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ABSTRACT 

Synaptic pruning within neurons in the brain during development allows for maintenance 

of proper neuronal connections and the elimination of aberrant ones. Rapid eye 

movement (REM) sleep is critical for pruning and maintaining new synapses formed 

during both development and learning. We hypothesize that disrupting REM sleep early 

in life will result in long lasting changes in synaptic density in cortical brain regions. The 

prefrontal cortex (PFC) is a late-maturing region that modulates higher order social and 

cognitive functions. Abnormally high dendritic spine density in the PFC is implicated in 

neurodevelopmental disorders such as autism spectrum disorder (ASD). Emerging 

research in our lab suggests that selectively suppressing REM sleep early in life in the 

socially monogamous prairie vole (Microtus ochrogaster) impairs social development 

and increases inhibitory interneurons in the PFC, consistent with ASD pathology. Using 

Golgi-Cox staining in adult prairie vole post-mortem tissue, we quantified dendritic 

spines in the prefrontal cortex in adult animals that underwent early life sleep disruption 

(ELSD). In males, ELSD increased spine density and decreased spine width selectively 

in the apical oblique distal (> 90 µm) segments of pyramidal neurons in prelimbic cortex 

layers II/III. Distal dendrites reflect long range inputs from further cortical and thalamic 

regions, suggesting that ELSD may lead to an impaired ability to integrate sensory 

information. Ongoing work will examine dendritic spine density and morphology earlier 

in development and in additional brain regions, including the primary somatosensory 

cortex and other layers of the PFC. Results from these studies will enhance our 

understanding of how modulation of sleep early in life contributes to the neuropathology 

of developmental disorders. 
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INTRODUCTION 

Humans and other mammalian species have very high levels of REM sleep early 

in development, followed by a slow decrease to adult levels (Roffwarg, Muzio, and 

Dement 1966; Siegel, 2005). The “ontogenetic hypothesis” of sleep postulates that early 

developmental REM sleep is important for brain patterning (Roffwarg, Muzio, and 

Dement 1966). Roffwarg and colleagues proposed that sleep with rapid eye movements 

(REM) supplies endogenous stimulation to the developing brain, providing excitation to 

higher functional centers necessary for cortical development (Roffwarg, Muzio, and 

Dement 1966). Indeed, a number of neurodevelopmental disorders are associated with 

poor sleep early in life.  

Over a century ago, Ramon y Cajal proposed that all brains were made up of 

neurons that communicated with each other through junctions called synapses. We now 

know that synaptic transmission is a biological process by which a neuron 

communicates with a target cell across a synapse. In response to an action potential or 

graded electrical potential, neurotransmitters (e.g. glutamate) are released from the pre-

synaptic neuron and bind to and activate specific receptors on the post-synaptic neuron.  

The maturation of cortical circuits in many species is characterized by an initial period of 

massive synaptogenesis, followed by the selective elimination of excitatory synapses 

during adolescence (Rakic, Bourgeois, and Goldman-Rakic 1994). During the pruning 

process, the axons of neurons are degenerated or retracted, resulting in synapse 

elimination. Synaptic pruning is thought to be necessary for proper maturation and 

function of the mature synapses (Nimchinsky et al., 2002). These changes in synaptic 

connections are regulated by sensory experience, widely thought to reflect learning 
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processes (Bailey and Kandel, 1993; Buonomano and Merzenich, 1998). It has also 

been suggested that synaptogenesis and pruning during development could be 

modulated by sleep and wakefulness (Tononi and Cirelli 2006). Tononi and Cirelli 

hypothesized that pruning of dendritic spines occurs during sleep, ensuring the 

maintenance of balanced synaptic input to cortical neurons. This remodeling of neural 

circuits corresponds to a sensitive period for the pathophysiology of 

neurodevelopmental disorders, including autism spectrum disorder (ASD) (Paus, 

Keshavan, and Giedd 2008). 

