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ABSTRACT: Tides are often nonstationary due to nonastronomical influences. Investigating variable tidal properties im-
plies a trade-off between separating adjacent frequencies (using long analysis windows) and resolving their time variations
(short analysis windows). Previous continuous wavelet transform (CWT) tidal methods resolved tidal species. Here, we
present CWT_Multi, a MATLAB code that 1) uses CWT linearity (via the “response coefficient method”) to implement
superresolution, i.e., resolving tidal constituents beyond the Rayleigh criterion; 2) provides a Munk–Hasselmann constitu-
ent selection criterion appropriate for superresolution; and 3) introduces an objective, time-variable form of inference
(“dynamic inference”) based on time-varying data properties. CWT_Multi resolves tidal species on time scales of days, and
multiple constituents per species with fortnightly filters. It outputs astronomical phase lags and admittances, analyzes multiple
records, and provides power spectra of the signal(s), residual(s), and reconstruction(s); confidence limits; and signal-to-noise ra-
tios. Artificial data and water levels from the Lower Columbia River Estuary (LCRE) and San Francisco Bay Delta (SFBD)
are used to test CWT_Multi and compare it to harmonic analysis programs NS_Tide and UTide. CWT_Multi provides supe-
rior reconstruction, detiding, dynamic analysis utility, and time resolution of constituents (but with broader confidence limits).
Dynamic inference resolves closely spaced constituents (like K1, S1, and P1) on fortnightly time scales, quantifying impacts of
diel power peaking (with a 24-h period, like S1) on water levels in the LCRE. CWT_Multi also helps quantify the impacts of
high flows and a salt barrier closing on tidal properties in the SFBD. On the other hand, CWT_Multi does not excel at predic-
tion, and results depend on analysis details, as for any method applied to nonstationary data.

SIGNIFICANCE STATEMENT: Ocean tides, especially in coastal and estuarine systems, are often nonstationary, in
the sense that the mean and standard deviation of tidal properties vary over time, usually in response to some nontidal
process. We introduce here a MATLAB code, CWT_Multi, that uses wavelet transforms to resolve both tidal species
and constituents on time scales from a few days to months. Our code accommodates multiple scalar time series and has
typical tidal analysis features like constituent selection and inference, plus two forms of uncertainty analyses. It is flexi-
ble, allowing the user to adapt analysis properties to diverse datasets. CWT_Multi is applicable to many problems in-
volving time-variable tides, including sea level rise, compound flooding, sediment transport, and wetland habitat
analyses. Application to vector data is a straightforward extension, but further development of our uncertainty analysis
is merited. Because nonstationary tidal analysis is rapidly advancing, we also define the features of a “well-formed”
analysis code.

KEYWORDS: Estuaries; Wavelets; Tides; Rivers; Time series; Spectral analysis/models/distribution

1. Introduction

There are multiple reasons to improve the analysis of time-
variable tidal properties. Tides are nonstationary, in the sense

that the means and standard deviations of tidal properties
vary (cf. Gagniuc 2017), in many environments due to river
flow, ocean currents, stratification, and bathymetric change
(e.g., reviews by Haigh et al. 2020; Devlin et al. 2018; Talke
and Jay 2020), and instrumental errors can introduce specious
variations in tidal properties (e.g., Zaron and Jay 2014). Tides
and storm surges interact, changing the properties of both
(e.g., Horsburgh and Wilson 2007; Familkhalili et al. 2020).
Sea level rise (SLR) makes understanding tidal evolution an
urgent problem, because changes in tides can either exacer-
bate or partially ameliorate the effects of SLR (e.g., Devlin
et al. 2014; Talke and Jay 2020; Li et al. 2021; Moftakhari et al.
2024). Despite more than 25 years of development of software
for nonstationary tides (reviewed by Consoli et al. 2014;
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Jay et al. 2022), there is no one approach that is universally
applicable, and major challenges still exist in the analysis of
tidal signals, often due to the assumptions of the analysis ap-
proach (e.g., regarding stationarity and constituent selection)
and difficulties with unevenly spaced data and gaps (e.g.,
Consoli et al. 2014).

Here, we present CWT_Multi, a MATLAB code that uses
superresolution (Munk and Hasselmann 1964; henceforth,
MH64) to improve continuous wavelet transform (CWT) tidal
analysis (Jay and Flinchem 1995, 1997; Flinchem and Jay
2000; Dykstra et al. 2022). Superresolution describes the sepa-
ration of tidal constituents beyond the conventional Rayleigh
criterion limit (Godin 1972), which requires a length of record
(LOR) to resolve a frequency difference in LOR21. This limit
is similar to the Heisenberg uncertainty principle of wavelet
analysis (Flinchem and Jay 2000). Both quantify the intuition
that a short analysis window localizes the time of an event but
provides poor frequency resolution, while the opposite is true
for a long window. Previous CWT codes (from Jay and Flinchem
1995, 1997 forward) maximized time resolution by analyzing
tidal species (e.g., the diurnal or D1 band and semidiurnal or
D2 band), not constituents within these species. CWT_Multi
analyzes tidal species as before, but it also resolves variations
of major tidal constituents on a time scale of about a week,
choosing constituents using a modified MH64 criterion. More-
over, CWT_Multi provides two forms of uncertainty analysis
for tidal parameters: a residual spectrum error analysis similar
to Pawlowicz et al. (2002) and Codiga (2011) and a residual
resampling approach (Innocenti et al. 2022).

In the methods section, the above innovations are ex-
plained, the two systems are analyzed, and then the data used
are presented; then, results, discussion, and conclusions sec-
tions are presented.

2. Methods

This section describes how CWT_Multi uses multiple filter
banks to optimize the time and frequency resolution of

nonstationary tides. CWT_Multi resolves large constituents
such as M2, S2, and N2 within the D2 tidal species (and simi-
larly in other species) using fortnightly (;15 days) filters that
have most of their energy in the middle half of the filter. De-
spite the overlapping frequency responses of such filters,
closely spaced frequencies can be resolved using the linearity
and known frequency response of wavelets (see Jay 1997). In
addition, CWT_Multi 1) analyzes and reconstructs multiple,
evenly spaced scalar time series; 2) computes power spectra
of the input, reconstructed, and residual time series; and
3) introduces dynamic inference, a form of tidal inference
that uses the properties of the subject time series to separate
closely spaced frequencies. Implementation details for
CWT_Multi, UTide, and NS_Tide are provided in the on-
line supplemental material.

a. Overview

CWT_Multi convolves four different filter banks with a
high-passed version of a water-level time series at each analy-
sis time step; the high-pass filter removes the subtidal compo-
nent of the signal. In each filter bank, each filter’s central
frequency corresponds to a tidal species or a tidal constituent
within the D1–D4 species (Fig. 1). Tidal frequencies are
closely spaced (e.g., Fig. S1b in the supplemental material),
and the finite length of each filter causes it to respond to sig-
nal energy at other tidal frequencies close to its central fre-
quency, as shown in a filter frequency response plot (Fig. 2).
Using the linearity and known response function of wavelet
filters (Kaiser 2011), a matrix problem is constructed [the re-
sponse coefficient method (RCM)] to estimate the amplitude
of the constituent at the fundamental frequency, effectively
removing the filter’s response at nearby frequencies, de-
scribed below. A conceptual view of the use of the four filter
banks is provided in Fig. 3.

The species filter bank contains the shortest filters and pro-
vides the finest time resolution of varying tidal properties
(Fig. 3). A length of about six wavelengths is chosen for the

FIG. 1. The real (blue) and imaginary (red) parts of a typical constituent filter as applied to
hourly data, in this case for M2; about 80% of the filter energy is contained in the middle half of
the filter (vertical gray lines), as shown by the filter envelope (dotted line). Species filters are
shorter, typically 4–8 wavelengths. See Flinchem and Jay (2000) for more information on wavelet
filters.
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D1 and D2 species, reducing filter overlap between tidal spe-
cies to a tractable level. A length of 65 h is used for the D3

and higher frequencies to efficiently capture tidal variance,
while still limiting species overlap. This filter bank is similar to
that used by Jay and Flinchem (1997), but its use is modified
here to remove the effects of leakage between filters.

