Auto

actual spacing of the spots. The numerical values shown for theoeadifength of the

axes is calibration dependent; the default settings for CRESRleat are used since the
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ratio of the reciprocal lengths is what is significant for deieing the plane group
rather than absolute values.

This confirms the visual observation that the axes are approxnttelegrees
apart and as seen in figure 4.5 CRISP tests just the hexadanalgroups (as well as

p2 which is always calculated, apdwhich is translational averaging.)

"qﬁg Origin refinement of ml6_orijpg = ﬁ@
Symm RA% pRes Aolde {* Phaseoriginmap ( pl map
T Figure 4.5. Left panel contains
e g PR the list of plane groups with
e G their residuals. Note that only
S an the five hexagonal groups are
ot tested.
pria mlx
pra mly
(==4=]
{siyly]
P4
(=E 1Y
pda
=] EB.3 13.6 -
F3im  Sl.4 27.7 - a=28.04 b=2B.0A y=120.0° Shifth=1164 Shift k=619
(=] EB.3 29.9 -
pen SLA 3L C = e[ Ty Al | Refine ‘ Edit HK ] Create_lmg‘ Close ]

The software has selectp@mlas the most likely plane group. The residuals for
this group are slightly higher than those & but because the multiplicity pBm1lis 6
while that ofp3is only 3, there is a greater “quantity of symmetryp8mland it is the
better choice.

Note that CRISP has selected “a = 28.0 A, b = 28.0 A” as the dionensf the
reciprocal lattice unit vectors. The “A” shown as the dimensioth@foutput is should
be interpreted as inverse pixels. The size is consistent V@il pixel lattice with 18
periods (28< 512/18).

We now enforce that symmetry and look at the Fourier coefficiesfisre and

after enforcement in table 4.1. Amplitudes are denoted in scals; wiih a dynamic
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range of up to 10000; this table is limited to coefficients withomafd amplitudes
greater than 200 and contains 24 entries. The ratio of the amplisid@emeaningful

guantity when calculating the inverse Fourier transform; the actual \ilwelevant.

Table 4.1. 24 largest Fourier coefficients of M16

Coordinates (reciprocal Fourier amplitudes (arbitrary
space) units) Fourier phases (degrees)
H K observed | p3m1 enforced observed | p3m1 enforced
0 1 10000 7565 -10 -10
1 0 9198 7565 10 10
1 -1 3497 7565 -9 -10
0 2 1550 850 38 57
2 0 690 850 -148 -57
2 -2 309 850 -83 57
1 1 2072 1132 -167 180
1 -2 788 1132 -14 180
2 -1 537 1132 -71 180
1 2 1374 561 87 106
1 -3 138 561 118 -106
2 1 1147 561 -116 -106
2 -3 92 561 47 106
3 -1 409 561 173 -106
3 -2 207 561 46 106
1 3 906 237 -175 -155
1 -4 137 237 27 155
3 1 258 237 122 155
3 -4 43 237 -84 -155
4 -1 61 237 130 155
4 -3 15 237 156 -155
2 2 592 238 176 180
2 -4 86 238 23 180
4 -2 36 238 -56 180

The table columns marked “observed” are the Fourier transfoutatafgathered
directly from the image. As discussed earlier, the transfesults in a two-dimensional

matrix of complex numbers. The amplitudes in the table are tlymitudes of those
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complex numbers, where the magnitude of a complex nuxberis /x*>+ y? . If one

expresses the complex numer iy in the formre'’, then the magnitude is

The phases are the argument of the complex number, defined asrnica br
180,180] expressed in degrees of arctangbntOr alternatively a® if the number is
expressed in the forme'’. The observed phase depends upon the origin selection, which
is initially set to be the center of the real-space area selectaddlysis.

The Fourier amplitudes are absolute (although their unit is ampitbut the
Fourier phases are relative to the selected origin. An orlgfh shifts all the phases
according to the formul@new = Qo + 360°0x + ky) whereh,k are the indexes of the
coefficient andk,yis the shift in fractional coordinates [26].

With the exception ofpl, each of the 17 plane groups has either a specific
location or an axis (glide or mirror) along which the origin musti&ined. The initial
origin at the center of real space is unlikely to be atltuation. Therefore for each
plane group a CIP program tests each point in the unit cell as @igot#igin. The
Fourier coefficients are calculated at each tentativeeshgosition, and the position (or
arbitrary location along a mirror/glide line) that has thedstwesiduals (see equations
2.7 and 2.8) is chosen as the origin.

The columns marked “enforced” are the end result of crystallograpiage
processing. Various Fourier coefficients are grouped togetliter amplitudes and
phases averaged. The groupings depend on the plane group seletted cése of
p3ml, these coefficients are related:l (k -h-K (-h-k h) (k h). Additional relationships
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exist because the relation betwebrk(and k h) in particular means that the values for
k andh can be permutedzor example, leh = 1 andk = 3 and note in rows 16 though
21 of the table that these coefficients: (1 3) (1 -4) (3 1) (3441) (4 -3) are all
grouped together.