 Dendritic spines are micron-sized protrusions of the dendritic shaft that serve as 

the postsynaptic component of most excitatory synapses in the central nervous system 

(Gray 1959). They are found on excitatory neurons including glutamatergic pyramidal 

neurons of the neocortex and hippocampus. Spine modifications determine the strength 

and stability of the synaptic transmission in learning, memory, and behavioral functions 

(Haws et al. 2014; Sala and Segal 2014). The dendritic spine densities on these 

neurons represent the number of excitatory inputs, which varies between species and 

regions. The density of dendritic spines has direct implications for the functionality and 

connectivity of the cell. Synapses tend to be located at the heads of dendritic spines, 

therefore higher spine densities would suggest a higher density of synapses. The 

shapes and sizes of dendritic spines are highly plastic, typically 0.5–2 microns in length 

(Harris and Kater 1994). Spine morphology is classified as thin, stubby, mushroom, 

filopodia, and branched (Chang and Greenough 1984; Risher et al. 2014). Spines are 

classified into specific morphologies based on the spine's head to neck diameter ratio. 

Spine morphology is associated with function. Mushrooms spines are stable, long-lived 
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and form strong excitatory synapses (Trachtenberg et al. 2002; Kasai et al. 2003) while 

thin spines are immature, unstable, short-lived, and form weak excitatory synapses 

(Rochefort and Konnerth 2012). 

 Past studies have shown that the density and size of dendritic spines are 

regulated by a variety of genetic, epigenetic, and environmental factors, highlighting the 

dynamic nature of spines and their importance to brain plasticity and function (Harris 

and Stevens 1989). The work of Hutsler and Zhang on dendritic spines on Golgi-Cox 

stained pyramidal cells in the frontal, temporal, and parietal regions of ASD subjects 

showed greater spine densities on the pyramidal apical dendrites within the most 

superficial layer (layer II) of each cortical region. Higher spine densities were associated 

with decreased brain weights, but showed no relationship to adult brains (Hutsler and 

Zhang, 2010). Work in adolescent mice support Tononi and Cirelli’s hypothesis that 

changes in dendritic spine density are influenced by the wake or sleep state, showing 

that waking results in an increase of cortical spines, whereas sleep is associated with 

spine loss (Maret et al. 2011). However, it remains poorly understood how spine 

pathology occurs, and how it is associated with the onset and progression of ASD-

related symptoms. Additional animal models and human studies on dendritic spine 

density and spine morphology in postmortem tissue are needed to understand the 

properties and mechanisms of these structures in the cerebral cortex of patients with 

autism.  

 Prairie voles (Microtus ochrogaster) are a highly social rodent species that form 

lifelong pair bonds with other individuals. We used this model organism to explore the 

neural circuitry governing sleep ontogeny and examined how sleep deprivation during 



6 
 

early development affects species-typical cognitive and social behaviors during the 

juvenile stage and adulthood. To examine whether sleep during a critical period 

promotes proper brain development, we focused on pair-bonding because it is a robust, 

innate behavior with well-mapped circuitry. We found that early life sleep disruption 

prevented pair bond formation in male prairie voles, suggestive of an ASD behavioral 

phenotype. The prefrontal cortex (PFC) is involved in the neural circuitry of pair bond 

formation in prairie voles (McGraw and Young 2011) and is necessary for behaviors 

associated with higher cognition (Yizhar et al. 2011). We propose that disrupting REM 

sleep early in life will result in changes in synaptic density of the PFC contributing 

towards an ASD behavioral phenotype.  

 

MATERIALS AND METHODS 

 

Animals and Early Life Sleep Disruption 

Experiments were conducted on laboratory-reared prairie voles (Microtus 

ochrogaster). Studied prairie voles were born in our colony and maintained in their 

standard home cages under 14:10 hour light/dark cycle with food and water available ad 

libitum. All experimental procedures were carried out in accordance with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and with the 

approval of the Portland VA Research Foundation Institutional Animal Care and Use 

Committee. Voles received either one week of early life sleep disruption or control 

conditions during post-natal week 3. We utilized a method of sleep disruption using an 

orbital rotor shaker with a repeated cycle of 10 sec on, 100 sec off continuously across 
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one week controlled by a timer and validated by EEG recordings. Housing on the orbital 

shaker dramatically and selectively decreased the amount of REM sleep, but not NREM 

sleep, and only moderately decreased total sleep time. This method of sleep disruption 

is advantageous because vole pups can remain housed with their natal litter and both 

parents, essentially undisturbed other than the sleep disruption. In our lab, voles 

maintained in these conditions showed no changes in serum corticosterone or body 

weight across development, consistent with studies validating this method of sleep 

disruption in mice (Li et al., 2014). Following one week of early life sleep disruption, we 

conducted histological studies to examine the dendritic spine density and morphology in 

adult (P77) prairie voles.  

