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Abstract 

In November, 2006, a storm generated a minimum of 34 cm of precipitation in six 

days, triggering debris flows in many of the drainages on all sides of Mount Hood, 

Oregon. Of the eleven drainages surveyed, seven experienced debris flows; these 

include the White River, Salmon River, Clark Creek, Newton Creek, Eliot Creek, Ladd 

Creek and Sandy River basins. Flows in the White River, Eliot Creek, and Newton 

Creek, caused major damage to bridges and roadways. Initiation elevations averaged 

around 1,860 meters.  Initiation zone material  was predominantly sand (45-82%) 

with gravel (15-49%) and had few fines (3-5%).  Four debris flows were triggered by 

landslides caused by undercutting of the river banks.   Three developed through 

coalescence of multiple small debris flows within  major channels and were termed 

“headless debris flows”.  Physical and morphological characterization of source areas 

was used to assess factors controlling debris flow initiation.  Although findings 

indicate that all major drainages on Mount Hood are capable of producing debris 

flows, drainages with direct connection to a glacier, low percentages of vegetation, 

and moderate gradients in the upper basin were the most susceptible.   Among 

basins not having debris flows, neither the Zigzag River nor Polallie Creek have a 

direct connection to a  glacier,  And the Muddy Fork and the Coe both have high 

percentages of vegetated slopes.  The material in the upper basin of the Muddy Fork 

is predominately rock making initiation there weathering-limited.  Additionally, the 
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Muddy Fork and the Zigzag have two of the steepest gradients on the mountain.  This 

pattern suggests that material there is regularly transported downstream through 

normal fluvial processes rather than building up to be catastrophically removed 

through debris flow processes.    
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CHAPTER 1:  INTRODUCTION  

Mount Hood is a subduction-related andesitic composite volcano located in the 

Cascade Range in northern Oregon.  It is located 70 kilometers to the east of Portland 

and is the highest peak in Oregon at about 3,430 meters high (Cameron & Pringle, 

1987).  The mountain is home to 12 glaciers and named snow fields.  There are 11 

major river drainages that come off the peak, and they come together to form 3 

primary river systems leaving the mountain (Figure 1).  These three major river 

systems are the White River which drains to the southeast into the Deschutes River, 

the Hood River which drains to the north into the Columbia River, and the Sandy 

River which drains to the west, also into the Columbia.   

In November, 2006, a large storm swept into the Pacific Northwest region.  The 

storm brought warm, moist air from the central Pacific Ocean and was colloquially 

known as a Pineapple Express.  This storm came before the first snow of the season 

in the mountains.  The storm affected not only Mount Hood but also other volcanoes 

in the region including Mount Jefferson, Mount St. Helens, Mount Rainier, and 

Mount Adams (Copeland et al., 2008; Sobieszczyk et al., 2009; Burns et al., 2009), and 

caused widespread damage due to flooding and debris flows.   

Storm-related damages on Mount Hood included damage to four bridges around 

the mountain.  The White River Bridge, on Highway 35, was completely buried by 

debris and sustained damage to guardrails and adjacent sections or roadways.  Two 
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bridges spanning the Eliot Creek were ripped from their foundations and carried 

downstream, and one bridge crossing the Sandy River had its abutment ripped away 

making it impassable.   

 

Figure 1. Mount Hood and vicinity 

In addition to the damage to bridges, Highway 35 was torn apart in two places by 

debris flows, and numerous trail bridges were damaged or destroyed around the 

mountain.  A new delta formed into the Columbia River at the mouth of the Hood 

River, with an emergent area of approximately 0.1 km2, as measured in Google Earth, 
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due to sedimentation from the single storm.    The Hood River Irrigation District 

intake structure on the Eliot Creek was also completely destroyed.  After the storm, it 

immediately began to snow.  The mountain was quickly blanketed in snowpack for 

the winter, and evidence of debris flows was effectively buried until the following 

summer.  It was known where debris flows had impacted roads; however, the true 

extent of debris flow activity around the mountain was still unknown.   

Debris flows that had impacted infrastructure were located on all sides of the 

mountain.  This distribution seemed to indicate that the impact of the storm was not 

predominantly directional. However, not all drainages had the same response to the 

storm.  Some drainages that did not appear to have experienced debris flows at all 

were nestled between drainages that did.  A better understanding of why some 

drainages responded with debris flows while others didn’t could provide useful 

information for future hazard mapping and identification.   

Aims and Objectives: 

The main objectives of this project were to answer the following questions: which 

drainages around the mountain experienced debris flows as a result of the November 

2006 storm, why did some drainages respond to the storm conditions with debris 

flows and others did not, and finally, what are the primary factors controlling debris 

flow initiation in the upper drainage basins?  In order to answer these questions I 

combined information collected from a ground-based reconnaissance with a 
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sampling program and remote sensing techniques to identify where debris flows 

occurred and characterize the primary factors controlling debris flow initiation for 

comparison between every major drainage around the mountain. 
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CHAPTER 2: BACKGROUND 

GEOLOGIC HISTORY OF MOUNT HOOD  

Mount Hood has erupted repeatedly for hundreds of thousands of years.   

However, historical observations are scarce and so most of our information about 

Mount Hood’s behavior in the past comes from the geologic study of prehistoric 

volcanic deposits (Scott et al., 1997). This active volcano is situated near growing 

communities and recreation areas. It is estimated to be more then 500,000 years 

old (Gardner et al., 2000) and has been heavily affected by glaciations. The modern 

cone is thought to have been sculpted by ice during the Fraser glaciation, 10,000 to 

29,000 years ago (Cameron and Pringle, 1987). Present day topography of Mount 

Hood has also been shaped by Quaternary debris avalanches which occurred about 

100,000 years ago (Gardner et al., 2000) and during eruptive periods. These 

eruptive periods include the Polallie, thought to have occurred between 15,000 -

12,000 years ago (Crandell, 1980), Timberline, dated at 1,400 to 1,800 years before 

present (Crandell, 1980; Cameron and Pringle, 1986), Zigzag, which occurred 400 to 

600 years before present (Cameron and Pringle, 1986), and the Old Maid eruptive 

period dated at 170 to 220 years before present (Cameron and Pringle, 1987). 

Understanding of Mount Hood's history is important for future hazard management 

and planning purposes. 
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Prehistory:   

Prehistoric information about Mount Hood is scarce.  However, the oldest rocks 

found on Mount Hood are from the basaltic to andesitic Sandy Glacier volcano 

which underlies the west flank of Mount Hood.  Lava flows with ages around 

900,000 years crop out in the Muddy Fork of the Sandy River (Scott et al., 1997).  It 

is also known that approximately 100,000 years ago a large portion of the volcano's 

north flank and summit collapsed, due to increased eruptive activity, resulting in a 

massive debris avalanche which quickly transformed into a catastrophic lahar. This 

torrent swept down the Hood River Valley and is estimated to have been 122 

meters thick at the junction of Hood River and the Columbia. The massive lahar 

surged across the Columbia River and swept up the White Salmon River Valley on 

the Washington side. Subsequent lava eruptions then filled in the scar left on the 

north flank by the debris avalanche (Gardner et al., 2000). Unlike Mount St. Helens 

to the north, eruptions on Mount Hood did not routinely produce large ash and 

tephra deposits. Rather, they normally expelled lava flows and domes which often 

led to the melting of glacier ice and the production of lahars.   

Polallie Eruptive Period: 

The Polallie eruptive period occurred approximately 15-12 thousand years ago 

during the final stage of the Fraser Glaciation (Crandell, 1980). Lahars, thin tephras, 

and pyroclastic flows from this period are interbedded with late Fraser-age outwash 

in the Upper Hood River Valley. As evidence that the Polallie eruptive period did 
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occur concurrently with the Fraser glaciation, Polallie deposits mantle ridge crests 

and valley walls but not valley floors. It is thought that glacial ice most likely still 

occupied valley floors at the time of the eruptions (Swanson et al., 1989). After the 

Polallie eruptive period, the volcano underwent an apparent time of quiescence, with 

no evidence for major eruptive behavior occurring until the Timberline eruptive 

period (Swanson et al., 1989). 

 

Figure 2. Geologic map of Mount Hood (Sherrod & Scott, 1995)  
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Products of the Polallie eruptive period include lava flows and fragmental 

deposits from vents on the upper flanks. The deposits are chiefly found on the south 

and east flanks. The lava consists of andesite and dacite flows and domes that extend 

as far as 3 km from Mount Hood's summit (Sherrod and Scott, 1995). Lavas of the 

Polallie eruptive period are denoted as hpl in Figure 2. Pyroclastic-flow and debris-

flow deposits consist of poorly sorted boulders, cobbles and pebbles in a 

predominantly gray sandy matrix. Minor debris avalanche deposits of hydrothermally 

altered material are also included (Sherrod and Scott, 1995). Clastic deposits of the 

Polallie eruptive period are denoted as hpc in Figure 2. These materials appear to 

have erupted episodically over a time period of at least several thousand years 

during the Frasier Glaciation (Crandell, 1980).  Adjacent to Newton Creek, three 

sequentially younger deposits are identified with the youngest lining the valley 

floor. This youngest deposit shows no evidence of hot emplacement temperatures 

and so is inferred to have formed from the reworking of older Polallie deposits. The 

oldest deposits are preserved on ridge tops and were probably emplaced near the 

time of the maximum extent of glaciers during the Evans Creek advance of the 

Fraser Glaciation approximately 20,000 years ago (Sherrod and Scott, 1995). 

Timberline Eruptive Period: 

"The Timberline eruptive period broke the apparent 10-thousand-year-long 

post-Polallie quiescence.  The vent shifted from its summit location during Polallie 
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time to the high southwest flank" (Swanson et al., 1989). This event is dated at 

1,400 to 1,800 years before present. Erupted material was predominantly confined 

to the Sandy, Salmon, and Zigzag River drainages. There, it mantled the broad, 

gently sloping debris fan that dominates the southwest flank of the volcano 

(Swanson et al., 1989).  Lahars of Timberline age are the most voluminous of the 

post-glacial lahar sequences and reached the mouth of the Sandy River more than 

80 kilometers from the volcano (Cameron and Pringle, 1986; Swanson et al., 1989; 

Rapp, 2005).  Pyroclastic flows from this period have been dated at 1,440 +/- 155 

years B.P. (Cameron and Pringle, 1986) and moved at least 8 kilometers down the 

Zigzag River (Swanson et al., 1989). A debris avalanche is also known to have 

occurred at this time from the upper south flank of the mountain. The scar from 

this event is still visible as it forms the amphitheater around Crater Rock. The 

subsequent lahar traveled the length of the Sandy River Valley depositing boulders 

as large as 2.4 meters in diameter, 9.1 meters above the present river level 

(Gardner et al., 2000). 

Products of the Timberline eruptive period form thick fill on the southwest and 

west flanks of Mount Hood. They include pyroclastic-flow and debris-flow deposits 

consisting of poorly sorted pebbles, cobbles, and boulders in a predominantly 

sandy reddish gray matrix (Sherrod and Scott, 1995; Rapp, 2005). Pyroclastic flow 

deposits extend down the Zigzag River from the vent for a distance of 12 km. In the 
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Sandy River drainage, debris flow deposits extend all the way to the Columbia River 

(Sherrod and Scott, 1995). These units are identified as htc in Figure 2. Another 

debris avalanche is also included as a product of the Timberline period. It is located 

in Ladd Creek and consists of poorly sorted boulders to pebbles from white to 

reddish brown hydrothermally altered lava in a matrix of combined sand, silt, and 

clay clasts which are predominantly subangular in nature (Sherrod and Scott, 1995). 

This unit is depicted as htd in Figure 2. 

Zigzag Eruptive Period: 

The Zigzag eruptive period was apparently minor. Deposits from several lahars 

and related floods form an 8 meter high terrace along a reach of the Zigzag River 

below its confluence with the Little Zigzag River. One pyroclastic flow deposit from 

this period is found along the Sandy River. The pyroclastic flow has an age of 455 

+/- 130 years old (Cameron and Pringle, 1986). 

Old Maid Eruptive Period: 

The Old Maid eruptive period apparently began with emplacement of the Crater 

Rock hornblende dacite dome high on the south flank of the cone (Cameron and 

Pringle, 1986). It is suspected that numerous lahars were fed by avalanches from 

the dome building and subsequent snowmelt. These lahars entered the Sandy, 

Zigzag, Salmon, and White Rivers. Many of them show long run out lengths from 

the mountain. One of the lahar deposits extends 65 kilometers along the White 
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River. In the upper White River, near Timberline Lodge, lahar and fluvial deposits 

partly fill the canyon. Dendrochronology used for dating these events (Cameron 

and Pringle, 1987) indicates that lahars and pyroclastic flows of this period occurred 

between 170-220 years before present" (Swanson et al., 1989). Deposits in the 

Sandy River and Zigzag River flats of this age are evident due to a distinct change in 

vegetation. This zone is covered by stunted pine trees and also characterized by a 

lack of undergrowth. This "dry" vegetation zone, found in Old Maid Flats on the 

west side of Mt. Hood, is the result of the lack of soil formation due to the relative 

youth of the deposits (Cameron and Pringle, 1986). The sandy lahar deposits drain 

quickly and make it difficult for vegetation to survive. The Old Maid eruptive period 

documents the most recent volcanic activity on Mount Hood. 

Products of the Old Maid eruptive period include rock avalanche deposits of 

hydrothermally altered material from the upper flanks of Mount Hood and 

pyroclastic deposits formed during eruptions. These eruptions were dominated by 

extrusion of lava domes and then subsequent collapse of such domes due to 

explosive disruption or gravity related collapse (Sherrod and Scott, 1995). Valleys 

on the south and west flanks of the mountain accumulated thick sequences of 

volcaniclastic debris. Lava of this period includes the dacite dome which forms 

Crater Rock near the summit of Mount Hood (Sherrod and Scott, 1995). This lava 

is denoted as hol in Figure 2. Pyroclastic and debris-flow deposits of this period 
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are primarily composed of poorly sorted dacite boulders, cobbles, and pebbles 

supported by a sandy gray matrix with interbeds of silt and sand. These deposits 

comprise the thick fill which currently resides in the upper White River and Sandy 

River valleys. Pyroclastic-flow deposits are found as much as 8km from the vent 

(Sherrod and Scott, 1995). They are denoted as hoc in Figure 2. 

Recent Geologic History: 

Since the Old Maid eruptive period, Mount Hood has continued to exhibit signs 

of activity including earthquakes and steam as well as non-volcanic specific 

processes involving debris flows, floods, and debris avalanches. In 1907 dense 

steaming was observed around Crater Rock accompanied by a nighttime glow. 

Throughout this century such minor fumarolic activity has continued mostly 

centered near Crater Rock (Scott et al., 1997). Earthquakes also occur sporadically 

on Mount Hood, typically small swarms of low-magnitude (< magnitude 3.5) events. 

They are predominantly located on the south flank below the summit at shallow 

depths (less than 11 km).   Swarms of these small quakes occurred in summer 1980 

as well as in February 1990 (Scott et al., 1997). In this century however, probably 

the most notable activity on Mount Hood is the prevalence of large debris flows. 

Usually, accounts of these debris flow events surface when the flow is large 

enough to impact highway infrastructure near the mountain. Such was the case for 

the Polallie Creek debris flow which not only impacted the highway, but caused loss 
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of life as well. On December 25, 1980, an intense rainstorm triggered a landslide at 

the head of Polallie Creek Canyon on the northeast flank of Mount Hood. The 

landslide transformed rapidly into a debris flow which burst out of Polallie Creek 

Canyon killing the lone camper at the campground located at the confluence of 

Polallie Creek and East Fork Hood River (Gallino and Pierson, 1985).  

The White River Valley is probably the most active area on the volcano for 

debris flow activity presently. The steep slopes of loose deposits in the upper valley 

act as rich sources of sediment for debris flows (DeRoo, 2009).  On September 3, 

1998, several debris flow surges originated near the snout of the White River 

Glacier. These surges deposited material over the width of the valley bottom, 

raising the elevation there by .3 to 4.5 meters. Since 1907 the White River Bridge 

has been washed out 20 times as a result of debris flows and floods (Anderson et 

al., 2006). Other, more remote drainages such as the Muddy Fork of the Sandy 

River have also produced large events in recent years. On June 14, 2002, a rock 

failure of 34,500 cubic meters occurred in the upper reaches of the Muddy Fork. 

This failure initiated as a rock fall but swiftly progressed into a rock/debris 

avalanche upon impact. This avalanche then transformed into a large debris flow 

and finally a hyper-concentrated flow farther down channel (Clark and Burns, 

2005).   
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Since 1907 other drainages around the mountain have experienced 

documented debris flows as follows: Coe Creek (2), Ladd Creek (2), Newton Creek 

(7), Polallie Creek (2), Clark Creek (3), Eliot Creek (3), Sandy River (3), and the 

Muddy Fork (2) (DeRoo, 2009).  These events are listed in Table 1.  

