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Abstract

The severity of hurricanes, and thus the associated impacts, is changing over time. One of

the understudied threats from damage caused by hurricanes is the potential for cross-con-

tamination of water bodies with pathogens in coastal agricultural regions. Using microbiolog-

ical data collected after hurricanes Florence and Michael, this study shows a dichotomy in

the presence of pathogens in coastal North Carolina and Florida. Salmonella typhimurium

was abundant in water samples collected in the regions dominated by swine farms. A drastic

decrease in Enterococcus spp. in Carolinas is indicative of pathogen removal with flooding

waters. Except for the abundance presence of Salmonella typhimurium, no significant

changes in pathogens were observed after Hurricane Michael in the Florida panhandle. We

argue that a comprehensive assessment of pathogens must be included in decision-making

activities in the immediate aftermath of hurricanes to build resilience against risks of patho-

genic exposure in rural agricultural and human populations in vulnerable locations.

Introduction

Hurricanes cause significant economic damage [1], traditionally measured in terms of loss of

civil infrastructure, primarily in urban locations in the United States. The vulnerability of

highly dense metropolitan coastal communities to hurricanes under both current and chang-

ing climates is well-documented [2, 3]. However, an understanding of the susceptibility of

rural, agricultural-dominant human communities to the short- and long-term impacts of hur-

ricanes is still lacking [4]. Rural regions tend to receive limited financial resources and govern-

ment assistance, which may decrease the resilience of these communities to recover from the

effect of extreme natural events [4]. In livestock-dominant agricultural communities,
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hurricane-induced flooding poses the risk of contaminating natural water sources with run-off

from lagoons and barnyards containing animal fecal material. In turn, this could increase the

exposure of humans to pathogens. A handful of studies have highlighted the role of pathogens

[5] in agricultural regions after hurricanes, despite the ubiquitous presence in rural communi-

ties. In 2018, there was concern that water from Hurricane Michael may overtop wastewater

treatment plants and sanitary sewer systems, which may lead to contamination of drinking

water supply lines [6, 7].

In 2018, the Atlantic Hurricane season was dominated by hurricanes Florence and Michael.

Hurricane Florence made landfall near Wrightsville Beach, NC, as a Category 1 storm on Sep-

tember 14, 2019 [8]. Despite the storm’s relatively low wind speeds, Hurricane Florence

wreaked havoc with towering storm surges and historical rainfall [8, 9]https://weather.com/

storms/hurricane/news/2018-09-15-florence-north-carolina-tropical-rain-record. Less than

four weeks later, Hurricane Michael made landfall near Mexico Beach, FL, as a Category 4 hur-

ricane [10]. Both hurricanes were destructive, but the means by which each storm caused the

damage was unique. Hurricane Michael produced only a fraction of the rainfall that deluged

North Carolina [11] compared with hurricane Florence in the Florida panhandle.

The lack of adequate information on the presence and prevalence of pathogens of clinical

importance after hurricanes is the key motivation for the current study. Therefore, the objec-

tive here was to provide a survey assessment for the genes from key bacterial pathogens after

hurricane-induced flooding in the rural coastal locations of North Carolina and Florida. Our

anticipated goal is to initiate the dialogue through the characterization of the vulnerability of

humans in terms of exposure to clinically significant pathogens after hurricanes.

Materials and methods

Selection of sampling locations

The first step toward accurately identifying sampling locations was to characterize the flooded

regions after hurricanes. Inundation resulting from extreme rainfall can be modeled using tra-

ditional hydrological and hydrodynamic models. However, here we used a relatively new

method for mapping inundation based on the landform’s geomorphometric principles [12–

14]. The basic premise is to let topography dictate how water will fill a particular landscape. It

allows a fast but static computation and accurate identification of locations likely to be inun-

dated after heavy rainfall. Digital elevation model (DEM) data at 30 m resolution was used to

spatially capture the locations and estimate the inundation depths due to any known amount

of rainfall. Details on inundation mapping are provided in previously published work [15].