 

Golgi-Cox Staining 

We performed the Golgi–Cox method on adult brain tissue after either ELSD or 

control conditions from P14-P21 to quantify the dendritic spine density and spine 

morphology in regions implicated in ASD, including the PFC. Voles from the two 

treatment groups were euthanized with an overdose of isoflurane, were rapidly 

decapitated and had their brains removed. Brains were bisected sagittally and only one 

half the brain was used for analysis. Brain tissue was stained using the FD Rapid Golgi 

Stain Kit (PK401, FD Neurotechnologies, Columbia, MD). Tissue slices were 

impregnated in chromate mixture of “Solution A” (potassium dichromate and mercuric 

chloride) and “Solution B” (potassium chromate) for 9 days (changing the solution once 

after 24 h) in low ambient light, before being transferred into cutting solution “Solution 

C”. Brains were sectioned on a vibratome at 200 μm and then mounted on gelatin-
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coated slides. Once dry, slides were rinsed in diH2O and developed in “solution D”, 

dehydrated in ethanol gradients, and cleared in xylenes before cover slipping with 

Permount™ Mounting Medium (Fisher Scientific Co., Waltham, MA). Once dry, slides 

were then cleared in xylene solution and stored in darkness until further imaging and 

analysis. All slides were assigned a numerical code to conceal treatment group; thus 

experimenters were blinded to condition during both imaging and dendritic spine 

quantification.  

 

Image Acquisition  

Pyramidal cells from layer II/III of the medial PFC (prelimbic cortex and 

infralimbic cortex) were selected for study and located using the Paxinos and Franklin 

stereotaxic atlas for laboratory mice as a reference (Paxinos and Franklin 1997). 

Pyramidal neurons were identified by their characteristic triangular soma-shape, apical 

dendrites extending toward the pial surface and numerous dendritic spines. This step 

was performed under bright-field illumination on a Leica DFC365 FX microscope and 

Neurolucida 11.07 (MBF Bioscience, Williston, VT USA) program by an observer 

blinded to experimental condition and sex. The following criteria were used to select 

pyramidal dendrites for imaging: (1) fully impregnated and (2) not obscured by 

overlapping dendrites or large staining debris. If the dendrite met the criteria, apical 

secondary and tertiary dendrites of these neurons were selected for analysis. Each 

tissue slice was initially viewed under low 5x magnification to establish the region of 

interest (layers II/III of the prelimbic and infralimbic cortex). Next, a pyramidal cell 

dendrite within the region of interest was viewed at 40x magnification to determine 
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whether the dendrite fulfilled the above criteria. Z-stacks image of Golgi-stained 

dendrites (80 µm total on the Z-axis; optical section thickness= 2 µm; 41 images per 

stack; image size, 2,048 x 1535 pixels (0.1774 X 0.1774 x 2 µm) were taken at 40x 

magnification using the Neurolucida program. 2-3 pyramidal cells from the prelimbic 

region were imaged for each tissue slice whenever staining permitted. From each tissue 

slice, 2 or more cells were imaged and analyzed. We obtained neocortical tissue from 

males (n=4-6 animals/group) and females (n=3-5 animals/group).  

 

Dendritic Spine Quantification 

Each image stack was extracted using ImageJ software (NIH, Bethesda, MD) 

and subsequently imported into RECONSTRUCT software (Fiala, 2005) for analysis as 

described in (Risher et al. 2014). All images are processed using ImageJ Software. 

Apical oblique secondary and tertiary dendritic branches and apical tufts of pyramidal 

neurons in each region were analyzed, measuring the length and width of each 

protrusion with visible connections to the dendritic shaft from dendritic segments 10-20 

μm in length. Because spine density and possibly spine size changes as a function of 

distance from the soma (Benavides-Piccione et al., 2002), we compared similar 

segments of dendrites between different pyramidal neurons, selecting segments of 

apical dendrites which were located at the same proportional distance from the soma. 

We selected apical dendrites segments that were 40 - 200 µm distant from the soma. 

