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a b s t r a c t

Motorists are required to interact with both roadway infrastructure and various users. The
complexity of the driving task in certain scenarios can influence the frequency and severity
of crashes. Turning vehicles at intersections, for example, pose a collision risk for both
motorized and non-motorized road users. The primary goal of this paper is to investigate
the underlying factors which contribute to right-turn crashes at signalized intersections.
Five years of crash data across Oregon were collected. A random parameters binary logit
model was developed to predict the likelihood of whether a crash resulted in an injury
or fatality. It was found that 14 variables were statistically significant in contributing to
crash severity. The results obtained show that dry conditions and a posted speed limit of
30 mi/hr or 35 mi/hr contributed to a higher percentage of severe crashes, while fixed-
object crashes and snowy weather had a higher likelihood of resulting in no injury crashes.
Time-of-day (9:00 p.m. to 6:00 a.m.), lighting conditions (dusk), gender (male driver), crash
type (vehicle–pedestrian and rear-end), and driver-level crash cause (driver sped too fast
for conditions, driver did not yield right-of-way, and driver disregarded the traffic control
device) all led to an increase in probability of a fatal or injury crash. The vehicle–pedestrian
conflict variable had the highest impact on increasing the probability of such a crash while
turning right at a signalized intersection. This observation is important because right turns
are often permitted during the pedestrian walk and clearance indications, and often drivers
do not give right-of-way to pedestrians.
� 2023 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Crash fatalities in the U.S. have slightly decreased (less than 1.0%) in recent years; however, this decline is only marginal
(National Highway Traffic Safety Admininistration, 2018). Crash propensity remains a substantive issue within the United
States, and society primarily experiences the impacts of crashes through economic costs. In 2010, the United States spent
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nearly $242 billion dollars on crashes (Blincoe et al., 2015) which includes various aspects, such as medical costs, congestion,
property damage, and legal expenses. Crashes represent an enormous expense to society, and to understand how to reduce
these costs one must investigate the factors that influence the occurrence of crashes. Often, population and congestion are
suggested as contributing factors to these serious crashes; however, the complexity of the built environment can also greatly
influence the frequency of crashes resulting in serious injuries.

Specifically, signalized intersections play a significant role in serious crashes as they require drivers to come into conflict
with multiple roadway users (i.e., pedestrians, bicyclists, and vehicles); variations in geometry (i.e., lane configuration); and
signal phasing (i.e., permitted movements). Furthermore, these factors and a motorist’s ability to navigate them become
more problematic when performing turning movements. Motorists who make turns at signalized intersections are respon-
sible for maintaining situational awareness while interacting with signal phasing, ensuring correct usage of the right-of-way
for the impending movement (i.e., when the right turn is permitted), and yielding to movements of conflicting pedestrians
and bicyclists. On average, each year more than 24% of roadway fatalities occur at signalized intersections, with about 2% as a
result of right-turn crashes (Hurwitz et al., 2018; Jashami et al., 2020). This trend is growing and is recognized as a significant
influence on the overall frequency of serious crashes, particularly for vulnerable road users such as pedestrians and
bicyclists.

In light of these trends, this work seeks to better understand the factors that lead to the severity of right-turn crashes at
signalized intersections. Although the work on left-turn contributing factors is vast, the application of a crash severity anal-
ysis in the context of right turns is limited. The current study aims to fill this gap in literature by identifying significant con-
tributory crash severity factors in right-turn crashes at signalized intersections.

2. Literature review

Currently there is limited research that directly supports factors that play into right-turn crashes; however, some
researchers and practitioners have investigated crash data and driver behavior within on-road environments to determine
how vehicle speeds, roadway conditions, demographics, and human factors contribute to the risks that could lead to road-
way crashes.

Speed has consistently been a significant factor that influences presence and severity of crashes within the roadway para-
digm. In 2017, speeding accounted for approximately 26% of all traffic fatalities (National Highway Traffic Safety
Administration, 2019). While this percentage accounts for many roadway-linked fatal crashes, some can be attributed to
intersections. Specifically, with intersections serving as a connection point for many roadway users, speed plays a significant
role to the propensity of crash likelihood involving vehicles and vulnerable road users. For example, vehicles making turns,
either right or left, are more susceptible to conflicts with vulnerable road users and with increased speed or distraction, are
likely to intensify the crash likelihood (Jashami et al., 2017; Abadi et al., 2017).

In 2015, the Federal Highway Administration (FHWA) published pedestrian safety countermeasures and indicated that
within right-turn lanes, higher speeds of right-turning vehicles increased the risk to pedestrians who were crossing
(Federal Highway Administration, 2015). Keller et al. (2006) conducted a study of crash data in four different locations in
Florida to determine the factors that relate to different types of crashes at signalized intersections based on their relative
importance. Based on the data sets reviewed, right-turn crashes were significantly influenced by the traffic volume and num-
ber of lanes on the mainline. Additionally, the presence of exclusive left-turn lanes on the major roadway were statistically
significant, which could indicate the potential conflict between the left-turn movement from the opposite direction and the
right-turn movement from the main movement. On-road experimental studies have also been used to determine how var-
ious factors influence risk-taking behavior by drivers that could lead to right-turn crashes. Summala et al. (1996) evaluated
driver visual scanning behavior at T-intersections when making right turns. The study found that drivers turning right were
less inclined to visually observe aspects of the intersection in comparison to left-turning vehicles, which could indicate a
higher crash potential. Wu and Xu (2017) used SHRP 2 Naturalistic Driving Study (NDS) data to evaluate influencing factors
for right-turn drivers. Using 300 NDS trips at six signalized intersections, Wu and Xu (2017) found that higher conflicting
traffic movements resulted in sharper deceleration closer to the intersection and that with a higher presence of pedestrians
crossing, drivers’ attention was more prominent. Additionally, the study found that drivers generally had lower observations
and higher accelerations under permitted right-turn conditions, which is behavior that could lead to right-turn crashes and
put pedestrians at higher risk. Furthermore, the data showed that only 50% of drivers yielded to pedestrians when conflicting
with them on the right-turn movement. Haran et al. (2013) evaluated 10 years of right-turn crash data to determine what
factors play a role and found that the higher prevalence of crashes occurred at T-junctions and in rural conditions. This coin-
cides with the understanding that drivers may be less likely to be focused at intersections with reduced conflict points (i.e.,
T-intersection only has three legs) or locations where there is minimal traffic (i.e., rural conditions). More, right-turn crashes
were shown to have a higher presence during PM peak hour conditions, indicating that fatigue could be contributing to the
crashes. Choi (2010) analyzed crash causalities using data collected at crash scenes from 2005–2007. Among crashes at inter-
sections, 52.5 percent occurred at intersections with at least one traffic signal, and 1.8% of vehicles at these signalized inter-
sections were turning right before the crash. NHTSA did not find any variables that were statistically significant or critical
reasons of driver error associated with the right-turn crashes. Additionally, no other analysis of statewide signalized inter-
section data by turning movement was found in the literature.
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While there has been some research regarding the various factors that influence right-turn crashes, there is still a lack of
substantial support that indicates direct factors, especially when conflicts with vulnerable road users are present. Therefore,
the primary goal of this paper is to fill this gap in literature by investigating the underlying factors which contribute to right-
turn crash severity at signalized intersections.