These grouped coefficients have the same enforced amplitude néoted
phases that are either the same or differ by 180 degreeainGgdups of coefficients,
those that contain values londk in whichh = k restrict the phase to 0 or 180 degrees,
again a requirement p3m1

The two columns labeled “enforced” constitute a new set of FocwiEfficients
that, when inverse Fourier transformed, will display a “cordéateage of the original
sample. See figures 4.6 and 4.7 which show the corrected imeggewith the 24
strongest coefficients shown in the table, then with the 53 ciggifscwith amplitudes
greater than or equal to 50 (in arbitrary units)

Given these coefficients we can now compute the point spread functibwe of
effective microscope tip by comparing the corrected coefficientise raw coefficients.
This is a simple division of complex numbers that takes two confpletions of the
two dimensional integer arrayH(K) and yields a third complex function af (K).
Using equation 4.6,

Pip(H,K) =lraw (H,K) / lsymmetry_enforcdd, K) (4.6)
we get table 4.2 (in which the result is expressed as the reciprd&alfof ease of later

calculation):
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Figure 4.6. Corrected image of M16 enforcing

p3mlsymmetry using 24 coefficients with

highest amplitud.

Figure 4.7. Corrected image of M16 enforcing

p3mlsymmetry using 53 coefficients.

Table 4.2. Coefficients (24 largest) of the paiptead function that was calculated when the ST|

image M16 was reconstructed wgBmZlsymmetry enforced.

M

Coordinate (Fourier Iraw(H/K) |symmetry_enforced(H/K) 1/Ptip(H1K)
space)

H K (expressed in x + iy format) (in re” format)

0 1 9848.1 -1736.5 7450.1 -1313.6 0.757 0
1 0 9058.3 1597.2 7450.1 1313.6 0.822 0
1 -1 3453.9 -547.1 7450.1 -1313.6 2.163 -1
0 2 12214 954.3 462.9 712.9 0.548 19
2 0 -585.2 -365.6 462.9 -712.9 1.232 91
2 -2 37.7 -306.7 462.9 712.9 2.751 140
1 1 -2018.9 -466.1 -1132.0 0.0 0.546 -13
1 -2 764.6 -190.6 -1132.0 0.0 1.437 -166
2 -1 174.8 -507.7 -1132.0 0.0 2.108 -109
1 2 71.9 1372.1 -154.6 539.3 0.408 19
1 -3 -64.8 121.8 -154.6 -539.3 4.065 136
2 1 -502.8 -1030.9 -154.6 -539.3 0.489 10
2 -3 62.7 67.3 -154.6 539.3 6.098 59
3 -1 -406.0 49.8 -154.6 -539.3 1.372 81
3 -2 143.8 148.9 -154.6 539.3 2.710 60
1 3 -902.6 -79.0 -214.8 -100.2 0.262 20
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1 -4 122.1 62.2 -214.8 100.2 1.730 128
3 1 -136.7 218.8 -214.8 100.2 0.919 33
3 -4 4.5 -42.8 -214.8 -100.2 5.512 -71
4 -1 -39.2 46.7 -214.8 100.2 3.885 25
4 -3 -13.7 6.1 -214.8 -100.2 15.800 49
2 2 -590.6 41.3 -238.0 0.0 0.402 4
2 -4 79.2 33.6 -238.0 0.0 2.767 157
4 -2 20.1 -29.8 -238.0 0.0 6.611 -124

4.2 Calculations on image M17 using the PSF from M16

Now that we have calculated the presumed PSF of the tip bycemfp3ml
symmetry upon image M16 and comparing those coefficients with theimage
coefficients, one can examine image M17 (figure 4.8), taken atynda@lsame time
and under the same experimental conditions, and correct for thetidrgoof M17
introduced by the tip + instrument combination by dividing those coefiisiby the

Fourier transform of the M16 PSF using formula 4.7

Icorrected_ unknom(‘H,K) ~ IraW_ unknow‘H,K) / Ptip(H,K) (4-7)

4.2.1 Zero values in the PSF

We now must deal with the fact that sirig(H,K) appears in the denominator of
this expression, iPs, = 0 for any particulaH,K pair the expression will not be defined.
This will occur for anyH,K for which the Fourier amplitude of the observatisrzero
(sincePyp(H,K) = lraw (H,K) / lsymmetry_enforcddd,K)). One possible solution is to add a
Wiener-filter type step to the process, by adding a small aanstaeach observation

amplitude, simulating a bias, thus guaranteeing a finite solution [29].
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There are two logical places in the process where this can be done: either in the

calculation of the PSF itself:

in which case

Ptip(H,K) = IraW (H,K) / |symmetry_enforce(&1'|,K) (4-6)
becomes
Ptip(H,K) = (Iraw (H,K)"'kbias) / |symmetry_enforc£l'|,K) (4-8)

that guarantees thBtj,(H,K) will be nonzero sincéaw (H,K) is nonnegative, or later, in

the Ca|CU|at|0n Ofcorrected_ unknov\(‘H y K)

in which case

l corrected_ unknowtH,K) = lraw_ unknowkH,K) / Pip(H,K) 4.7)
becomes

lcorrected_unknowH, K) = lraw_ unknowkH,K) / (Pip(H,K)+Kbias) (4.9)

that guarantees thRbrrected  unknowkH,K) will remain finite.