Tidal constituents within a tidal species may respond differ-
ently to external forcing, e.g., to river flow fluctuations (e.g., Jay
and Flinchem 1997; Godin 1999). Thus, a second filter set, the
“fortnightly filters,” is used to resolve the three major compo-
nents within the diurnal and semidiurnal constituent groups
(Fig. 3). These filters are 15 days long and resolve by default the
Q1, O1, and K1 constituent groups in the D1 species and the N2,
M2, and S2 groups in the D2 species; they are long enough to
have near-zero frequency response outside of their tidal species.
By a “constituent group,” we mean constituents that share the
first two Doodson numbers, as defined by Cartwright and Ed-
den (1973). Thus, constituent K1, with the modified Doodson
numbers {1, 1, 0, 0, 0, 0}, is represented here as {1, 1, 0}, while
the K1 constituent group, containing K1, P1, S1, and other
smaller constituents, is denoted by {1, 1, n}, which indicates that
all constituents in the group have a frequency that is the sum of
1 cycle per day 1 1 cycle per month 1 n cycles per year, with n
being a small integer,25, n, 5. In practice, frequency differ-
ences within major constituent groups are 1–4 cycles per year.

There is an overlap in the response of adjacent fortnightly
filters; thus, the O1 filter responds to Q1 and K1, the Q1 filter
responds to O1 and K1, and so on. However, the linearity of
wavelet filters and their known frequency response allows us
to disentangle the filter responses of the constituent groups in

the D1–D4 species. “Linearity” means that a CWT filter’s re-
sponse to two signals is the sum of its responses to the signals
individually (Rioul and Vetterli 1991), and the frequency re-
sponse of a CWT filter is known from the Fourier transform
of the filter (Kaiser 2011). These major constituent group esti-
mates are, however, contaminated by filter response to other
nearby, smaller constituent groups.

This cross talk between constituent groups suggests the use
of additional filters for other constituent groups. Unfortu-
nately, attempting to resolve the constituent groups customar-
ily used in harmonic analysis (HA), nine (from {1, 24, n}
to {1, 4, n}) in the D1 band and seven in the D2 band (from
{2, 23, n} to {2, 3, n}), can result in unstable matrix inversions
with 15-day filters. This problem is avoided by introducing a
third set of filters, with lengths of ;45 days for the “smaller”
D1 and D2 constituent groups, i.e., the six D1 and four D2

groups not named above (Fig. 3). Given filter outputs for nine
D1 constituent groups and seven D2 groups, estimates of all
constituent groups in each species are derived. Like constitu-
ent estimates obtained by HA with similar window lengths,
each constituent group estimate is influenced by all the con-
stituents within the group. Such estimates are, therefore, time
variable, even if the signal analyzed is relatively stationary.

Optionally, a fourth set of wavelet filters of length 4383 h
(;182 days) is used in coordination with the fortnightly filters
to separate large constituents within the same constituent
group, in particular K1 and P1 in the K1 group and S2 and K2

in the S2 group (Fig. 3). Within each of these constituent pairs,
the constituents are separated by 2 cycles per year. These
“half-yearly” filters provide continuous estimates of the complex

FIG. 2. Frequency response of the default filter banks: (a) D1 filters, (from left to right) Alp1,
2Q1, and Q1 (15 days); O1 (15 days); NO1 and K1 (15 days); and J1, OO1, and Ups1; (b) D2 filters,
(from left to right) Eps2, Mu2, and N2 (15 days); M2 (15 days); L2 and S2 (15 days); and Eta2; and
(c) species filters, (from left to right) D1–D12. Filters are normalized to provide unit response at
their central frequency to unit input at that frequency. Short filters have a wider response func-
tion than narrow filters; see Table S1 for filter properties.
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ratios of the relevant constituents that are used with the fort-
nightly filter outputs to provide fortnightly scale estimates of K1

and P1 and S2 and K2 using dynamic inference (below).

b. Wavelet properties and convolution

We follow Flinchem and Jay (2000) in building CWT filter
banks (Fig. 1) from Kaiser filters tuned to known tidal fre-
quencies (from Cartwright and Edden 1973). Because the fil-
ters have real and imaginary parts, the convolution of each
filter with the subject time series returns real and imaginary
parts that can be resolved into estimates of the amplitude and
phase at each convolution time. Kaiser filters (Kaiser 2011)

are used, because they minimize the amplitude of the first
side lobe of the filter, but Morlet (Gaussian) filters would
yield similar results. As described in Flinchem and Jay (2000),
wavelet convolution applies each filter window to the product
of the signal and associated weights (1 for data present and 0
for missing data), translating the filter from beginning to end
of the signal by a decimation factor (20 h by default). Filter
lengths of 6–8 wave periods are appropriate for tidal species.
A filter length of 15 days (the fortnightly filters) facilitates the
resolution of major tidal constituent groups. Filters with de-
fault length of 45 and 183 days are used to facilitate the sepa-
ration of smaller constituent groups and closely spaced

Species filters
~6+ wave periods

D1-D12

Fortnightly
cons�tuent group
filters, ~15 days

{Q1, O1, K1}, 
{N2, M2, S2}

~45-d cons�tuent 
group filters

{α1, 2Q1, NO1, J1
OO1, 1}, 

{ϵ2, μ2, L2, η2}

~6 mo Seasonal
cons�tuent filters

[K1,P1],
[S2,K2]

Subject �me
series

Complex species 
outputs, D1-D12

Species amplitudes
phases, & 

admi�ances

Response Coefficient Method (RCM)RCM

Reference �me 
series species 

outputs

Complex cons�tuent group
outputs, {nine D1}, {seven D2}

Cons�tuent group
amps, phases, & 

admi�ances

{K1},   {S2}

6-mo complex cons�t.
outputs, K1, P1, S2, K2, and χ

factors

Reference �me series 
cons�tuent group

outputs

Reference �me series
K1, P1 and S2, K2 15-d
cons�tuent outputs

K1, P1, S2, K2 15-d
amps, phases, & 

admi�ances
6-mo K1, P1, S2, K2 
amps, phases, & 

admi�ances

Subject �me series 
above do�ed line

Reference �me series 
below do�ed line

Reference �me
series

Dynamic inference 
using χ factors 

RCM

Post Processing
SNR, confidence limits

Uncertainty analysis
SRM, MBB

Color Scheme:
Inputs

   Code elements
   Outputs

Convolu�on Decima�on factor =20

Species analysis Cons�tuent analysis Dynamic inference

FIG. 3. A conceptual view of the default CWT_Multi analysis process. Input signals are in
dark blue, code elements are in red, and outputs are in purple. The analysis for a scalar “Subject
Time Series” is shown in detail; only outputs are shown for the “Reference Time Series,” which
is normally chosen as the local astronomical tidal potential or a nearby coastal station. Constitu-
ent groups within a tidal species are shown as, for example, {Q1, O1, K1}; constituents in a constit-
uent group are shown as [K1, P1]. SRM 5 spectral residual method; MBB5 moving block boot-
strap method. Note that the “species analysis,” “constituent analysis,” and dynamic inference
involve different filters and convolutions, but the latter two interact during “postprocessing.”
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constituents. Due to the tapered nature of the wavelet filters,
.80% of the signal’s energy is captured by the middle 50% of
the wavelet filter (Fig. 2). Finally, because wavelet filters are
symmetric (real part) or antisymmetric (imaginary part) in
time, they are “phase linear”; i.e., phase information is not
distorted. For all filters, gappy data are accommodated using
weights in the convolution operation}missing data are given
a weight of zero, and windows with more than 10% missing
data return a not a number (NaN).

c. Species solution

The first section of the analysis code estimates amplitudes
and phases of the major tidal species and reconstructs the in-
put data. The species filters are short and have a broad fre-
quency response (relative to the constituent filters used
below) to maximize their responses to the collection of con-
stituents within each tidal species (Fig. 2). They optimize the
capture of temporal variability, e.g., as occurs during a short,
river flow event, and are very useful for detiding nonstation-
ary data. The primary difference between the CWT_Multi
species approach and earlier CWT analyses is that the RCM
is used to remove any overlap between adjacent species
(below). The CWT_Multi package provides a default species
filter bank with one filter per tidal species, from once to
12 times daily (i.e., D1–D12; Table S1a).