3. Data

Data used for the study consisted of police- and self-reported crash data in the state of Oregon. With recent concerns of
temporal instability in parameter estimates across years of crash data (Behnood and Mannering, 2015; Mannering, 2018),
this work utilizes five years of crash data (2012 to 2016). This study does not focus on temporal instability of parameter esti-
mates, as this was beyond the scope.

To focus specifically on right-turn crashes at signalized intersections, the crash data was disaggregated based on two dis-
tinct aspects: (1) the crash occurred at a signalized intersection and (2) movement of the vehicle was turning right. Upon
disaggregation, the resulting data set contained 5,381 right-turn crashes at signalized intersections. Next, the distribution
of maximum crash severities was determined. The selection of crash severity is based on determining significant factors
leading to the maximum injury severity sustained in the crash (i.e., crash severity) regardless of the participant. For example,
due to the nature of these crashes, it may not always be the driver that sustains the most severe injury (e.g., vehicle–pedes-
trian crashes). Fig. 1 shows the distribution of maximum crash severity.

3.1. Variable selection

Using the Oregon crash data, various indicator variables were created to be tested for statistical significance in the crash
severity model. Variables related to various crash characteristics were included. Table 1 shows the crash-, vehicle-, and
driver-related variables present in the Oregon crash data. Of the right-turn crashes at signalized intersections, the majority
occurred during midday (41.3%) and evening (28.6%) time periods. In regards to roadway classification, 49.5% of crashes hap-
pened on urban principal arterials, 33.4% took place on urban minor arterials, and 7.1% occurred on urban major collectors.
As for posted speed limits, 27.2% of crashes happened at intersections where the associted posted speed limit is 30 mi/hr or
35 mi/hr. Of the intersection types where these crashes happened, 75.2% occurred at cross (4-legged) intersections and 19.2%
occurred at 3-legged intersections. Considering weather condition, the majority of crashes happened during clear weather
(68.4%), while 15.3% happened during rainy conditions and 3.0% happened during snowy conditions. 72.0% of crashes
occurred on dry surface conditions, 21.5% happened on wet surface conditions, and 2.8% took place on icy surface conditions.
Most crashes happened during daylight (72.2%), while 19.2% happened at dark where street lights were present and 4.6%
happened at dusk. Lastly, just over 3.0% of crashes involved the use of alcohol.

Regarding vehicle-related variables, the first variable is related to the number of vehicle involved in the crash. In addition
to considering the variable as continuous, indicators were created for single-vehicle crashes (22.3%) and multi-vehicle
crashes (77.7%). The other vehicle-related variable was type of vehicle, in which 90.5% were passenger vehicles and 4.6%
were truck tractor trailers.

Fig. 1. Crash severity proportions of right-turn crashes at signalized intersections.
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Table 1
Crash data variables for model development.

Variable Frequency (%) Fatal or Injury (%) No Injury (%)