The second method involving only the calculationcgfected  unknowkH,K) will be
used here since it leaves the PSF unchanged for other purposes gseecth-space
visualization of the tip) and since it is expected that theutslon of lcorected
unknowH,K) IS @an approximation anyway.

An alternative approach that will not be further pursued here would be to
introduce a nonzero random noikQise iNstead ofkyias, Which would eliminate the

problem of biasing all coefficients in the same direction.
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4.2.2 Production of corrected M17 coefficients

The Fourier transform of M17 will of course consist of a two dimensional array of
complex numbers. Although all coefficients in the array contribwutthe final image
that is produced after an inverse Fourier transform, the higheanipditude of the
coefficient, the greater the visual intensity of that particatartribution in real space.

In practice, our experience has been that the 20 to 25 highestualmmoefficients can

Figure 4.8. M17 on the left, its
Fourier transform on the right based
upon a 512-pixel diameter circle
centered on the image.

produce an image indistinguishable to the eye from an image with more coefficient

It seems logical then to concentrate on the strongest ceeticof the image

being worked on; we are using the 24 strongest for ease of calculBhis particular
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set of 24 H, K) indices will not be the same for every image, and the PSklatdd
from the image of the calibrated sample should contain a largeglenmmumber of
coefficients to insure there will beRaip,(H,K) value for eachaw_unknowkH,K) in the set

of 24 strongest.

Table 4.3. Coefficients (24 largest) of the Foutiansform of M17, with corresponding M16 PSH
coefficient adjacent, showing resultant correctiémplitudes are in arbitrary units (10000 max),
phases in degrees.

Coordinate (Fourier Iraw_unknown (H/K) [M17] 1/Ptip(H;K) [from M16] |corrected_unknown (H;K)
space)
H K | amplitude phase | amplitude phase | amplitude phase
0 1 10000 -37 0.757 0 7570 -37
1 0 9522 -89 0.822 0 7827 -89
1 -1 3422 -45 2.163 -1 7402 -46
1 1 2214 88 0.546 -13 1209 75
0 2 1837 103 0.548 19 1007 122
2 1 1341 -67 0.489 10 656 -57
1 2 1055 -15 0.408 19 430 4
1 3 774 130 0.262 20 203 150
2 0 727 56 1.232 91 896 147
1 -2 640 -57 1.437 -166 920 -223
2 2 599 170 0.402 4 241 174
2 -1 565 151 2.108 -109 1191 42
3 6 526 59 0.175 2 92 61
0 3 521 -65 0.388 9 202 -56
3 -1 483 -113 1.372 81 663 -32
2 -2 412 152 2.751 140 1133 292
4 8 337 177 0.199 -1 67 176
2 4 336 -175 0.305 -16 103 -191
3 1 323 100 0.919 33 297 133
1 4 307 -69 0.342 35 105 -34
2 3 290 16 0.365 -47 106 -31
2 6 289 -104 0.422 -3 122 -107
3 2 264 -4 0.549 -64 145 -68
3 7 235 -126 | #DIV/0! #DIV/0! #DIV/0! #DIV/0!
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We will produce a corrected image without digys , that means there is one
problematic coefficient (3,7) for which the amplitude of M1&gene3,7) = O (the
phase oflspsene3,7) is 5 degrees but that is irrelevant). We propose to disregard this
coefficient in the first approximation, produce an image, then show thhtiimage
would look like with an increasing value of this coefficient; thes will produce an
image with a positivéyias.

Figure 4.9 shows the corrected M17 image using the coefficierihe right two

columns of Table 4.3 above.

Figure 4.9. Left, closeup of approximately 1.5 walls of M17
corrected by the PSF of M16. Note the visible 18§rde symmetry.
(right) same reconstruction scaled to match thgiral image.

One can see the hexagonal lattice in the image. Processing this retedstruc
image using CIP finds the actual angle between the reciprocet laites to be 61.4

degrees, and calculation of residuals fip8m1to be the best fit. See figure 4.10.
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Figure 4.10. Result Oi-ﬁl Crigin refinement of mlTtop24 corrbyml6psffittoimage.tif E@@
residual calculation | SY™m RA% pRes Aoihe S 8
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plane group3mlis ||es alx
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We see in the penultimate column of table 4.3 that the amplitudes of the corrected M17
coefficients range from a low of 67 to a high of 7827. These are arbitrary units, and
matter only in relation to one another. Let us introduce the (3,7) coefficient with
arbitrary amplitudes of 400 and 4000. Since M1&sne§3,7) = O the theoretical value

Of lcorrected_unknowk3,7) IS infinite. The three results are shown in Figure 4.11.

 corrected_unknowl3, 7)ignored |  lcorrected_unknowt3s 7) = 400 | lcorrected unknowt3, 7) = 4000

Figure 4.11. Three presentations of
M17 corrected by the M16 PSF with
various amplitude values for an
anomalous coefficient.
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The anomaloukorrected unknowk3,7) coefficient introduces a single wave into the image.