d. Linearity and the RCM

One challenge in separating constituent groups within a
tidal species like D1 is that the response functions of their fil-
ters overlap (Fig. 2). Another is that there is a continuum of
nontidal energy that coexists with the tidal signal. The magni-
tude of that energy determines whether constituents esti-
mated by CWT_Multi (or any tidal code) are meaningful,
because tidal estimates inevitably include nontidal back-
ground energy as well. However, wavelet convolution is a lin-
ear operation, and wavelet filters have a known response
function, allowing the elimination of filter overlap. Thus, the
RCM assumes that tidal energy exists as separate bands and
that energy outside of these bands is small. We illustrate the
separation of the three largest D1 constituent groups, Q1, O1,
and K1, with fortnightly filters (the wide filters in Fig. 2a), as a
simplified example. Thus, we construct a response coefficient
matrix R as follows:

R 5

r1,1 r1,2 r1,3
r2,1 r2,2 r2,3
r3,1 r3,2 r3,3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where ri,j is the response of the filter with tidal frequency i to a
signal of unit amplitude at frequency j; constituent groups are or-
dered by frequency within a species; hence, r1,2 is the response of
the Q1 filter to a unit O1 signal, which can also be written as
rQ1,O1. Using R, we create a linear system of equations:

f(tm) 5 R a(tm), (2)

where f(tm)5 [A′
Q1(tm), A′

O1(tm), A′
K1(tm)] is a column vec-

tor of the complex response of each filter to the signal, as

applied at time tm, withm5 1, 2, … , n, where n is the number
of estimates for each group resulting from the convolution
process; a(tm) 5 [AQ1(tm), AO1(tm), AK1(tm)] is a column vec-
tor of the estimated complex values for the three constituent
groups at a given time; and primed variables are raw output
that contains information from multiple constituents. The
RCM consists of inverting Eq. (2) to obtain estimates of
the constituent group properties a(tm) with the cross talk be-
tween filters eliminated. Because R is a function solely of filter
lengths and frequencies, it only needs to be determined once;
ri,j 5 rj,i, so long as filters i and j are the same length. In prac-
tice, the D1 constituent group solution uses all nine filters
shown in Fig. 2a, as explained in the next section, and R loses
its symmetry. A numerical example of the matrix inversion
implied by Eq. (2) is supplied in the supplemental material,
section 1.1.

The RCM enhances the power of a CWT tidal analysis, be-
cause it facilitates time–frequency resolution of tidal proper-
ties beyond the limits implied by the Heisenberg principle. By
default, CWT_Multi uses fortnightly filters for three constitu-
ents per species for D1 and D2; the number of filters and filter
lengths are user adjustable.

e. Constituent solution}Combining fortnightly and
45-day filters

CWT_Multi uses fortnightly and 45-day filters to separate
constituent groups within tidal species (Table S1b). Constitu-
ent groups are separated by 61 cycle per month, and there is
one filter per constituent group for D1 groups from {1, 24, n}
to {1, 4, n} and for D2 groups from {2, 23, n} to {2, 3, n}, yield-
ing nine and seven output time series, respectively. By default,
fortnightly filters are used for the N2, M2, and S2 groups and
Q1, O1, and K1 groups, to track their evolution on short time
scales. Longer (45 days) filters are used for smaller constituent
groups, to remove their influence on the major constituents.
The RCM is applied separately within each tidal species
(D1–D4), because the overlap between filters in different spe-
cies is very small. The default filter lengths are adjustable but
not arbitrary}experience shows that filters shorter than
15 days do not greatly increase time resolution but yield nois-
ier outputs, because the shorter filters have a broader fre-
quency response. For the terdiurnal (D3) and quarter diurnal
(D4) overtides, there are four frequencies each, with most fil-
ters set to a length of 45 days to ensure a fairly narrow fre-
quency response; filters for MK3 and M4 are, however,
fortnightly. Higher overtide frequency filters (one per species,
D5–D12) are set to 65 h, allowing for a broad response and
rapid program execution (Table S1b). If a specific high over-
tide were of interest, longer filters could be used. The RCM is
not used for species D5–D12.

f. Tidal admittances

Tidal admittance UA is the complex ratio of a constituent or
species estimated from data to the same quantity in the astro-
nomical tidal potential h used as a reference (Munk and
Cartwright 1966). While h contains frequencies from subtidal
up through D3, the D3 signal in many tidal records stems
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mainly from nonlinear generation, as do all higher overtides.
Simon (1991) introduced, therefore, the use of a nearby
coastal station with relatively stationary data as a reference, a
quantity we call UC. Simon used UC for river tide prediction,
but the use of UC also reduces interference from constituents
not analyzed (because their effects are similar in the signal of
interest and the reference), facilitating dynamical analyses
(Jay and Flinchem 1997). The term UA and/or UC may be op-
tionally estimated by CWT_Multi; we use h as calculated by a
NASA routine (R. Ray 2007, personal communication).

g. Dynamic inference

Traditional tidal inference employs user-defined complex
ratios between major and minor constituents to separate con-
stituents that cannot be directly resolved, given the analysis
window length. CWT_Multi deduces constituent ratios from
the output of seasonal (183 days) filters (Table S1c); these al-
low resolution on a fortnightly scale of constituents separated
by 1–4 cycles per year within a constituent group, a process
we call dynamic inference. For example, a set of seasonal fil-
ters can be used to resolve the “base frequency” K1 of the K1

group and one or more “auxiliary” constituents, like P1.
To explain dynamic inference, we introduce the concept of

the group (complex) amplitude AG. For fortnightly filters dis-
tinguished by an accent (˜) ÃG(t) is the filter response at the
base frequency after the removal of interference from other
groups. In the K1 group, for example, ÃG(t); ÃK1(t), be-
cause the fortnightly K1 filter responds to all constituents in
the constituent group.

For seasonal filters, distinguished by the overbar ( ), we
define complex group amplitude:

AG(t) ; ∑
n

j51
Aj(t), (3a)

where the Aj, for j 5 1, … , n seasonal filter outputs for the
base constituent plus one or more auxiliary constituents, after
removal of filter overlap. For AG, it is typically best to capture
all frequencies that are separable at the seasonal level, even
though not all are significant at the fortnightly level. Thus, n
may be larger than 2. For example, there may be consider-
able, irregular nonastronomical forcing at S1 (period 24 h)
that affects estimates of K1 and P1. In such a case, using three
filters at the seasonal level (K1, P1, and S1) may be useful for
removing the contamination at the fortnightly scale of K1 by
S1, even if S1 is not individually meaningful at that scale.
While the Rayleigh criterion suggests that a 4383-h analysis
cannot resolve these three constituents separated by 1 cycle
per year, this is usually possible using the RCM, given suffi-
cient energy in S1 and limited nonstationarity. We then define
j5 1, n complex constituent ratios:

x j(t) 5
Aj(t)
AG(t)

, (3b)

with x1 being the base frequency ratio. Then, the values of
the base and auxiliary constituent on the fortnightly time scale
are

Ãk,inf(t) 5 ÃG

xk(t)
rgroup,k

, k 5 1, 2, (4)

where subscript inf implies a dynamically inferred complex re-
sponse, rgroup,k is the response of the kth constituent to the
base frequency, and rgroup,base 5 1.

By default, CWT_Multi uses dynamic inference to provide
fortnightly estimates of K1 and P1, and S2 and K2. These val-
ues are supplemental to the K1 and S2 estimates discussed
above. At some cost in computation time, dynamic inference
can be applied in additional constituent groups (e.g., to sepa-
rate N2 and Nu2 in the N2 group) or to determine more than
two constituents in the K1 and/or S2 constituent groups.

Dynamic inference improves on the usual inference ap-
proach used in HA, because the inference is objective (deter-
mined by the time series) and not imposed by the user; in this
respect, it resembles the inference approach of Pan et al.
(2023b), though unlike Pan et al. there is no dependence on
the “credo of smoothness” of Munk and Cartwright (1966), so
inference can be used with constituents like S1, where nonas-
tronomical influences are often strong. Also, x j(t) varies over
the length of a time series, depending on the data. Still, two is-
sues limit the utility of the dynamic inference method:

• Small constituents in a constituent group that are not re-
solved at the seasonal scale may contaminate estimates of
resolved constituents, just as in a HA with inference.