Every attempt was made to sample equally from both proximal (<90 μm radial distance 

from soma) and distal (>90 μm) apical oblique segments, wherever staining permitted, 

(depicted in Figure 2). The spine density of each segment was calculated by dividing 
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the total number of spines by the length of the corresponding segment. Spine types 

were determined on the basis of the ratio of the width (W) of the spine head to the 

length (L) of the spine neck and classified as (in μm): Filopodia (L > 1.5), thin/long thin 

(L < 1.5 & L:W > 1), stubby (L:W < 1), and mushroom (W > 0.6) (Risher et al. 2014). In 

males, 1-8 segment samples (10-20 μm) per animal from 2-5 neurons total were 

averaged to create a representative sample for each segment type per animal.  

 

 

 
 

 
Figure 1: (A) Schematic timeline of the experimental protocol. (B) Schematic coronal section 
illustrating the prelimbic (PrL) cortex of the vole brain examined in Golgi preparations. (C) Golgi 
impregnated pyramidal neurons from layers II/II of the PrL, magnification 5x, scale bar, 70 μm. 
(D) Representative dendrite used to quantify spines (denoted by arrows), magnification 40x, 
scale bar, 10 μm 
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Figure 2: Schematic illustration of a cortical pyramidal neuron, denoting the various apical 

dendritic regions: oblique proximal (< 90 μm, blue), oblique distal (> 90 μm, red), and apical 
tufts (green). Basilar dendrites are not quantified (black). 
 
 

Statistical Analyses 

All statistical analyses were performed using SPSS v.24.0 (IBM Corp., Armonk, 

NY, USA). For all tests, P ≤ 0.05 was considered statistically significant. Differences in 

spine density, width, length and ratio of length to width were assessed using an 

independent samples t-test. All tests were two-tailed. Statistical analyses were 

performed using a multivariate ANOVA to assess possible differences in spine 

morphology classification. The values are shown as means ± SEM, calculated based on 

one aggregate (i.e., average) per animal. Independent samples Kolmogorov–Smirnov 

test was used to determine probability distributions of spine length between groups.  
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RESULTS 

 

Dendritic spine density, head width and length 

 
The average spine density in the apical distal (>90 μm) oblique segments in 

layers II/III of the prelimbic (PrL) of ELSD males (n=6) were 28% more dense than the 

control males (n=4) (independent samples t-test, t8=2.381, P=0.045). There were no 

significant differences between control (n=4) and ELSD males (n=4) in the apical tufts 

(independent samples t-test, t6=0.529, P=0.618,), nor were there differences between 

control (n=4) and ELSD (n=6) males in apical oblique dendrites located proximal (<90 

μm) to the soma (independent samples t-test, t8=1.016, P=0.339) (Figure 3A). In the 

females (Figure 3B), the mean spine density on apical oblique dendrites located 

proximal to soma of pyramidal neurons in layers II/III of PrL of ELSD subjects (n=5) was 

10% more dense than that of the controls (n=4). However, these differences did not 

achieve statistical significance (independent samples t-test, t7=1.894, P = 0.10). There 

were no significant differences between control (n=3) and ELSD (n=5) females in the 

apical tufts (independent samples t-test, t6=0.569, P=0.590), nor were there differences 

between control (n=3) and ELSD (n=4) females in apical oblique dendrites located distal 

(>90) to the soma (independent samples t-test, t5=0.772, P=0.475) (Figure 3B). 

Notably, the dendritic spines on apical oblique dendrites located distal to soma from 

ELSD males (n=6) were 16% narrower than control males (n=4) (independent samples 

t-test, t8= 3.701, P=0.006). There were no significant differences between control (n=4) 

and ELSD males (n=4) in the apical tufts (independent samples t-test, t6=1.821, 

P=0.119), nor were there differences between control (n=4) and ELSD (n=6) males in 

apical oblique dendrites located proximal to the soma (independent samples t-
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test, t8=1.016, P=0.339) (Figure. 3C). There were no significant differences between 

control (n=3) and ELSD (n=5) females in the apical tufts (independent samples t-

test, t6=0.706, P=0.507), and between control (n=3) and ELSD (n=4-5) females in apical 

oblique dendrites located proximal (<90 μm) and distal (>90 μm) to the soma 

respectively (independent samples t-test, t7=0.123, P=0.172; independent samples t-

test, t5=0.626, P=0.559) (Figure 3D).  