4.2.3 Production of corrected M17 coefficients using a bias

The values for amplitude &, range from 0 to approximately 5 (before the bias
is applied — see table 4.2) for the rangaHd{ coefficients we are considering here. If
we arbitrarily institute a bias of +1 and add that bias to agtamplitude, and then
recalculate By, and apply that to the M17 coefficients we obtain a new set cécted

coefficients.

Table 4.4. Coefficients (24 largest) of the Foutiansform of M17, with a biased M16 PSF
coefficient adjacent, showing resultant correctibmplitudes have dynamic range with 10000 mak,
phases in degrees.
Coordinate (Fourier lraw_unknown (H,K) [IM17] | 1/(Pyp(H,K)+1+0i) lcorrected_unknown (H, K)
space)
H K | amplitude phase | amplitude phase | amplitude phase
0 1 10000 -37 0.431 0 4308 -37
1 0 9522 -89 0.451 0 4296 -89
1 -1 3422 -45 0.684 -1 2340 -46
1 1 2214 88 0.353 -13 782 75
0 2 1837 103 0.354 19 650 122
2 1 1341 -67 0.328 10 440 -57
1 2 1055 -15 0.290 19 306 4
1 3 774 130 0.208 20 161 150
2 0 727 56 0.552 91 401 147
1 -2 640 -57 0.590 -166 377 -223
2 2 599 170 0.287 4 172 174
2 -1 565 151 0.678 -109 383 42
3 6 526 59 0.149 2 78 61
0 3 521 -65 0.280 9 146 -56
3 -1 483 -113 0.578 81 279 -32
2 -2 412 152 0.733 140 302 292
4 8 337 177 0.166 -1 56 176
2 4 336 -175 0.234 -16 79 -191
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3 1 323 100 0.479 33 155 133
1 4 307 -69 0.255 35 78 -34
2 3 290 16 0.268 -47 78 -31
2 6 289 -104 0.297 -3 86 -107
3 2 264 -4 0.354 -64 94 -68
3 7 235 -126 1.000 0 235 -126

Figure 4.12. Left, closeup of approximately 1.5t weils of M17
corrected by the biased PSF of M16. Note that ¢h@fonal lattice
is visibly less clear, see text for quantitativéadle (right) same
reconstruction scaled to match the original image.

The image with this set of corrected coefficients is showriguré 4.12. It is
“muddier” than the image without the bias and there is a visiribution from the
(3,7) component which is to be expected. Comparing this image to thenage
(figure 4.8) it seems to be that the (3,7) component is a esaéaifon of the visible
rastering in the raw image, in other words an artifact efsitanning process, and thus

can be safely disregarded.
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This reconstructed image was also subjected toa@tPthe residuals are notal

higher, leading one toonclud that reconstruction without biasing out the zertue.

for this PSF coefficient is more effecti See table 4.5.

Table 4.5 Residuals for two different reconstruts of M17 using M16’s PSHirst disregarding th:
zero PSF coefficient, then biasing it.
p3 p3m1l p31m

RA% oRes RA% oRes RA% oRes
without bias to PSFK
amplitudes (Fig. 4.9) 10.2 7.4 10.8 98 | 10.£ | 120
with +1 bias to PSF
amplitudes (Fig. 412) | 335 8.8 34.6 | 121| 34€ | 119

By indexing the actual FFT plot, shown in figurd3, we see that the spot mc

closely associated with (3,7) is visibly part oftlFourier noise generated by -

horizontal striations in the ima

Figure 4.13. The arrows point to the
(3,7) spot in the FFT of M17.
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4.3 Real space reconstruction of the effective tip PSF

The fact that the point spread functiprR(x,y) represents the entity in real space
with which the object is convoluted in order to produce an image meanhehabint
spread function is the actual morphology of the physical tip (eended by other
instrumental distortions).

The convolution of a periodic function with a nonperiodic impulse (in thsg ca
the tip) is periodic. We have a two-dimensional arRay(H,K) that is the Fourier
transform of the PSF. Since our sample is periodic, we eRagtl,K) to be periodic
too. A density plot of one unit cell of Bf,(H,K), the inverse of the transform of the
effective tip, is shown in figure 4.14

When we inverse Fourier transforffg, the resultpgp,, is a periodic function as
well, the period of which should be equal to the longest repeatingruttieisample
(provided we are including the lowest order coefficients (0,1) &@J)( Thus the unit
cell would be similarly sized to the sample molecule. The noebtihis function should

be the representatiqnp(x,y) of the tip that we seek.
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Figure 4.14.
Approximately 2.5 unit
cells of the inverse PSF of
the M16 effective tip.

—

Figure 4.15. Approximately two unit cells of the MPSF. left) density plot;
(right) contour plot. Length of arrow is approximatel$ tim as period of
PSF is equal to that of M16.