Sampling locations for North Carolina and Florida were selected by mapping the flood extents

of each hurricane, identifying agriculture or wastewater infrastructure exposed to flooding,

and then selecting accessible water bodies downstream of the point of interest. Twenty-six

locations were sampled in North Carolina on October 7, 2018 (3 weeks post-hurricane), rang-

ing from the coast to about 100 miles inland. In the Florida panhandle, 11 locations were sam-

pled on October 27, 2018 (2 weeks post-hurricane), with the locations tailored to investigate

the impacts of storm surge on pathogen transport in coastal communities and flooded water

treatment facilities, covering a geographical extent of Pensacola to Port St. Joe, Florida.

The locations of swine farms were obtained from the North Carolina Department of Envi-

ronmental Quality (NCDEQ) Animal Feeding Operations Program [16]. The 2283 permitted

farm locations were overlaid onto the flood map, which was then queried by flood depth. All

swine farms with flood depths of five feet or greater were selected as potential sampling sites

because there was high certainty about flooding at the location, resulting in the selection of 40

swine farms. This number is similar to the number arrived at by the post-hurricane report
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given by the NCDEQ, in which 28 swine facilities reported lagoon discharging. An additional

eight reported inundation (surface water surrounding and flowing into the lagoon), and eight

more reported that lagoons were at full capacity and likely to overtop [17]. Similarly,

unflooded farms were identified, and 23 locations were selected from the list of unflooded

farms by visual inspection to meet two criteria. First, the unflooded location must be relatively

close to flooded farms of interest, making travel and collection of samples less burdensome.

Second, the flood maps must show the location as free of flooding to a high certainty (i.e., not

located on or near the boundary of the flood extent). While in the field, water samples were

taken at publicly accessible locations downstream and near the selected farms. The sampling

locations are shown in Figs 1 and 2.

Compared to Hurricane Florence’s effects in North Carolina, Hurricane Michael did not

trigger inland flooding to the same depth or extent as observed in the Florida Panhandle. This,

combined with the absence of a singular dominating industry at flood risk comparable to

swine farming in North Carolina, led to an eclectic array of sampling locations in Florida. Fur-

thermore, widespread road closures forced many sampling locations to be selected based on

the accessibility. Water samples were taken downstream near five wastewater treatment plants

Fig 1. North Carolina flooding and sampling locations.

https://doi.org/10.1371/journal.pone.0273757.g001
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(WWTP) [18], three in the ocean between Port St. Joe and Mexico Beach and two in the bays

surrounding Panama City, FL, as seen in Fig 2.

Lab testing procedure

We sampled water in N.C. and F.L. in October 2018, post-Hurricane Florence and Michael,

respectively. As with our previous fieldwork [19, 20], we used sterilized plastic bags to collect

and store four to eight liters of water from each source. Bags were kept in a cooler with ice

packs and transferred within 24 hours to a 4˚C cold room in our lab. The volume of sampled

water was tracked when samples were filtered. Water samples were flocculated with 25 mM

MgCl2 for 30 minutes before settling. Subsequently, they vacuum-filtered sequentially through

a glass fiber filter with a 1.6 μm pore size (Fisher Scientific, Hampton, NH) to collect and con-

centrate bacteria. Every time the filter was clogged, it would be changed to a new filter to con-

tinue filtering until all the water sample in the bag was filtered. The number of filters used for

each sample was concluded in S1 Table. A quarter of 1.6 μm filter of all filters used for a given

water sample were subjected to DNA extraction by MPI FastDNA Kit for Soil Extraction (M.