• The complex frequency ratios within a constituent group
should change slowly (i.e., seasonally), even if constituent
group properties vary more rapidly. This is the temporal
analog of the Munk and Cartwright (1966) spectral credo
of smoothness. Its adequacy is a question of the physics
causing the nonstationary behavior.

Adjustment of filter lengths and/or frequencies analyzed
may be needed to minimize these issues. Alternatively, the in-
ferred values can be ignored in favor of constituent group
results.

h. Constituent selection

The linearity and known response functions of wavelet fil-
ters simplify the constituent selection problem relative to least
squares HA, because the response to any single CWT filter is
independent of whether other filters are included in the analy-
sis. Thus, constituent selection can be conducted postanalysis.
Also, it is usually desirable to remove filter overlap using the
RCM, regardless of whether all constituents (or species) rise
above the noise floor. We begin from the MH64 criterion for
the minimum frequency separation of tidal constituents Df
adapted to the wavelet filters:

Df .
1

1
2
LOF 3 SNR

, (5a)

where LOF is the filter length and SNR is the signal-to-noise
ratio for a constituent. The factor (1/2)LOF is used instead
of LOF because most filter energy is in the middle half of
the filter (Fig. 1). Following the meteorological literature
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(e.g., Deser et al. 2014), we define SNR as a ratio of quantities
with units of length:

SNR 5
Amp

standard error
: (5b)

In this form, an SNR $ 2 indicates that a constituent is above
the noise floor by an amount equivalent to its 95% confidence
limit. Because MH64 defines SNR as the square of our SNR,
we use SNR in Eq. (5b), not SNR1/2. Moreover, Eq. (5a) is
appropriate for the species analysis but does not take into ac-
count the improvement of resolution through the RCM. For
constituent analysis, we modify Eq. (5a) for each constituent i:

Dfi
CR

.
1

1
2
LOF 3 SNR

3 1 2
rii |Ai|

Sqrt ∑
n

j51

(
rij |Aij|

)2[ ]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (5c)

where |Ai| is the time average of the complex amplitude of the
ith constituent, CR is an O(1), user-chosen Rayleigh constant,
and the summation is over the n constituents analyzed within
a species; ri,i 5 1. Equation (5c), while heuristic, emphasizes
that the RCM improves the resolution of the larger constitu-
ents more than that of the smaller ones, closer to the noise
floor. The outputs from Eqs. (5a) and (5c) indicate whether a
species or constituent is distinct, while confidence limits pro-
vide an assessment of uncertainty.

i. Uncertainty analysis

Two different methods are used to estimate the standard
errors of the nonstationary outputs: a spectral residual
method (SRM) that calculates the parameter standard errors
from the residual energy following Pawlowicz et al. (2002);
and a moving block bootstrap (MBB) method based on resid-
ual resampling. Both methods are thoroughly discussed in
Innocenti et al. (2022). MBB divides the residual time series
into 30-day blocks, and then, the segments are randomized
and added back to the reconstruction of the original signal, for
both the species and constituent methods. Next, these new time
series are analyzed and reconstructed. This process is repeated nr
times to generate nr independent estimates of each nonstationary
amplitude. These estimates are converted to standard errors and
confidence intervals; nr5 1000 in Innocenti et al. (2022).

3. Background, setting, and data

Tides respond to river flow in the Lower Columbia River
Estuary (LCRE) and San Francisco Bay Delta (SFBD) in a
consistent manner (Jay and Kukulka 2003; Baranes et al.
2023), and this response can be used to hindcast river inflow
(Moftakhari et al. 2013, 2015, 2016; Talke et al. 2020). Accord-
ingly, these systems are useful for testing tidal analysis soft-
ware. Here, we describe the LCRE and SFBD tidal systems,
the data used from each system, artificial data used to test
CWT_Multi, and development of nonstationary tidal methods
over the last few decades.

a. The LCRE

The LCRE (Figs. 4a,c) extends 233 km from the Pacific to
the head of the tide at Bonneville Dam. Regulated river in-
flow ranges from 1800 to 26 000 m3 s21 (Jay and Naik 2011;
Naik and Jay 2011). The LCRE is strongly tidal for about
170 km, from the ocean to the end of the navigation channel.
Further landward, tides are weak or absent, except during
low-flow periods (Jay et al. 2014, 2016). Tides entering the
system are mixed D1 and D2, but D2 dominant (Jay 1984; Jay
and Smith 1990). Thus, the M2 and K1 amplitudes at the
National Oceanic and Atmospheric Administration (NOAA)
reference tidal station [Tongue Point, river kilometer (Rkm)-
29] are, respectively, |M2| 5 0.98 m and |K1| 5 0.41 m. Hydro-
power peaking at Bonneville Dam causes the water-level
power spectrum to exhibit pronounced diel (at the frequency
of S1) and weekly variability as far seaward as Rkm-87. The
form factor (|M2|1 |S2 |1 |N2|)/(|K1|1 |O1|1 |P1|) is about 1.7
at Astoria but varies along the channel due to power peaking,
constituent interactions, and frequency-variable damping
(Jay et al. 2014).

Amplitudes of major D1 and D2 tidal constituents have
grown 5%–7% at Tongue Point since 1925, one of the fastest
increases in the eastern Pacific (Jay 2009; Talke et al. 2020).
This increase is largely due to decreased friction, caused by

FIG. 4. Place-name maps for (a) the LCRE and (b) the SFBD; their
locations are shown in insets (c) and (d), respectively.
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reduced mean flow and navigational development (Jay et al.
2011, 2014; Helaire et al. 2019, 2020). Interestingly, SLR has
not been a major factor in increasing tidal amplitudes, because
relative SLR has been only 0.06 6 0.04 m since 1853 (Talke
et al. 2020), and water levels in the tidal river have actually
dropped, due to decreased friction (Jay et al. 2011). High river
flow strongly damps tides (time scales of days to months),
and neap-spring changes in friction alter tidal and subtidal
water-level patterns (Jay and Flinchem 1997; Kukulka and
Jay 2003a,b).

Hourly water-level data from April 2010 to June 2013 (Fig. S1)
for NOAA stations at Tongue Point (No. 9439040) and Vancou-
ver, Washington (Rkm-170; No. 9440083), are analyzed to give
constituent and admittance estimates, using both CWT_Multi
and NS_Tide (Matte et al. 2013). These results are compared to
discharge data to show how the two tidal analysis approaches
represent constituent variations during freshet events.

b. The SFBD

The Sacramento–San Joaquin Delta is composed of numer-
ous interconnected river channels and drains more than a
quarter of the state of California into San Francisco Bay
(Figs. 4b,d). Tides are mixed, with mean and great diurnal
ranges of 1.25 and 1.78 m, respectively, in San Francisco.
Tides from the Pacific Ocean propagate far into the delta,
with greater attenuation typically occurring along the larger,
northerly Sacramento River (mean discharge, 550 m3 s21)
than along the southerly San Joaquin River (mean discharge,
100 m3 s21). Substantial quantities of water are pumped from
the southwest portion of the Delta to the California Water
Project (average rate of ;200 m3 s21; see, e.g., Knowles
2002). During low discharge conditions, salinity can intrude
into the delta (e.g., Monismith et al. 2002), compromising
water quality. To reduce salinity intrusion, a temporary bar-
rier was constructed in May 2015 and removed in October/
November 2015 on a western delta channel, False River
(;102 km from the Golden Gate; see Kimmerer et al. 2019,
Fig. 4b). It was installed again in 2021 and 2022. The 2015 barrier
provides an ideal test case to assess nonstationary analysis
techniques and may provide insight into how other such struc-
tures affect tides, e.g., the more than 300 “salt barrages” con-
structed in China (Tilai et al. 2019).