Table 1. Recent debris flows on Mount Hood 

Drainage Year  Month 
Initiation 

Elevation  (m) 

Coe 1958 November unknown 

Ladd 1961 September 2100 

Newton 1978 August unknown 

Polallie 1980 December 2000 

Newton 1991 November unknown 

Newton 1995 unknown unknown 

Ladd 1996 unknown unknown 

Polallie 1997 October 1900 

Clark 1997 unknown unknown 

Newton 1998 July 2000 

Clark 1999 November 2300 

Eliot 1999 November 1900 

Coe 2000 October 1800 

Newton 2000 October 2200 

Clark 2000 October 2400 

Eliot 2000 January 1900 

Eliot 2000 October 1900 

Sandy 2000 October 2100 

Muddy Fork 2000 October 1800 

Muddy Fork 2002 June 1700 

Newton 2003 October 2100 

Clark 2003 October 2300 

Sandy 2003 October unknown 

Clark 2005 September unknown 

Sandy 2005 September unknown 

Newton 2005 September 2300 

 



 

15 
 

The most recent notable debris flows on Mount Hood occurred in November, 

2006. A regional storm triggered debris flows on all sides of the volcano. Of the 

eleven main drainages, seven experienced powerful debris flows; these include the 

White River, Salmon River, Clark Creek, Newton Creek, Eliot Creek, Ladd Creek and 

Sandy River basins. The location of the river valleys which produced debris flows in  

 

Figure 3. 2006 debris flow drainages are in red; drainages in blue did not have debris flows. 
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this event can be seen on Figure 3. Five of these flows caused major damage to 

bridges and roadways. Highway 35, a key access route on Mount Hood, was closed in 

two places. As judged from the severity of this event, Mount Hood, while not 

currently producing new volcanic deposits, is still potentially dangerous and 

destructive. 

Summary: 

In the past, Mount Hood has been a source of both magmatic volcanic activity 

and numerous lahars. The volcano is capable of producing catastrophic events that 

could instantly and dramatically alter the topography in the region. This ability is 

highlighted by evidence from the prehistoric debris avalanche and the four major 

eruptive periods (Polallie, Zigzag, Timberline and Old Maid) known to have occurred 

during and since the Fraser Alpine Glaciation. Deposits from even single events, 

whether they are debris flows, lahars, or pyroclastic flows, can be several meters 

thick. The evidence from dynamic events in the past can only hint at the possible 

magnitude of future occurrences. Today, even though Mount Hood shows no signs of 

imminent volcanic activity (Gardner et al., 2000), it continues to be a source of debris 

flows. These flows are neither unusual nor uncommon given the history of this active 

volcano. Debris avalanches and lahars of enormous size have occurred in the past 

and are certainly possible again. These hazardous events may occur with little to no 

advance warning (Gardner et al., 2000). It is important for community planning and 
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volcano hazard management to understand and respect the history and processes of 

Mount Hood. 

PREVIOUS DEBRIS FLOW RESEARCH  

Past debris flow research has taken on several important topics including debris 

flow behavior, conditions necessary to produce debris flows, mobilization of debris 

flows, field identification of debris flows, delineation of debris flow hazard zones and 

morphometric analysis of debris flow hazard areas. 

Debris flow behavior has been discussed both in terms of the physics of debris 

flows (Iverson , 1997; Iverson , 2003) as well as evaluation and comparison of models 

or modes to explain the initiation mobilization of debris flows from landslides 

(Iverson et al., 1997).   In general, it is accepted that landslides mobilize to form 

debris flows through three distinct processes or modes.  These processes are 

widespread Coulomb failure within a sloping soil, rock or sediment mass, 

mobilization through partial or complete liquefaction of the soil by high pore fluid 

pressures and conversion of landslide translational energy to internal vibration 

energy.  While individually any of these processes are capable of initiation debris 

flows, it is very likely that landslides mobilize to form debris flows through a 

combination of at least two of these distinct modes (Iverson et al., 1997).  Debris flow 

classification has also been discussed in terms of classifying flows based on 

rheological boundaries and water content in which flows are located on a two 
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dimensional matrix (Figure 4) according to mean velocity and sediment concentration 

(Pierson & Costa, 1987).   

Debris flows often develop from landslides.  Conditions for landslide initiation 

due to antecedent rainfall are discussed by Iverson (2000).  He found that failure 

results from rainfall over a timescale represented by H2/D0, where H represents 

depth and D0 is the maximum hydraulic diffusivity, associated with transient pore 

pressure transmission during and following storms which can range from minutes to 

months (Iverson, 2000).  Three methods for initiating debris flows as a result of heavy 

rainfall in arid and semi arid regions were discussed by Godt and Coe (2007). These 

methods include shallow landsliding, transport of sediment through a series of 

coalescing rills characterized by the erosion and entrainment of hillslope material by 

overland flow, and the so called “firehose effect” which is caused by the mobilization 

of material by a concentrated flow of water.  The rilling theory is also supported by 

work done on post fire burn areas where it was found that the process that 

accelerates the stripping of material from hillslides, such as dry ravel and creation of 

rill networks, is greatly sped up by the action of wild fires (Cannon, 2003; Wells, 

1987).  The Godt and Coe (2007) paper argued that those debris flows initiated by 

rilling or the firehose effect were more dangerous than those initiated by shallow 

landsliding because shallow landslide debris flows tend to deposit material along 
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their path whereas rilling and firehose debris flows tend to increase in volume as 

they travel downstream (Godt & Coe, 2007).   

 

Figure 4. Existing flow nomenclature fitted into rheologic classification (Pierson & Costa, 1987) 

Occurrence of debris flows also depends on the ability of the basin in question to 

transport the material at a point in time when a climatic threshold is reached (Bovis 

& Jakob, 1999; Carson & Kirkby, 1972; Jakob et al., 2005).  An important factor for 

debris flow generation is the antecedent ground conditions such as pre-storm soil 
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moisture.  High levels of moisture in the soil prior to a major storm can make debris 

flows much more likely to occur (Church & Miles, 1987; Wieczorek, 1987).   

The ability to identify debris flow deposits in the field and distinguish them from 

flood deposits is a critical tool when conducting field based research.  Debris flows 

often leave indicative deposits which include features such as levees, eroded and 

splintered tree bark, gravel imbedded in wood, broken or splintered tree stumps, and 

frequent log jams or boulder clusters (Pierson, 2005).  Once debris flow features have 

been recognized, reliance on vegetation indicators also helps to further identify and 

relatively date the event (Jackson et al., 1987; Osterkamp & Hupp, 1987). Debris 

flows have a higher density and less sorting than water fluid flows (Rapp, 2005).  

Understanding debris flow hazards is a subject that has been given much 

consideration.  Computer based models such as LAHARZ are capable of calculating 

and plotting inundation limits of lahars of a given volume onto a geospatial 

background (Iverson et al., 1998).  Logistic multiple regression analysis has also been 

used to build probability maps for debris flow hazards (Gardner et al., 2003).  

Multiple regression has been used for the estimation of debris flow magnitude and 

frequency (Bovis & Jakob, 1999). Other models have been proposed to depict the 

hillside conditions where the ground failures led to debris flows (Wieczorek, 1987).  

Other efforts have focused on estimation of recurrence intervals (Coe et al., 2003; 
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Bovis & Jakob, 1999), but often rely on field based evidence that is not always 

available.   

Some of the most compelling work for the delineation of debris flow hazard 

zones comes from a combination of computer analyzed morphometrics and field 

checking of results.  Use of a ruggedness number (Melton, 1965) has proven to be 

both easily applied and effective (Jackson et al., 1987) and is often used in 

combination with other factors or computer analysis such as watershed length and 

fan slope  (Jackson et al., 1987; Marchi & Fontana, 2005; Wilford et al., 2004).  It has 

been found that in general, small steep basins tend to have a higher Melton 

ruggedness number, than larger and less steep fluvial basins with third-order or 

greater streams, and are more likely to experience debris flows (Jackson et al., 1987).  

However, the initiation of debris flows in a basin also depends on the availability of 

material in the basin (Jackson et al., 1987; Marchi & Fontana, 2005), which directly 

relates to the definition of a basin as either transport-limited or weathering-limited 

(Bovis & Jakob, 1999; Carson & Kirkby, 1972; Ritter, 2002).   
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CHAPTER 3: METHODS 

Field Methods:  

The field portion of this project consisted of three phases:  initial reconnaissance, 

detailed mapping for investigation of the initiation zone, and sample collection.  Each 

of the major drainages coming off the mountain was investigated to determine if 

there had been debris flow activity as a result of the 2006 storm.  Once a 

determination had been made on whether a recent debris flow had occurred, 

detailed mapping and investigation of the initiation zone was conducted for those 

that experienced debris flows.  Sampling was conducted in all the drainages.    

Initial Reconnaissance: 

Initial reconnaissance was conducted on foot around the entire mountain, using 

the Timberline Trail as a primary access route.  Inspections were made of all channels 

around Mt. Hood at the approximate elevation of the timberline, about 1830 meters.   

Additionally, inspections were made on the flanks of the mountain, where the steep 

channels deposited onto fans, for those streams which did not show evidence of 

debris flows at or above the timberline.  Debris flows were differentiated from floods 

using criteria developed by the United States Geological Survey (Pierson, 2005).    For 

the purposes of this project, a flood is defined as “a high discharge, overbank flow 

involving either water flow at normal suspended-sediment concentrations (generally 

less than 5-10 percent sediment by volume), or hyper-concentrated flow (having 
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from 5-10 percent to anywhere between 20-60 percent sediment by volume, 

depending on the relative amount of silt and clay in the fluid mixture). In both cases, 

flow behavior is controlled by the water.  Flow behavior of debris flows, in contrast, is 

significantly controlled by the entrained sediment” (Pierson, 2005).  In the field, 

debris flows and floods can be differentiated through careful observation of deposits 

and vegetation in the drainage.   Debris flows leave behind distinct identifying 

morphologic features on the landscape, such as boulder levees, and also cause 

significantly more damage to vegetation than do floods. 

Debris-flow-affected drainages were differentiated from those impacted by 

flooding through a variety of field-based evidence.  Deposits in drainages which 

experienced debris flows typically have lobate margins with accumulations of coarse 

clasts at margins of the flow in depositional areas (Pierson, 2005).  Flow levees are 

common and consolidated sediments can be packed in between roots in root wads, 

in cavities in trees and stream banks, and fragile clasts may be present on the 

surface.  Debris flow deposits are frequently dammed locally by small log jams or 

boulder clusters, and sandy mud coatings can often be seen on boulders, logs, and 

banks (Pierson, 2005).  Damage to vegetation is common in debris-flow-affected 

drainages and is typically severe in the thalweg of the channel, and proportional to 

flow velocity.  Some examples of damage to vegetation from debris flows include 

eroded splintered wood, gravel embedded in the wood, bark remaining only on the 
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downstream side of the trunk, and splintered stumps and branches tapered by 

erosion.  Trees may be broken off near the channel axis (Pierson, 2005). Diagnostic 

mud coatings on vegetation also indicate the occurrence of a debris flow.   The noted 

absence of vegetation in or near the stream channel is strong evidence of debris flow 

behavior (Pierson, 2007).  These features, combined with severe down cutting of the 

stream, are especially prominent in the transportation zone of the debris flow.   

Other evidence of debris flows includes large clasts resting on top of a matrix 

supported deposit and flow levees along the sides of the channel (Pierson, 2005).  

Debris flow deposits are nonstratified, extremely poorly sorted with matrix filling all 

voids except at flow margins or where they have been washed out.  Clasts are 

oriented randomly except at flow margins.  Deposits also have a coherent, semi-

indurated consistency.  They are difficult to dig out of outcrops and break off in small 

chunks when struck or kicked (Pierson, 2005) 

Conversely, drainages which experience flooding commonly exhibit dunes or 

ripples on the deposit margins and surfaces.  Surfaces may be cut by channels and 

scour depressions; however, gravel levees do not form (Pierson, 2005).  Floods do 

not leave mud coatings on boulders, logs, or banks and gravel clasts may be 

imbricated.  Low density flotsam such as wood debris may be found at the edge of 

the flow as well as grass or other debris in tree branches (Pierson, 2005).  Damage to 

vegetation is normally moderate to light, however can be severe in canyons.  Erosion 
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of tree bark is normally light and irregular with finer branches commonly bent but 

not broken or stripped.  Flattened grasses or other vegetation may also be present 

near the channel (Pierson, 2005).   

Hyper-concentrated flood deposits represent an intermediate in-between a 

debris flow and a flood (Pierson, 2005).  Water flood deposits are usually stratified 

showing distinct laminae and beds, commonly with cross bedding, while hyper-

concentrated flood deposits show faint horizontal to massive bedding with outsized 

individual gravel clasts and lenses  which sometimes appear as massive but poorly 

consolidated diamictons (Pierson, 2005).  Water flood deposits have a loose and 

friable consistency when dry with hyper-concentrated flow deposits slightly more 

consolidated (Pierson, 2005).   

Observation of vegetation in and around the stream channel was especially useful 

for determining recent debris flows from past flows.  In the summer of 2007, no new 

vegetation would have had a chance to re-establish in the wake of the November 

2006 debris flows.  Those debris flow deposits that had young trees and plants 

growing from them were not considered to have been caused by the November 2006 

storm.  This distinction is especially important and cannot be assessed without direct 

in-channel, field based observations.  Mt Hood and other mountains of the Cascade 

Range, have relatively frequent debris flows.  In order to focus on one particular 

storm event, in-channel field based investigations are necessary to determine the 
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relative age of a deposit.  This is not something that can be detected remotely or 

even from a simple vantage point on the trail.  Field checking and compilation of field 

based evidence is critical for an event-specific investigation of debris flow activity. 

 After field based evidence had been applied to determine whether a drainage 

had been impacted by a debris flow or flooding, the initiation zone was defined for 

those debris-flow-affected drainages. 

Detailed Mapping of the Initiation Zone: 

Identification of the initiation zone for debris flows on Mount Hood was 

determined by physical inspection.  Once a drainage had been determined to have 

produced a debris flow in the November, 2006 event, an inspection of debris flow 

features including boulder levees, scour in the channel, and lack of vegetation was 

conducted upstream.  The initiation zone was defined as the point at which there 

was evidence of debris flow activity downstream from that point; there was a lack of 

evidence for debris flow activity upstream from that point.  Photographs were taken 

of all upper drainage areas to document the basin morphology as well as initiation 

zones and processes.   

In four out of seven drainages that had debris flows, these initiation zones 

showed evidence of landslide activity in the channel sidewalls.  Where landslides 

were identified as the initiation source, measurements of the width across the side 

scarps were taken with a laser range finder as well as measurements from the top to 
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bottom of the slope.  These measurements were combined with an estimated depth 

to approximate volume of the slide.  The depth was either measured directly with the 

laser range finder, or approximated as an average from those that were able to be 

directly measured.   Those areas that did not exhibit evidence of landsliding as the 

initiation mechanism, I have named “headless debris flows”.  These so-called 

headless source areas typically exhibited rilling and scouring consistent with overland 

flow of water and often showed minor debris tracks and trails streaking across a 

hillside.  These debris trails would coalesce in the channel, and subsequently 

downstream there would appear major evidence of down cutting from debris flow 

activity (Figure 5).  GPS points were also taken at the initiation zones for all debris 

flows and used in combination with LIDAR data to identify initiation zone elevations.  

GPS positions are given in UTM zone 10. 

Sample Collection 

In order to determine whether a difference in material type led some drainages 

to have debris flows and not others, samples were collected from all main drainages 

around the mountain.  Bulk density measurements and grain size analysis were used 

to characterize the samples.   For those drainages which experienced debris flows, 

sediment samples were collected from the initiation zone or geologic material 

representative of initiation zone material.  For those drainages which did not 
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experience debris flows, samples were collected within an elevation range consistent 

with where the initiation zones for the debris flow producing drainages 

 

Figure 5. Headless debris flow trails in Newton Creek Drainage. 

were found.   Six soil samples, with an average volume of 670 ml, of only less than 

cobble sized particles, were taken from every site to be later used in sieve analysis.  

Additionally, estimates on material bulk densities were made using a method 

described by Tom Pierson in personal communication.  This method called for careful 

excavation of material, using a small shovel, from a hole.  The subsequent hole was 

then lined with plastic and water was poured from a container of known quantity.  

The amount of water used to fill the hole was measured.  This measurement when 
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combined with the dry weight of the excavated sample provided an estimate of 

material dry bulk density.  An example of a hole is shown in Figure 6. 

 

Figure 6. Sample collection hole from the White River Drainage (UTM 0602484N, 5019919E) 

Data Processing: 

Laboratory Sieve Analysis: 

Sieve analysis was conducted by first air drying each sample, weighing it and then 

putting it through a stack of sieves.   Samples were sieved using a 10, 30, 60, 100, 

200, and 230 sieve.  Wet sieving was not conducted due to the very low percentages 

of fines revealed by the dry sieve method.  The stack was placed on a shaking 

machine and left to shake for approximately 10 minutes.  At the end of the allotted 
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shaking time, the amount of sample remaining on each sieve was collected and 

weighed.  All grains that did not pass through the number 10 sieve, greater than 2 

mm, were classified as gravel.  Sand was considered any grains that passed through 

the number 10 sieve but did not pass the 230 sieve, between .063 mm and 2 mm.  

Any particles that passed through the 230 sieve, less than .063 mm, were considered 

silt & clay.  The sand was further broken down into coarse, medium and fine grain 

sizes.  Sand particles that did not pass the number 60 sieve, or were greater than 

.25mm in diameter were considered coarse.  Sand grains that passed the 60 sieve but 

did not pass the 100 sieve, between .149 mm and .25 mm, were considered medium-

grained sand.  Grains that passed the 100 sieve but did not pass the 230 sieve, 

between .063 mm and .149 mm, were considered fine-grained sand.  Particles 

passing through the 230 sieve were classified as silt and clay. 

Rainfall Data  

Rainfall data were obtained from three different sources.  Data for initiation 

elevations were obtained from a compilation map of NEXRAD (Next Generation 

Radar) Storm Total Data for the November 2006 Storm provided by Todd Parker, 

USFS hydrologist for Mount Hood, and from North West Avalanche Center rain 

gauges at Timberline and Mount Hood Meadows ski areas.  For lower elevations, 

data was taken from SNOTEL Sites 

(http://www.wcc.nrcs.usda.gov/snotel/Oregon/oregon.html). 
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NEXRAD data are collected with radar which sends out a high burst of energy.  