P. Biomedicals, Santa Clara, CA). The rest of the filters were kept for other ongoing analyses.

Fig 2. Florida flooding and sampling locations. DF = Domestic, Flooded WWTP. DUF = Domestic, Unflooded WWTP.

https://doi.org/10.1371/journal.pone.0273757.g002
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Quantitative polymerase chain reaction (qPCR) [21] assays were adapted from previous

studies to detect Enterococcus spp., two genes of E. Coli, Enteropathogenic E. Coli, Shiga-toxin

producing E. Coli, Shigella spp, Shigella flexneri, two genes of Campylobacter jejuni, Campylo-
bacter lari, two genes of Salmonella typhimurium, Clostridium perfringens, Listeria monocyto-
genes, two genes of Vibrio cholerae, Mycobacterium spp., Pseudomonas spp., Legionella and

Giardia lamblia [15, 22–24]. Forward and reverse primers for all assays were obtained as Cus-

tom DNA Oligos (Integrated DNA Technologies, Coralville, IA). Probes were obtained from

the Universal Probe Library (UPL) (Roche, Basel, Switzerland) and were labeled with 6-FAM

at the 5’ end and a dark quencher dye at the 3’ end and contained a short sequence (8–9 nucle-

otides) of locked nucleic acids [25]. Standards were obtained as gBlock Gene Fragments (Inte-

grated DNA Technologies). Standard curves were generated by qPCR using serial dilutions (2

x 100 to 2 x 106 copies/μl) of a standard pool containing 24 DNA standards to validate the

assays prior to use in MFQPCR. PCR inhibition was evaluated for the STA and MFQPCR anal-

ysis by including Pseudogulbenkiania NH8B as an internal amplification control in all environ-

mental sample extracts and nuclease-free water. Prior to enumeration by mfqPCR, all DNA

samples and standard pool dilutions underwent standard target amplification (STA) PCR to

increase template DNA yields. Standard pool dilutions (2 x 100 to 2 x 106 copies/μl) amplified

in the 14-cycle STA were used to generate standard curves for MFQPCR. 20X assays (18 μM of

each primer and 5 μM probe) were pooled using 1 μl per assay and 179 μl of DNA Suspension

Buffer (Teknova, Hollister, CA) to make a 0.2X TaqMan primer-probe mix. The reaction

(5 μl) contained 2.5 μl 2X TaqMan PreAmp Master Mix (Thermo Fisher), 0.5 μl 0.2X TaqMan

primer-probe mix, and 1.25 μl of template DNA. The PCR plate was processed with the follow-

ing thermal cycle on an M.J. Research Tetrad thermal cycler (M.J. Research, Waltham, MA):

95˚C for 10 min and 14 cycles of 95˚C for 15 sec and 60˚C for 4 min. The STA products were

diluted 25-fold with100 μl of T.E. buffer and were used for mfqPCR. The sample premix (5 μl)

contained 2.5 μl 2X TaqMan Master Mix, 0.25 μl 20X Gene Expression Sample Loading

Reagent (Fluidigm, South San Francisco, CA), and 2.25 μl 25-fold diluted STA product. The

assay mix (5 μl) contained 2.5 μl 2X Assay Loading Reagent (Fluidigm) and 2.25 μl 20X Taq-

Man primer-probe mix. Aliquots (5 μl) of each sample and duplicates of each assay were

loaded onto a 48.48 chip (Fluidigm). mfqPCR was performed in a Biomark HD Real-Time

PCR (Fluidigm) using the following thermal conditions: 70˚C for 30 min, 25˚C for 10 min,

95˚C for 1 min, followed by 35 cycles of 96˚C for 5 sec and 60˚C for 20 sec. All the genes and

primers used for pathogens tested in this study are listed in S2 Table.

Quantification cycle (Cq) values and standard pool dilutions (log copies/μl) were used to

generate standard curves for each assay. Cq values were determined by Real-Time PCR Analy-

sis software (Fluidigm) and MFQPCR. Linear regression analysis was performed to fit the stan-

dard curves and calculate the goodness of fit (R2). Assay efficiencies were calculated based on

the slopes of the standard curves for each MFQPCR assay to validate adequate target amplifica-

tion [26]. Standard curves were accepted as quantifiable if the efficiency achieved was greater

than or equal to 90% and if the lower detection limit was less than or equal to 30 copies/μl.