Water-level data for the SFBD are taken from San Francisco
(NOAA No. 9414290) and False River near Oakley (U.S.
Geological Survey gauge No. 11313440) for January 2014–
December 2017 (Fig. S2). This 4-yr time window includes a
salt barrier closure during a severe drought and a series of
storms and subsequent flooding in northern California in
January–February 2017 (Downing-Kunz et al. 2021). The salt
barrier led to relatively sharp changes in flow, while the flood-
ing had a more gradual onset and abatement. These data are
analyzed to compare CWT_Multi analysis results to those
from a short-term HA (STHA; cf. Jay and Flinchem 1999).
Our STHA uses a core of the UTide harmonic analysis pack-
age (Codiga 2011) to perform a 30-day HA every 20 h. This
window allows for the resolution of all major constituents
that are considered by CWT_Multi.

c. Artificial data generation

Two artificial time series were created to test CWT_Multi
in a situation with known amplitudes and phases. The first is
composed of stationary data with |M2| 5 1 m and other major
constituent amplitudes normalized to M2 per their amplitudes
in the tidal potential (per Foreman 1977); phase lags are arbi-
trary but constant. Overtide amplitudes are similar to those in
the LCRE and SF Bay. In the second record, M2 is modulated
as it might be by river flow, with artificial freshets of 7, 14, and
31 days. Default CWT_Multi filter frequencies and lengths
are given in Table S1. Both datasets have energy at the
32 tidal frequencies (Table S2), plus random noise with an
root mean square (RMS) of 0.053 |M2|.

d. Recent nonstationary tidal analysis code

The strong response of LCRE tides to nontidal forcing has
allowed it to serve as a testbed for tidal analysis programs.
Programs/analysis approaches tested include wavelets (Jay
and Flinchem 1997; Flinchem and Jay 2000), robust T_Tide
(Leffler and Jay 2009), NS_Tide (Matte et al. 2013), empirical
mode decomposition (EMD) (Pan et al. 2018a; Pan and Lv
2019), S_Tide (Pan et al. 2018b), and variational mode de-
composition (VMD) (Gan et al. 2021). VMD, like previous
CWT analyses, determines tidal species behavior, whereas
T_Tide, NS_Tide, and S_Tide analyze for tidal constituents.

The above methods are regression-based, EMD, VMD,
and wavelets aside; thus, they lack a well-defined frequency
response, and the output at any frequency depends on what
other frequencies (constituents) are included in the analysis
(Jay and Flinchem 1999), as well as on the data. Robust
T-Tide differs from conventional T_Tide (Pawlowicz et al.
2002) only in the use of the iteratively reweighted least
squares (IRLS or robust inversion) method to limit the in-
fluence of the outliers on the regression parameter esti-
mates. The two HA methods used here, UTide (Codiga
2011) and NS_Tide (Matte et al. 2013), use robust inversion,
and UTide embeds nodal corrections in its formulation fol-
lowing Foreman et al. (2009), while NS_Tide stands out for
its use of physical forcing factors like river flow and coastal
tidal range to construct basis functions that represent time-
varying tidal parameters.

4. Results

a. Artificial data results

We first analyze artificial data with known frequency con-
tent as a means to assess the performance of CWT_Multi
(Fig. 5). The estimated amplitudes and phases for the D2 con-
stituent groups N2, M2, and S2 match the expected values, but
are not constant, because N2 and S2 properties reflect the in-
fluence of the smaller group constituents y2 and K2, respec-
tively. The diurnal K1 is similarly perturbed by P1 and Q1 by
Rho1. Removal of the influence of small constituents by dy-
namic inference is discussed below.

M2 amplitude responds to fluctuations in river flow, while
other constituents are less affected (e.g., Jay and Flinchem 1997;
Godin 1999; Buschman et al. 2009; Moftakhari et al. 2013, 2016).
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We consider, therefore, 1 year of artificial data that includes
abrupt freshet events of the duration of 7, 14, and 31 days, re-
spectively, during which M2 amplitude drops abruptly by
40% (Fig. 6a). The CWT_Multi species outputs follow the in-
put very closely (Fig. 6b). The constituent solution captures
the occurrence and character of the events, but smooths out
the step function decrease in M2 amplitude (Figs. 5a,c). The lon-
ger the event, however, the better the results. Species filters bet-
ter follow the time evolution of the events, but cannot show that

M2 acts differently from other constituents. Further CWT_Multi
properties are demonstrated using real data, with comparisons to
other analysis approaches.

b. LCRE results

1) ASTORIA

Species analysis (Fig. 7) results show the expected tidal
monthly variations and a modest response to river flow; they

FIG. 5. Fortnightly constituent group analysis results for 1 year of stationary artificial data (date arbitrary) constructed from 32 constitu-
ents: (a) D2 amplitudes, (b) D1 amplitudes, (c) D2 phases, and (d) D1 phases. For groups that are strongly modulated by the presence of
multiple strong constituents, the sum of the two largest inputs is plotted for reference. The RMS background noise was 5% of M2 ampli-
tude. Startup effects invalidate results for half a LOF at the beginning and end of the time series.

FIG. 6. Fortnightly D2 analysis results (three major constituents) for 1 year of artificial data
(date arbitrary) constructed from 32 constituents; amplitudes and phases are constant, except
that M2 amplitude varies as shown (dashed line in Fig. 6a); input and calculated: (a) D2 constitu-
ent amplitudes, (b) D2 species amplitudes, and (c) D2 constituent phases. The noise level is as in
Fig. 5.

L O BO E T AL . 977OCTOBER 2024

Unauthenticated | Downloaded 11/06/24 12:38 AM UTC



provide the best reconstruction (Table 1) but obscure the
behavior of individual constituents. Fortnightly constituent
group analysis results (Figs. 8 and 9) are typically more useful
here and in other situations where nonstationarity is modest.
The fortnightly CWT_Multi D1 constituent group analyses
show expected twice-yearly modulations caused by multiple
group constituents that are not individually resolved. For
example, the CWT_Multi K1 group output varies by ;0.06 m,
reflecting the interaction of (primarily) K1 and P1. Similarly,
O1 group amplitude varies around its mean by about 60.025 m
at the beat frequency of 2 cycles per year due to the influence
of t1 and amplitude of ;0.025 m. CWT_Multi also shows that
the O1 group decreases from 2010 to 2013, due to the 18.6-yr
nodal cycle variation of O1 (about 19%; Cartwright and Edden
1973). This trend is not shown by NS_Tide, because nodal mod-
ulation corrections were not implemented; instead, modulation
by river flow is the main source of variability. The two groups
separated by only 1 cycle per month (Q1 and O1) show 7–14-day
oscillations that apparently represent beating between several
constituents. These can be removed, either by using the redun-
dancy of the outputs to time average over the time scale of the
filter (;1 week, useful for plotting) or by increasing filter length

for the smaller constituent, in this case, Q1. Figure S3 suggests
that Q1 results here can be improved by setting the Q1 filter
length to 45 days.

D2 constituent group fortnightly outputs from CWT_Multi
show phenomena similar to those for D1 groups (Fig. 9);
e.g., the N2 and S2 groups show the expected approximately
semiannual perturbations by N2–y2 and S2–K2 superposi-
tion, respectively (cf. Pan et al. 2023a). There are also fort-
nightly variations in the S2 group output that may be
nonphysical or related to changes in frictional interactions
over the neap–spring cycle, which causes considerable vari-
ation in salinity intrusion and bed friction (Kay and Jay
2003). Weekly fluctuations in the M2 and N2 groups are
caused by the strong overlap of their filters. The primary
variations (decreases) in M2 are driven by annual spring
flow events with smaller decreases in winter (Fig. 9a). Over-
all, there is good agreement in mean values between the
CWT_Multi and NS_Tide analyses in both the D1 and D2

bands. Phase results analogous to Figs. 7 and 8 are provided
in Figs. S4 and S5. Among the overtides, M4 amplitudes
show close agreement between CWT_Multi and NS_Tide,
while for MK3, mean amplitudes are similar within 10%,

FIG. 7. LCRE river inflow and tidal properties from April 2010 to June 2013: (a) river inflow from the main stem
Columbia and the Willamette in Portland Harbor; (b),(c) CWT_Multi analysis for species D1–D4, for Astoria and
Vancouver.

TABLE 1. RMSE for reconstruction of input data, by location and analysis method.

Lower Columbia River

Station NS_Tide RMSE (m) CWT_Multi species RMSE (m) CWT_Multi constituent RMSE (m) UTide RMSE (m)

Astoria 0.0919 0.0231 0.0475 0.0545
Vancouver 0.0790 0.0295 0.0753 0.0807

San Francisco Bay

Station UTide RMSE (m) CWT_Multi species RMSE (m) CWT_Multi constituent RMSE (m)

False River 0.0379 0.0148 0.003 34
San Francisco 0.0304 0.0169 0.002 79
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but time histories differ, probably because of a difference in
the constituents analyzed (Fig. S5).