When we perform this calculation for M16 the data is shown in tablewad6
plotted in figure 4.15. Ten coefficients with maximum amplitude amwva (plotting
more adds virtually no detail to the visual appearance), and s@egratlic motifs or
approximately two units cells are plotted. The resulting el@ugetliptical object is a

representation in real space of the shape of the tip + instruthem.assume that the
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periodicity in this image (shown by arrow) is equal to the wglitdimension of M16,
1.5 nm, we can estimate the dimension of the elliptical effedifyeshown as

approximately 1 nm long and 0.2 nm wide.

Table 4.6. 10 highest M16 PSF coefficients rankg&d amplitude, plus data for (0,1) and (1,0)
coefficients.
amplitude phase Piin(H,K)
H K raw symm raw symm P 0
3 6 257 45 -159 -157 5711 -2
1 3 906 237 -175 -155 3823 -20
2 4 308 94 -21 -37 3277 16
1 4 281 96 11 46 2927 -35
2 3 353 129 76 29 2736 47
0 3 500 194 -116 -107 2577 -9
2 2 592 238 176 180 2487 -4
1 2 1374 561 87 106 2449 -19
2 6 45 19 55 52 2368 3
2 1 1147 561 -116 -106 2045 -10
0 1 10000 7565 -10 -10 1322 0
1 0 9198 7565 10 10 1216 0

This elongated elliptical image is dominated by several higleroFourier
coefficients that are relatively unimportant in the transfornthef original sample.
Keeping in mind that each individuBli, coefficient is calculated blyaw/lsymmetrizecat @
particular H,K value, it is interesting that these prominent bigler coefficients have
high amplitudes not becausg, is high (quite the opposite), but becali§@metrizedS
very low.

For example, for the high orded,K) = (3,6), the amplitude df,, is only 257
(arbitrary units) but the amplitude BfmmetizedS much lower, at 45, thus the amplitude

of Pip(3,6) is very high, 5711 (normalized, arbitrary units). Compare thtit thie
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coefficient H,K) = (0,1), which is a much stronger coefficient in the originzge
with an amplitude of 10000; butymmetize0,1) also has a high amplitude at 7565,
therefore amplitude d?;(0,1) = 1322, about ¥ as strong as thap(3,6).

If we weight thePy, coefficients according to their original amplitude strength in
the raw image, we obtain a different set of 10 maximum amplitad#ficients, whose
image is seen in figure 4.16. The length of this object is thee s the unweighted
version in figure 4.15, but the width is considerably greater.

Figure 4.17 shows close-ups of both unweighted and weighted periodic footifs

the M16 PSF.

Figure 4.16. Approximately two unit cells of the MPSF after weighting coefficients ag
described in textléft) density plot; §ight) contour plot.
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Figure 4.17. Approximately one periodic motif of BIPSF, contour plotgft) unweighted;
(right) weighted.

Table 4.7. Ten highest M16 coefficients ranked RyaPnplitude after weighting byal,

amplitude.
amplitude phase Pyin(H,K)
H K raw symm raw symm amplitude | phase
0 1 10000 7565 -10 -10 6609 0
1 0 9198 7565 10 10 5592 0
1 1 2072 1132 -167 180 1896 13
1 3 906 237 -175 -155 1732 -20
1 2 1374 561 87 106 1683 -19
0 2 1550 850 38 57 1413 -19
2 1 1147 561 -116 -106 1173 -10
1 -1 3497 7565 -9 -10 808 1
2 2 592 238 176 180 736 -4
3 6 257 45 -159 -157 734 -2

Weighting the coefficients is an empirical procedure, not theateticat appears to
change the model into a more reasonable representation of a tiperFwork is

required to validate this model.
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We have tried the same technique on a different image, figure
- 3.35, which is the open-loop AFM image of a square calibration grid

(also shown in figure 3.34 as a closed-loop image). In thislga$gm

Figure 3.34 yielded 39 usable coordinates fBf,, many of them of high order,
probably because of the sharp edges of the sample. The enforced
symmetry wap4mm The coordinates are shown in table 4.8 and the

PSF is plotted in figure 4.18. It appears as a narrow tip wigtsli

asymmetry around the tip (visible in the contour plot), which is

Figure 3.35

consistent with a well-operating instrument with a good tip tha loag-period
hysteresis over the entire image. For comparison figure 4.19 shewslar plot of the
PSF of the closed-loop image of the same sample, figure 3.34, aadif@ldhows its
coefficients. The reconstructed tip appears sharper as one mygktt with no
hysteresis in the image. In both cases, closed- and open-loopmtiesthn of the unit
cell of the PSF (highlighted with arrows) is equal to thequkeity of the sample, here