When the energy strikes an object such as rain or hail, it sends a return back to the 

radar unit.  The larger the particle, the stronger the radar return.  Since hail can cause 

returns with indicate that rainfall is more than what is actually occurring, steps can 

be taken through manipulation of the computer processing to prevent extremely 

high values from being converted into rainfall (NEXRAD, 2009).  The radar unit used 

to collect data for the November, 2006 storm is located in Portland, Oregon.  The 

storm total data are presented as a compilation image of estimated accumulated 

rainfall for the entire duration of a storm event.  The maximum range of this product 

is about 198 kilometers from the radar unit (NEXRAD, 2009).  One significant 

disadvantage of NEXRAD is that rather than a direct measurement, it provides an 

estimated intensity or rainfall amount.  However, the data offer complete and 

uniform coverage of the study area and for this reason were used in the statistical 

analysis. 

North West Avalanche Center (NWAC) rain gauges were also examined as part of 

this study.  These precipitation gauges give direct rainfall amounts in addition to 

providing snowmelt information for the Timberline and Mount Hood Meadows ski 

areas.  In general, it was noted that the NEXRAD data under-reported the storm 

precipitation compared to the NWAC gauges by 33 to 38 percent.  This could be due 

to adjustments taken to minimize the impact of hail on the radar which effectively 
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blocks very high returns from being counted as rainfall data.  Therefore, NEXRAD 

data were considered a minimum value for the purposes of this study. 

While NEXRAD storm total data provided minimum rainfall estimates for the 

upper elevations on the mountain, SNOTEL sites provided additional information on 

rainfall at the lower elevations.  The three SNOTEL sites closest to Mt Hood are Red 

Hill, Mount Hood, and Blazed Alder stations.  The Red Hill station is located on the 

north side of the mountain at elevation 1,344 meters. The Mount Hood station is 

located on the south side of the mountain at elevation 1,637 meters.   The Blazed 

Alder station is located on the west side of the mountain at elevation 1,113 meters.  

All SNOTEL sites provide information on precipitation, snow depth, snow water 

equivalent and temperature.  The precipitation information is captured using a 

precipitation gauge that is sized according to the average annual precipitation at 

each station.  The fluid pressure is measured with transducers and recorded. 

Drainage Basin Attributes: 

I wanted to investigate different attributes that might contribute to the initiation 

of a debris flow.  A list of 16 was arrived at by consulting the literature and what 

others said about initiation.  Others were arrived at as possible sources in 

consultation with my advisors.  I have described these below. 

Lidar data used for this project was obtained from Watershed Sciences in 

cooperation with the Oregon University System.  Processing for LiDAR data was done 
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using ArcGIS 9, ArcView 9.3 and Extensions, student edition.  LiDAR data were stored 

on a Western Digital 250 GB external hard drive, and the Arc GIS program was run on 

a Dell Inspiron 1420 laptop computer.  

 Elevation of initiation zone was calculated by two methods.  For those 

drainages which had a landslide as the initiation trigger, LiDAR based 

terrain data were evaluated at the upper and lower most points of the 

landslide scarp to provide an elevation range for the initiation zone.  For 

those drainages which experienced headless or non-landslide initiation 

debris flows, the initiation was measured as the elevation of the first 

evidence of debris flow activity in the channel.  This typically was 

exhibited as large scale channel scour consistent with debris flow activity. 

 The total basin catchment area of each primary drainage basin was 

calculated by outlining the basin using LiDAR derived data and creating a 

new shape file in ArcGIS.  The outline for the shape file began at the top of 

the basin.  It followed the ridgelines down until the river reached a place 

where the primary stream within the basin intersected another stream 

whose upper area was not already included in the basin shape file outline.  

The shape file outline was then closed typically at the fan where the two 

streams met.  The area was calculated for the shape file thereby giving an 

overall basin catchment area in square meters.   
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 The upper drainage basin area is nested within the total basin catchment 

and is a subset of the total basin.  The upper drainage basin follows the 

ridge lines from the top of the total basin, past the initiation zone, and 

pinches off at the first natural narrowing of these ridge lines after the 

initiation zone.   The point in the stream, below the initiation zone, where 

the ridge lines narrow is defined as the bottom of the upper basin.  The 

upper drainage basin includes the entire area upstream from that point.  

The initiation zones fall within the upper basins, but the basins are not 

defined by them.   Shape files were created for each basin and areas were 

calculated in square meters for each of these shape files.  Initiation zone 

elevations were typically found between 1520 m. to 1,830 m.  For those 

basins which did not experience debris flows, a point was chosen in the 

stream, below these elevations, where a natural constriction occurred in 

the ridge line.  The upper drainage basin for these streams includes the 

entire area upstream from that point.   

 Distance from the glacier was calculated using spatial analyst tools in 

ArcGIS.  The distance from the glacier was calculated as the distance from 

the terminous of the glacier to the lowest elevation of the initiation zone 

or the first evidence of erosion for headless debris flows.  This was 

measured along the thalwag of the stream channel and not “as the bird 

flies”. 
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 Glacier area was either calculated from previous glacier shape files 

(Jackson & Fountain, 2007; Jackson K. M., 2007) or compiled through 

existing data from the USGS (Driedger & Kannard, 1986). 

 Area above the initiation zone was calculated for those drainages that 

experienced debris flows.  It was calculated in ArcGIS using spatial analyst 

tools.  This area was calculated starting at the initiation zone and 

encompassing the upper drainage basin which drains to the initiation 

zone. 

 Sediment type was characterized by geologic units present in the 

initiation zones.  Geologic units were obtained through examination of the 

preliminary geologic map of Mount Hood (Sherrod & Scott, 1995).  

Predominant sediment types were till of neoglacial age, pyroclastic flow 

and debris flow deposits. 

 Rainfall data were obtained for initiation elevations from a compilation 

map of NEXRAD Storm Total Data for the November 2006 Storm provided 

by Todd Parker, USFS hydrologist for Mount Hood.  Although these data 

may under-report total storm rainfall amounts during high intensity 

rainfall, it is the only consistent data source that covered all of the 

initiation zones and was therefore used as a factor in statistical analysis. 

 Azimuth for each initiation zone was calculated manually from a hillshade 

map of Mount Hood based on LiDAR derived terrain data.  Azimuth was 
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calculated from the top to the bottom of the upper drainage basin as 

degrees from north with a range of 0 to 360.  

 Surface water connection to the glacier was determined based on 

information provided by Tom DeRoo, the USFS Geologist for Mount Hood, 

along with in field observations.  Each basin was determined to be either 

directly connected to the glacier (water could be seen directly flowing 

from the glacier into the active stream channel) or not connected to the 

glacier (Tom DeRoo indicated the drainage was fed by groundwater and 

no observable connection to a glacier was noted in the field).   When used 

for basin analysis, this factor is defined as either yes, connected to the 

glacier, or no, not connected.   

 Basin height for the drainage basin is a parameter used in Melton’s 

Ruggedness number and was calculated in ArcGIS using LiDAR derived 

data.  Basin height was determined by subtracting the elevation of the 

apex of the first major fan encountered in the total basin catchment area 

(as you move from the top to the bottom of the basin) from the elevation 

of the highest point in the basin.  

 Gradient of the upper drainage basin was calculated using spatial analyst 

tools in ArcGIS.  Gradient was determined by subtracting the stream 

elevation at the lowest point in the upper basin from the upper most 

stream elevation.  The first point at which channelized streamflow activity 
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could be recognized in the upper basin was defined as the upper most 

stream elevation. 

 Percent Bedrock in the upper basin:  In order to determine percent 

bedrock, I created a slope map for the upper drainage basin ArcGIS.  

Based on my observations in the field, bedrock will typically have very 

high slope angles (over 60 deg).  This gives a good indication of which 

areas, on the slope map, may be bedrock.  However, recent erosion, 

especially erosion into pyroclasitc or debris flow deposits, can exhibit high 

slope angle numbers and not all bedrock exhibits steep angles.  Crevasses 

on glaciers will also exhibit very high angle slopes.  Glaciers appear 

smooth looking with crevasses showing up as cracks across smooth areas.  

Actual bedrock outcrops have a rougher appearance.   A visual check done 

on site photos and the hillshade of the area in ArcGIS helped confirm 

which areas are rock.   Once bedrock areas were identified, a file 

geodatabase was created to store individual feature class areas from each 

basin.  A feature class was created by carefully outlining the rock outcrops 

in each upper drainage shape file.  Once all bedrock outcrops were 

outlined as polygons, the area in square feet was added up for every 

polygon in the feature class.  The total number of square footage of 

bedrock outcrop was then divided by the total square foot area of the 

upper drainage shape file to yield a bedrock percentage.   
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 Percent Vegetation in the upper basin:   Calculation of percent vegetation 

for the drainage basins on Mount Hood was conducted using LiDAR 

derived terrain data.  For the purposes of this study, trees and tall brush 

were what was predominantly considered “vegetation” as these plants 

are what is picked up by Lidar imaging.  Vegetated areas were identified 

by creating a height image.  This was accomplished by comparing the bare 

earth return digital elevation model with the first return digital surface 

model to derive the heights of features on the ground.  Because all areas 

investigated are within national forest or wilderness land, it was assumed 

that all features which contribute to the height model are natural 

vegetation and not man-made structures.    Once the height image was 

created, vegetated areas were outlined as shape files in order to calculate 

area.  The area of the shape files was compared to the upper basin area in 

order to obtain percent vegetation by basin.  Vegetation shape files were 

subjected to a visual comparison of air photos and photographs of the 

upper drainage basin taken in the field, to confirm and ensure accuracy of 

mapped vegetated areas.  

 Percent steep slopes of the upper basin:  Steep slopes were classified as 

un-vegetated, non bedrock slopes above 33 degrees.  In order to 

determine a percentage of steep slopes by basin, a slope map was created 

from the LiDAR derived bare earth terrain data.  Shape files representing 
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bedrock and vegetated areas were overlain on the slope map so that only 

un-vegetated non-bedrock areas were examined. Slopes displaying an 

angle of over 33 degrees were outlined as shape files, and the areas were 

calculated.  These areas were compared to the overall area of each 

drainage basin to obtain percent steep un-vegetated slopes by basin. 

 Melton’s Ruggedness Number:  Melton’s Basin Ruggedness number has 

been used to differentiate between basins that produce debris flows 

compared to those that produce fluvial flows.  The measure of basin 

ruggedness (Eq. 1) is calculated by combining basin area (Ab) and basin 

height (Hb) according to Melton’s equation (Melton, 1965): 

                                                                    (Eq. 1) 

Basins exhibiting R values of more than .25 to .3 are interpreted to be 

predominantly debris flow producing basins (Jackson et al., 1987).  R 

values of less than .25 to .3 are generally interpreted to be predominately 

fluvial process driven drainages (Jackson et al., 1987).  
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CHAPTER 4: RESULTS  

 

Figure 7. Eliot Creek shown in dashed black 

INTRODUCTION 

Each major drainage around the mountain was investigated for evidence of 

recent (November, 2006) debris flows.  The investigation consisted of two distinct 

parts: field based mapping and sample collection along with data processing.  The 

field based portion of the investigation involved an initial reconnaissance to 

determine the presence or absence of debris flow activity in a given drainage.  Then, 
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detailed mapping and sample collection in the initiation zone area was conducted.  

Data processing involved sieve analysis of samples collected in the field, and data 

analysis using ArcGIS in combination with LiDAR data for the upper drainage basins.  

The results of these findings are presented below.  Lidar maps for each drainage 

basin are found in appendices A – L giving : upper drainage basin area, initiation 

zone, vegetation extent, bedrock distribution, and steep slope distribution.  

ELIOT CREEK DRAINAGE BASIN:  

Eliot Creek is located on the north side of the mountain (Figure 7).  The Eliot 

Creek Drainage experienced one of the largest debris flows, travelling approximately 

16 km, as a result of the November, 2006 storm.  The first evidence of debris flow 

occurrence came in the form of news reports from February 6th indicating that a road 

was closed due to bridge out on Eliot Creek as of 2:23pm (KATU, 2006).  The 

subsequent investigation into the Eliot Creek Basin included field based 

reconnaissance, sample collection and data processing. 

Reconnaissance & Sample Collection: 

Initial Reconnaissance 

Evidence for debris flow activity was first encountered where Laurance Lake Road 

crosses Eliot Creek on the north side of the mountain.  Large unsorted bouldery 

deposits had previously covered the road and were bulldozed to the sides (Figure 8). 

Deposits are unsorted and matrix supported with large boulders on top.  The bridge  
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Figure 8. Laurance Lake Road at Eliot Creek crossing 

 

Figure 9. Mud coating on tree near Laurance Lake Road. 
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Figure 10. Log jams and trees stripped of bark just south of Laurance Lake Road. 

 

Figure 11. Abandoned channel in the fan next to Eliot Creek near Laurance Lake Road. 
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which previously traversed the creek had been moved and partially buried by debris.  

Evidence of debris flow activity included the presence of mud marks on trees (Figure 

9), log jams, gravel sized rocks embedded in trees, bark ripped and shredded, and 

trees sheared off (Figure 10).  Abandoned channels were present (Figure 11), and 

buried vegetation was visible along the newly eroded stream course.  Deposits 

looked fresh, light colored in comparison to surrounding terrain.  The water intake 

structure of the Hood River Irrigation district on Eliot Creek was removed and 

damaged beyond repair (Figure 12).  The channel was cleared of vegetation (Figure 

12). 

 

Figure 12. Damaged water intake structure for Hood River Irrigation District on Eliot Creek. 
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Definition of Initiation Zone 

Below the Eliot Glacier, at a constriction point where two lateral moraine walls 

come close together, large landslide scarps provided evidence for recent landside 

movement.  Two major slides were identified with some minor slides present.  Slides 

were present in both sidewalls of the lateral moraine deposits (Figures 13 and 14).  

Slides were identified by classic landslide features such as a prominent head scarp 

and sidewalls as shown in Figures 13 and 14.  Slide material had been evacuated 

downstream.  All vegetation was cleared downstream of slide area.  Wet spots were 

identified at the base of the slide.  These are interpreted to be evidence of the 

melting of ice-cored moraine within the glacial till.  Eliot Creek also meanders into 

the base of each slide.  Downstream from slide area, debris flow features were 

consistently identified by lack of vegetation and distinct color alteration showing 

fresh deposits and boulder levees.  Upstream from slide area the terrain widened out 

into typical glacial terminus morphology.  No evidence for boulder levees or other 

debris flow distinguishing features were distinctly identified upstream from the slide 

area.   

Sample Collection 

Six samples were collected from the same morainal material that the initiation 

landslides occurred in.  The samples were taken several meters upstream from the 

head scarp as shown in Figure 15.  
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Figure 13. Eliot Creek landslide (~273,000 m
3
) in west lateral moraine (UTM 0604827N, 5028150E)  

 

Figure 14. Eliot Creek landslide (~230,000 m
3
) in east lateral moraine (UTM 0604976N, 5028133E) 
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Figure 15. Eliot Creek sample collection site marked by red star (UTM 0604937N, 5028012E) 

Data Processing: 

Sieve Results 

Six samples were collected from the initiation zone material just below the Eliot 

Glacier. The sieve results for all six samples are averaged and displayed in Table 2.  

Material from the Eliot Creek initiation zone has an average bulk density of 1.8 g/cm3.  

The average sample is 40.5% gravel, 56.3% sand, and 2.9% fine grained material.  At 

over 50% it is predominately sand but also contains a large amount of gravel.  Fines 

on average make up less than 3% of the overall sample.  Of the sand fraction, coarse 

grained sand is in the clear majority with almost 65%.   
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Table 2. Eliot Creek sieve results 

Eliot Creek 
Sample # 

Bulk 
Density 
(g/cm3) 

 Gravel  
>2mm 

 Sand 
2mm -

.063mm   

Silt & 
Clay 

<.063mm  

Sand 

Coarse 
2mm - 
.25mm 

Medium 
.25mm - 
.149mm 

Fine 
.149mm - 
.063mm 

1 1.6 46.1% 51.7% 1.9% 63.7% 19.6% 16.7% 

2 1.7 32.1% 63.6% 4.0% 66.0% 16.6% 17.4% 

3 1.6 33.8% 63.3% 2.4% 62.2% 21.9% 15.9% 

4 1.8 47.8% 51.5% 0.7% 76.6% 15.3% 8.1% 

5 2.1 36.6% 59.3% 3.8% 62.2% 18.4% 19.4% 

6 1.8 46.3% 48.6% 4.9% 57.5% 20.2% 22.3% 

Average 1.8 40.5% 56.3% 2.9% 64.7% 18.7% 16.6% 
Standard dev. 17% 7% 7% 2% 6% 2% 5% 

 

Drainage Basin Attributes 

The total basin catchment area for the Eliot Creek drainage is 8.7 km2 with an 

upper drainage basin area of 3.3 km2.  The initiation zone is located between the 

elevations of 1,800m – 1,880m and is 550m from the Eliot Glacier, as mapped by 

Jackson, 2007, which has an area of approximately 1,640,000 m2.  The Eliot Glacier is 

the largest glacier on Mount Hood.  (Jackson, 2007).  The upper drainage basin is 

3.4% bedrock with 4.3% of the upper basin covered in vegetation.  Steep 

unconsolidated and un-vegetated slopes account for 18.2% of the upper basin.  

Sediment type in the initiation zone is predominantly till of neo-glacial age (Qgnt) 

(Sherrod & Scott, 1995) and received approximately 20 cm of rain in the November, 

2006 storm which triggered the debris flows (NEXRAD, 2009).  The overall azimuth of 

the upper drainage is 41:.  The maximum elevation for the basin catchment area 
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above the fan was calculated at 3,417 meters with a minimum elevation of 911 

meters. Basin height above the fan is 2,506 meters. Stream gradient for the upper 

drainage basin is approximately 0.23.  Melton’s Ruggedness number for this basin 

has been calculated at R = 0.85. 