2) VANCOUVER

Vancouver data are a useful test of analysis methods be-
cause subtidal water levels rise and fall by 3–6 m seasonally
(Fig. S1b; Jay et al. 2011, 2014), and constituent group ampli-
tudes vary by an order of magnitude (Figs. 10 and 11). Twice-
yearly variations occur for both the D1 and D2 species, but
are obscured by fluctuations due to river flow. Comparison of
the constituent group results in Figs. 10 and 11 to the species
results in Fig. 7c suggests that the constituent results illumi-
nate the diverse behaviors of individual constituents, but do

not follow rapid flow fluctuations as well as the species results
or NS_Tide, e.g., during the rapid rise in flow in spring 2011
or the winter floods early in 2012. CWT_Multi and NS_Tide
agree fairly well overall, including for major D3 and D4 overti-
des (Fig. 12), though the MK3 group shows some differences,
and there are tidal monthly oscillations in the NS_Tide out-
puts. It is typical of tidal rivers that overtides grow as the tide
propagates landward (e.g., Jay et al. 2014; Hoitink and Jay
2016; Guo et al. 2015); thus, overtides are larger at Vancouver
than Astoria. Analogous phase analysis results are provided
in Figs. S6 and S7. Interestingly, the M2 and O1 waves are
delayed by increased flow (as expected), but the K1 wave is
accelerated, suggesting O1–K1–M2 triad interactions; this

FIG. 8. CWT_Multi fortnightly amplitudes at Astoria for the (a) Q1, (b) O1, and (c) K1 constituent groups, with
comparison to NS_Tide; CWT_Multi 95% confidence limits estimated by the residual spectrum method (RSM) are
shown at the lower right of each panel, here, and in subsequent figures.

FIG. 9. CWT_Multi fortnightly amplitudes at Astoria for the (a) M2, (b) N2, and (c) S2 constituent groups, with
comparison to NS_Tide; mean CWT_Multi RSM 95% confidence limits are shown as in Fig. 7.
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illustrates the utility of extending CWT tidal analysis to the
constituent level.

3) RECONSTRUCTION AND DETIDING

Reconstruction of analyzed and residual (observed–
reconstructed) time series is vital for both error estimation
and providing a “detided” time series, i.e., a nontidal residual
(NTR). CWT_Multi reconstruction is quite successful for
Astoria; constituent and species reconstructions outperform
NS_Tide in the tidal band by ;1.93 and 43, respectively

(judged by RMSE; Table 1 and Fig. 13). At Vancouver,
NS_Tide and the CWT_Multi constituent group analyses have
similar reconstruction RMSE values, while the CWT_Multi
species analysis reduces the RMSE by 2.73. This result high-
lights the advantage of using wide species filters in a highly
nonstationary application. However, NS_Tide reconstructs
tidal monthly phenomena in addition to the main tidal bands,
while CWT_Multi focuses at present only on the main tidal
bands. A reconstruction based on UTide STHA provided
reconstruction results almost as good as the CWT_Multi

FIG. 10. CWT_Multi fortnightly amplitude results at Vancouver for the (a) Q1, (b) O1, and (c) K1 constituent
groups, with comparison to NS_Tide results; CWT_Multi RSM 95% confidence limits as in Fig. 8. The confidence lim-
its suggest that the Q1 and sometimes even the O1 results cannot be distinguished from zero; this is typical for river
tides during high-flow periods.

FIG. 11. CWT_Multi fortnightly amplitude results at Vancouver for the (a) M2, (b) N2, (c) and S2 constituent
groups, with comparison to NS_Tide results; CWT_Multi RSM 95% confidence limits are shown; the N2 and S2 confi-
dence limits sometimes include zero during high-flow periods. During the highest flows in the spring of 2011, even M2

is marginally significant, and the tide almost disappears.
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constituent solution at Astoria (Table 1), but the UTide
RMSE was still larger by ;2.3–2.73 (depending on the sta-
tion) than that from the CWT_Multi species solution. From
a spectral perspective, CWT_Multi and NS_Tide are both
effective at detiding (at least for the D1–D4 band analyses
by NS_Tide) (Fig. 14).

c. San Francisco Bay and Delta results

The closure of the False River channel between May and
November 2015 and a large discharge event between January
and March 2017 provide opportunities to examine nonstation-
ary tidal behavior in the SFBD system (Fig. 15). Most results
are from the False River station near the salt barrier, but com-
parison of False River and San Francisco results, the latter

less affected by river flow, offers insight into the use of the ad-
mittances provided by CWT_Multi.

1) FALSE RIVER

The effects of the two SFBD events (the salt barrier in
spring–summer 2015 and the flood of winter 2017) are gradual
enough that they can be resolved by the CWT_Multi constitu-
ent group analysis (Figs. 15 and 16); species analysis results
are shown in Fig. S8. CWT_Multi and UTide results for D1

and D2 constituent groups are similar; O1 and K1 results sug-
gest that barrier closure decreases D1 and D2 amplitudes by
tens of millimeters. Interestingly, all the D2 groups except M2

show large fluctuations for several weeks, while the salt bar-
rier was installed and removed (May and November 2015).

FIG. 12. CWT_Multi fortnightly amplitude results at Vancouver for (a) MK3 and (b) M4; the CWT_Multi RSM
95% confidence limits (as in Fig. 8) for both constituents sometimes include zero.

FIG. 13. (a),(b) Reconstruction results and RMSE for Astoria as provided by CWT_Multi and NS_Tide; and
(c),(d) as in (a) and (b), but for Vancouver.

L O BO E T AL . 981OCTOBER 2024

Unauthenticated | Downloaded 11/06/24 12:38 AM UTC



Phase results show a delay (larger phases) for both D1 and D2

constituent groups following barrier closure, suggesting reflec-
tion or that the tidal wave traveled a different, longer path
(see Fig. 4b, Figs. S9 and S10). The winter 2017 flood reduces
M2 amplitude at the peak of the flow (as expected, Fig. 16a).
CWT_Multi and UTide results for overtide constituent
groups MK3 and M4 are provided in Fig. S11. Again, the two
approaches generally agree; M4 is depressed during the bar-
rier closure, perturbed before the winter freshet, and aug-
mented during the high flows of January–February 2017. MK3

is slightly larger during the freshet.

Finally, CWT_Multi resolves the L2 group quite well; its
amplitude (0.023 m) is 4.7 times the 95% confidence limit,
and SNR 5 9.2 (Tables S5 and S7). Whether L2 and constit-
uent groups of similar magnitude (e.g., m2, J1, and NO1) can
be resolved by CWT_Multi in other situations depends on
background noise and constituent ratios in the system
analyzed.

Reconstruction and detiding results for the SF Bay stations
are similar to those for the LCRE stations. The CWT_Multi
constituent and UTide reconstructions have RMSE values
that are ;1.6–2.53 higher than the CWT_Multi species

FIG. 14. Water-level power spectra for (a) Vancouver and (b) Astoria, for the input data and the residual after
removal of tides, the latter for NS_Tide and the CWT_Multi constituent analysis.

FIG. 15. (a) Net delta outflow index (NDOI) river inflow to SF Bay; CWT_Multi fortnightly amplitude results at False
River for the (b) Q1, (c) O1, and (d) K1 constituent groups, with comparison to UTide; CWT_Multi RSM 95% confidence
limits are shown as in Fig. 8; Q1 is sometimes not distinguishable from zero, but O1 and K1 almost always are.
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reconstruction (Table 1). The residual spectra in Fig. 17 sug-
gest that CWT_Multi and UTide perform similarly (and quite
successfully) in the D1 and D2 bands, but that CWT_Multi
better captures the highly variable behavior of overtides. De-
tailed results for SF are provided in Figs. S12–S16.