Crash-Related Variables
Time-of-Day
1 if 6:00 a.m. to 10:00 a.m. 818 (15.2%) 321 (14.8%) 497 (15.5%)
1 if 10:00 a.m. to 4:00 p.m. 2,222 (41.3%) 859 (39.5%) 1,363 (42.5%)
1 if 4:00 p.m. to 8:00 p.m. 1,538 (28.6%) 640 (29.4%) 898 (28.0%)
1 if 8:00 p.m. to 6:00 a.m. 770 (14.3%) 346 (15.9%) 424 (13.2%)
Unknown 33 (0.6%) 9 (0.4%) 24 (0.7%)
Roadway Classification
1 if Urban Principal Arterial 2,662 (49.5%) 1,085 (49.9%) 1,577 (49.2%)
1 if Urban Minor Arterial 1,799 (33.4%) 711 (32.7%) 1,088 (33.9%)
1 if Urban Major Collector 381 (7.1%) 148 (6.8%) 233 (7.3%)
1 if Rural Major Collector 9 (0.2%) 4 (0.2%) 5 (0.2%)
1 if Rural Minor Arterial 23 (0.4%) 6 (0.3%) 17 (0.5%)
1 if Rural Minor Collector 1 (0.0%) 1 (0.0%) 0 (0.0%)
1 if Grade-Separated Ramp (Rural Interstate) 4 (0.1%) 1 (0.0%) 3 (0.1%)
1 if Rural Principal Arterial 46 (0.9%) 16 (0.7%) 30 (0.9%)
1 if Urban Local Road 80 (1.5%) 33 (1.5%) 47 (1.5%)
1 if Urban Minor Collector 1 (0.0%) 1 (0.0%) 0 (0.0%)
1 if Grade-Separated Ramp (Urban Interstate) 186 (3.5%) 95 (4.4%) 91 (2.8%)
1 if Grade-Separated Ramp (Urban Freeway/Expressway) 188 (3.5%) 74 (3.4%) 114 (3.6%)
Unknown or Not Reported 1 (0.0%) 0 (0.0%) 1 (0.0%)
Posted Speed Limit
1 if 5 mi/hr to 15 mi/hr 3 (0.1%) 2 (0.1%) 1 (0.0%)
1 if 20 mi/hr or 25 mi/hr 340 (6.3%) 160 (7.4%) 180 (5.6%)
1 if 30 mi/hr or 35 mi/hr 1,463 (27.2%) 656 (30.2%) 807 (25.2%)
1 if 40 mi/hr or 45 mi/hr 268 (5.0%) 123 (5.7%) 145 (4.5%)
1 if 50 mi/hr or 55 mi/hr 212 (3.9%) 106 (4.9%) 106 (3.3%)
1 if 60 mi/hr or 65 mi/hr 12 (0.2%) 5 (0.2%) 7 (0.2%)
No Statutory Speed Limit 130 (2.4%) 55 (2.5%) 75 (2.3%)
Unknown or Not Reported 2,953 (54.9%) 1,083 (49.0%) 1,870 (58.9%)
Intersection Type
1 if 2-Legged Intersection 4 (0.1%) 2 (0.1%) 2 (0.1%)
1 if 3-Legged Intersection 1,034 (19.2%) 420 (19.3%) 614 (19.2%)
1 if 4-Legged Intersection 74 (1.4%) 37 (1.7%) 37 (1.2%)
1 if 5-Legged Intersection 186 (3.5%) 61 (2.8%) 125 (3.9%)
1 if 6-Legged Intersection 20 (0.4%) 10 (0.5%) 10 (0.3%)
1 if Cross Intersection 4,048 (75.2%) 1,642 (75.5%) 2,406 (75.0%)
1 if Unknown or Not Reported 15 (0.3%) 3 (0.1%) 12 (0.4%)
Crash Type
1 if Angle 67 (1.2%) 35 (1.6%) 32 (1.0%)
1 if Backing 1 (0.0%) 1 (0.0%) 0 (0.0%)
1 if Fixed-Object 286 (5.3%) 81 (3.7%) 205 (6.4%)
1 if Head-On 2 (0.0%) 1 (0.0%) 1 (0.0%)
1 if Miscellaneous 7 (0.1%) 6 (0.3%) 1 (0.0%)
1 if Non-Collision 16 (0.3%) 13 (0.6%) 3 (0.1%)
1 if Parking Maneuver 15 (0.3%) 3 (0.1%) 12 (0.4%)
1 if Vehicle–Pedestrian 379 (7.0%) 374 (17.2%) 5 (0.2%)
1 if Rear-End 444 (8.3%) 180 (8.3%) 264 (8.2%)
1 if Sideswipe (Opposing Direction) 4 (0.1%) 3 (0.1%) 1 (0.0%)
1 if Sideswipe (Same Direction) 43 (0.8%) 6 (0.3%) 37 (1.2%)
1 if Turning Movement 4,117 (76.5%) 1,472 (67.7%) 2,645 (82.5%)
Weather Condition
1 if Clear 3,679 (68.4%) 1,468 (67.5%) 2,211 (69.0%)
1 if Cloudy 525 (9.8%) 273 (12.6%) 252 (7.9%)
1 if Fog 38 (0.7%) 15 (0.7%) 23 (0.7%)
1 if Rain 823 (15.3%) 348 (16.0%) 475 (14.8%)
1 if Sleet 5 (0.1%) 3 (0.1%) 2 (0.1%)
1 if Snow 160 (3.0%) 32 (1.5%) 128 (4.0%)
Unknown or Not Reported 151 (2.8%) 36 (1.7%) 115 (3.6%)
Road Surface Condition
1 if Dry 3,877 (72.0%) 1,619 (74.4%) 2,258 (70.4%)
1 if Ice 148 (2.8%) 31 (1.4%) 117 (3.6%)
1 if Snow 63 (1.2%) 12 (0.6%) 51 (1.6%)
1 if Wet 1,159 (21.5%) 484 (22.3%) 675 (21.1%)
Unknown or Not Reported 134 (2.5%) 29 (1.3%) 105 (3.3%)
Lighting Condition
1 if Daylight 3,883 (72.2%) 1,531 (70.4%) 2,352 (73.4%)
1 if Dark With Street Lights 1,035 (19.2%) 445 (20.5%) 590 (18.4%)
1 if Dark Without Street Lights 90 (1.7%) 30 (1.4%) 60 (1.9%)
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Table 1 (continued)

Variable Frequency (%) Fatal or Injury (%) No Injury (%)

1 if Dusk 249 (4.6%) 115 (5.3%) 134 (4.2%)
1 if Dawn 114 (2.1%) 49 (2.3%) 65 (2.0%)
Unknown or Not Reported 10 (0.2%) 5 (0.2%) 5 (0.2%)
Alcohol Involved
1 if Yes 179 (3.3%) 84 (3.9%) 95 (3.0%)

Vehicle-Related Variables
Number of Vehicles
Number of Vehicles (Continuous) NA NA NA
1 if Single-Vehicle Crash 1,199 (22.3%) 983 (54.8%) 216 (6.7%)
1 if Multi-Vehicle Crash 4,182 (77.7%) 1,192 (54.8%) 2,990 (93.3%)
Vehicle Type
1 if Moped, Minibike, Motor Scooter, or Motor Bicycle 4 (0.1%) 3 (0.1%) 1 (0.0%)
1 if Motorcycle 35 (0.7%) 29 (1.3%) 6 (0.2%)
1 if Motorcycle (Dirt Bike) 9 (0.2%) 8 (0.4%) 1 (0.0%)
1 if Motorhome 6 (0.1%) 4 (0.2%) 2 (0.1%)
1 if Bus (Other) 41 (0.8%) 11 (0.5%) 30 (0.9%)
1 if Forklift or Backhoe 1 (0.0%) 1 (0.0%) 0 (0.0%)
1 if Passenger Vehicle 4,869 (90.5%) 2,018 (92.8%) 2,851 (88.9%)
1 if School Bus (Includes Van) 14 (0.3%) 8 (0.4%) 6 (0.2%)
1 if Truck Tractor 249 (4.6%) 53 (2.4%) 196 (6.1%)
1 if Truck with Non-Detachable Bed or Panel 64 (1.2%) 17 (0.8%) 47 (1.5%)
Unknown Vehicle Type 89 (1.7%) 23 (1.1%) 66 (2.1%)