SANDY RIVER DRAINAGE BASIN: 

 

Figure 16. Sandy River shown in dashed black  
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The south fork of the Sandy River is located on the west side of the mountain 

(Figure 16).  The Sandy River drainage experienced a medium sized debris flow, 

travelling approximately 8 km, as a result of the November, 2006 storm.  The first 

evidence of debris flow occurrence came in the form of news reports from February 

6th indicating that the approach to a bridge crossing the Sandy River was washed out 

as of 2:22pm (KATU, 2006).   The subsequent investigation into the Sandy Basin 

included a field based reconnaissance, sample collection and data processing.   

Reconnaissance & Sample Collection: 

Initial Reconnaissance: 

Evidence for debris flow activity was first noted where the Timberline Trail 

crosses the Sandy River.  Unsorted, matrix supported debris filled the channel with 

woody debris on top forming log jams (Figure 17).  Broken and splintered stumps are 

visible in some areas (Figure 18).   Where the original ground surface contact with 

debris flow deposits is exposed, some green plants are visible (Figure 19).  Steep 

slopes on canyon walls with no vegetation provide evidence of fresh erosion and 

scour.   A lack of vegetation was noted in debris flow affected areas of the channel.   

Many small to medium sized slides were noted along the steep canyon walls (Figure 

20).  
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Figure 17. Sandy River log jam upstream from Timberline Trail crossing (looking east) 

 

Figure 18. Sandy River splintered tree stumps near Timberline Trail crossing 
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Figure 19. Sandy River debris flow deposit overlying vegetation of previous ground surface 

 

Figure 20. Landslide along steep canyon wall upstream from the Timberline Trail 
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Definition of Initiation Zone 

Two large landslides were observed in the northern sidewall material of the southern 

fork of the upper Sandy River.  The Sandy River meandered into the scarp, actively 

undercutting the slope.  The location is shown in (Figure 21).  A debris trail consisting 

of outsized rocks and boulders strewn along the stream channel in a non fluvial 

pattern (Figure 22) is present below this point with boulder levees consistent with 

debris flow morphology (Pierson, 2005).  While there is some evidence for erosion 

above the landslides, nothing that could contribute a significant amount of material 

was observed.  The northern sidewall contains bedforms and ripple marks as 

evidence of the volcaniclastic fill deposit material.  On the southern ridge in the 

 

Figure 21. Sandy River initiation zone (~271,000 m
3
) (UTM 0598770N, 5024282E) 

Landslide 
headscarp 
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initiation zone the deposits appear unsorted, unconsolidated, and show no evidence 

of bedforms.  Upstream from the landslides, bedrock in the channel was noted with 

steep unconsolidated material on the sidewalls. 

 

Figure 22. Sandy River debris trail downstream from initiation zone 

Sample Collection 

Six samples were collected from a canyon sidewall directly upstream from the 

initiation landslides.  Samples were not collected from the scarp due to the extremely 
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remote and rugged location; however, representative samples were collected from 

similar geologic material upstream. Figure 23 shows the location of sample 

collection.   

 

Figure 23. Sandy River sample collection site (UTM 0599149N, 5024071E) 

Data Processing: 

Sieve Results 

Sieve results for the Sandy River Basin samples are averaged and shown in Table 

3.  Material from the Sandy River initiation zone has an average bulk density of 1.4 

g/cm3.  The average sample is 15.3% gravel, 81.9% sand and 2.7% fines.  Of the sand, 

coarse grained fraction is in the clear majority with 66%.  The low amount of gravel is 

characteristic of pyroclastic flow parent material. 
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Table 3. Sandy River Sieve Results 

Sandy River 
Sample # 

Bulk 
Density 
(g/cm3) 

 Gravel  
>2mm 

 Sand 
2mm -

.063mm   

Silt & 
Clay 

<.063mm  

Sand 

Coarse 
2mm - 
.25mm 

Medium 
.25mm - 
.149mm 

Fine 
.149mm - 
.063mm 

1 1.4 27.0% 68.6% 4.3% 52.6% 27.3% 20.1% 

2 1.6 6.9% 89.4% 3.5% 60.7% 24.2% 15.0% 

3 1.2 26.9% 71.4% 1.5% 63.7% 23.0% 13.3% 

4 1.3 3.6% 95.0% 1.3% 84.7% 10.2% 5.1% 

5 1.3 5.8% 91.2% 2.9% 71.1% 16.0% 12.9% 

6 1.4 21.7% 75.8% 2.6% 63.0% 21.9% 15.1% 

Average 1.4 15.3% 81.9% 2.7% 66.0% 20.4% 13.6% 

Standard dev. 14% 11% 11% 1% 11% 6% 5% 

Drainage Basin Attributes 

The total basin catchment area for the South Fork of the Sandy River drainage is 

16.4 km2 with an upper drainage basin area of 3.1 km2.  The initiation zone is located 

between the elevations of 1,860 and 1,790 meters and is approximately 1,770 meters 

from the Zigzag Glacier which has an area of approximately 769,000 m2.  The upper 

drainage basin is 5% bedrock with 7.5% of the upper basin covered in vegetation.  

Steep unconsolidated and un-vegetated slopes account for 29.5% of the upper basin.  

Sediment type in the initiation zone is predominantly pyroclastic and received 

approximately 36 cm of rain in the November, 2006 storm which triggered the debris 

flows.  The overall azimuth of the upper drainage is 260:.  The maximum elevation 

for the basin catchment area above the fan was calculated at 3,417 meters with a 

minimum of 1,637 meters.   The basin height above the fan is 1,780 meters.  Stream 
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gradient for the upper drainage basin is .27.  Melton’s Ruggedness number for this 

basin has been calculated at R = 0.44. 

WHITE RIVER DRAINAGE BASIN: 

The White River is located on the south side of the mountain (Figure 24).   The 

White River drainage experienced a medium sized debris flow, based on a travel 

distance of approximately 8 km, as a result of the November, 2006 storm.   

 

Figure 24. White River is shown in dashed black  



 

58 
 

This debris flow caused some of the most extensive damage due to the close 

proximity of Highway 35.  An estimated 1.5 million cubic meters of material was 

removed by Oregon Department of Transportation due to this event (ODOT, 2006).  

The first evidence of debris flow occurrence came in the form of news reports from 

February 6th indicating that Highway 35 was closed as of 2:22pm (KATU, 2006).  The 

subsequent investigation into the White Basin included a field based reconnaissance, 

sample collection and data processing.   

 

Figure 25. White River Bridge covered by debris flow deposit (ODOT photo)  

Reconnaissance & Sample Collection: 

Initial Reconnaissance 

Evidence of debris flow activity was apparent at the Highway 35 crossing of the 

White River.  Photos from the event taken by the Oregon Department of 
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Transportation show the White River Bridge covered by boulders and in filled by an 

unsorted, matrix supported debris deposit as shown in Figure 25. 

Other evidence of debris flow activity includes a distinct lack of vegetation in 

impacted areas and levees present with some fine grained sand layers (Figure 26) 

representative of lower energy pulses within the debris flow (Tom Pierson, personal 

communication, 2007).  Also observed were fresh channels dug by rerouting of the 

river and significant erosion and scour upstream from the Highway 35 crossing.   

Twisted metal and debris was also present from the destruction of portions of a 

guardrail and culvert near the highway. 

Definition of Initiation Zone 

The White River does not have a discrete initiation zone such as a landslide.  The 

debris flow deposits and levees morph into a debris trail which disappears under 

residual glacier ice as one moves up the valley.  Therefore, this drainage debris flow is 

classified as a “headless” debris flow.  The initiation zone is defined as the area at the 

beginning of large scale debris flow features such as boulder levees and debris flow 

scour. 

Sample Collection 

Samples were collected downstream from the initiation zone from what can be 

considered to be the same geologic material type as shown in Figure 27.  This  
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Figure 26. Fine grained layers in debris flow levees upstream from the Timberline Trail 

 

Figure 27. White River sample collection site (UTM 0602484N, 5019919E) 
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assumption is based on both the geologic map of Mount Hood (Sherrod & Scott, 

1995) and from field based visual assessments.   

Data Processing: 

Sieve Results 

Samples collected from the White River are averaged and displayed below in 

Table 4.   Material from the White River initiation zone equivalent has an average 

bulk density of 1.8 g/cm3.  The average sample is 29.3% gravel, 67.7% sand, and 2.8% 

fine grained material.  Of the sand, coarse grained material is in the clear majority 

with almost 75%.  . 

Table 4. White River sieve results 

White River 
Sample # 

Bulk 
Density 
(g/cm3) 

 Gravel  
>2mm 

 Sand 
2mm -

.063mm   

Silt & 
Clay 

<.063mm  

Sand 

Coarse 
2mm - 
.25mm 

Medium 
.25mm - 
.149mm 

Fine 
.149mm - 
.063mm 

1 1.7 8.4% 86.5% 4.9% 69.4% 16.8% 13.8% 

2 1.7 22.8% 74.3% 2.7% 74.1% 14.2% 11.6% 

3 1.8 29.5% 67.1% 3.2% 74.7% 13.3% 8.0% 

4 1.8 46.0% 51.9% 2.0% 73.5% 13.5% 13.0% 

5 2.0 41.9% 56.1% 1.9% 74.4% 15.5% 10.1% 

6 1.7 27.3% 70.4% 2.2% 80.9% 10.9% 8.2% 

Average 1.8 29.3% 67.7% 2.8% 74.5% 14.0% 10.8% 

Standard dev. 14% 14% 13% 1% 4% 2% 2% 

Drainage Basin Attributes 

The total basin catchment area for the White River is 12.0 km2 with an upper 

drainage basin area of 6.5 km2.   The initiation zone is located near elevation 2,141 

meters and is approximately 610 meters from the White Glacier which has an area of 
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approximately 407,000 m2.  The upper drainage basin is 2.5% bedrock with 2.0% of 

the upper basin covered in vegetation.  Steep unconsolidated and unvegetated 

slopes account for 41.5% of the upper basin.  Sediment type in the initiation zone is 

predominantly pyroclastic valley infill and received approximately 15 to 20 cm of rain 

in the November, 2006 storm which triggered the debris flows (NEXRAD, 2009).  The 

overall azimuth of the upper drainage is 175:.  The max elevation for the basin 

catchment area above the fan was calculated at 3,418 meters with a minimum of 

1,500 meters.  The basin height is 1,918 meters.  Stream gradient for the upper 

drainage basin is approximately .18.  Melton’s Ruggedness number for this basin has 

been calculated at R = 0.75.  

NEWTON CREEK DRAINAGE BASIN: 

Newton Creek is located on the south east side of the mountain (Figure 28).   The 

Newton Creek Drainage experienced one of the largest debris flows, approximately 

12 km, as a result of the November, 2006 storm.  The first evidence of debris flow 

occurrence came in the form of news reports from February 6th indicating that 

Highway 35 was closed as of 2:22pm (KATU, 2006).   The subsequent investigation 

into the Newton Creek Basin included a field based reconnaissance, sample collection 

and data processing. 
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Figure 28. Newton Creek shown in dashed black  

Reconnaissance & Sample Collection: 

Initial Reconnaissance  

The presence of boulder levees, log jams, large boulders and matrix supported 

debris deposits were noted near the old crossing of Highway 35 & Newton Creek 

(Figure 29).  Photos taken by the Oregon Department of Transportation directly after 

the event showed that the highway had been ripped apart where Newton Creek 

previously crossed under it (Figure 30).   Upstream from the highway, a distinct lack 
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of vegetation was noted in the active channel and scouring was present on the 

canyon side-walls.   

Definition of Initiation Zone 

Debris flow characteristics including boulder levees, a lack of vegetation in or near 

the channel, and abundant fresh erosion were noted continuously upstream.  Just 

below the glacier the headwaters of Newton Creek flows across some very steep 

unconsolidated and unvegetated slopes.  A portion of these steep slopes is the result 

of an ancient landslide (Tom Pierson, Personal Communication, 2007).  These steep 

slopes did not show evidence of recent landsliding.  However, large past slides that 

had caused previous debris flows (DeRoo, 2009) were visible in the headwaters.  

Fresh debris tracks and trails were present across the slopes (Figure 31).  A light gray 

color indicated that the debris tracks were fresher than the surrounding material.   It 

was observed that they coalesced together in the main body of the channel’s upper 

reaches.  Directly downstream from the upper reaches, large scale evidence of debris 

flow activity including heavy scour and absence of vegetation in or near the channel 

was observed.  This is another example of a headless debris flow. 
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Figure 29. Newton Creek at Highway 35 crossing 

 

Figure 30. Highway 35 damage east of Hood River Bridge (photo courtesy of ODOT) 
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Figure 31. Newton Creek initiation zone  

Sample Collection 

Six soil samples were collected from the downstream landslide deposit of an 

ancient landslide (Figure 32).  This landslide deposit was determined to be 

representative of the typical geologic material from the initiation zone as it is known 

to have originated from the same upstream landslide source as described by Tom 

Pierson (personal communication, 2007).   

Data Processing: 

Sieve Results 

Sieve results for Newton Creek are averaged and displayed in Table 5.  Material 

from the Newton Creek initiation zone equivalent has an average bulk density of 1.6 
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g/cm3.   The average sample is 17% gravel, 77.6% sand, and 5.4% fine grained 

material.  Of the sand, coarse grained material is in the clear majority with almost 

66%.  

 

Figure 32. Newton Creek sample collection location (UTM 0605698N, 5023493E) 

Table 5. Newton Creek sieve results 

Newton 
Creek 

Sample # 

Bulk 
Density 
(g/cm3) 

 Gravel  
>2mm 

 Sand 
2mm -

.063mm   

Silt & 
Clay 

<.063mm  

Sand 

Coarse 
2mm - 
.25mm 

Medium 
.25mm - 
.149mm 

Fine 
.149mm - 
.063mm 

1 1.9 18.6% 76.9% 4.5% 63.7% 19.4% 16.9% 

2 1.7 15.0% 80.6% 4.5% 71.2% 16.0% 12.8% 

3 1.6 13.1% 80.1% 6.6% 68.0% 16.4% 15.6% 

4 1.6 15.6% 77.7% 6.3% 63.5% 19.2% 17.4% 

5 1.6 24.1% 70.9% 4.8% 65.8% 18.8% 15.5% 

6 1.4 15.6% 79.3% 5.7% 62.6% 20.0% 17.4% 

Average 1.6 17.0% 77.6% 5.4% 65.8% 18.3% 15.9% 
Standard dev. 14% 4% 4% 1% 3% 2% 2% 
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Drainage Basin Attributes 

The total basin catchment area for the Newton Creek is 8.0 km2 with an upper 

drainage basin area of 5.3 km2.  The initiation zone for the headless debris flow is a 

hillslope covered by rills and located between the elevations of 1,810 and 2,170 

meters.  It is 790 meters from the Newton-Clark Glacier which has an area of 

approximately 1,390,000 m2.  Steep unconsolidated and unvegetated slopes account 

for 23% of the upper basin.  Sediment type in the initiation zone is predominantly 

neoglacial till and landslide material originating from the till and received 

approximately 15 cm of rain in the November, 2006 storm which triggered the debris 

flows (NEXRAD, 2009).  The overall azimuth of the upper drainage is 122:.  The 

maximum elevation for the basin catchment area above the fan was calculated at 

3,419 meters with a minimum of 1,390 meters.  The basin height is 2,029 meters.  

Stream gradient for the upper drainage basin is approximately .15.  Melton’s 

Ruggedness number for this basin has been calculated at R = 0.72. 

CLARK CREEK DRAINAGE BASIN: 

Clark Creek is located on the south east side of the mountain as shown in Figure 

27.  The Clark Creek Drainage experienced a small debris flow, travelling 

approximately 3 km, as a result of the November, 2006 storm.  The investigation into 

the Clark Creek Basin included a field based reconnaissance, sample collection and 

data processing. 
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Figure 33. Clark Creek shown in dashed black  

Reconnaissance & Sample Collection: 

Initial Reconnaissance 

At the point where Elk Meadows Trail crosses Clark Creek there were no obvious 

signs of debris flow processes.  A trail bridge had been damaged by flooding; 

however, no identifying debris flow characteristics were present.  There were signs of 

significant erosion of stream banks in the area; however, there was also a lot of 

vegetation in and near the stream channel.  Where the Timberline Trail crosses the 
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Clark Creek there were boulder levees present, a distinct lack of vegetation in or near 

the stream channel and steep channel sidewalls recently subjected to vigorous 

erosion.  Large landslides were also observed in some channel sidewalls.  Therefore, 

this drainage was classified as having a debris flow. 

Definition of Initiation Zone 

The initiation zone was defined by a landslide in the sidewall material near the 

Timberline Trail crossing (Figure 34).  This landslide was chosen to mark the initiation 

zone as it was the largest identifiable input for sediment into the system.  Note that 

this volume is really low compared to Eliot Creek landslides that generated large 

debris flows.   However, there was evidence of erosion and a lack of vegetation 

upstream from this point as well.  There may have been some minor additional 

upstream input to the Clark Creek debris flow.  However, directly upstream from the 

landslide, Clark Creek retreats to rocky headwaters.  The rock in the Clark Creek 

headwaters is bounded by ancient pyroclastic flow and debris flow deposits 

comprised of unconsolidated, unvegetated sediment (Sherrod & Scott, 1995).   

Sample Collection 

Six samples were collected from material considered to be representative of the 

initiation zone due to the fact that it comes from the same geologic unit (Figure 35).  