2) ADMITTANCE

Calculation of a tidal admittance sometimes clarifies dy-
namics, by removing the influence of constituents not resolved
on those analyzed. Figure 18 illustrates this point. Using the
San Francisco gauge record as a reference, M2 admittance

amplitude drops by ;15% during the salt barrier period
(spring–summer 2015), but increases slightly (after an initial
drop) during the January–February 2017 flood period, despite
a decrease in M2 group amplitude at False River. This in-
crease implies that M2 amplitude was more affected (or af-
fected for a longer time) at San Francisco than at False River,
which is located away from the main Sacramento River flow.
If, on the other hand, M2 admittance amplitude is estimated
relative to h, a decrease is seen during the flood. Clearly,
there are interesting dynamics to investigate here, and the ad-
mittance can be a useful tool.

FIG. 16. CWT_Multi fortnightly amplitude results at False River for the (a) M2, (b) N2, (c) S2, and (d) L2 groups;
CWT_Multi RSM 95% confidence limits are shown; the N2 and L2 amplitudes are sometimes not distinguishable
from zero.

FIG. 17. Water-level power spectra for (a) False River and (b) San Francisco for the input data and for the residual
after removal of tides, the latter for NS_Tide and the CWT_Multi constituent analysis.
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In summary, SF Bay analysis results show that tidal esti-
mates from CWT_Multi and UTide are similar, but that
CWT_Multi provides better reconstruction and better re-
solves overtides, while providing excellent time resolution of
tidal behavior. The superior reconstruction ability of CWT_
Multi under nonstationary conditions is advantageous for de-
tiding and may be useful for short-term prediction, if future
forcing can be estimated. Its admittance calculation is also
useful for understanding dynamics.

d. Dynamic inference

We demonstrate the possibilities of CWT_Multi dynamic
inference using the K1 group in the highly nonstationary
Vancouver record (Fig. 19). Of interest at this station is the
diel flow variability introduced by variable power production
at Bonneville Dam, 60 km further landward (Jay et al. 2016).
The diel input (period 24 h) is irregular, but has the same fre-
quency as tidal constituent S1, which differs from K1 and P1

by 61 cycle per year. The power peaking signal propagates
downriver at least 140 km as a longwave (Jay et al. 2016).

Within the K1 group, K1, S1, and P1 can be separated with sea-
sonal filters, allowing the use of dynamic inference at the fort-
nightly scale. We see that S1 is almost always larger than P1

and sometimes nearly as large as K1 at Vancouver, and the
fortnightly estimates show considerable time variability, pre-
sumably due to variations in power production. The fact that
the fortnightly results resemble the seasonal results, but with
more detail, suggests that the fortnightly calculation is stable.
While these preliminary results are intriguing, a thorough
study of power peaking would require analysis of the flow
record to determine the time scales of flow variability, and
careful optimization of CWT_Multi for this situation, tasks
beyond our present scope. Further examples of dynamical in-
ference are provided in Figs. S18 and S19.

e. SNR and constituent selection

CWT_Multi provides SNR values and postanalysis constitu-
ent selection via the Munk–Hasselmann criterion and its mod-
ification [Eqs. (5a) and (5c), respectively]. For Astoria and
Vancouver, respectively, 26 and 25 of 32 constituents have

FIG. 18. M2 admittance amplitude at False River estimated relative to the tidal potential h and to the San Francisco
Station; see text for interpretation.

FIG. 19. Dynamic inference results for the K1 constituent group (constituents K1, S1, and P1) for Vancouver; end
effects are evident in the first and last 3 months. The pronounced annual cycle stems from the damping effects of the
annual river flow cycle. The unusually strong S1 signal (generally larger than P1) stems from diel power peaking at
Bonneville Dam.
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SNR$ 2 (Table S3). Using CR 5 1 in Eq. (5c), 29 of 32 are well
resolved (i.e., have Dfi # 0.03 cycle per day ’ 1 cycle per tidal
month) at Astoria and 28 of 32 are well resolved at Vancouver.
For False River and San Francisco, respectively, all but eight
and six SNR ratios are SNR$ 2. In terms of Eq. (5c), almost all
constituents are well resolved at both stations. CWT_Multi re-
sults are compared to NS_Tide and UTide in Tables S3–S7. The
seasonal variability of the LCRE data, including the near disap-
pearance of tides at Vancouver during high-flow periods, sug-
gests that time-variable SNR and constituent selection would be
a useful addition to the program. Both are possible using the
standard error estimates at each time step (Fig. 20).

f. Uncertainty analysis

CWT_Multi provides two approaches to assess the uncer-
tainty of parameter estimates: a moving block bootstrap
(MBB) method and a residual spectrum analysis (SRM). To
illustrate how MBB works, Fig. 20a shows a time series of
standard errors for M2 at Astoria, Figure 20b shows a histo-
gram of these results, and Fig. 20c shows that MBB standard
error estimates converge to about 0.0056 m as the number of
iterations increases; the corresponding estimate from the
SRM is 0.006 m. In contrast to Innocenti et al. (2022), the
MBB standard error for M2 varies only slightly after about
the first 300 realizations. This pattern may result from a differ-
ence between HA (used by Innocenti et al.) and wavelet anal-
ysis. HA sets up a least squares problem over the whole
length of the record, while CWT_Multi estimates are local.
CWT_Multi constituent group estimates are made within a
time window that is smaller than the residual blocks of the
MBB method, but the frequency response is narrow enough
(in the spectral sense) that the signal is much more energetic
than the background noise. Thus, the CWT filters see approxi-
mately the same data, regardless of the orders of the blocks.

Another way to explain this result is that it stems from the linear-
ity of wavelet filters}the estimate for any given filter is nearly in-
dependent of the content of the signal in other spectral bands.

Interestingly, MBB suggests a smaller uncertainty estimate
than the SRM approach for the constituent analysis, but a
larger confidence interval for species analysis (Table 2). This
occurs because the species filters are relatively wide and cap-
ture considerable tidal energy near their central frequency.
This leads to low energy in the residual data around their re-
spective frequencies and low SRM estimates of error based
on residual variance.

MBB captures this situation differently, by constructing da-
taset realizations that contain different background energy
levels in different local windows. Thus, the wide frequency re-
sponse of wide CWT filters causes them to be susceptible to
uncertainty based on the variable noise around tidal bands.
From these results, the desire for a conservative evaluation of
uncertainty in tidal properties suggests the use of MBB for
species analysis confidence intervals, whenever computational
constraints allow. Interestingly, the width of the filters that in-
creases MBB uncertainty estimates facilitates reconstruction
under nonstationary conditions. Thus, while tidal species esti-
mates may be uncertain in the bootstrap sense, that does im-
pair their utility. Further confidence limit results are provided
in Tables S7 and S8.

g. Computation time

CWT_Multi computation time for one time series (Astoria,
length 3.25 year) with reconstruction, inference, and SRM error
estimates was 44 s and without inference was 32 s. If, however,
the MBB is implemented, computing time is about 5 h. UTide
computation time for the 4-yr record False River record was
44 s. These times are for a laptop with four cores running
at 1.6 GHz and 8 GB of RAM. NS_Tide required 494 and

FIG. 20. MBB error analysis for M2 at Astoria: (a) time series of standard error; (b) histogram of standard
error; (c) convergence of minimum, mean, and maximum standard error estimates over the 1000 MBB resamples as a
function of number of bootstrap samples.
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305 s for Astoria (53 constituents) and Vancouver (39 con-
stituents), respectively, for 3.25-yr records, using four cores
at 2.7 GHz with 32 GB of RAM.