Driver-Related Variables
Driver Resident Status
1 if Not an Oregon Resident 353 (6.6%) 132 (6.1%) 221 (6.9%)
1 if Oregon Resident and Unknown Distance from Home 26 (0.5%) 2 (0.1%) 24 (0.7%)
1 if Oregon Resident Within 25 Miles of Home 3,636 (67.6%) 1,837 (84.5%) 1,799 (56.1%)
1 if Oregon Resident More Than 25 Miles from Home 294 (5.5%) 134 (6.2%) 160 (5.0%)
Unknown if Oregon Resident 1,072 (19.9%) 70 (3.2%) 1,002 (31.3%)
Driver Gender
1 if Male 2,522 (46.9%) 1,182 (54.3%) 1,340 (41.8%)
Driver Age
Age (Continuous) NA NA NA
1 if 16 Years to 20 Years 320 (5.9%) 166 (7.6%) 154 (4.8%)
1 if 21 Years to 24 Years 348 (6.5%) 186 (8.6%) 162 (5.1%)
1 if 25 Years to 34 Years 745 (13.8%) 400 (18.4%) 345 (10.8%)
1 if 35 Years to 44 Years 644 (12.0%) 354 (16.3%) 290 (9.0%)
1 if 45 Years to 54 Years 645 (12.0%) 339 (15.6%) 306 (9.5%)
1 if 55 Years to 64 Years 680 (12.6%) 331 (15.2%) 349 (10.9%)
1 if Greater Than or Equal to 65 Years 670 (12.5%) 307 (14.1%) 363 (11.3%)
Unknown Age or Not Reported 1,329 (24.7%) 92 (4.2%) 1,237 (38.6%)
Reported Driver-Level Crash Cause
1 if Careless Driving 58 (1.1%) 37 (1.7%) 21 (0.7%)
1 if Driver Did Not Yield Right-of-Way 1,309 (24.3%) 890 (40.9%) 419 (13.1%)
1 if Driver Disregarded Other Traffic Control Device 24 (0.4%) 5 (0.2%) 19 (0.6%)
1 if Driver Disregarded Traffic Control Device (Signal) 142 (2.6%) 64 (2.9%) 78 (2.4%)
1 if Driver Sped Too Fast For Conditions 226 (4.2%) 80 (3.7%) 146 (4.6%)
1 if Driver Drowsy/Fatigued/Sleepy 3 (0.1%) 2 (0.1%) 1 (0.0%)
1 if Driver Exceeding Posted Speed Limit 5 (0.1%) 4 (0.2%) 1 (0.0%)
1 if Driver Left of Center on Two-Way Road 4 (0.1%) 1 (0.0%) 3 (0.1%)
1 if Driver Failed to Avoid Vehicle Ahead 19 (0.4%) 19 (0.9%) 0 (0.0%)
1 if Followed Too Close 130 (2.4%) 54 (2.5%) 76 (2.4%)
1 if Driver Improperly Changed Lanes 20 (0.4%) 4 (0.2%) 16 (0.5%)
1 if Driver Improperly Overtook 63 (1.2%) 8 (0.4%) 55 (1.7%)
1 if Driver was Inattentive 29 (0.5%) 15 (0.7%) 14 (0.4%)
1 if Driver Made Improper Turn 1,026 (19.1%) 295 (13.6%) 731 (22.8%)
1 if No Cause Associated 2,160 (40.1%) 621 (28.6%) 1,539 (48.0%)
1 if Other (Not Improper Driving) 5 (0.1%) 4 (0.2%) 1 (0.0%)
1 if Other (Improper Driving) 51 (0.9%) 15 (0.7%) 36 (1.1%)
1 if Phantom/Non-Contact Vehicle 3 (0.1%) 1 (0.0%) 2 (0.1%)
1 if Physical Illness 2 (0.0%) 2 (0.1%) (0.0%)
1 if Reckless Driving 56 1.0% 31 (1.4%) 25 (0.8%)
1 if Driver View Obscured 1 0.0% 1 (0.0%) 0 (0.0%)
1 if Wrong Way on One-Way Roadway 4 0.1% 2 (0.1%) 2 (0.1%)
Driver-Level Crash Cause Unknown or Not Reported 41 (0.8%) 20 (0.9%) 21 (0.7%)
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The final set of variables considered during model development were driver-related. Of the drivers involved a crash, 67.6%
were Oregon residents within 25 miles of home, 66% were not an Oregon resident, and 46.9% were male. Ages of drivers
remained fairly consistent across age groups, where substantially smaller proportions of younger drivers were observed;
specifically, 5.9% between 16 years and 20 years, and 6.5% between 21 years and 24 years. The final driver-related variable
considered was driver-level crash cause. This information is unique to Oregon crash data, in which crash causes are recorded
at the driver-level. The most occurring driver-level crash cause was not yielding the right-of-way (24.3%), followed by impro-
per turns (19.1%) and speeding too fast for conditions (4.2%).

Using a forward stepwise procedure which considers variables presented in Table 1, 14 variables were found to be sig-
nificant contributing factors to crash severity. Summary statistics of variables found to be significant are presented in Table 2,
while Table 3 shows the descriptive statistics of significant variables by severity.

Table 3
Summary statistics of significant variables by severity.

Variable Mean Standard Deviation Min Max

Fatal or
Injury

No
Injury

Fatal or
Injury

No
Injury

Fatal or
Injury

No
Injury

Fatal or
Injury

No
Injury

Time-of-Day
1 if 9:00 p.m. to 6:00 a.m., 0 Otherwise 0.159 0.132 0.366 0.339 — — — —
Lighting Condition
1 if Dusk, 0 Otherwise 0.053 0.042 0.224 0.200 — — — —
Weather Condition
1 if Snowy, 0 Otherwise 0.015 0.040 0.120 0.196 — — — —
Road Surface Condition
1 if Dry Surface, 0 Otherwise 0.744 0.704 0.436 0.456 — — — —
Posted Speed Limit
1 if 30 mi/hr or 35 mi/hr 0.302 0.252 0.459 0.434 — — — —
1 if 40 mi/hr or 45 mi/hr 0.059 0.043 0.236 0.204 — — — —
Crash Type
1 if Fixed-Object Crash, 0 Otherwise 0.037 0.064 0.189 0.245 — — — —
1 if Vehicle–Pedestrian Crash, 0 Otherwise 0.172 0.002 0.377 0.040 — — — —
1 if Rear-End Crash, 0 Otherwise 0.083 0.082 0.276 0.275 — — — —
Driver Characteristics
1 if Male, 0 Otherwise 0.543 0.418 0.498 0.493 — — — —
Age 44.071 46.010 17.986 18.923 16 16 96 97
Reported Driver-Level Crash Cause
1 if Driver Sped Too Fast For Conditions, 0

Otherwise
0.037 0.046 0.188 0.209 — — — —

1 if Driver Did Not Yield Right-of-Way 0.409 0.131 0.492 0.337 — — — —
1 if Driver Disregarded Traffic Control Device 0.029 0.024 0.169 0.154 — — — —

Table 2
Summary statistics of significant variables.