10 um.
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Table 4.8 PSF calculation for figure 3.35 (opemp)

amplitude phase Py [FT of PSF]
H K obs symm obs symm p 0
1 2 803 322 -50 0 2494 10
0 4 570 285 153 180 2000 3
1 -4 504 268 -160 180 1881 20
7 1 635 365 -157 180 1740 19
5 1 1115 708 -15 0 1575 17
1 -2 485 322 -4 0 1506 -4
0 6 433 300 10 0 1443 5
0 2 1075 745 -37 0 1443 1
5 0 1403 1029 36 0 1363 36
3 1 1986 1568 167 180 1267 13
1 4 338 268 161 180 1261 14
9 0 367 301 35 0 1219 35
0 8 255 211 -153 180 1209 7
7 0 714 597 -173 180 1196 7
3 0 2877 2414 178 180 1192 -2
3 -1 1796 1568 -130 180 1145 50
3 3 390 363 -38 0 1074 20
5 -1 745 708 15 0 1052 15
1 1 6926 6767 -26 0 1023 9
0 1 10000 9942 -20 0 1006 0
1 0 9884 9942 4 0 994 4
1 -1 6609 6767 12 0 977 12
3 -3 337 363 -22 0 928 -22
1 -7 334 365 154 180 915 -26
7 -1 313 365 -133 180 858 47
1 3 1324 1568 173 180 844 12
0 3 1951 2414 160 180 808 2
0 7 481 597 -158 180 806 6
8 0 167 211 110 180 791 -70
0 9 235 301 14 0 781 8
1 -3 1164 1568 -168 180 742 12
4 -1 193 268 145 180 720 -35
1 -5 487 708 4 0 688 4
1 5 486 708 11 0 686 16
0 5 656 1029 -13 0 638 4
2 0 416 745 -58 0 558 -58
6 0 167 300 -17 0 557 -17
1 7 177 365 159 180 485 18
4 1 38 268 -133 180 142 15
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Table 4.9 PSF calculation for figure 3.34 (closeabl

amplitude phase Py [FT of PSF]
H K obs symm obs symm p 0
8 1 450 245 10 0 1837 10
10 0 491 291 -5 0 1687 -5
8 -1 398 245 -5 0 1624 -5
8 0 799 496 -179 180 1611 1
2 1 913 573 -177 180 1593 3
2 0 1859 1200 -29 0 1549 -29
4 -1 936 606 6 0 1545 6
6 -1 720 468 176 180 1538 -4
6 0 1071 722 -15 0 1483 -15
4 0 1352 936 -179 180 1444 1
6 1 663 468 -167 180 1417 13
0 11 320 231 36 0 1385 36
4 1 759 606 -1 0 1252 -1
0 9 526 423 -166 180 1243 14
2 -1 699 573 -162 180 1220 18
1 9 384 316 20 0 1215 20
1 -9 368 316 -34 0 1165 -34
1 -7 628 556 167 180 1129 -13
1 5 1144 1014 1 0 1128 1
3 -5 337 302 179 180 1116 -1
5 3 323 302 176 180 1070 -4
1 7 588 556 175 180 1058 -5
3 3 580 549 18 0 1056 18
0 7 880 838 15 0 1050 15
3 1 2109 2019 172 180 1045 -8
1 3 2102 2019 169 180 1041 -11
3 0 3244 3121 -8 0 1039 -8
1 -3 2071 2019 -179 180 1026 1
0 13 204 201 -159 180 1015 21
0 5 1537 1517 179 180 1013 -1
1 0 10000 9925 177 180 1008 -3
1 -5 1020 1014 -13 0 1006 -13
1 -1 6894 6878 -12 0 1002 -12
1 1 6861 6878 0 0 998 0
0 1 9849 9925 175 180 992 -5
5 0 1497 1517 180 180 987 0
8 1 450 245 10 0 1837 10
10 0 491 291 -5 0 1687 -5
8 -1 398 245 -5 0 1624 -5
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Figure 4.18.1eft) Periodic motif density plot of PSF of open-loaguire 3.35; (ight)
Contour plot with length of one unit cell (1) highlighted

Figure 4.19.left) Density plot of the periodic motif of the PSFfigfure 3.34, closed-loop image|
(right) contour plot
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5. Summary and Conclusion

In this thesis we have shown that the technique of Crystallogrdptage
Processing, which was designed for the processing of high resoluttine(lfringe)
images from TEMs, is also applicable to two-dimensional imafggeriodic samples
taken by scanning probe microscopes. We demonstrated in thistbiadise use of the
crystallographic averaging algorithm removes noise and random feorar images
more effectively than translational averaging. This was dgnteting both CIP and
translational averaging on simulated 512x512 pixel images withedately introduced
random error, with motifs arranged in a 4x4 array and a 6x6 afiag. results
confirmed the effectiveness of CIP and the relationship betwegealdb-noise ratio
and sample size. We also created a 2048x2048 pixel simulated withggystematic
error and showed the superior performance of CIP over translational averaging.