Consistent detection of NH8B throughout multiple assays indicates insignificant inhibition for

qPCR amplification. The concentrations of detected bacterial genes were reported in the unit

of gene copies per L of water sample.

Results

Water samples collected from creeks, ponds, and rivers immediately after hurricanes were

tested for the presence of six common pathogenic genes [Enterococcus spp., Legionella pneumo-
phila, Mycobacteria (atpE), Pseudomonas (gyrB), Salmonella Typhimurium (ttrC), E. coli
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previous study where it was observed that the fecal indicator bacteria level decreased a few

weeks after the flood event when the dewatering process was done [5, 27]. In NC samples, E.

coli concentration were observed higher in the flooded sites (F2, F3, F4, F6, and F8) than in

unflooded locations. The flooded sites were located in the Neuse River watershed. The two

unflooded sites with E. coli detected were U6 and U7 in the Cape Fear watershed.

In order to explore the impacts of floods on pathogens, a probability of exceedance analysis

was performed on the samples collected from North Carolina. There appears to be no differ-

ence in the presence of Mycobacteria with inundation (Fig 5A), as the probability of non-

exceedance for flooded and unflooded samples was very similar. However, there was a marked

difference in the presence and detection of Salmonella typhimurium(Fig 5B) in the rural agri-

cultural regions. Flooding appears to have strengthened the abundance of Salmonella typhi-
murium when the probability of non-exceedance was greater than 50%. On further

examination, the odd’s ratio analysis suggested that the presence of Salmonella typhimurium
in surface water bodies increased by 2.3 times during flooding. The increased likelihood of Sal-
monella typhimurium during flooding may be attributable to cross-contamination of litter and

associated swine activities, including run-off water from livestock farms. However, additional

experiments are required to ascertain this observation. One of the interesting findings is with

the Enterococcus spp. (Fig 5C) where the abundance of pathogens decreased during flooding,

especially when the probability of exceedance increased to 50%. It is plausible that flooding

water washed off the pathogen from its natural environment to coastal waters. This, therefore,

decreased its concentration in the terrestrial surface water bodies. The odds ratio analysis sug-

gested a three-fold decrease in this pathogen during floods following hurricanes.

A comparison between hurricane Florence and Michael is provided in Table 1. Hurricane

Florence was characterized by record-breaking rainfall and inland flooding, whereas the

Fig 4. Maximum concentrations of pathogens in Florida. (a) Enterococcus spp. (b) Legionella pneumophila, (c) Mycobacteria (atpE), (d)

Pseudomonas (gyrB), (e) Salmonella typhimurium (ttrC), (f) E. coli (eaeA, uidA, ftsZ) [DF = Domestic, Flooded WWTP. DUF = Domestic, Unflooded

WWTP. IF = Industrial Flooded; WWTP = waster water treatment plant].

https://doi.org/10.1371/journal.pone.0273757.g004
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damage caused by Hurricane Michael was attributed primarily to coastal (storm surge) flood-

ing and wind damage. North Carolina has a massive agriculture industry dominated by swine

farming, while Florida lacks a singular industry with obvious potential for introducing patho-

gens into surface waters. These two dissimilarities are evident in the remarkable differences in

pathogen concentrations between the two study areas.

Fig 5. Probability of exceedance analysis for the samples collected from North Carolina. (a) Mycobacteria, (b)

Salmonella typhimurium and (c) Enterococcus spp.

https://doi.org/10.1371/journal.pone.0273757.g005
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Discussion and conclusion

Using microbiological data collected after hurricanes Florence and Michael, results from this

study show a dichotomy in the presence of pathogens in coastal North Carolina and Florida.