Samples were collected at the elevation of the initiation zone.   
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Figure 34. Clark Creek initiation zone (~4,860 m
3
) (UTM 0604875N, 5022881E) 

 

Figure 35. Clark Creek sample collection site (UTM 0605216N, 5022626E) 
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Data Processing: 

Sieve Results 

Sieve results for samples collected in Clark Creek were averaged and are shown in 

Table 6.  Material from the Clark Creek initiation zone has an average bulk density of 

1.7 g/cm3.  The average sample is 36.7% gravel, 59.9% sand, and 3.3% fine grained 

material.  Of the sand, coarse grained material is in the clear majority with 67%.  

Table 6. Clark Creek sieve results 

Clark Creek 
Sample # 

Bulk 
Density 
(g/cm3) 

 Gravel  
>2mm 

 Sand 
2mm -

.063mm   

Silt & 
Clay 

<.063mm  

Sand 

Coarse 
2mm - 
.25mm 

Medium 
.25mm - 
.149mm 

Fine 
.149mm - 
.063mm 

1 1.6 58.6% 39.8% 1.6% 70.2% 17.4% 12.3% 

2 1.7 38.9% 57.8% 3.2% 69.4% 15.3% 15.3% 

3 1.3 14.0% 81.6% 4.2% 52.1% 27.9% 20.0% 

4 1.8 24.8% 68.9% 6.1% 61.4% 19.9% 18.7% 

5 1.7 45.3% 51.9% 2.6% 71.9% 15.8% 12.4% 

6 1.9 38.4% 59.3% 2.0% 78.4% 12.9% 8.6% 

Average 1.7 36.7% 59.9% 3.3% 67.2% 18.2% 14.5% 

Standard dev. 23% 16% 14% 2% 9% 5% 4% 

Drainage Basin Attributes 

The total basin catchment area for the Clark Creek Drainage is 5.9 km2 with an 

upper drainage basin area of 3.9 km2.   The initiation zone is located between the 

elevations of 1,720 and 1,760 meters and is 610 meters from the Newton-Clark 

Glacier which has an area of approximately 1,390,000 m2.  The upper drainage basin 

is 7.5% bedrock with 26.7% of the basin covered in vegetation.  Steep unconsolidated 

and unvegetated slopes account for 26.6% of the upper basin.  Sediment type in the 
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initiation zone is predominantly neoglacial till and pyroclastic flow deposits (Sherrod 

& Scott, 1995) and received approximately 15 cm of rain in the November, 2006 

storm which triggered the debris flows (NEXRAD, 2009).  The overall azimuth of the 

upper drainage is 132:.  The maximum elevation for the basin catchment area above 

the fan was calculated at 3,060 meters with a minimum of 1,392 meters.  Basin 

height is 1,668 meters.  Stream gradient for the upper drainage basin is about .16.  

Melton’s Ruggedness number for this basin has been calculated at R = 0.68. 

SALMON RIVER (EAST FORK) DRAINAGE: 

The east fork of the Salmon River is located on the south side of the mountain 

(Figure 36).  The Salmon River drainage experienced a small debris flow, travelling 

approximately 4 km, as a result of the November, 2006 storm.  The investigation into 

the Salmon River Basin included a field based reconnaissance, sample collection and 

data processing. 

Reconnaissance & Sample Collection: 

Initial Reconnaissance 

The Timberline Trail crosses the east fork of the Salmon River near the Timberline 

Lodge. At this point fresh boulder levees, as shown in Figure 37, fresh unsorted 

matrix supported deposits, and lack of vegetation indicate a recent debris flow.  The 

flow seems small compared to others on the mountain.  Where vegetation is present, 

it is covered by a light layer of sandy and gravelly debris. 
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Figure 36. Salmon River shown in dashed black  

Definition of Initiation Zone 

Debris flow levees and bouldery material were followed upstream until they 

disappeared under snow.  The snow fingered down into the channel from the Palmer 

Snow Field and fluctuated seasonally.  No distinct landslide or rills were identified as 

the upper reaches of this stream remained covered by snow for the field season.  

Due to the lack of a discrete initiation point, this drainage was considered a headless 

debris flow.  
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Figure 37. Salmon River boulder levees 

 

Figure 38 Salmon River sample collection site (UTM 0601358N, 5021270E) 
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Sample Collection 

Samples were collected in unconsolidated pyroclastic material below the source 

area and are representative of the parent material in source area (Figure 38). 

Data Processing: 

Sieve Results 

Results of the sieve analysis on samples collected from the east fork of the 

Salmon River are averaged and shown in Table 7.  Material from the Salmon River 

initiation zone equivalent has an average bulk density of 1.7 g/cm3.  The average 

sample contains 46.3% gravel, 51.9% sand, and 1.7% fine grained material.  Of the 

sand, coarse grained material is in the clear majority with almost 80%.   

Table 7. Salmon River sieve results 

Salmon River 
Sample # 

Bulk 
Density 
(g/cm3) 

 Gravel  
>2mm 

 Sand 
2mm -

.063mm   

Silt & 
Clay 

<.063mm  

Sand 

Coarse 
2mm - 
.25mm 

Medium 
.25mm - 
.149mm 

Fine 
.149mm - 
.063mm 

1 1.8 48.6% 49.6% 1.6% 79.7% 12.0% 8.3% 

2 1.8 45.1% 53.1% 1.8% 79.7% 11.8% 8.5% 

3 1.5 48.9% 49.3% 1.6% 80.0% 11.9% 8.1% 

4 1.7 45.4% 52.8% 1.7% 80.4% 11.4% 8.2% 

5 1.6 42.1% 55.9% 1.9% 79.8% 11.4% 8.8% 

6 1.7 47.8% 50.6% 1.6% 79.7% 11.7% 8.6% 

Average 1.7 46.3% 51.9% 1.7% 79.9% 11.7% 8.4% 

Standard dev. 12% 3% 3% 0% 0% 0% 0% 

Drainage Basin Attributes 

The total basin catchment area for the Salmon River is 12.8 km2 with an upper 

drainage basin area of 1.4 km2.  The initiation zone is located between the elevations 
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of 2,020 and 2,200 meters and is approximately 671 meters from the Palmer Snow 

Field  which has an area of approximately  130,000 m2 (Driedger & Kannard, 1986).   

The upper drainage basin is 0% bedrock with 4.1% of the upper basin covered in 

vegetation.  Steep unconsolidated and unvegetated slopes account for 9.3% of the 

upper basin.  Sediment type in the initiation zone is predominantly pyroclastic flow 

and debris flow deposits (Sherrod & Scott, 1995) and received approximately 15 cm 

of rain in the November, 2006 storm which triggered the debris flows (NEXRAD, 

2009).  The overall azimuth of the upper drainage is 187:.  The maximum elevation 

for the basin catchment area above the fan was calculated at 2,777 meters with a 

minimum of 1,222 meters. Basin height is 1,555 meters.  Stream gradient for the 

upper drainage basin is approximately .23.  Melton’s Ruggedness Number for this 

basin has been calculated at R = 0.43. 

LADD CREEK DRAINAGE BASIN: 

Ladd Creek is located on the northwest side of the mountain as shown in Figure 

39.  The Ladd Creek drainage experienced a small debris flow, travelling 

approximately 4 km, as a result of the November, 2006 storm.  The investigation into 

the Ladd Basin included a field based reconnaissance, sample collection and data 

processing. 
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Figure 39. Ladd Creek shown in dashed black  

Reconnaissance & Sample Collection: 

Initial Reconnaissance 

At the old Cathedral Ridge trailhead Ladd Creek can be seen in the canyon below.  

At this point there was no evidence for debris flow activity.  Heavy vegetation 

abutted to the channel, and there was no indication of fresh debris flow deposits or 

boulder levees.  Where the Timberline Trail crosses Ladd Creek abundant evidence 

was present for debris flow activity.  Debris flow deposits of boulder and unsorted 
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matrix supported debris were present in the channel.   Trees that had been broken 

were present and also had some mud coatings with small pebbles imbedded in the 

wood.  Many small sides and signs of fresh erosion were present on the stream 

banks.  Distinct fresh boulder levees present along stream channel are shown in 

Figure 40.  The debris trail disappears downstream over a large knick-point in a steep, 

cliff lined section of the stream.  There is no evidence for debris flows on accessible 

areas of the fan below the constricted canyon area.  However, an abundance of 

upstream evidence of debris flow activity indicates that Ladd Creek did experience a 

debris flow which most likely became blocked up in the canyon and consequently did 

not reach the fan. 

Definition of Initiation Zone 

At the constriction point, in the upper reaches of the Ladd Creek drainage, where 

the terminal moraines come together and the river incises, there is a small landslide.  

Ladd Creek flows at the base of the slide and the landslide deposit has been washed 

downstream.  Below this point there is evidence of debris flow activity including 

extensive fresh erosion, lack of vegetation in or near the channel, and the presence 

of boulder levees.  Above this point there are no boulder levees, some vegetation 

near the channel, and no sign of fresh erosion.  Therefore, this landslide (Figure 41,) 

was selected to represent the initiation zone.  This landslide (~3,060 m3) is 

significantly smaller than other initiation zone landslides. 
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Figure 40. Ladd Creek boulder levees 

Sample Collection 

Six samples were collected adjacent to the landslide headscarp (Figure 41).   

Data Processing: 

Sieve Results 

Samples were sieved and averaged together as shown in Table 8.   Material from 

the Ladd Creek initiation zone has an average bulk density of 1.7 g/cm3.  The average 

sample contains 49.4% gravel, 47.2% sand, and 2.4 % fine grained material.  Of the 

sand, coarse grained material is in the clear majority with near 73%.  
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Figure 41. Ladd Creek initiation zone (~3,060 m
3
) & sample collection site (UTM 0600239N, 5027916E) 

Table 8. Ladd Creek sieve results 

Ladd Creek 
Sample # 

Bulk 
Density 
(g/cm3) 

 Gravel  
>2mm 

 Sand 
2mm -

.063mm   

Silt & 
Clay 

<.063mm  

Sand 

Coarse 
2mm - 
.25mm 

Medium 
.25mm - 
.149mm 

Fine 
.149mm - 
.063mm 

1 1.6 49.8% 48.8% 0.4% 88.4% 6.9% 4.8% 

2 1.7 57.3% 40.8% 1.6% 66.5% 14.5% 18.9% 

3 1.4 39.5% 58.0% 0.5% 80.6% 12.5% 6.9% 

4 1.9 68.4% 26.6% 4.6% 55.8% 10.8% 33.4% 

5 2.1 18.3% 73.9% 5.7% 64.4% 17.1% 18.5% 

6 1.6 63.2% 34.9% 1.8% 79.6% 10.9% 9.6% 

Average 1.7 49.4% 47.2% 2.4% 72.5% 12.1% 15.3% 

Standard dev. 25% 18% 17% 2% 12% 4% 11% 

Drainage Basin Attributes 

The total basin catchment area for the Ladd Creek drainage is 20.0 km2 with an 

upper drainage basin area of 2.3 km2.  The initiation zone is located between the 
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elevations of 1,880 and 1,930 meters and is 1,010 meters from the Ladd Glacier 

which has an area of approximately 670,000 m2 (Jackson K. M., 2007; Jackson & 

Fountain, 2007).  The upper drainage basin is 11.8% bedrock with 13.9% of the upper 

basin covered in vegetation.  Steep unconsolidated and unvegetated slopes account 

for 11.3% of the upper basin.  Sediment type in the initiation zone is predominantly 

till of neo-glacial age and debris avalanche deposit of Ladd Creek (Sherrod & Scott, 

1995) and received approximately 36 cm of rain in the November, 2006 storm which 

triggered the debris flows (NEXRAD, 2009).  The overall azimuth of the upper 

drainage is 330:.  The maximum elevation for the basin catchment area above the 

fan was calculated at 2,781 meters with a minimum of 1,323 meters. Basin height is 

1,458 meters.  Stream gradient for the upper drainage basin is approximately .19.  

Melton’s Ruggedness Number for this basin has been calculated at R = 0.33. 

ZIGZAG RIVER DRAINAGE BASIN: 

The Zigzag River is located on the southwest side of the mountain as shown in 

Figure 42.  The Zigzag River drainage did not experience a debris flow as a result of 

the November, 2006 storm.  The investigation into the Zigzag basin included a field 

based reconnaissance, sample collection and data processing. 

Reconnaissance & Sample Collection: 

Initial Reconnaissance 
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Figure 42. Zigzag River shown in dashed black  

Lolo Pass road crosses the Zigzag River at an elevation of about 440 meters.  At 

that point there was no evidence for debris flow occurrence.  Stream channels had 

ample vegetation along the banks and showed no sign of recent debris flow deposits 

or levees.  The Timberline Trail crosses the Zigzag River at an elevation of 1,450 

meters.   At this point some vegetation was noted near the river.   Flattened 

shrubbery was observed along the active channel margin, and canyon walls were 

vegetated (Figure 43).  There were no debris flow deposits and no mud-marks on 
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trees or branches in or near the channel.  Landslide head scarps were visible in the 

canyon walls; however, deposits are generally just below scarps and are vegetated.   

No evidence for recent debris flow activity was found for the Zigzag River. 

Sample Collection 

Samples were collected from a ridge on the north side of the drainage.  Ridge top 

samples were selected as representative of initiation equivalent material due to 

difficult access to valley bottom exposures that satisfied the criteria of being above 

the timberline.  Samples were collected above the timberline, but within alpine 

vegetated areas with ground hugging shrubbery (Figure 44).  Abundant rainfall was 

ongoing during sample collection.   

 

Figure 43. Zigzag River vegetation along active stream margin and canyon walls 
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Data Processing: 

Sieve Results 

Samples were sieved and averaged together as shown in Table 9.  Material from 

the upper Zigzag River drainage basin has an average bulk density of 1.7 g/cm3.  The 

average sample was 33.0% gravel, 61.3% sand, and 5.3% fine grained material.  Of 

the sand, coarse grained material is in the clear majority with 66%.   

 

Figure 44. Zigzag River sample collection site (UTM 0598822N,5022666E) 

Drainage Basin Attributes 

The total basin catchment area for the Zigzag River is 34.3 km2 with an upper 

drainage basin area of 3.1 km2.  This basin does not have direct connection to a  
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Table 9. Zigzag River sieve results 

Zigzag River 
Sample # 

Bulk 
Density 
(g/cm3) 

 Gravel  
>2mm 

 Sand 
2mm -

.063mm   

Silt & 
Clay 

<.063mm  

Sand 

Coarse 
2mm - 
.25mm 

Medium 
.25mm - 
.149mm 

Fine 
.149mm - 
.063mm 

1 1.7 40.9% 50.3% 8.3% 64.3% 17.0% 18.7% 

2 1.8 33.3% 60.8% 5.5% 66.5% 16.7% 16.8% 

3 1.7 45.9% 48.9% 4.7% 68.1% 15.0% 16.9% 

4 1.4 10.9% 86.6% 2.1% 61.3% 24.1% 14.6% 

5 1.9 35.0% 58.7% 6.1% 67.8% 15.9% 16.3% 

6 1.5 32.1% 62.3% 5.3% 68.2% 14.6% 17.2% 

Average 1.7 33.0% 61.3% 5.3% 66.0% 17.2% 16.8% 
Standard dev. 18% 12% 14% 2% 3% 3% 1% 

 

glacier, but rather is fed by groundwater and springs (Tom DeRoo, Peronal 

Communication, 2009).  The upper drainage basin is 3.4% bedrock with 16.1% of the 

basin covered in vegetation.  Steep unconsolidated and unvegetated slopes account 

for 46.3% of the upper basin.  Sediment type in the upper basin is predominantly 

Rhododendron Formation and pyroclastic flow and debris flow deposits (Sherrod & 

Scott, 1995).  It received approximately 20 cm of rain in the November, 2006 storm 

(NEXRAD, 2009).  The overall azimuth of the upper drainage is 236:.  The maximum 

elevation for the basin catchment area above the fan was calculated at 3,128 meters 

with a minimum of 770 meters. Basin height is 2,358 meters.  Stream gradient for the 

upper drainage basin is approximately .25.  .  Melton’s Ruggedness Number for this 

basin has been calculated at R = 0.40. 
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POLALLIE CREEK DRAINAGE BASIN: 

Polallie Creek is located on the northeast side of the mountain as shown in Figure 

45.  The Polallie Creek drainage did not experience a debris flow as a result of the 

November, 2006 storm.  The investigation into the Polallie Basin included a field 

based reconnaissance, sample collection and data processing. 

 

Figure 45. Polallie Creek shown in dashed black  
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Reconnaissance & Sample Collection: 

Initial Reconnaissance 

Highway 35 crosses the Polallie Creek on the east side of the mountain.  No 

evidence of recent debris flow activity was noted at this point.  Deposits had 

vegetation growing out of them, and vegetation was noted in or near the stream 

channel.  There was no evidence of fresh boulder levees or recent debris flow 

deposits.  Upstream from this point, into the headwaters of the Polallie Basin, 

vegetated slopes were observed as shown in Figure 46.  No change in color was 

noted in the stream bed to indicate fresh debris flow deposits, and vegetation was 

seen in or near the channel.   In the upper headwaters of the drainage several small 

or ongoing scree slope landslides were noted; however, a lack of debris flow deposits 

and features supports that there is no evidence of recent debris flow activity. 

Sample Collection 

Six samples were collected at headwaters of drainage, just above timberline 

(Figure 47).  Samples were collected within alpine vegetated areas with ground 

hugging shrubbery. 

Data Processing: 

Sieve Results 

Samples were sieved and averaged together as shown in  
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Table 10.  Material from the upper Polallie Creek drainage basin has an average bulk 

density of 1.5 g/cm3.  The average sample contained 47.2% gravel, 49.0% sand and 

3.6% fine grained material.  Of the sand, coarse grained material is in the clear 

majority with just over 67%.   