We then applied the technique to an STM image @€&Pc on HOPG which
appeared to have been taken with a blunt, multiple or otherwise imip&de By
selecting the only plane symmetry groypghthn) compatible with the known point
symmetry of the moleculedinm) we were able to produce an image similar to other
images of this molecule taken with tips lacking this type ofeate We also
demonstrated the ability to correct systematic errors causéydteresis in the AFM
image of a calibration grid, by imaging the grid with and withthé instrument’s
closed-loop hysteresis correction operating. CIP was ablentowe the visible non-

linearities in the image that had no hysteresis correction.\Wasseffective even though
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the amplitude residual for the non-linear image was 20.6% vs. 16.8% ampthdake
residual was 20.7° compared to 13.5°.

Given a scanning probe image of a 2D periodic, highly symmetown sample,
we demonstrated that it was possible to use the Fourier ceetficof the image
transform to solve the inverse problem and calculate the poirgdspuaction (PSF) of
the instrument. This was done by crystallographically enfor@nguitable plane
symmetry group on an STM image ofg€oPc on HOPG and dividing the Fourier
transform of the original image (as it was output by theuns¢nt) by the transform of
the enforced image. The quotient is the Fourier transform ah#teumental PSF. Its
inverse Fourier transform, when plotted in real space, reprebentet effect that the
microscope itself has on the object-to-image transaction. Theopkbie ten highest-
amplitude Fourier coefficients shown in the thesis depicts an ekmhgap” with a
possible “minitip” adjacent. (It was found that plotting more than 1Behighest-
amplitude Fourier coefficients adds virtually no visual detail.)

We performed the same procedure on the two AFM images ofbaataln grid,
with and without hysteresis correction, and show that the reaégpat of the effective
tip resembles a two-dimensional projection along the tip axis tbfee-dimensional
sharp tip, and is much sharper in the image which has hysteoesgstion, supporting
the conclusion that this real-space plot is representative of the actuahiestr

We additionally demonstrated that the PSF, once known, could be used on a

second image taken by the same instrument under essentiallgnieeexperimental
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conditions to remove errors introduced during that second imaging prodass. T
involves operating in Fourier space to divide out the contribution of the instrument. This
was done with another STM image ofs®oPc which was taken under essentially the
same experimental conditions, but is of a different area ofafmpls. Both this image,
and the one from which the PSF was derived had vacancies ane yigésl (This
particular image also had a vertical discontinuity where a scgrparameter visibly
changed.) After performing the PSF correction, we applied CtRet6before” image
and “after” image, and were able to show significantly improestiuals after the PSF
correction; the phase residual for the corrected image was 9.8° rmumpah 15.8°
before correction, and the amplitude residual was improved from 55.2908%. This
process is mathematically sound when applied to a second imadyelasite group
symmetry the same as the calibration image; further waik i done to justify using
this process on all types of images.

Further work is also in progress (which will apply to all use€tt for SPM
images) to obtain a fully objective criterion, given a particuteage, for choosing the

plane symmetry group which should be enforced.
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Appendix A — Source code for simulated images

Code used to generate the simulated images of crosses in Section 3. Code written in
Visual Basic 2008 Express Edition.

Public Class Crosses

Private Sub PictureBox1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles PictureBox1.Click
Dim imagesize As Integer
imagesize = Clnt(InputBox("Pixel size of image (power of 2)?"))
Dim im As New Bitmap(imagesize, imagesize)
Dim b As Graphics = Graphics.FromImage(im)
Dim crossl, crossw As Integer
Dim x, y As Integer
Dim DistortCross As MsgBoxResult
Dim BiasCross As MsgBoxResult

' Dim BiasAmount As Integer

crossl = Clnt(InputBox("Pixel length of cross, multiple of 10?"))
crossw = crossl \ 5

DistortCross = MsgBox("Do you want to distort the crosses?", MsgBoxStyle.YesNo)
Randomize()

If Not DistortCross Then
BiasCross = MsgBox("Do you want to bias the crosses?", MsgBoxStyle.YesNo)
End If
'If BiasCross Then
'‘BiasAmount = Clnt(InputBox("Bias amount? (1 to 5)"))
'End If

b.Clear(Color.White)

"x and y are the center
x =10 + crossl \ 2
y =10 + crossl \ 2

While y <= imagesize - 10 - crossl \ 2
While x <= imagesize - 10 - crossl \ 2
b.FillRectangle(Brushes.Black, x - crossl \ 2, y - crossw \ 2, crossl, crossw)
b.FillRectangle(Brushes.Black, x - crossw \ 2,y - crossl \ 2, crossw, crossl)
If DistortCross = MsgBoxResult.Yes Then
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Distort(x, y, crossl, b)
Elself BiasCross = MsgBoxResult.Yes Then
Bias(x, y, crossl, b)
End If
x = x + crossl + 10
End While
x = 10 + crossl \ 2
y =y + crossl + 10
End While

PictureBox1.Image = im
PictureBox1.Image.Save("C:\...crosses1.jpg", Imaging.ImageFormat.Jpeg)

End Sub

Private Sub PictureBox1_MouseEnter(ByVal sender As Object, ByVal e As
System.EventArgs) Handles PictureBox1.MouseEnter
PictureBox1.BackColor = Color.Blue
PictureBox1.BorderStyle = BorderStyle.FixedSingle

End Sub
Private Sub Distort(ByVal x As Integer, ByVal y As Integer, ByVal 1 As Integer, ByRef f
As Graphics)
"x and y locate the center of the cross, each arm of which is 2 units wide, 10 units long.
' Pick a random 1x1 square to turn white
' Randomly choose to distort horiz or vert arm of cross.