 

Figure 3: Comparison of spine head diameter and spine density in cortical pyramidal 
neurons in layers II/III of the PrL cortex.(A) Average spine density was increased significantly 
in the apical oblique dendrites located distal (>90 μm) to the soma of ELSD males compared to 
control males. (B) No group differences found in females. (C) Spine head diameter was 
increased significantly in the apical oblique dendrites located distal (>90 μm) to the soma of 
ELSD males compared to control males. (D) No group differences found in females. Data in bar 
graphs are presented as mean±s.e.m. 2-8 segment samples (10-20 μm) per animal from 2-5 
neurons total averaged to create a representative sample for each segment type per animal. 
*P ≤ 0.05 ** P ≤ 0.01. 



14 
 

In addition to the investigations of the spine density and spine width of the 

pyramidal neurons of the PrL (layers II/III), analysis was also conducted on the mean 

length of spines, which revealed no significant difference control (n=9) and ELSD (n=11) 

groups (independent samples t-test, t6=0.732, P=0.348) Male and female subjects were 

combined for each group as there were no sex differences. Furthermore, the respective 

cumulative frequency distribution of the spine length for each dendritic segment 

between controls (n=73) and ELSD subjects (n=102) did not show a significant 

difference (independent samples Kolmogorov–Smirnov test, P=0.136). 

 

 

Figure 4: Comparison of spine length in cortical pyramidal neurons in layers II/III of the 
PrL cortex. (A) No significant differences in spine length between ELSD and control groups. 2-
8 segment samples (10-20 μm) per animal from 2-5 neurons total averaged to create a 
representative sample for each segment type per animal. (B) The cumulative frequency 
distribution of the spine length measures showed no significant difference. Data in the bar 
graphs are presented as mean±s.e.m. Data in the line graphs are the average of dendritic spine 
length for each segment. P ≤ 0.05 

Ratio of spine length to head diameter and morphological classification of 
dendritic spines 

On average, ESLD males (n=6) had a 11.3% greater dendritic spine length to 

head diameter ratio (LDR) compared with the controls (n=4) in the apical distal (>90 μm) 
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oblique segments in layers II/III of the PrL (independent samples t-test, t8=3.115, 

P=0.014). There were no significant differences between control (n=4) and ELSD males 

(n=4) in the apical tufts (independent samples t-test, t6=0.529, P=0.618), nor were there 

differences between control (n=4) and ELSD (n=6) males in apical oblique dendrites 

located proximal (<90 μm) to the soma (independent samples t-test, t8=1.016, P=0.339) 

(Figure 5A). Interestingly, ELSD females (n=5) had 8.4% greater spine LDR than 

controls (n=4) (independent samples t-test, t8=2.364, P=0.05). There were no significant 

differences between control (n=3) and ELSD (n=5) females in the apical tufts 

(independent samples t-test, t6=0.1.53, P=0.176,), nor were there differences between 

control (n=3) and ELSD (n=4) females in apical oblique dendrites located distal (>90) to 

the soma (independent samples t-test, t5=0.626, P=0.559) (Figure 5B). Figure 5C 

shows that the overall increase of spine LDR seen in the apical distal (>90 μm) oblique 

segments of ELSD males (n=6) (Figure 5A) is primarily due to a selective significant 

increase in the total proportion of thin spines (multivariate ANOVA, F=5.854, P=0.040), 

with no statistically significant difference in mushroom or other spines (P > 0.1). There 

were no significant differences in long thin or other spines between ELSD (n=5) and 

control (n=4) females in apical oblique dendrites located proximal (<90) to the soma 

(multivariate ANOVA, P > 0.2) (Figure. 5D). 
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Figure 5: Morphological analysis of dendritic spines in layers II/III of PrL pyramidal 
neurons. (A) Dendritic spine length to head diameter ratio (LDR) was increased significantly in 
the distal oblique segments of ELSD males. (B) Spine LDR was increased significantly in the 
proximal oblique segments of ELSD females. (C) Thin spines significantly increased in ELSD 
males. (D) No significant group differences in females. Data in bar graphs are presented as 
mean±s.e.m. 2-8 segment samples (10-20 μm) per animal from 2-5 neurons total averaged to 
create a representative sample for each segment type per animal. * P ≤ 0.05 