Salmonella typhimurium was abundant in water samples collected in the regions dominated by

swine farms. A drastic decrease in Enterococcus spp. in the Carolinas is indicative of pathogen

removal with flooding waters. Except for the abundance presence of Salmonella typhimurium,

no significant changes in pathogens were observed after Hurricane Michael in the Florida pan-

handle. Our results strengthen findings from previous studies where increase in human cases

of infectious diseases were reported in human populations after hurricanes and include viral

gastroenteritis and legionellosis in New York [28, 29]; nontuberculous mycobacteria after hur-

ricanes in Louisiana, Florida and Oklahoma [30]; cholera in Haiti [31] and E. coli, Giardia,

Cryptosporidium in New Orleans [5]. The results presented in this study, while only from two

locations, are indicative of the comprehensive need for development of pathogenic libraries

along the entire US coastal regions. Identification of pathogenic libraries and ecological active

niches is likely to be helpful in development of protocols for mitigation and intervention strat-

egies for infectious diseases. A recent example includes outbreak of Vibrio vulnificus in Florida

after Hurricane Ian [32] is a stark reminder of absence of qualification of clinically important

and climate processes modulated infectious pathogens in the environment.

Traditionally, studies of pathogens in floodwaters are generally reported in regions with

poor water and sanitation infrastructure with known knowledge of the emergence of microbes

after heavy rainfall. In the continental United States, speculative assessment of pathogens is

conducted after floods from the standpoint of risk of diseases in the urban human population

centers. Perhaps this is one of the few studies that has made an attempt to shed insights on the

pathogenic dangers of hurricane-induced flooding in the rural agricultural region of the U.S.

The agricultural livestock of the U.S. are under constant threat of changes in climatic patterns,

and thus effective policies should be made to safeguard these commodities. A significant

Table 1. Hurricanes Florence and Michael summary.

2018 Atlantic Hurricane Florence1 Michael3

Landfall Date September 14 October 10

Landfall Site Wrightsville Beach, NC Mexico Beach, FL

Category at Landfall 1 4

Rainfall 20–30 inches, 35 inches + local < 7 inches

Storm Surge 9–13 feet 9–14 feet

Max. Wind 106 mph, less severe 155 mph, severe

Inland Flooding Severe, 28 flood records broken2 Limitted/minor

Study Area Coastal and Sub-coastal NC Coast of Florida panhandle

Dominant Local Industry Swine farming4 N/A

1, Historic Hurricane Florence, September 12–15, 2018. September 2018. National Oceanic and Atmosphere

Administration. web. February 28 2019. <https://www.weather.gov/mhx/Florence2018>.

2, USGS: Florence set at least 28 flood records in Carolinas. November 13 2018. web. February 28 2019. <https://www.

usgs.gov/news/usgs-florence-set-least-28-flood-records-carolinas>.

3, Catastrophic Hurricane Michael Strikes Florida Panhandle October 10, 2018. October 2018. web. March 3 2019.

<https://www.weather.gov/tae/20181010_Michael>.

4, National Agriculture Statistics Service, Agriculture Statistics Board, United States Department of Agriculture.

"Quarterly Hogs and Pigs." Quarterly Report. December 20, 2018. web. March 4 2019. <https://downloads.usda.

library.cornell.edu/usda-esmis/files/rj430453j/bc386p647/rf55zc904/hgpg1218.pdf>.

https://doi.org/10.1371/journal.pone.0273757.t001
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portion of U.S. extensive livestock agriculture is located within a few hundred miles of the east-

ern coast (e.g., swine farms in N.C.). An increased occurrence of extreme events is likely to

devastate rural economies. Therefore, the significant implications of this study include an

ambitious plan to develop a database for threat assessment of pathogens in the immediate

aftermath of hurricanes. Impacts of the two hurricanes along two prominent U.S. coastal

regions have significant variability in the behavior of different pathogens. Hence, the predic-

tive intelligence systems must be developed and should include information on microbes that

may be prevalent in the water system after extreme events. A well-planned infrastructure plan

should be in place to safeguard agricultural commodities so that pathogen spillover should be

contained or anticipated in advance.
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