 

Figure 46. Polallie Creek vegetated slopes 
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Figure 47. Polallie Creek sample collection site (UTM 0605298N, 5027373E) 

Table 10. Polallie Creek sieve results 

Polallie 
Creek 

Sample # 

Bulk 
Density 
(g/cm3) 

 Gravel  
>2mm 

 Sand 
2mm -

.063mm   

Silt & 
Clay 

<.063mm  

Sand 

Coarse 
2mm - 
.25mm 

Medium 
.25mm - 
.149mm 

Fine 
.149mm - 
.063mm 

1 1.3 39.6% 57.7% 3.3% 65.8% 19.5% 14.8% 

2 1.5 22.7% 66.9% 8.6% 60.7% 22.7% 16.6% 

3 1.6 63.6% 35.6% 1.1% 77.7% 13.8% 8.5% 

4 1.4 63.0% 34.1% 2.8% 63.4% 18.4% 18.2% 

5 1.5 43.8% 52.7% 3.5% 63.1% 20.1% 16.8% 

6 1.7 50.5% 47.2% 2.2% 75.1% 14.1% 10.8% 

Average 1.5 47.2% 49.0% 3.6% 67.6% 18.1% 14.3% 

Standard dev. 16% 15% %13 3% 7% 4% 4% 

Drainage Basin Attributes 

The total basin catchment area for the Polallie River is 13.1 km2 with an upper 

drainage basin area of 7.9 km2.   This basin does not have direct connection to a 
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glacier but rather is fed by groundwater and springs (Tom DeRoo, Peronal 

Communication, 2009).  The upper drainage basin is 0.9% bedrock with 65.9% of the 

upper basin covered in vegetation.  Steep unconsolidated and unvegetated slopes 

account for 5.7% of the upper basin.  Sediment type in the upper basin is 

predominantly pyroclastic flow and debris flow deposits (Sherrod & Scott, 1995).  It 

received approximately 15 to 20 cm of rain in the November, 2006 storm (NEXRAD, 

2009).   The overall azimuth of the upper drainage is 60:.  The maximum elevation for 

the basin catchment area above the fan was calculated at 2,584 meter with a 

minimum of 917 meters.  Basin height is 1,667 meters.  Stream gradient for the 

upper drainage basin is approximately .17.  Melton’s Ruggedness Number for this 

basin has been calculated at R = 0.46. 

COE CREEK DRAINAGE BASIN: 

Coe Creek is located on the north side of the mountain as shown in Figure 48.  

The Coe Creek drainage did not experience a debris flow as a result of the November, 

2006 storm.  The investigation into the Coe Creek Basin included a field based 

reconnaissance, sample collection and data processing. 

Reconnaissance & Sample Collection: 

Initial Reconnaissance 

Laurance Lake Road crosses Coe Creek just above the fan of the Coe Creek 

drainage.  There was no evidence of debris flow activity at this point.  Vegetation 
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Figure 48. Coe Creek shown in dashed black 

is noted near the edge of the stream.   No evidence of fresh levees or recent erosion 

is present as shown in Figure 49.  There was no damage noted to irrigation 

equipment in the channel.  Where the Timberline Trail crosses the drainage, and 

below the falls downstream from the Timberline Trail crossing, there are large 

boulders and a lack of vegetation in the stream channel.  However, deposits 

downstream have shrubs growing out of them.  Lightweight woody debris is present 

in the channel, but no mud coatings were noted.  Tree trunks with bark ripped off 
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also indicated no mud coatings.  Large landslide scarps were observed in the Coe 

headwaters which contained protruding boulders.  The sidewall boulders could 

possibly be a source area for the boulders present in the channel.  Some landslide 

deposits are present at the base of sidewall slopes.  Fresh slides begin midway up the 

slope on the east side of canyon wall.   The boulder field continues up the drainage as 

far as visible and is comprised of poorly sorted, bouldery, mostly clast supported 

deposits. There is no evidence for boulder levees or matrix supported debris flow 

deposits.  

       

Figure 49. Coe Creek above Laurance Lake Road. 
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Figure 50. Coe Creek sample collection site (UTM 0602544N, 5028643E) 

Lower moraine walls seem less steep and more vegetated than those observed in 

the Eliot Creek Drainage.  A landslide scarp is visible above the point in the drainage 

where the moraine sidewalls constrict; however, the talus slope has filled in 

indicating that landslide activity is not recent.  These observations combined with 

plenty of vegetation near the channel indicate that there is no evidence for a recent 

debris flow in Coe Creek.   

Sample Collection 

Six samples were collected from the morainal material, at the top of moraine, 

above the timberline and slightly above the lateral moraine constriction point.  The 

sample collection site was unvegetated (Figure 50).   
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Data Processing: 

Sieve Results 

Samples were sieved and averaged together as shown below in Table 11. 

Material from the upper Coe Creek drainage basin has an average bulk density of 1.7 

g/cm3.  The average sample contains 47.8% gravel, 45.3% sand and 6.7% fine grained 

material.   Of the sand, coarse grained material is in the clear majority with about 

54%.   

Drainage Basin Attributes 

The total basin catchment area for the Coe Creek drainage is 18.5 km2 with an 

upper drainage basin area of 2.9 km2.  This basin is directly connected to the Coe 

Glacier which has an area of approximately 1,240,000 m2 (Jackson & Fountain, 2007; 

Jackson K. M., 2007).   The upper drainage basin is 9.2% bedrock with 25.2% of the 

upper basin covered in vegetation. 

Table 11. Coe Creek sieve results 

Coe Creek 
Sample # 

Bulk 
Density 
(g/cm3) 

 Gravel  
>2mm 

 Sand 
2mm -

.063mm   

Silt & 
Clay 

<.063mm  

Sand 

Coarse 
2mm - 
.25mm 

Medium 
.25mm - 
.149mm 

Fine 
.149mm - 
.063mm 

1 1.8 45.6% 50.5% 3.7% 71.0% 16.3% 12.7% 

2 1.9 59.4% 38.5% 2.0% 75.8% 13.3% 10.9% 

3 1.7 66.7% 28.1% 4.9% 41.5% 18.6% 39.9% 

4 1.3 11.2% 74.8% 13.6% 55.3% 17.7% 26.9% 

5 1.9 61.1% 30.1% 8.6% 49.4% 19.2% 31.4% 

6 1.3 42.9% 49.6% 7.5% 32.2% 30.3% 37.4% 

Average 1.7 47.8% 45.3% 6.7% 54.2% 19.2% 26.5% 

Standard dev. 28% 20% 17% 4% 17% 6% 12% 
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 Steep unconsolidated and unvegetated slopes account for 9.9% of the upper basin.  

Sediment type in the upper basin is predominantly till of neo-glacial age (Sherrod & Scott, 

1995) and received approximately 20 cm of rain in the November, 2006 storm (NEXRAD, 

2009).  The overall azimuth of the upper drainage is 17:.  The maximum elevation for the 

basin catchment area above the fan was calculated at 3,068 meters with a minimum of 826 

meters. Basin height is 2,242 meters.  Stream gradient for the upper drainage basin is 

approximately .25.  Melton’s Ruggedness Number for this basin has been calculated at R = 

0.52. 

MUDDY FORK DRAINAGE BASIN: 

The Muddy Fork of the Sandy River is located on the west side of the mountain as 

shown in Figure 51.  The Muddy Fork Drainage did not experience a debris flow as a 

result of the November, 2006 storm.  The investigation into the Muddy Fork Basin 

included a field based reconnaissance, sample collection and data processing. 

Sample Collection 

Six samples were collected from the pyroclastic fill derived soil on a natural slope 

adjacent to the active river channel.  The sample collection site was located just 

below the rock source area for the 2002 debris avalanche (Figure 52).  This source 

area was below the timberline; however, it was chosen for its proximity to the 

previous debris avalanche initiation zone.   
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Figure 51. Muddy Fork of the Sandy River shown in dashed black  

Data Processing: 

Sieve Results 

Samples collected were sieved and averaged as shown in Table 12.  Material from 

the upper Muddy Fork drainage basin has an average bulk density of 1.6 g/cm3.  The 

average sample has 48.4% gravel, 49.1% sand, and 2.0% fine grained material.   Of 

the sand, coarse grained material is in the clear majority with almost 87%.   
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Figure 52. Muddy Fork sample collection site (UTM 0598762N, 5027046E) 

Drainage Basin Attributes 

The total basin catchment area for the Muddy Fork of the Sandy River is 11,8 km2 

with an upper drainage basin area of 5.4 km2.  This basin is directly connected to the 

Sandy Glacier which has an area of approximately 960,000 m2 (Jackson K. M., 2007; 

Jackson & Fountain, 2007).  The upper drainage basin is 27.0% bedrock with 32.4% of 

the upper basin covered in vegetation.  Steep unconsolidated and unvegetated 

slopes account for 12.0% of the upper basin.  Sediment type in the upper basin is 

predominantly neoglacial till and pyroclastic flow and debris flow deposits (Sherrod & 

Scott, 1995).  It received approximately 36 cm of rain in the November, 2006 storm 

(NEXRAD, 2009).   
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Table 12. Muddy Fork sieve results 

Muddy Fork 
Sample # 

Bulk 
Density 
(g/cm3) 

 Gravel  
>2mm 

 Sand 
2mm -

.063mm   

Silt & 
Clay 

<.063mm  

Sand 

Coarse 
2mm - 
.25mm 

Medium 
.25mm - 
.149mm 

Fine 
.149mm - 
.063mm 

1 1.7 50.0% 46.6% 3.3% 83.4% 7.4% 9.2% 

2 1.6 48.8% 48.7% 1.9% 87.4% 6.5% 6.2% 

3 1.5 45.5% 51.2% 2.6% 84.8% 8.0% 7.2% 

4 1.7 46.3% 52.5% 0.8% 91.5% 5.4% 3.2% 

5 1.6 48.4% 49.5% 2.0% 88.4% 5.8% 5.9% 

6 1.6 51.4% 46.0% 1.7% 85.8% 6.5% 7.7% 

Average 1.6 48.4% 49.1% 2.0% 86.9% 6.6% 6.5% 
Standard dev. 0.11 0.02 0.03 0.01 0.03 0.01 0.02 

The overall azimuth of the upper drainage is 300:.  The maximum elevation for the 

basin catchment area above the fan was calculated at 3,290 meters with a minimum 

of 1,250 meters. Basin height is 2,040 meters.   Stream gradient for the upper 

drainage basin is approximately .30.  Melton’s Ruggedness Number for this basin has 

been calculated at R=.70. 

SUMMARY 

As a result of the November, 2006 storm, seven of the eleven main drainages on 

Mount Hood had debris flows.  Four of the debris flows were landslide initiated with 

evidence of undercutting of the slope in the streambed below the slide, three were 

headless.  Debris flow initiation zone material, smaller than cobble sized, was 

predominantly granular with a very low percentage of fines.  Initiation zone parent 

material (Table 13) did not show a strong connection to the occurrence of debris 

flows.   
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Table 13. Initiation zone parent material by drainage 

Drainage Parent Material 

Eliot Neoglacial Till 

Sandy Pyroclastic & Debris Flow 

White Pyroclastic & Debris Flow 

Newton Neoglacial Till 

Clark Lava Flows & Neoglacial Till 

Salmon Pyroclastic & Debris Flow 

Ladd Debris Flow & Neoglacial Till 

Zigzag Pyroclastic & Debris Flow 

Polallie Pyroclastic & Debris Flow 

Coe Neoglacial Till 

Muddy Fork Debris Flow & Neoglacial Till 

Debris flows initiated on all sides of Mount Hood between elevations 1,760 to 

2,020 meters with an average elevation of 1,860 meters (Figure 53).  A summary of 

drainage basin characteristics is provided in Table 14.    The Eliot Creek Debris Flow 

and Newton Creek were the largest based on distance traveled followed closely by  

 

Figure 53. Initiation elevation by drainage (Thickness of line refers to elevation range) 
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Table 14. Summary chart of drainage basin characteristics 

Drainage 
Debris 
Flow 

Rainfall (cm) 
Percent 
Bedrock  

Percent 
Vegetation 

Percent Steep 
Slopes 

Glacier Area (m2) 

Eliot Yes 20 3 4 18 1,640,000 

Sandy Yes 36 5 8 30 769,000 

White Yes 18 3 2 42 407,000 

Newton Yes 15 7 24 23 1,390,000 

Clark Yes 15 8 27 27 1,390,000 

Salmon Yes 15 0 4 9 130,000 

Ladd Yes 36 12 14 11 670,000 

Zigzag No 20 3 16 46 0 

Polallie No 18 1 66 6 0 

Coe No 20 9 25 10 1,240,000 

Muddy No 36 27 32 12 960,000 

Drainage Gradient 
Connection 
to Glacier 

Azimuth 
(degrees) 

Ruggedness 
Number 

Upper Drainage 
Basin Area (km2) 

Area Above 
Initiation Zone (km2) 

Eliot 0.23 Yes 41 0.85 3.3 3.0 

Sandy 0.27 Yes 260 0.44 3.1  1.7 

White 0.18 Yes 175 0.75 6.5  1.8 

Newton 0.15 Yes 122 0.72 5.3  1.2 

Clark 0.16 Yes 132 0.68 3.9  0.9 

Salmon 0.23 Yes 187 0.43 1.4  0.6 

Ladd 0.19 Yes 330 0.33 2.3  1.4 

Zigzag 0.25 No 236 0.40 3.1   

Polallie 0.17 No 60 0.46 7.9   

Coe 0.25 Yes 17 0.53 2.9   

Muddy 0.3 Yes 300 0.70 5.4   

the White River and Sandy River debris flows.  Debris flows in Ladd Creek, Clark Creek 

and the west fork of the Salmon River were the smallest in the November, 2006 

storm event (Figure 54).  Drainages that produced debris flows appear to be 

transport limited or able to produce debris flows given the right climactic trigger.  

Based on historic records and an evaluation of Melton’s Ruggedness number, all of 

the eleven primary drainages seem capable of producing debris flows.   



 

102 
 

 

Figure 54. Debris flow locations and sizes 
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RAINFALL DATA 

Both NWAC rainfall data and NEXRAD data indicates that the November, 2006 

storm had high rainfall at the upper elevations.  A map of the precipitation total for 

the NEXRAD storm data is shown in Figure 55.  NWAC rainfall data reports between 

33 to 38 percent higher than that indicated by NEXRAD.  Due to this divergence, 

NEXRAD data should be considered minimum values especially for the upper 

elevations.   

 

Figure 55. Close-up of NEXRAD Storm data showing total rainfall in cm (written communication, Todd 
Parker, USFS 2008) 
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Lower elevation data also showed that the storm was unusual for that time of 

year at those elevations.  Between 2000 and 2008, no other storms had equal or 

greater rainfall amounts than the November, 2006 storm as recorded by SNOWTEL at 

the lower elevations.  In general, minimum storm totals provided by NEXRAD data 

were equal to or less than measured precipitation at the lower elevation SNOTEL 

sites.  Therefore, due to NEXRAD underestimation when compared to both NWAC 

and SNOWTEL data, it can be inferred that total storm precipitation accumulation at 

the higher elevations was actually significantly higher than the minimums reported.   

SNOWTEL sites did not indicate significant antecedent moisture conditions prior 

to November 3, 2006.  The average cumulative precipitation in the 10 days leading up 

to the storm was less than 4 cm.  The average largest amount of daily rainfall in the 

10 days leading up to the storm was 2.3 cm.  The storm data went for six days, 

November 3-8.  Precipitation data from the three SNOTEL sites closest to Mount 

Hood is shown in Table 15.  SNOWTEL site locations are shown in Figure 56.  

Table 15. SNOWTEL daily precipitation data for November 3-8  

Date 
(November 2006) 

Blazed Alder Station 
Precipitation (cm) 

Mount Hood Station 
Precipitation (cm) 

Red Hill Station 
Precipitation (cm) 

3 5.1 2.0 3.0 

4 5.8 3.0 3.3 

5 6.4 4.1 5.1 

6 10.4 4.8 5.6 

7 14.7 7.1 13.0 

8 16.8 9.1 12.4 

Total Precipitation 59.2 30.2 42.4 
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Figure 56. SNOWTEL sites near Mount Hood (www.or.nrcs.usda.gov/snow/maps/oregon_sitemap.html) 

NWAC data indicated about 30 cm of residual snowpack from the previous year in 

the Timberline (elevation 1830 m) and Mount Hood Meadows (elevation 1,600 m) ski 

areas when the storm hit.  The snowpack experienced rapid melting which coincided 

with a steady increase in daily rainfall totals.  On November 6, when news reports 

gave the first evidence of debris flow occurrence through a series of road out reports, 

daily cumulative rainfall, shown as daily cumulative precipitation in Figure 57 & 

Figure 58, was between 5 and 6 cm while the collective storm rainfall was between 

14 and 18.5 cm.  This rainfall coincided with a collective snow melt of 25 to 30 cm in 

these areas (Figure 57 & Figure 58).    This suggests that the combination of moderate 

to heavy rainfall with large amounts of rapid snowmelt assisted in creating high 

stream flow in the upper elevations.  High stream flow can undercut the banks in 

http://www.or.nrcs.usda.gov/snow/maps/oregon_sitemap.html
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sensitive areas, causing landslides which can transform into debris flows.  The NWAC 

does not have precipitation gauges in all drainages but it can be inferred that the 

pattern of rapid snowmelt coinciding with heavy rainfall is not limited to these areas.  