DISCUSSION 

The aim of this study was to compare the dendritic spine density and spine 

morphology in the prelimbic region of the prefrontal cortex (PFC), regions implicated in 

autism neuropathology, in early life sleep disrupted (ELSD) prairie voles versus 
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undisturbed control animals. Recent studies have postulated that sleep plays a major 

role in synaptic plasticity and pruning of dendritic spines (Bushey et al., 2011; Frank et 

al., 2001; Maret et al., 2011; Tononi and Cirelli, 2014). Here we demonstrate that in 

ELSD male prairie voles, spine density and spine width selectivity increased in the 

apical oblique dendrites segments located distal to the soma. In contrast, ELSD females 

showed no differences in any spine density, width and length parameters across the 

various apical dendritic regions (depicted in Figure 2). Overall, these findings suggest 

that early life REM sleep may play a critical role in synaptic plasticity, and enhance our 

understanding of the neuropathology of ASD symptomatology.  

 

Spine density and morphometric features in PFC layers II/III 

 Developmental alterations of excitatory synapses are implicated in autism 

spectrum disorders (ASDs). Hutsler and Zhang (2010) observed increased spine 

density in the frontal lobe of ASD post-mortem brains. Recent studies have increasingly 

shown that alterations in spine dynamics and synaptic efficacy are modulated by sleep 

and sleep loss (Raven et al., 2017; Tononi and Cirelli, 2014). In particular, REM sleep is 

important for pruning and maintaining new synapses formed during adolescence and 

into adulthood (Li et. al, 2016).  

 We assessed spine density in adult prairie voles and found a selective increase 

in the apical oblique dendrite segments located distal to the soma in layers II/III of the 

PFC pyramidal neurons in ELSD males. No differences were found in ELSD females 

and controls. The density of dendritic spines has direct implications for the functionality 

and connectivity of the cell. Synapses tend to be located at the heads of dendritic 
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spines, therefore higher spine densities would suggest a higher density of synapses. 

Furthermore, in ELSD males, the more distal aspect of apical oblique dendritic 

segments exhibited the most pronounced alterations in two of the three dendritic spine 

morphometric parameters (width and ratio of spine length to width). The overall increase 

in spine length to width ratio seen in the apical distal oblique segments of ELSD males 

is primarily due to a selective significant increase in the total proportion of thin spines. 

The excessive amount of thin immature spines, is one of the spine morphological 

characteristics of ASD (Martínez‐Cerdeño, 2017). The increased ratio of spine length to 

width in the proximal oblique segments of ELSD females is interesting, although there 

were no significant differences in spine types between groups. Together, this results 

support the notion that sleep and sleep loss are linked to spine dynamics and synaptic 

plasticity and may underlie aberrant spine growth in developmental disorders in 

humans.  

Pyramidal-neuron structure and domains of synaptic input 

Layer II/III pyramidal neurons are the major excitatory neurons of the prefrontal 

cortex that receive local and distant cortical projections (Spruston, 2008; Little and 

Carter, 2013). Pyramidal neurons are characterized by separate apical and basal 

dendritic trees. (Figure 2). Several basal dendrites extend from the soma and branch 

several times before terminating. Usually, a single large apical dendrite emerges from 

the apex of the pyramidal soma and bifurcates at variable distances to form two main 

apical dendrites and continue to extend and branch towards the pial surface, giving rise 

to the apical tufts. Oblique apical dendrites stem from the main apical dendrite prior to 

the bifurcation of the main branch. During our analyses of spine density and 
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morphology, apical oblique dendritic regions <90 μm from the soma were regarded as 

proximal dendrites, whereas the further apical oblique dendritic regions >90 μm were 

regarded as distal dendrites (Figure 2). The rationale for this classification is based on 

nonuniform synaptic integration (Branco and Häusser, 2011) and potential spine density 

and spine head dynamic changes as a function of distance from the soma (Benavides-

Piccione et al., 2002). Both basal dendrites and proximal apical dendrites receive 

excitatory inputs from local cortical projection (Spruston, 2008), thus we forgo the 

analysis of basal dendrites for the current set of experiments. Apical tufts receive 

excitatory synaptic inputs from further cortical and thalamic locations (Spruston, 2008). 