Variable Mean Standard Deviation Max Min

Dependent Variable
Crash Severity 0.404 0.491 — —
Time-of-Day
1 if 9:00 p.m. to 6:00 a.m., 0 Otherwise 0.143 0.350 — —
Lighting Condition
1 if Dusk, 0 Otherwise 0.046 0.210 — —
Weather Condition
1 if Snowy, 0 Otherwise 0.030 0.170 — —
Road Surface Condition
1 if Dry Surface, 0 Otherwise 0.720 0.449 — —
Posted Speed Limit
1 if 30 mi/hr or 35 mi/hr 0.272 0.445 — —
1 if 40 mi/hr or 45 mi/hr 0.050 0.218 — —
Crash Type
1 if Fixed-Object Crash, 0 Otherwise 0.053 0.224 — —
1 if Vehicle–Pedestrian Crash, 0 Otherwise 0.070 0.256 — —
1 if Rear-End Crash, 0 Otherwise 0.083 0.275 — —
Driver Characteristics
1 if Male, 0 Otherwise 0.469 0.499 — —
Age 45.057 18.476 16 97
Reported Driver-Level Crash Cause
1 if Driver Sped Too Fast For Conditions, 0 Otherwise 0.042 0.201 — —
1 if Driver Did Not Yield Right-of-Way 0.243 0.429 — —
1 if Driver Disregarded Traffic Control Device 0.026 0.160 — —
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4. Methodology

For the current study, crash severity is being analyzed through an econometric modeling approach. The choice of crash
severity, as opposed to driver injury severity, stems from two aspects. First, the current study is interested in determining
significant factors leading to the maximum injury severity sustained in the crash regardless of the participant. Second, there
is not an adequate number of observations for the higher severity levels, as illustrated in Fig. 1. The aforementioned also
holds true for crash severity, in which the majority of crashes that occurred resulted in no injury. With this in mind and con-
sidering that crash severity is being analyzed (not injury severity), the current work dichotomizes crash severity into two
distinct outcomes: 1 if the crash resulted in any form of injury (including fatalities), and 0 if the crash resulted in no injury.

Being that crash severity has been dichotomized into binary format, a binary modeling framework is considered. Of the
potential methods to model crash severity, the present study applies a binary logit model, as previous work has shown that
the use of a binary logit model on data with a large number of observations is preferred (Young and Liesman, 2007; Haleem
and Gan, 2013; Perez-Fuster et al., 2013; Sarwar et al., 2016). It should be noted, the premise behind the current study is to
identify significant factors, as this is limited in the literature, where the binary logit model is most appropriate in this
context.

Logit models are based on the following logit probability (McFadden, 1981; Train, 2009):

PnðiÞ ¼ e biXi;nð ÞX
8i
e biXi;nð Þ ð1Þ

where PnðiÞ is the probability of crash n resulting in crash severity i; bi is a vector of parameters to be estimated, and Xi;n is a
vector of explanatory variables (e.g., crash characteristics, vehicle characteristics, driver characteristics). Normalizing one of
the outcomes to zero to satisfy the alternative-specific–constant rule, Eq. (1) can be expressed as:

PnðiÞ ¼ eb̂

1þ eb̂
ð2Þ

and:

b̂ ¼ b0 þ biX1;n þ � � � þ biXi;n þ ei;n ð3Þ
where ei;n is a Type I Extreme Value distributed error term and all other terms have been defined previously. The purpose of
ei;n is to capture unobservables in the data, or factors that are unobserved to the analyst (i.e., factors or variables that are not
present in the data). However, most often, ei;n is unable to capture all of these unobservables which, in turn, results in unob-
served heterogeneity. This stems, in crash data, from two aspects. The first of these aspects pertains to information (i.e., vari-
ables) not being present. For crash data, this is typically attributed to data collection forms, in which each and every factor
that contributes to the severity of a crash is not collected by police or on self-report forms. The second aspect refers to vari-
ation within existing, or observable, variables. For example, it is known if the crash was a fixed-object crash, but other con-
tributing factors are often unknown. That is, speed at the time of impact, the type of fixed-object (e.g., telephone pole, jersey
barrier, tire barrier, etc.), or specific information about the driver (e.g., perception reaction time, visual acuity, etc.) are
unknown. Although unobservable, these factors are likely to contribute to the severity of a crash. Due to unobserved hetero-
geneity, parameter estimates can be biased and result in incorrect inferences made on the entire population (Mannering
et al., 2016). Therefore, this data limitation must be considered during model estimation.

Taking that into consideration, this study addresses unobserved heterogeneity through the use of random parameters.
This is accomplished by introducing a mixing distribution to Eq. (2) (McFadden and Train, 2000; Train, 2009):

PnðijhÞ ¼
Z
x

eb̂

1þ eb̂
f b̂jh
� �

db̂ ð4Þ

where PnðijhÞ is the weighted probability of PðiÞ taking on the value 1 (i.e., the crash resulted in an injury or fatality) condi-

tional on f b̂jh
� �

. In this context, f b̂jh
� �

is the density function of b̂, where h represents the distributional parameter. The

addition of this density function allows parameter estimates to vary across crash observations permitting b̂ to account for

crash-specific variation regarding the effects of Xi;n on PnðijhÞ. For this work, the distribution of f b̂jh
� �

was specified to be

normal.
To estimate b̂, simulation techniques are applied. To accomplish this, Halton draws are used (Halton, 1960; Bhat, 2003).

Through the use of Halton draws, simulated probabilities are inserted into the log-likelihood function of the logit model giv-
ing a simulated log-likelihood (Train, 2009; Washington et al., 2011):

SLL ¼
XN
n¼1

XI

i¼1

di;n ln Pn ijhð Þ½ � ð5Þ
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where N is the number of observations (crashes), I is the number of crash severity outcomes (fatality/non-fatal injury and no
injury), and di;n is equal to 1 if the observed crash severity for observation n is i and 0 otherwise.