 

Figure 57. NWAC Timberline ski area data 

 

Figure 58. Mount Hood Meadows ski area data 



 

107 
 

CHAPTER 5:  STATISTICS  

DETERMINATION OF FACTORS 

Out of the factors and variables discussed in the Methods section, those that 

were equally comparable across both debris flow producing and non-debris flow 

basins were chosen for the statistical evaluation.  Characteristics including “distance 

from the glacier” and “initiation zone elevation” were not taken into consideration as 

they could not be applied to those drainages which did not experience debris flows. 

The total basin catchment area and upper drainage basin area were not used to 

avoid redundancy because area was already part of Melton’s Ruggedness Number.  

Basin height is also a parameter used in Melton’s Ruggedness Number and was not 

included separately.   The azimuth of a drainage basin is a geographic feature which 

affects rainfall and vegetation coverage.  It was not used in the analysis because 

direct rainfall and vegetation numbers were already incorporated.   

When reviewing the samples collected from drainages around the mountain, in 

general, pyroclastic derived sediment samples tended to have a higher proportion of 

sand to gravel and a lower percentage of fines than those samples that came from 

morainal material.  When the samples were divided into two groups, those from 

drainages that did have debris flows as compared to those that did not have debris 

flows, the variation, or range of percentages of gravel, sand and fines, between the 

samples within each group was greater than the variation between the two groups.  
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Therefore, the samples from drainages that did have debris flows were found to have 

no statistical difference from those that did not have debris flows.  Because of this 

lack of distinction between groups, the results of the particle size analysis were not 

used in the statistical analysis of factors.  The type of sediment in the upper drainage 

basin or initiation area was determined to be not a significant factor in discriminating 

between those drainages that had debris flows and those that did not and was not 

used in the statistical analysis.   

LOGISTIC REGRESSION 

Logistic regression is a form of generalized linear modeling that allows one to 

predict a discrete outcome from a set of variables.  The purpose of this method is to 

predict the category of outcome for individual cases relying on as simple a model as 

possible.  To accomplish this, a model is created which includes all predictor variables 

that may be useful in predicting the response variable (Agresti, 1996; SFSU, 2002.)   

The fit of the model will be tested after each coefficient is added or deleted using 

backward stepwise regression, where the analysis begins with a full model and 

variables are eliminated from the model systematically.  A goodness of fit test is 

conducted after the elimination of each variable until no more variables can be 

eliminated with detriment to the fit of the model (Davis, 2002; SFSU, 2002).  This 

method has been applied to geomorphologic problems which include linking of 

rockfall type to occurrence of lithologic variation within units (Vandewater et al., 
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2005) and the prediction of the occurrence of debris flow production from an 

individual basin as a function of burned extent, soil properties, basin gradients and 

storm rainfall (Cannon et al., 2003).   

Method: 

The binary logistic regression analysis can predict group membership between 

two groups, or provide a response measurement for whether each subject is a 

“success” or “failure” (Agresti, 1996).  An example of the prediction of group 

membership can be found with our test data set.  In this instance the predicted Y 

variable is debris flow occurrence defined by the actual documented occurrence of 

debris flows on Mount Hood from the November, 2006 storm. Those basins which 

experienced debris flows, regardless of size, were given a Y designation of 1 in the 

data set.  Those basins which did not experience debris flows were given a Y 

designation of 0 in the data set.  Examples of the data can be found in appendix M.    

Table 16 - Variables Measured for all Basins 

Y = Debris flow occurrence 

X1 =  Rainfall amount  

X2 = Percent bedrock in the upper basin  

X3 =  Percent vegetation in the upper basin 

X4 =  Percent slopes above 33 degrees in the upper basin 

X5 =  Gradient of the upper basin 

X6 =  Connection to the glacier 

X7 = Glacier Area 

X8 =  Melton’s Ruggedness Number 
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To ensure better accuracy of the model, the first step necessary is to convert all 

observations to deviations from the mean.  This reduces the absolute magnitude of 

variables and centers them around a common mean of zero (Davis, 2002).  For our 

example, this step was conducted by converting the data to standard normal form 

using the equation zi = xi – X/s from Davis, 2002.  The results of the standardized data 

are presented in Appendix N.  The variables used in this example are shown in Table 

16. 

The next step is to determine the influence of the eight independent X variables 

on variable Y.  This is done through multiple regression.  From the regression, the 

influence that all the variables have on debris flow occurrence can be assessed 

(Davis, 2002).  This analysis was run on the data using least squares in order to obtain 

the coefficients of the predictor variables (Davis, 2002).  Table 17 shows the results of 

the regression on the data set as a whole.    

A Wald Test for goodness of fit is used to test the statistical significance of each 

coefficient in the model.  A Wald test calculates a Z statistic which is then squared 

yielding a chi-square distribution (Agresti, 1996; SFSU, 2008) as shown below:  

Wald =        (Eq. 2) 
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where β is the regression coefficient and SEβ  is the standard error of the regression 

coefficient.  The Wald Test has one degree of freedom (Hosmer and Lemshow, 1989).  

After running the first analysis, backward elimination is used to eliminate insignificant 

variables in order to produce the most economical model.    The elimination of 

variables continues until the Wald test indicates that all regression coefficients are 

significant to the model, thereby weeding out insignificant variables. 

Table 17 - Outputs and ANOVA for Regression 0 

ANOVA         

  df SS MS F 

Regression 8.000 8.959 1.120 2.152 

Residual 2.000 1.041 0.520   

Total 10.000 10.000     

  Coefficients Standard Error t Stat P-value 

Intercept 0.000 0.218 0.000 1.000 

X1 0.460 0.401 1.146 0.370 

X2 -0.445 0.439 -1.013 0.418 

X3 -0.385 0.553 -0.697 0.558 

X4 -0.033 0.368 -0.089 0.937 

X5 -0.594 0.343 -1.730 0.226 

X6 0.459 0.576 0.797 0.509 

X7 -0.040 0.415 -0.095 0.933 

X8 0.148 0.394 0.375 0.744 

The backward elimination procedure consists of computing a regression including 

all possible variables and selecting the least significant variable (Davis, 2002).  The 

least significant variable was discarded, and the regression was recomputed, omitting 

that variable.  The reduced regression model is then fitted to the data, and the 

process is repeated.  At each step the regression equation is reduced by one variable, 

until all remaining variables are significant (Davis, 2002).  With each reduction of the 
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regression model, a new set of standardized partial regression coefficients is 

calculated.    

The coefficients of the predictor variables or regression coefficients are then 

entered into the logistic regression equation.  The equation for logistic regression (Eq 

3) is shown below where α = the constant of the equation and β = the coefficient of 

the predictor variables. 

     (Eq. 3) 

For this model, it was determined that the removal of five variables, X1, X2, X4, 

X7 and X8 resulted in the best fit model as predicted by the Wald test.  Wald test 

results for the first five regressions are shown in Table 18.  For the logistic regression 

model, the null hypothesis H0 : β = 0 states that the probability of success is 

independent of X (Agresti, 1986).  Rejection of the null hypothesis H0 : β = 0 indicates 

coefficient is significant in the model.  Wald numbers greater than 2.71 resulted in 

rejection of the null hypothesis at α = .10. 

The regression outputs for Regression 5 are shown in Table 19.  Of the three 

significant variables, X3 (% Vegetation) and X5 (Gradient) show an inverse 

relationship to debris flow occurrence, while X6 (Connection to the glacier) shows a 

normal relationship.  The test statistic therefore is:  
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                                      (Eq. 4) 

Table 18 - Results from first five regressions showing Wald results for coefficients 

Regression 0 Regression 1 Regression 2 

Coefficient WALD Coefficient WALD Coefficient WALD 

β1  1.31 β1  1.95 β1  2.57 
β2 1.03 β2 1.70 β2 2.29 
β3 0.49 β3 1.23 β3 1.86 
β4 0.01 β5 5.03 β5 6.72 
β5 2.99 β6 1.87 β6 3.11 
β6 0.64 β7 0.01 β8 0.28 
β7 0.01 β8 0.20     

β8 0.14         

Regression 3 Regression 4 Regression 5 

Coefficient WALD Coefficient WALD Coefficient WALD 

β1  2.87 β1  1.00 β3  7.46 

β2 2.34 β3 8.30 β5 11.08 

β3 2.35 β5 10.58 β6 2.96 
β5 7.84 β6 1.85     
β6 4.51       
            

Table 19 - Output and ANOVA for Regression 5 

ANOVA         

  df SS MS F 

Regression 3.000 8.073 2.691 9.777 

Residual 7.000 1.927 0.275   

Total 10.000 10.000     

  Coefficients 
Standard 

Error t Stat P-value 

Intercept 0.000 0.158 0.000 1.000 
X3  
(Vegetation) -0.562 0.206 -2.732 0.029 
X5 
(Gradient) -0.568 0.171 -3.329 0.013 
X6 
(Connection 
to Glacier) 0.346 0.201 1.721 0.129 
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The output for the logistic regression model is in the form of an odds ratio 

yielding a percentage as the final result.   Large percentage numbers indicate a higher 

probability of a basin with those particular characteristics being classified as having a 

debris flow.  Table 20 shows results for the logistic regression.  Name indicates basin 

name; Y is the observed result with 1 representing having had a debris flow and 0 

representing not having had a debris flow; and Regression 5 gives the percent 

probability that a basin with that basin’s characteristics would have a debris flow.  

For the purposes of this study, while Y=1 for those actually having a debris flow, a 

percentage above 50% was taken to indicate a positive correlation with real world 

values and a percentage lower than 50% indicated a negative result.  In all but one 

case, the prediction of the model followed the physical documentation of presence 

or absence of a debris flow in a given basin. For the one case where the model did 

not predict a debris flow, the phi value for that basin was 48%, very close to 50%.   

This yielded an accuracy of 90% for the model based on the Mount Hood drainage 

basins, or 90% of the basins having >50% chance of debris flows  actually had them.  

Of the eight basin scale factors tested for statistical relevance in the production of 

debris flows, surface water connection to the glacier, amount of vegetation in the 

upper basin, and gradient of the upper basin were the most important factors for the 

November, 2006 debris flow events.  The phi value is telling you the probability of a 

basin with those characteristics having a debris flow. 
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Table 20 - Sample of results from logistic regression 

Name Y   Regression  

White 1 76% 

Newton 1 69% 

Ladd 1 66% 

Clark 1 65% 

Eliot 1 62% 

Salmon 1 62% 

Sandy 1 48% 

Coe 0 41% 

Zigzag 0 28% 

Muddy 0 24% 

Polallie 0 17% 

 

Limitations, Input Requirements, & Assumptions: 

The variables used in logistic regression can be discrete, continuous, 

dichotomous, or a combination of any of these.  The dependent variable or the 

response is usually dichotomous indicating a presence/absence, or group 

membership within one of two groups.  The independent variables can take any form 

as logistic regression makes no assumption about the distribution of the independent 

variables.  It is not necessary for them to be normally distributed, of equal variance, 

or linearly related (Davis, 2002; SFSU, 2008).  

Problems with goodness of fit for the linear regression model can occur at many 

stages.  In linear regression the method used most often for estimating unknown 

parameters is least squares; however, this is not the best fit for a model with a 

dichotomous outcome.  The maximum likelihood function can provide a much better 
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estimation of unknown parameters in small data sets (Hosmer and Lemshow, 1989).  

For the purposes of this model, least squares were used due to software limitations.  

The Wald test can also be a source of error.  The performance of the Wald test is 

sometimes found to be inconsistent, often failing to reject when the coefficient was 

significant.  Use of the likelihood ratio has been recommended by Hosmer and 

Lemshow, 1989.  The Wald test was chosen over the likelihood ratio for our example 

due to software limitations.  It is also important to standardize the data in order to 

avoid skewing the results.  However, if the data are standardized and the logistic 

regression model is intended to be used with raw data, it is necessary to “un-

standardize” the partial regression coefficients beforehand (Davis, 2002).  Our 

example used the original normalized data to check the test, and therefore this 

additional step was unnecessary.  

Other sources of error can be found in the input data.  Rainfall data used from the 

NEXRAD storm total data has been shown to report 33 to 38 percent lower than 

NWAC data in the upper elevations.  However, NEXRAD was used because it is the 

only source of rainfall data that offers complete coverage for the mountain. The 

resolution of the LiDAR data for Mount Hood, used as a basis for calculating other 

factors, is a 1 meter resolution and may also be a source of error.  Additionally, the 

limits of some factors such as upper drainage basin area were dependent upon a 
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manual selection process that may be applied differently if someone else were to 

evaluate the basins.   

Summary:  

 Binary logistic regression is an adaptable method that can be used when 

dealing with variables that are seemingly unrelated.  It allows the prediction of a 

discrete outcome such as group membership.  Backward stepwise regression is the 

preferred method of exploratory analyses where the process begins with a full model 

and variables are eliminated in an iterative process.  The fit of the model should be 

tested after the removal of each variable.  When fit tests show that all remaining 

variables are significant, no more variables should be eliminated from the model 

(SFSU, 2008).  The process by which coefficients are tested for significance can 

involve several different techniques.  The Wald test was used in our model; however 

the likelihood ratio test may be more reliable.  The output of the logistic regression 

model is a percentage representing the estimated probability that Y = 1 at a fixed 

setting (Agresti, 1996).   The three most important factors for debris flow production 

for this storm event were connection to the glacier, vegetation in the upper basin, 

and gradient of the upper basin.  Percent vegetation in the upper basin and gradient 

both show an inverse relationship to debris flow occurrence.  Those basins with less 

vegetation and lower gradients appear more likely to experience debris flows than 

steep gradient basins with more vegetation. 
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When running the logistic regression analysis in addition to the end result of the 

analysis, the order in which the factors dropped out was also important.  While all of 

the factors may be important, the final result factors were the most statistically 

significant for this mountain and this storm event.  The least significant factor, the 

one that dropped out first, was the percent steep slopes in the basin.  The next to 

drop out was glacier area followed by Melton’s Ruggedness Number.  Percent 

bedrock in the upper basin was removed after running regression three.  Rainfall 

amount was the last factor to be removed, indicating that it is closely related to the 

three remaining factors that did pass the test for significance.   In addition to 

important factors, loading of debris channels may also play a significant role in debris 

flow production.   
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CHAPTER 6: DISCUSSION 

The Pineapple Express storm that occurred in November, 2006 was a large storm 

for the region.  At the time that the storm occurred, the mountain did not yet have 

any significant snow cover.  Snow on the mountain can act as a blanket and absorb 

precipitation.  While snow cover can contribute to faster, more peaked runoff 

hydrographs for overall stream flow, it can also form a thick blanket in the upper 

elevations to absorb precipitation and inhibit debris flow production when initiation 

zones are sufficiently snow covered.  This storm provided a trigger for the 

transportation of material on the mountain, in the form of debris flows, in part 

because of the high rainfall at upper elevations, and in part because there was no 

snow cover to absorb the precipitation at the initiation zones.  

Debris flows initiated on all sides of Mount Hood.  Rainfall amounts were highest 

on the west side of Mount Hood with over 35 cm of precipitation recorded by 

NEXRAD.  Rainfall on the east side measured minimums between 15 cm and 21 cm.   

A minimum of 15 cm of rainfall in 6 days was the apparent lower threshold for debris 

flow production because no debris flows were observed in areas that received less 

rainfall than this. However, abundant rainfall does not guarantee debris flow 

production as a minimum of over 35 cm of rain in 6 days was not enough to generate 

debris flows in the Zigzag or Muddy Fork basins.  NWAC data also suggest that rapid 

snowmelt of a thin snow cover in at least some of the initiation areas may have 
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played an important role in contributing to high streamflow rates in the upper 

elevations. 

Very little antecedent moisture was recorded at the SNOTEL sites in the ten days 

prior to the storm.  However, permeable soils, a prolonged storm and evidence for 

numerous shallow slides in mountain canyons indicate that saturation of the soil is 

highly probable.  It is possible that a buildup of pore pressure on residual ice within 

the deposits may have played a role, however more likely is that undercutting of the 

banks or some combination of the two was the trigger for the landslides.  Visual 

evidence noted in the field supports the idea that undercutting of the banks in the 

areas where landslides occurred was a primary trigger for slides.  Wet patches of 

residual ice were also noted in all landslide scars in the field.   

An analysis of particle size for initiation zone material, less than cobble sized, 

showed no statistical difference between debris flow and non debris flow producing 

basins.  In general there were few fines (3-5%).  Deposits were mostly sandy, 

especially in the pyroclastic materials as compared to moraines.   Gravel ranged from 

15 - 49 %, sand ranged 45 – 82% with coarse sand as the main sand fraction.  The 

average bulk density of deposits was 1.6-1.8 g/cm3.   

After evaluating all the major basins on Mount Hood with Melton’s Ruggedness 

Number, it appears that all drainages investigated in this study are capable of 
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producing debris flows because all of the calculated ruggedness numbers were 

greater than 0.3.    Historic records for the mountain support this finding, because all 

of the eleven primary drainages are on record as having experienced debris flows in 

the past with the exception of the Zigzag River (DeRoo, 2009). 

In order to determine the most important factors for debris flow production for 

the November 2006 storm, logistic regression was applied to several basin scale 

factors.  Of the eight basin scale factors tested, connection to the glacier, amount of 

vegetation in the upper basin, and gradient of the upper basin were the most 

important factors for the November, 2006 debris flow events.   