In ELSD males, the increase in distal apical oblique spine density, driven by an increase 

in thin immature spines, suggests hypo-connectivity of long-range cortico-cortical and 

cortico-thalamic circuits (Just et al., 2004) and may underlie an imbalance in 

excitation/inhibition (Sporns et al., 2001; Gogolla et al., 2009).  Surprisingly, no 

differences were observed in the proximal apical oblique dendrites of ELSD males, as 

enhanced local connectivity (Belmonte et al., 2004) is generally a feature of ASD, and 

develops together with low long-distance connectivity (Just et al., 2004).  

 

Neurobiology of social bonding in prairie voles 

 

Impaired social interaction is a hallmark of neurodevelopmental disorders, 

including ASD. The prairie vole is unique among rodent models for their characteristic 

highly social behavior, including the ability to form pair bonds with potential mates 

(Young and Wang, 2004). The prefrontal cortex (PFC) is a late-maturing region that 
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modulates pair bonding (Young and Wang, 2004), possibly through the interplay 

between excitatory and inhibitory neurotransmission, thought to be relevant in disorders 

such as ASD (Yizhar, et al., 2011). Further, several candidate neurotransmitters 

systems (i.e., oxytocin and vasopressin) that were first discovered to regulate vole 

social bonding have also been found relevant to human autism (Young and Wang, 

2004; Insel et al., 1999). Given their unique patterns of social behavior that are relatively 

uncommon in non-human mammals, prairie voles have become excellent animal 

models for studying complex social behaviors. In addition, they are wild caught and 

outbred, resulting in a genetically diverse and behaviorally heterogeneous, which better 

captures a larger spectrum of individual differences in behavior. 

Emerging research in our lab suggests that selectively suppressing REM sleep 

early in life in the socially monogamous prairie vole impairs pair bond formation and 

increases inhibitory interneurons in the PFC (Lim et al., unpublished data), consistent 

with ASD pathology. We found that impaired sleep-dependent social bonding in ELSD 

voles may potentially be associated with impaired pruning of dendritic spines in the 

PFC. Moreover, this synaptic pruning deficit is most profound in the males, reminiscent 

of the male bias seen in our ELSD model and also typically found in ASD. Previous 

human autism studies have shown that there are inherent sex differences in dendritic 

morphology and connectivity patterns (Hutsler and Zhang, 2010), therefore it is 

reasonable to suspect that a pattern of hyper-connectivity or hypo-connectivity observed 

in ELSD males may differ from ELSD females. It is worth noting that the female group 

sizes were quite small in this study (n=3-5), thus adding more subjects could potentially 

yield significant group differences between control and ELSD females.  
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Role of REM sleep on spine pruning 

Early in development, neuronal connectivity is shaped by an initial abundance of 

immature spines and synapses, followed by a period maintaining stronger connections 

and pruning weaker connections.  It has been suggested that synaptogenesis and 

pruning during development could be modulated by sleep and wakefulness (Tononi and 

Cirelli 2006). In particular, REM sleep has shown to be important for pruning and 

establishing stable synapses formed during adolescence and into adulthood (Li et. al, 

2016). Our results are support these findings, as we found reduced synaptic pruning of 

spines, resulting in excessive and less stable spines in ELSD males which underwent 

selective REM deprivation using our method of sleep disturbance. Recent work by Fang 

et al. demonstrated overproduction of neurons was accompanied by dysregulated 

excitatory connections, resembling an autism behavior phenotype in mice. These 

findings, together with our results, potentially elucidate that sleep disturbances may 

directly contribute to spine density and alter synaptic connectivity underlying autistic 

social behavior and etiology of ASD. 

 

FUTURE DIRECTIONS 

While our preliminary study solely examined one specific region and layer within 

the PFC, we are interested in extending our study to other layers and regions within the 

PFC and other brain regions such as the S1 Barrel cortex and CA1 Hippocampus, 

which are relevant to autism neuropathology. Furthermore, little is known about the 

developmental trajectory of ELSD, thus it would be interesting to quantify dendritic 

spines in juvenile ELSD voles and compare them to adult ELSD voles to investigate 
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possible developmental changes in neuronal connectivity. Additionally, more research is 

needed to analyze dendritic complexity and branching, as these measures may have 

implications for synaptic plasticity and neuropathology in ASD.  
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