To assess the effects, or impacts, of significant contributing crash severity factors, the current work utilizes marginal
effects. Marginal effects are the effect of a significant contributing factor on the probability that the outcome takes on the
value 1 (i.e., the probability of a fatal/non-fatal injury crash) while all other variables remain equal to their means. With both
continuous and indicator variables present in final model specifications, marginal effects are computed for both. For contin-
uous variables, marginal effects are computed as (Greene, 2018):

@PnðiÞ
@Xi;n;k

¼ 1� PnðiÞ½ �PnðiÞbnðiÞ ð6Þ

where @PnðiÞ
@Xi;n;k

is the partial derivative of the probability of crash n having crash severity i due to explanatory variable k. For

indicator variables, marginal effects are the difference of the estimated probabilities when an indicator changes from zero
to one (Greene, 2018):

MEXk ¼ Pr PnðiÞ ¼ 1jX;Xk ¼ 1½ � � Pr PnðiÞ ¼ 1jX;Xk ¼ 0½ � ð7Þ
where X is the mean of all other variables while Xk changes from zero to one.

5. Results and discussion

Through a forward step-wise procedure, 14 variables were found to be statistically significant contributing factors to
crash severity. Variables kept in final model specifications were those that had significant parameters with at least 90% con-
fidence and were not significantly correlated with another explanatory variable. As discussed in Section 3, summary statis-
tics of significant variables can be viewed in Table 2. Final model specifications are shown in Table 4. As shown in Table 4,
final model specifications result in a log-likelihood value of 0.18, indicating the model fits the data adequately (McFadden,
1973; McFadden, 1977; McFadden, 1981). Additionally, shown in Table 4, of the 15 estimated parameters, four are random
and normally distributed, indicating the presence of unobserved heterogeneity.

Of the variables with estimated random parameters, the first is related to weather. Specifically, the indicator for snowy
weather has a random and normally distributed parameter. With a mean of �1.04 and a standard deviation of 2.25, 32.2% of

Table 4
Random parameters binary logit model specifications.

Variable Coefficient Std. Error t-statistic Marginal Effect

Constant �1.41 0.07 �20.08 —
Time-of-Day
1 if 9:00 p.m. to 6:00 a.m., 0 Otherwise 0.37 0.07 5.58 0.091
Lighting Condition
1 if Dusk, 0 Otherwise 0.18 0.11 1.70 0.045
Weather Condition
1 if Snowy Weather, 0 Otherwise �1.04 0.27 �3.89 �0.256
(Std. Dev. of Normally Distributed Parameter) (2.25) (0.40) (5.60)
Road Surface Condition
1 if Dry, 0 Otherwise 0.13 0.05 2.40 0.032
(Std. Dev. of Normally Distributed Parameter) (0.48) (0.04) (12.21)
Posted Speed Limit
1 if 30 mi/hr or 35 mi/hr, 0 Otherwise 0.14 0.05 2.66 0.034
(Std. Dev. of Normally Distributed Parameter) (0.23) (0.06) (3.67)
1 if 40 mi/hr or 45 mi/hr, 0 Otherwise 0.19 0.10 1.93 0.048
Crash Type
1 if Fixed-Object, 0 Otherwise �0.40 0.12 �3.31 �0.098
(Std. Dev. of Normally Distributed Parameter) (1.01) (0.17) (5.89)
1 if Vehicle–Pedestrian, 0 Otherwise 3.03 0.32 9.34 0.746
1 if Rear-End, 0 Otherwise 0.39 0.08 4.91 0.097
Driver
1 if Male, 0 Otherwise 0.19 0.05 4.17 0.047
Age 0.01 0.01 13.18 0.003
Driver-Level Crash Cause
1 if Sped Too Fast For Conditions, 0 Otherwise 0.50 0.12 4.14 0.124
1 if Did Not Yield Right-of-Way, 0 Otherwise 0.82 0.06 14.62 0.202
1 Disregarded Traffic Control Device, 0 Otherwise 0.31 0.13 2.39 0.075
Model Summary
Number of Observations 5,381
Log-Likelihood at Zero �3,630.44
Log-Likelihood at Convergence �2,991.94
McFadden Pseudo R2 0.18
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crashes have an estimated parameter mean greater than zero and 67.8% have an estimated parameter mean less than zero. In
other words, 32.2% of crashes that occurred in snowy conditions were more likely to result in an injury or fatality and 67.8%
of crashes were less likely. The observed varying effects may be attributed to driver-specific behavior in crashes that
occurred in snowy weather, such as a driver’s experience in such conditions. Unobservables related to the vehicle, such
as type of tire, brakes, etc., may also be contributing to the heterogeneous effects. The severity of the snowy weather is
not indicated in the data, which can also lead to varying effects. Heterogeneous effects of snowy weather on severity were
also found by Anderson and Hernandez (2017), where the majority of crashes were more likely to result in a lesser severity
sustained by the driver. In addition, this finding is substantiated by various work in which snowy weather, or inclement
weather, is found to increase the likelihood of no injury (Eluru and Bhat, 2007; Milton et al., 2008; Lemp et al., 2011;
Eluru et al., 2012; Manepalli et al., 2012; Yasmin and Eluru, 2013; Behnood et al., 2014; Cerwick et al., 2014; Islam et al.,
2014; Ye and Lord, 2014). To visualize the proportion of crashes with an estimated parameter above/below zero, refer to
Fig. 2 and Fig. 3a.