Dim blankx, blanky As Integer

If Rnd() <= 0.5 Then
' choose horizontal, x range from x-5 to x+4, y range from y-1 to y
blankx = Clnt(Int((10 * Rnd()) - 5))
blanky = Clnt(Int((2 * Rnd()) - 1))

Else
' choose vertical, x range from x-1 to x, y range from y-5 to y+4
blankx = Clnt(Int((2 * Rnd()) - 1))
blanky = Clnt(Int((10 * Rnd()) - 5))

End If

' Now blankx and blanky are number of units to offset from center. One unit =
length/10

blankx = blankx * (I \ 10)
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blanky = blanky * (1 \ 10)
f.FillRectangle(Brushes.White, blankx + x, blanky + y, 1\ 10,1\ 10)

' Now pick a random square adjacent to the cross to turn black
Dim blackx, blacky As Integer

If Rnd() <= 0.5 Then
'choose hotizontal, x = -5, -4, -3, -2, 1, 2
Do
blackx = Clnt(Int((10 * Rnd()) - 5))
Loop Until blackx < -1 Or blackx > 0
blacky = Clnt(3 * Int(2 * Rnd()) - 2)
Else
'choose vertical, y = -5, -4,-3,-2,1,2,3,4;x =-2or 1
Do
blacky = Clnt(Int((10 * Rad()) - 5))
Loop Until blacky < -1 Or blacky > 0
blackx = Clnt(3 * Int(2 * Rnd()) - 2)
End If

3,4y=-2o0rl

5

blackx = blackx * (1 \ 10)
blacky = blacky * (1 \ 10)

f.FillRectangle(Brushes.Black, blackx + x, blacky + y, 1\ 10,1\ 10)

End Sub
Private Sub Bias(ByVal x As Integer, ByVal y As Integer, ByVal 1 As Integer, ByRef f As
Graphics)
"x and y locate the center of the cross, each arm of which is 2 units wide, 10 units long.
" Pick a random 1x1 square to turn white
' Randomly choose to distort hotiz or vert arm of cross.

Dim blankx, blanky As Integer

If Rnd() <= 0.5 Then
' choose horizontal, x range from x-5 to x+4, y range from y-1 to y
blankx = Clnt(Int((10 * Rnd()) - 5))
blanky = Clnt(Int((2 * Rnd()) - 1))
Else
' choose vertical, x range from x-1 to x, y range from y-5 to y+4

blankx = Clnt(Int((2 * Rnd()) - 1))
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blanky = Clnt(Int((10 * Rnd()) - 5))
End If

' Now blankx and blanky are number of units to offset from center. One unit =

length/10

blankx = blankx * (I \ 10)
blanky = blanky * (1 \ 10)

f.FillRectangle(Brushes.White, blankx + x, blanky + y, 1\ 10,1\ 10)

' Now pick a random square adjacent to the cross to turn black
Dim blackx, blacky As Integer

If Rnd() <= 0.0005 Then 'JUST DO THE VERTICAL
'choose hotizontal, x = -5, -4,-3,-2,1,2, 3, 4,y =-20r 1
Do

blackx = Clnt(Int((10 * Rnd()) - 5))
Loop Until blackx < -1 Or blackx > 0
blacky = Clnt(3 * Int(2 * Rnd()) - 2)

Else
'choose vertical, y = -5, -4, -3, -2
Do

blacky = Clnt(Int((10 * Rnd()) - 5))
Loop Until blacky < -1 'Or blacky > 0 JUST DO THE TOP HALF
blackx = Clnt(3 * Int(2 * Rnd()) - 2)
End If

1,2

b b b

3,4, x=-2o0r1

blackx = blackx * (1 \ 10)
blacky = blacky * (1 \ 10)

f.FillRectangle(Brushes.Black, blackx + x, blacky + y, 1\ 10,1\ 10)

End Sub

End Class
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Appendix B -- Complex number notation

Complex numbers can be expressed in two equivalent formats.
Letz=x+yi, a complex number.

Then the real portion & Reg) = x and the imaginary portion, IZ)(=y. The number
has a magnitude||= /x> + y*> which is the “length” of the number.

If one sets r =z] andd = arctangenty{x) where a branch of the arctangent function is
denoted, for examplen(s] or [0,2r), thenre' is a unique way of writing the numkber

To convert back ta + yi notation, let x = cos¢)) and y =r sin(). This is consistent
with the Euler formula,

é’= cosp) +i sin(®)
The benefit of thee'’ is apparent when complex numbers need to be multiplied and
divided. Performing these operations on numbers noxated is cumbersome and

prone to human error due to the number of operations, while doing so on numbers
notatedre' requires merely adding or subtractingdatnd multiplying or dividing..
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