5. Discussion

a. A well-formed tidal analysis method

New tidal analysis methods are being developed at a rapid
rate (cf. Jay et al. 2022). Most of these have potential but are
of limited utility at present, due to lack of flexibility, error es-
timates and other tidal analysis components, and/or excessive
computing time. We suggest that a well-formed tidal analysis
method should provide, in addition to amplitude and phase
estimates at a set of tidal frequencies, 1) a constituent selection
criterion suitable for nonstationary data; 2) flexibility with re-
spect to the constituents or frequencies analyzed; 3) accommo-
dation of gappy data; 4) analysis of nonstationarity on a variety
of time scales; 5) calculation of astronomical phases; and 6) esti-
mation of SNR and confidence limits. Other desirable proper-
ties include calculation of tidal admittances, inference, multiple
viewpoints of the data analyzed, time-dependent uncer-
tainty estimates, and an ability to analyze irregularly spaced
and extremal data. Functionality for infrequently sampled
data (e.g., from altimetry) is also useful. Our aim here is
to emulate Pawlowicz et al. (2002), Foreman et al. (2009),
Codiga (2011), and Matte et al. (2013) by providing a practi-
cal code, CWT_Multi, suitable for users that are not tidal
specialists. Accordingly, we provide most of the above ele-
ments, but CWT_Multi cannot analyze extremal (high–low)
data because it requires a uniform sampling interval, and it
does not presently provide time-variable uncertainty estimates.

b. The role of CWT_Multi

These “desirable” tidal analysis properties emerge from
consideration of five dilemmas that arise in the analysis of
nonstationary tidal records. Understanding how CWT_Multi
navigates these problems provides a useful overview of this
work and, we hope, a roadmap for future efforts. The first di-
lemma is the trade-off between time and frequency resolution
expressed by the Heisenberg uncertainty principle (Rioul and
Vetterli 1991; Flinchem and Jay 2000):

Df 3 Dt $ (4p)21, (6)

where Df and Dt are the normalized frequency and time uncer-
tainties, respectively. All tidal analysis methods evade Eq. (6)
to some degree by asserting that the frequencies are a priori
known, but the time-dependent behavior of closely spaced fre-
quencies remains difficult to resolve, because time dependence
is equivalent to the spreading of spectral peaks. CWT_Multi’s

separation of multiple tidal constituents within tidal species
changes the use of Eq. (6), relative to earlier CWT approaches.
Instead of scaling filter lengths inversely with frequency to
optimally resolve time variations and limit redundancy, filter
lengths are independent of absolute frequency because of the
need to resolve closely spaced (at 1–2 cycles per month) con-
stituents within each tidal species. All frequencies have the
same decimation, and outputs are highly redundant, which fa-
cilitates data analysis and smoothing of outputs for plotting.

Second, the nontidal components of a signal limit the fre-
quency resolution of tidal signals. The conventional rule (the
Rayleigh criterion RC) for constituent selection in HA re-
quires that Df ’ LOR21, a restatement of Eq. (6). Thus, two
frequencies differing by 1 cycle per year require a 1-yr record
for their resolution, for RC 51. MH64 shows that the presence
of noise fundamentally changes the way that frequency selec-
tion should be considered. Taking Dt ’ (LOR/const), the
MH64 criterion [Eq. (5a)] is a generalization of Eq. (6). Ap-
plying Eq. (5a) is difficult in HA, because the SNR is not
known prior to analysis. Here, CWT linearity guarantees that
CWT_Multi outputs at any given frequency are independent
of those at other frequencies. Thus, constituent selection via
Eqs. (5a) and (5c) can be performed as a postprocessing step,
rather than through iterative analyses, as is desirable with
HA. Finally, CWT_Multi focuses on resolving tidal species on
time scales of a few days and constituent groups on a fort-
nightly basis. This is an extension of the idea in Jay and
Flinchem (1997) that tidal species are more fundamental than
constituents}CWT_Multi views the frequency structure of a
time series on multiple time scales. If the system is very non-
stationary, constituent estimates are not meaningful, and
CWT_Multi allows the user to evaluate this issue.

Third, there is the question of how much physics to put into
an analysis method. Most tidal analysis approaches assume
that tidal frequencies are known, most HA methods relate
constituent phases to the moon’s passage over the Greenwich
meridian, and some use the astronomical tidal potential (e.g.,
Munk and Cartwright 1966) as a basis for analysis. With non-
stationary tides, information about nontidal forcing is perti-
nent, but should it be included directly in the analysis or
employed, ex post facto, during the analysis of the output?
CWT_Multi leaves the nontidal forcing for postprocessing
analyses, but calculates complex admittances using the astro-
nomical tidal potential and/or data from a coastal reference
station, facilitating further analysis.

Fourth, tidal analysis methods confront the issue of prediction,
historically the central purpose of tidal analysis (Cartwright 1999;
Reidy 2008). Typical HA codes assume stationarity and use
sine and cosine basis functions of infinite extent in time to al-
low predictions and hindcasts outside of the analysis period.
An additional assumption that the behavior of constituents on
time scales of 4.4–18.6 years can be estimated from the tidal
potential is also questionable (Ray 2006), but is usually a mi-
nor problem in comparison with the assumption of stationar-
ity. Thus, whether prediction is sensible is a physics question,
external to any analysis code. The finite (in time) wavelets
used by CWT_Multi do not include information about exter-
nal forcing, though the tidal properties it outputs can be

TABLE 2. Comparison of confidence limits for Astoria for the
SRM and the MBB, based on 750 permutations. The M2 and D2

results are from the constituent and species analyses, respectively.

Method M2 SRM M2 MBB D2 SRM D2 MBB

CI (m) 0.005 95 0.003 23 0.005 34 0.0768
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regressed against external forcing (Jay et al. 2011, 2016). Thus,
NS_Tide is a more practical prediction tool, because it builds
nontidal forcing like river flow into its basis functions. Overall,
the primary niches for CWT_Multi are to 1) facilitate dynamical
analyses, 2) improve the time resolution of constituent group var-
iability, and 3) reconstruct and detide data. CWT_Multi excels at
these tasks because it offers outputs on multiple time scales, can
respond to rapid changes in tidal properties, and does not inject a
model of physical forcing into the basis functions.

Further, it is vital to have solid uncertainty estimates. Here,
we provide both MBB (Innocenti et al. 2022) for amplitudes
and a simpler and faster spectral residual analysis (SRM;
Pawlowicz et al. 2002; Codiga 2011) for both amplitudes
and phases. However, the optimum approach for phase con-
fidence limits is not altogether obvious, because phase is a
circular variable, to which the assumption of a normal dis-
tribution of residuals, central to the SRM, does not apply
(Fischer 1993). Also, the SNR and confidence limits calcu-
lated by CWT_Multi are global (apply to entire time series),
whereas these quantities vary over time (Fig. 19), as non-
tidal processes, data quality, and the astronomical tidal forc-
ing vary. Thus, more work is needed on error analyses for
nonstationary tides.

The above dilemmas constrain the choice of solution ap-
proach. With CWT_Multi, we maintain the superior time res-
olution of nonstationary tidal species provided by previous
CWT codes, while also estimating the time-dependent behav-
ior of a limited number of major tidal constituents in tidal spe-
cies D1–D4. However, it is advisable to analyze nonstationary
signals by multiple methods (Jay et al. 2014). Thus, we also
provide power spectra, as well as CWT outputs on multiple
time scales to maximize time resolution of nonstationary be-
havior. Comparison of CWT_Multi results to outputs from
harmonic programs will also be useful in many circumstances.

6. Conclusions

Jay and Kukulka (2003) argued that nonstationary tidal
behavior, though requiring new analysis techniques, provides
an opportunity to analyze tidal dynamics in a new way.
CWT_Multi expands on our ability to analyze these dynamics
by providing improved access to the statistics of short-term
tidal variability of constituents and, for highly nonstationary
data, improved stability, signal-to-noise ratios, and recon-
struction. CWT_Multi is flexible, and its filter lengths can be
adjusted by the adventurous user.

Analyses of stations in San Francisco Bay and the Lower
Columbia River suggest that for situations with moderate
nonstationarity, constituent solution results will be similar to
those from normal HA programs run in STHA mode. In sit-
uations with stronger nonstationarity, CWT_Multi still cap-
tures the time dependence of individual constituents, e.g., the
behavior of K1, S1, and P1 at Vancouver. Thus, CWT_Multi is
a powerful, multipurpose tool that excels in dynamical analy-
ses because it captures tidal species and constituent behavior
on short time scales not accessible with most analysis codes.

Success in reconstruction/detiding is one important mea-
sure of a tidal analysis routine. Reconstruction based on the

CWT_Multi species solution outperforms other approaches
when the original data are strongly nonstationary, because it
follows rapid nonstationarity and includes more of the tidal
spectrum. For mildly nonstationary data, the constituent solu-
tion performs better than the species solution, probably because
it follows the divergent behavior of individual constituents.
Finally, CWT_Multi implements a modified MH64 frequency
selection approach and provides a new form of inference
(dynamic inference) that is based on evolving time series
properties, not user input. Overall, CWT_Multi is a useful
tool that can be employed to improve our study of nonsta-
tionary tides and related oceanographic phenomena.
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