The second random parameter, also normally distributed, is the estimated parameter for dry surface conditions. Model
estimates show, with a mean of 0.13 and a standard deviation of 0.48, that 39.3% of crashes that occurred on dry surface
conditions were less likely to result in an injury or fatality while 60.7% were more likely. Dry surface conditions have been
found to be contributing factors to the severity of crashes for several years, and in nearly all cases, found to increase severity
or decrease the likelihood of no injury (Sigthorsson and Finnsson, 1997; Duncan et al., 1998; Chang and Mannering, 1999;
Lee and Mannering, 2002; Peng and Boyle, 2012; Yasmin and Eluru, 2013; Islam and Hernandez, 2013; Behnood et al., 2014;
Shaheed and Gkritza, 2014; Behnood and Mannering, 2015; Anderson and Dong, 2017). Other studies, however, have found
dry surface conditions to decrease the severity of crashes, with one finding dry surface conditions to be heterogeneous. In the
same study, Islam et al. (2016) found dry surface conditions to decrease the likelihood of a fatal crash while also being
heterogeneous for incapacitating injury crashes. Yasmin et al. (2014) found that dry surface conditions increase the likeli-
hood of a more severe crash if the crash type is head-on. Rifaat and Tay (2009) found that dry surface conditions have a con-
siderably lower injury risk compared to wet surfaces. In addition, Pahukula et al. (2015) found that dry surface conditions
increase the likelihood of no injury for crashes that occurred in the afternoon. As observed, the effects of dry surface condi-
tions vary, which previous work has stated to be a result of driver-specific behavior such as risk taking Shaheed et al. (2013).
Other factors that may influence varying effects, and often not available in the crash data, are pavement quality and vehicle-
specific information (e.g., tires, brakes, etc.). To visualize the proportion of crashes with an estimated parameter above/below
zero, refer to Fig. 2 and Fig. 3d.

The third variable with a normally distributed random parameter is an indicator for posted speed limit. With a mean of
0.14 and a standard deviation of 0.23, 27.1 percent of crashes that occurred where the posted speed limit was 30 mi/hr or 35
mi/hr were less likely to result in an injury or fatality and 72.9 percent were more likely. In general, various years of research
points towards higher posted speed limits leading to more severe crashes (O’Donnell and Connor, 1996; Farmer et al., 1997;
Duncan et al., 1998; Chang and Mannering, 1999; Krull et al., 2000; Ulfarsson and Mannering, 2004; Khorashadi et al., 2005;
Eluru et al., 2008; Malyshkina and Mannering, 2008; Nevarez et al., 2009; Paleti et al., 2010; Lemp et al., 2011; Chiou and Fu,

Fig. 2. Variables with random parameters and proportion of crashes with estimated parameters above/below zero (above zero indicates an increase in the
likelihood of a fatal/non-fatal injury crash and below zero indicates a decrease in the likelihood of a fatal/non-fatal injury crash).
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2013; Shaheed et al., 2013; Yasmin et al., 2014). However, there are some studies that have found the opposite (Morgan and
Mannering, 2011; Uddin and Huynh, 2018). As it pertains to intersection-specific findings, studies have also found that
higher posted speed limits lead to more severe crashes (Tay and Rifaat, 2007; Haleem and Abdel-Aty, 2010; Obeng, 2011;
Tay, 2015), while Abdel-Aty and Keller (2005) found higher speed limits on minor roads reduce the likelihood of a severe
crash. Considering these studies, and their difference in findings, the heterogeneous nature in the current work may be
linked to heterogeneous driver behavior or be data-specific. To visualize the proportion of crashes with an estimated param-
eter above/below zero, refer to Fig. 2 and Fig. 3c.

The final variable to have a normally distributed random parameter is the indicator for fixed-object crashes. The esti-
mated parameter mean of �0.40 and estimated standard deviation of 1.01 indicate that 34.6 percent of fixed-object crashes
were more likely to result in an injury or fatality, and 65.4 percent of fixed-object crashes were less likely to result in an
injury or fatality. The heterogeneous nature in this variable follows that of previous work, where studies have found varying
impacts on severity due to a fixed object. Most notably, this includes the angle at which the vehicle hit the fixed object or the
type of fixed object, both of which are not included in the utilized crash data. For instance, Bédard et al. (2002) found that the
angle of impact can impact severity. Specifically, if the fixed object was struck by the left side of the vehicle, a severe injury
was more likely to occur. Similarly, Yamamoto and Shankar (2004) found that the type of fixed object impacts severity. In
particular, crashes into the ends of guardrails and crashes with trees were found to lead to severe injuries. On the other hand,
Yamamoto and Shankar (2004) also found that crashes with sign posts, ”appurtenances” in a ditch, faces of guardrails, con-
crete barriers or bridges, and fences lead to less severe injuries. Morgan and Mannering (2011) also found that the type of
fixed object impacts severity, as well as the age of the driver. Some studies, however, have found that fixed-object crashes
have a homogeneous effect on severity (Paleti et al., 2010; Chu, 2014; Islam et al., 2014).These varying results suggest that
fixed-object crashes should be further investigated, which has been documented and suggested recently (Wu et al., 2014). To
visualize the proportion of crashes with an estimated parameter above/below zero, refer to Fig. 2 and Fig. 3b.

Moving to marginal effects, several variables have substantial to moderate impacts on crash severity probability. Marginal
effects are shown in Table 4, and illustrated in Fig. 4 and Fig. 5. The most impactful, according to marginal effects, are vehi-
cle–pedestrian crashes (Fig. 4a). Based on marginal effects, vehicle–pedestrian crashes have a 0.746 higher probability of
resulting in an injury or fatality. Marginal effects also show that crashes which occurred as a result of a driver not yielding
the right-of-way have a 0.202 higher probability of resulting in an injury or fatality (Fig. 4b). This is in line with previous

Fig. 3. Distribution of for the random parameter associated with (a) snowy weather, (b) fixed-object crashes, (c) 30 mi/hr or 35 mi/hr posted speed limits,
and (d) dry roadway surface.
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findings, in which crashes reported to be caused by the driver failing to yield the right-of-way were more likely to result in a
severe crash or less likely to result in no injury (Cerwick et al., 2014; Behnood and Mannering, 2015; Anderson and Dong,
2017). In addition, this crash cause has also been found to increase the likelihood in severity if a driver is young (Zhang
et al., 1998) or old (Zhang et al., 1998; Zhang et al., 2000).

Likewise, marginal effects indicate that crashes which occurred due to a driver speeding too fast for conditions have a
0.124 higher probability of resulting in an injury or fatality (Fig. 5g). As anticipated, this follows findings of several previous
works where exceeding a ‘‘reasonable safe speed” has been shown to lead to more severe crashes (Chang and Mannering,
1999; Lee and Mannering, 2002; Savolainen and Mannering, 2007; Boufous et al., 2008; Kim et al., 2008; Kim et al., 2013;
Rifaat and Tay, 2009; Islam and Hernandez, 2013; Qin et al., 2013; Shaheed and Gkritza, 2014; Chu, 2014; Islam et al., 2014;
Anderson and Hernandez, 2017).