The relationship of inverse gradient as a significant factor is a somewhat 

surprising one.  Almost all of the drainages that did not experience debris flows had 

steeper gradients than those that did.  At first glance this may seem somewhat 

counter intuitive.  However, steeper gradients mean faster erosion rates.  If 

sediments are actively being eroded in a basin, than it makes it more difficult to have 

a buildup of sediment that could morph into a debris flow in the upper drainage 

basin.  This, combined with heavy vegetation in the upper basin helps explain why 

these drainages did not experience debris flows.  There was a lack of buildup of 

sediment in the upper basins due to both increased erosion rates from the steep 

gradients and lack of susceptible areas to slope failure due to higher vegetation 

percentages.   
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The final factor that plays a significant role in why some drainages experienced 

debris flows and others didn’t is the direct, overland connection to the glacier.  Those 

drainages that have a direct connection to the glacier receive additional runoff and 

melt-water from the glacier during storm events compared to similar drainages that 

are fed through groundwater infiltration.  A connection to the glacier provides a 

direct pathway for immediate increased stream flow as compared to those drainages 

that are not connected to the glacier.  The glacier acts, more or less, as an area of 

impermeable surface, feeding additional runoff to the streams.  This increased 

stream flow means that the streams have more energy to create more work in the 

form of erosion to canyon sidewalls.  Those sidewalls that are unvegetated are 

especially vulnerable to erosion.  

 Because of the granular nature of the sediments in the initiation areas and the 

lack of fines to create cohesion within the soil, it is likely that increased stream flow 

caused undercutting of the banks in vulnerable areas and that led to the landslide 

activity.  This idea is supported by evidence from the field which shows streams 

meandering up against and into those landslide areas. Therefore, it can be concluded 

that high runoff in streams is critical to the initiation of debris flows in upper basin 

areas.  

Another important conclusion was the role that glaciers and residual snowpack 

play in contributing runoff to streams.  Entrainment of debris through overland flow 
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into coalescing rills which morphed into debris flows, and undercutting of the banks 

of streams causing mobilization landslides which morphed into debris flows were the 

two primary debris flow triggering mechanisms.  Both of these mechanisms rely on 

surface water flow, whether channelized or unchannelized.  Therefore, the additional 

surface water provided by rapid snowmelt may significantly contribute to the 

initiation of debris flows.   

The elevation of the initiation zone is also dependent on the connection a 

drainage has with a glacier because the source material for many of the debris flows 

was glacial moraines.  Additionally, landslide initiated debris flows commonly 

occurred where the two lateral moraines narrowed and the river cut through.   Many 

of the elevations for the initiation zones of debris flows in the November 2006 storm 

occurred in a narrow elevation band because this elevation is representative of the 

distal extent of the most recent glacial moraine deposits on the mountain.   

Finally, basin transport and weathering mechanisms were also important.  Most 

of the drainage basins on Mount Hood could be described as transport limited.  They 

have an abundance of unconsolidated sediment in the upper drainage basin in the 

form of either morainal or pyroclastic material.  These sediments provide a near 

constant input to the stream channel.  The drainage needs only the right amount of 

precipitation to trigger the transportation of these sediments (Jakob et al., 2005).  

Therefore, they are transport limited.  The Muddy Fork of the Sandy River is one 
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exception.  The Muddy Fork contains a large amount of bedrock in the upper basin 

rather than unconsolidated sediments.  The 2002 Muddy Fork debris avalanche 

showed that the mechanism for initiation debris flows is distinctly different for this 

basin.  The mechanism for debris flow triggering in the Muddy Fork involves 

weathering of rock in the upper basin until an event of significant magnitude, such as 

a large-scale rock avalanche, triggers a subsequent debris flow.  Therefore, this basin 

can be described as weathering limited.  This difference in channel recharge 

mechanism may provide another explanation why the Muddy Fork did not 

experience a debris flow as a result of the November 2006 storms.  It simply had not 

reached a weathering threshold that would allow it to trigger a debris flow.  While 

high discharge flows would have been expected in a basin with ice and bedrock 

surfaces due to flash responses, there was not a sufficient amount of loose debris 

along the channel margins to entrain into a debris flow.  Additionally, the steep 

gradients seen on bedrock dominate upper drainage basins helps ensure the efficient 

evacuation of debris through normal stream flow processes.  This means that there is 

a lower likelihood of debris flow occurrence because there is simply less sediment in 

the system.  All of these conclusions apply to the drainages on Mount Hood in 

different ways.         

The Zigzag River and the Polallie Creek did not experience debris flows in this 

event because they do not have a direct connection to the glacier, and they contain 
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abundant vegetation in the upper basin.  Additionally, the Zigzag River has a steeper 

gradient which may more easily facilitate the transport of debris downstream.  The 

Coe Creek did not experience debris flows because it also had an abundance of 

vegetation in the upper basin.  The Muddy Fork of the Sandy River did not experience 

a debris flow because it has a high percentage of vegetation in the upper basin and a 

very steep gradient.  This steep gradient may more easily facilitate the transport of 

debris downstream resulting in a drainage that has a lower amount of available 

material for transport.  The Muddy Fork of the Sandy River is a weathering limited 

basin where mobilization of debris flows depends heavily on erosion rates.  Because 

of the granular nature of the sediments in the initiation areas and the lack of fines to 

create cohesion within the soil, it is likely that increased stream flow caused 

undercutting of the banks in vulnerable areas and that led to the landslide activity.  

This idea is supported by evidence from the field which shows streams meandering 

up against and into those landslide areas.  Therefore, it can be concluded that high 

runoff rates in streams are key to the initiation of debris flows.   

For the November 2006 debris flow event, the Eliot Creek Basin and the White 

River Basin posed the greatest threat to infrastructure and lives.  The 16 km Eliot 

Creek debris flow and 8 km White River debris flow caused significant damage to 

infrastructure.  The 12 km Newton Creek and 8 km Sandy River both posed a lower 

threat to lives and infrastructure than the Eliot Creek and White River.  While the 
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debris flow in the Sandy River Basin was medium large, the source area was far 

enough away from infrastructure to dampen its direct impacts.  The large Newton 

Creek debris flow more directly impacted infrastructure, but the infrastructure was 

further away from the source area than in the case of the White River.  The Ladd 

Creek, Clark Creek, and East Fork of the Salmon River produced the smallest debris 

flows on the mountain, ranging from 3 km to 4 km, and resulted in the least amount 

of damages to infrastructure.  However, it should be stressed that even when debris 

flows do not impact roads or bridges, Mount Hood is a popular recreation destination 

and deaths can be caused due to the dangers of attempting river crossings after a 

debris flow has gone through.   
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CHAPTER 7: CONCLUSIONS  

 7 of the 11 drainages produced debris flows as a result of the November, 

2006 storm.  4 were landslide initiated and 3 were headless debris flows. 

 The Eliot Creek and White River resulted in highest amount of damages to 

infrastructure.  Newton Creek and the Sandy River also produced large 

debris flows on the mountain.  All of these flows ranged from 8 km to 16 

km. 

 The Ladd Creek, Clark Creek, and East Fork of the Salmon River produced 

the smallest debris flows on the mountain, ranging from 3 km to 4 km, 

and resulted in the least amount of damages to infrastructure. 

 Particle size analysis of the material in the upper drainage basins showed 

no statistical difference between those drainages that produced debris 

flows and those that did not.  Average percentage ranges are given below: 

o Gravel 15% – 49% 

o Sand 45% - 82% 

o Fines 1.6% - 5% 

 Precipitation amounts were highest on the west side of the mountain with 

a minimum of 36 cm reported for debris flow producing basins by 

NEXRAD.  Precipitation amounts were lowest on the east side of the 

mountain with a minimum of 15 cm reported for debris flow producing 

basins.  
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  In the November 2006 storm event, debris flow production did not occur 

below a threshold of 15 cm of total storm rainfall. 

 An analysis of all drainages using Melton’s Ruggedness number indicated 

that all drainage basins on Mount Hood are capable of producing debris 

flows as they all had a Melton Number greater than 0.3. 

 Regression analysis using factors that affect the rate of rainfall runoff in a 

basin predicted debris flows for 90% of the basins that actually had debris 

flows.   

 The three most important factors, determined by logistic regression, were 

surface water connection to the glacier, percent vegetation in the upper 

basin, and gradient of the upper basin.   

 Percent vegetation and gradient both had an inverse relationship to 

debris flow occurrence. 

 Surface water connection to the glacier provides additional discharge to 

the stream.  The glacier acts as an impermeable surface to direct 

additional rainwater to the stream, and provides rapid snowmelt which 

leads to increased input of water to the stream during storm events. 

 The consistency of the initiation zone elevation is connected to the 

relationship that a drainage has with a glacier because the exposure of 

moraines in many cases provided the source area material for the debris 

flows. 
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 The average initiation elevation for debris flow production was 1,860 m. 

 Initiation elevations were slightly higher on the west side of the mountain 

because the vegetation reaches to higher elevations on the west than on 

the east.  This is due to generally higher rainfall on the west side of the 

mountain. 

 Drainages with less vegetation have more marginally stable slope areas 

that are especially vulnerable to the entrainment and undercutting 

processes that aided in the initiation of debris flows. 

 A moderate gradient basin is more susceptible to debris flows than those 

with very steep gradients.  Those basins with steeper gradients are more 

able to facilitate the transport of debris through normal stream flow 

processes.  This lessens the potential build-up of material for transport in 

debris flows.   

 The Muddy Fork drainage basin is not transport limited. 

 Weathering mechanisms within a basin control the ability of that basin to 

produce debris flows.   Transport limited basins, filled with unconsolidated 

sediment deposits, are always able to produce debris flows given the right 

climatic trigger.  Bedrock dominated weathering limited basins take a 

longer time to build up material for transport and will not necessarily 

produce debris flows, even with a very strong climatic trigger.    
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CHAPTER 8:  FUTURE WORK 

The use of the results of logistic regression from this study could be applied to 

other volcanoes in the Pacific Northwest to assist in debris flow hazard awareness.  

Additionally, the methods for obtaining the basin scale factors could be refined and 

further automated through Arc GIS.  The size of the upper drainage basin could be 

adjusted to provide a more detailed analysis of the initiation zone, or be further 

expanded to match the basin area used for the calculation of Melton’s Ruggedness 

Number.  The logistic regression factors defined here can be used to compliment 

Melton’s Ruggedness Number for identification of debris flow hazard areas.  

Additionally, maps highlighting high debris flow hazard drainages could be produced 

for other volcanoes using these conclusions.   

The results of the statistical analysis indicate that factors which control debris 

flows have a direct relationship to streamflow and sediment transportation within a 

basin.  Future studies could be conducted to better quantify the sediment transport 

of high gradient basins versus those with modest gradients as it appears that those 

basins with modest gradients are more likely to produce debris flows.  Additionally, 

future work could be focused on quantifying the relationship between increased 

streamflow in the channel and undercutting of the banks as it appears that this 

process controls landslide occurrence in the channel which then morphs into debris 

flows.   
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APPENDIX A:  ELIOT CREEK DRAINAGE BASIN 

 

Figure 59. Eliot Creek upper drainage basin (3,279,707 m
2
) 
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Figure 60. Eliot Creek initiation zone 
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Figure 61. Eliot Basin vegetation (4.3%) 
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Figure 62. Eliot Creek bedrock (3.4%) 
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Figure 63. Eliot Creek steep slopes (18.2%) 
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APPENDIX B:  SANDY RIVER DRAINAGE BASIN 

 

Figure 64. Sandy River upper drainage basin (3,065,379 m
2
) 

 

Figure 65. Sandy River initiation zone 
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Figure 66. Sandy River vegetation (7.5%) 

 

Figure 67. Sandy River bedrock (5.0%) 
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Figure 68. Sandy River steep slopes (29.5%) 
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APPENDIX C:  WHITE RIVER DRAINAGE BASIN 

 

Figure 69. White River upper drainage basin (6,523,258 m
2
) 
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Figure 70. White River initiation zone 
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Figure 71. White River vegetation (2.0%) 
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Figure 72. White River bedrock (2.5%) 
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Figure 73. White River steep slopes (41.5%) 
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APPENDIX D:  NEWTON CREEK DRAINAGE BASIN 

 

Figure 74. Newton Creek upper drainage basin (5,282,798 m
2
) 

 

Figure 75. Newton Creek initiation zone 
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Figure 76. Newton Creek vegetation (24.2%) 

 

Figure 77. Newton Creek bedrock (6.5%) 
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Figure 78. Newton Creek steep slopes (23.0%) 
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APPENDIX E:  CLARK CREEK DRAINAGE BASIN 

 

Figure 79. Clark Creek upper drainage basin (3,879,433 m
2
) 

 

Figure 80. Clark creek initiation zone 
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Figure 81. Clark Creek vegetation (26.7%) 

 

Figure 82. Clark Creek bedrock (7.5%) 
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Figure 83. Clark Creek steep slopes (26.6%) 
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APPENDIX F:  SALMON RIVER DRAINAGE BASIN 

 

Figure 84. Salmon River upper drainage basin (1,376,945 m
2
) 
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Figure 85. Salmon River initiation zone 
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Figure 86. Salmon River vegetation (4.1%) 
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Figure 87. Salmon River bedrock (0.0%) 
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Figure 88. Salmon River steep slopes (9.3%) 
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APPENDIX G:  LADD CREEK DRAINAGE BASIN 

 

Figure 89. Ladd Creek upper drainage basin (2,257,572 m
2
) 
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Figure 90. Ladd Creek initiation zone 

 

Figure 91. Ladd Creek bedrock (11.8%) 
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Figure 92. Ladd Creek vegetation (13.9%) 
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Figure 93. Ladd Creek steep slopes (11.3%) 
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APPENDIX H:  ZIGZAG RIVER DRAINAGE BASIN 

 

Figure 94. Zigzag River upper drainage basin (3,057,803 m
2
) 

 

Figure 95. Zigzag River vegetation (16.1%) 
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Figure 96. Zigzag River bedrock (3.4%) 

 

Figure 97. Zigzag River steep slopes (46.3%) 



 

169 
 

APPENDIX I:  POLALLIE CREEK DRAINAGE BASIN 

 

Figure 98. Polallie Creek upper drainage basin (7,887,994 m
2
) 

 

Figure 99. Polallie Creek vegetation (65.9%) 
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Figure 100. Polallie Creek bedrock (0.9%) 

 

Figure 101. Polallie Creek steep slopes (5.7%) 
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APPENDIX J:  COE CREEK DRAINAGE BASIN 

 

Figure 102. Coe Creek upper drainage basin (3,035,068 m
2
) 
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Figure 103. Coe Creek vegetation (25.2%) 



 

173 
 

 

Figure 104. Coe Creek bedrock (9.2%) 
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Figure 105. Coe Creek steep slopes (9.9%) 
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APPENDIX K:  MUDDY FORK DRAINAGE BASIN 

 

Figure 106. Muddy Fork upper drainage basin (5,397,823 m
2
) 

 

Figure 107. Muddy Fork vegetation (32.4%) 
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Figure 108. Muddy Fork bedrock (27.0%) 

 

Figure 109. Muddy Fork steep slopes (12.0%) 
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APPENDIX L:  NEXRAD DATA 
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APPENDIX M: RAW DATA FOR BASIN SCALE FACTORS 

 

Table 21. Raw data for basin scale factors 

Drainage Y X1 X2 X3 X4 

White 1 7 3 2 42 

Clark 1 6 8 27 27 

Newton 1 6 7 24 23 

Polallie 0 7 1 66 6 

Eliot 1 8 3 4 18 

Coe 0 8 9 25 10 

Ladd 1 14 12 14 11 

Muddy 0 14 27 32 12 

Sandy 1 14 5 8 30 

Zigzag 0 8 3 16 46 

Salmon 1 6 0 4 9 

 

Drainage Y X5 X6 X7 X8 

White 1 18 100 407,418 75 

Clark 1 16 100 1,393,194 68 

Newton 1 15 100 1,393,194 72 

Polallie 0 17 0 0 46 

Eliot 1 23 100 1,638,183 85 

Coe 0 25 100 1,244,901 53 

Ladd 1 19 100 669,113 33 

Muddy 0 30 100 1,193,823 70 

Sandy 1 27 100 768,903 44 

Zigzag 0 25 0 0 40 

Salmon 1 23 100 106,209 43 
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APPENDIX N:  NORMALIZED DATA FOR BASIN SCALE FACTORS 

 

Table 22. Normalized data for basin scale factors 

Drainage Y X1 X2 X3 X4 

White 0.72075 -0.56815 -0.54333 -0.98872 1.517278 

Clark 0.72075 -0.86575 0.12074 0.37077 0.419248 

Newton 0.72075 -0.86575 -0.01207 0.207631 0.12644 

Polallie -1.26131 -0.56815 -0.80896 2.491577 -1.11799 

Eliot 0.72075 -0.27055 -0.54333 -0.87996 -0.23957 

Coe -1.26131 -0.27055 0.253554 0.262011 -0.82519 

Ladd 0.72075 1.515064 0.651995 -0.33617 -0.75198 

Muddy -1.26131 1.515064 2.644203 0.642669 -0.67878 

Sandy 0.72075 1.515064 -0.2777 -0.66244 0.638854 

Zigzag -1.26131 -0.27055 -0.54333 -0.22741 1.810086 

Salmon 0.72075 -0.86575 -0.94177 -0.87996 -0.89839 

 

Drainage Y X5 X6 X7 X8 

White 0.72075 -0.73836 0.449467 -0.64826 1.030515 

Clark 0.72075 -1.14446 0.449467 0.973909 0.62567 

Newton 0.72075 -1.34751 0.449467 0.973909 0.85701 

Polallie -1.26131 -0.94141 -2.0226 -1.31869 -0.6467 

Eliot 0.72075 0.276887 0.449467 1.377056 1.608865 

Coe -1.26131 0.682987 0.449467 0.729882 -0.24186 

Ladd 0.72075 -0.53531 0.449467 -0.21762 -1.39856 

Muddy -1.26131 1.698238 0.449467 0.64583 0.74134 

Sandy 0.72075 1.089087 0.449467 -0.05341 -0.76237 

Zigzag -1.26131 0.682987 -2.0226 -1.31869 -0.99371 

Salmon 0.72075 0.276887 0.449467 -1.14392 -0.82021 
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