Lastly, and with the least effects, is the indicator for drivers who disregarded a traffic control device. According to mar-
ginal effects, crashes that occurred as a result of drivers disregarding a traffic control device have a 0.075 higher probability
of resulting in an injury or fatality (Fig. 5a). Disregarding a traffic control device is a common driver error that leads to severe
injuries, as documented in recent work (Mohamed et al., 2013; Bakhtiyari et al., 2015; Behnood and Mannering, 2015;
Penmetsa and Pulugurtha, 2017). In addition, age has been found to impact this finding. Specifically, Amarasingha and
Dissanayake (2013) found that crashes in which a young driver (15 to 24 years old) disregarded a traffic control device were
more likely to result in a severe injury. Likewise, Sabbour and Ibrahim (2010) found that crashes in which young medical
students disregarded a traffic control device were significantly associated with severe injuries. Xie et al. (2018) also found
that disregarding a traffic control device leads to more severe injuries, as well as secondary crashes.

One final notable indicator is that of rear-end crashes, in which marginal effects show that rear-end crashes have a 0.097
higher probability of resulting in an injury or fatality. Previous work has identified a variety of factors related to rear-end
crashes that increase severity, such as younger drivers (Abdel-Aty and Abdelwahab, 2004); older drivers (Abdel-Aty and
Abdelwahab, 2004; Yan et al., 2005); distracted driving (Abdel-Aty and Abdelwahab, 2004); nighttime crashes (Duncan
et al., 1998, 2001, 2004, 2005, 2014, 2015); driving under the influence (Duncan et al., 1998; Yan et al., 2005; Chen et al.,
2015); and wet surface conditions (Duncan et al., 1998; Yan et al., 2005). Another potential factor that may lead to increased
severity in rear-end crashes is vehicle size (i.e., passenger vehicle vs. freight-related vehicle). Based on these findings, and
findings from previous work, a further investigation into rear-end crashes (as it pertains to right-turn crashes) is
recommended.

Fig. 4. Visualization of effects on crash severity probability due to (a) vehicle–pedestrian crashes, (b) driver not yielding right-of-way, and (c) driver age.

H. Jashami, J.C. Anderson, H.A. Mohammed et al. International Journal of Transportation Science and Technology 13 (2024) 243–257

253



6. Conclusion

In summary, this research provided a crash severity analysis with respect to right-tun movements at signalized intersec-
tions through an econometric modeling approach. The outcome of this study can help fill the gap in current research in terms
of right-turn crashes. Using five years of police- and self-reported crash data in the state of Oregon (2012 to 2016), a random
parameters binary logit model was used to study the significant factors leading to the maximum injury severity sustained in

Fig. 5. Visualization of effects on crash severity probability due to (a) driver disregarding traffic control device, (b) dusk lighting, (c) male drivers, (d)
nighttime crashes, (e) rear-end crashes, (f) speed limits of 40 mi/hr or 45 mi/hr, and (g) speeding too fast for conditions.
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the crash regardless of the participant (1 if the crash resulted in a non-fatal or fatal injury and 0 if the crash resulted in no
injury). The mixed logit method attempts to capture the heterogeneity in the data (Barlow, 2019). Additionally, marginal
effects were used to assess the impacts of significant factors. Using a forward step-wise procedure, 14 variables were found
to be statistically significant in contributing to crash severity. The results obtained show that weather conditions, road sur-
face conditions, fixed-object crashes, and posted speed limits (30 mi/hr or 35 mph) had heterogeneous effects. Dry road sur-
faces and 30 mi/hr or 35 mi/hr posted speed had higher percentages resulting in a severe crash, while fixed-object crashes
and crashes in snowy weather had higher percentages resulting in a no injury crash.

On the other hand, the remaining variables were found to have homogeneous effects and assessed using marginal effects.
Time-of-day (9:00 p.m. to 6:00 a.m.); lighting conditions (dusk); gender (male); crash type (vehicle–pedestrian and rear-
end); and, crash cause (driver speeding too fast for conditions, driver did not yield right-of-way, driver disregarded traffic
control devices) had higher probabilities of resulting in a severe crash (an injury or fatality). The results obtained show that
the vehicle–pedestrian variable had the highest impact on increasing the probability of causing a severe crash. This suggests
that because right turns are generally permitted during the pedestrian walk and clearance indications, it is not uncommon
for right-turning drivers to make yielding errors. The design of phasing schemes at signalized intersections are complex mul-
tifaceted transportation engineering problems. Therefore, in terms of practice, this finding could help traffic engineers come
up with an optimal phasing solution which could promote both the safety and efficiency of signalized intersections through
decreasing vehicle–pedestrian conflicts (Hurwitz et al., 2018; Jashami et al., 2019; Kothuri et al., 2020).

This research is limited by the fact the work was done based on police- and self-reported crash data in Oregon which
leaves unclear how these could be translated to real-world behavior. Oregon data does not include information on vehicle
model, but only vehicle type. The data does not contain any information on the traffic signals, such as permitted right-turn-
on-red, phase lengths, and so forth. This analysis was focused on driver behavior, therefore pedestrian-specific characteris-
tics were not considered. Future work can expand on this study by including data that was not available, while other work
can focus on the pedestrian aspect of these types of crashes. Additionally, crash data used for the current study does not have
information related to curve radii, which work has shown to increase turning movement speeds and associated crash mod-
ification factors (Fitzpatrick et al., 2022). To address this, future work can consider a driver simulator study or SHRP2 Nat-
uralistic Driving Study data to investigate the relationship between turning movement speed and crash frequency or
severity.

There is a need for additional research to give clear guidance on the appropriate vehicle and pedestrian volume thresholds
that lead to increases in safety (e.g., safety-in-numbers for pedestrians). As pedestrian volume increases, so does their vis-
ibility to drivers. This can impact driver behavior and response, such as lowering their operating speed; if a crash were to
occur, it would likely be less severe. Further, questions remain about the display of signals during a crash scenario. Finally,
a driving simulator study could help identify the factors contributing to such crashes. Meanwhile, drivers are not exposed to
real crashes.
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