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Abstract 

Phytoplankton are an essential part of nutrient cycling in the marine environment. Of particular interest 

are Synechococcus and Prochlorococcus, two closely-related groups of cyanobacteria that are among the 

most abundant photosynthetic cells on the planet. However, the environmental factors that drive 

evolution of these bacteria into distinct ecotypes remains poorly understood. Here, we examine 

cyanobacterial diversity along an understudied transect of the North Pacific Ocean. Nine surface-

seawater samples were analyzed using PCR of the Prochlorococcus ITS region and high-throughput DNA 

sequencing. We observed an abundance of HL-II Prochlorococcus in subtropical regions, an abundance 

of HL-I Prochlorococcus in temperate regions, and an abundance of Synechococcus in cooler, coastal 

regions. When superimposed beside the temperature gradient observed along the transect, a clear 

pattern emerges that suggests an important relationship between sea-surface temperature and the 

Prochlorococcus ecotype community structure in the North Pacific Ocean. 
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Introduction 

Prochlorococcus accounts for an estimated 5% of global photosynthetic activity.  Due to their 

abundance and widespread distribution, small ecological changes in populations of Prochlorococcus 

could have large-scale implications for the global energy web. In order to better understand the nature 

of these changes, many studies have sought to examine Prochlorococcus diversity. In particular, much 

work has been devoted to the way Prochlorococcus lineages have partitioned into specialized high and 

low light “ecotypes” in the oligotrophic ocean (Bouman et al. 2006, Campbell et al. 1994, Farrant et al. 

2016, Huang et al. 2012, Larkin et al. 2016, Malmstrom et al. 2010, Zwirglmaier et al. 2008). This has 

been accomplished through circumnavigational surface sampling (Bouman et al. 2006), repeated 

sampling at one location over time (Campbell et al. 1994), analyzing the bacteria’s petB gene (Farrant et 

al. 2016), sampling across depth gradients (Huang et al. 2012), comparing the abundance of 

Prochlorococcus in environments with different seasonal fluctuation patterns (Malmstrom et al. 2010), 

and comparing ecotypes in tropical and temperate zones (Zwirglmaier et al. 2008). Together, these 

studies have shown that incredible diversity exists in Prochlorococcus, even at the individual cell level, 

that ecologically distinct ecotypes coexist, and that environmental factors driving community structure 

and diversity remain poorly understood. 

The North Pacific Ocean has an abundance of cyanobacteria. It also has diverse oceanographic 

conditions, nutrient availability, and other environmental factors that could influence cyanobacteria 

diversification. This makes it an ideal environment for studying cyanobacteria ecotype patterns with 

respect to oceanographic gradients. 

Here, we examine how cyanobacterial diversity changes from the open ocean to a coastal 

environment in the North Pacific. We examined Prochlorococcus and Synechococcus ecotypes by 

comparing diversity found at the 16S/23S ITS level. Our work offers interesting insights into and 
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temperature-based shifts of Prochlorococcus ecotypes in the North Pacific, leading to an improved 

understanding of diversity in this abundant bacterium. 

Materials and Methods 

Oceanographic Sampling 

Filtered seawater from nine North Pacific Ocean sites was collected in March-April of 2017 aboard the 

R/V Sikuliaq Cruise #SKQ201703S (Figure 1, Table 1). The latitude sampled ranges from 26.1 degrees 

North to 42.3 degrees North, beginning at the warm and nutrient-poor open ocean near Station ALOHA 

and ending at the relatively cold and nutrient-rich coastal region near Newport, OR. The samples were 

collected from the ship’s uncontaminated flow-through seawater system, while temperature and salinity 

information were simultaneously collected by the Sea-Bird Scientific SBE 45 microTSG. Satellite data 

were acquired from the MUR SST database maintained by the California Institute of Technology. 

Table 1. Locations of surface-seawater collection sites 

Sample Date 
Collected 

Sampling Location 

A 3/9/2017 26.0749 N, -146.0189 W 

B 3/17/2017 30.2650 N, -145.6328 W 

C 3/30/2017 35.2482 N, -139.6439 W 

D 3/31/2017 36.7022 N, -137.5114 W 

E 3/31/2017 37.2987 N, -136.9502 W 

F 4/2/2017 41.2684 N, -130.5722 W 

G 4/2/2017 41.2953 N, -130.5758 W 

H 4/2/2017 41.9689 N, -129.0283 W 

I 4/2/2017 42.3078 N, -128.8542 W 
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Figure 1. Sample Stations for DNA extractions depicted in context of sea surface temperatures detected by 

satellite in March 2017. 
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DNA Extraction 

200 mL samples of surface seawater concentrated on Sterivex filters were stored at stored at -80° C until 

processing. DNA was extracted using a previously described phenol:chloroform procedure (Wright et 

al.2009), and quantified via QuBit high sensitivity fluorometer for dsDNA (Qiagen). Extracted DNA was 

stored at -20° C. 

PCR of Intergenic Transcribed Spacer Region 

To amplify cyanobacterial DNA, PCR was performed on the ITS region of the samples ranging in 

concentration from 2µM – 20 µM and using Illumina-adapted and barcoded primers described by 

Nathan Ahlgren (N. Ahlgren, personal communication, May 2018) (Table 2). The PCR was performed 

using the following program: initial denaturation at 94°C for 2 minutes, followed by 30 cycles of 94° C for 

20 seconds, 55° C for 20 seconds, 65° C for 1 min, and a final extension at 65° C for two minutes. Bands 

of approximately 550 bp in length were excised from agarose gel, and purified using the Invitogen 

PureLink Quick Gel Extraction kit. Amplicons with the barcodes were pooled before sequencing. 

Table 2. Cyanobacterial-specific 16S/23S ITS Primers used in this study (N. Ahlgren, personal communication, May 

2018). 

Primer Type Sequence (5’ to 3’) 

Forward CGTACTACAATGCTACGG  

Reverse GGACCTCACCCTTATCAGGG 

 

Sequencing and Bioinformatic Processing 

The samples were sent for Illumina MiSeq high throughput DNA sequencing at the OSU Center for 

Genome Research and Biocomputing, using 2x250 bp reads. Samples were demultiplexed by barcodes 

on reverse reads at the sequencing facility. The QIIME pipeline was used to quality filter the raw 
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sequence data (Q > 30), demultiplex the reads with the forward barcode, and call operational taxonomic 

units (OTUs) (for description of QIIME scripts, see supplementary information). A representative 

sequence for each OTU was selected and identified using BLAST (Altschul et al. 1997). 

Results 

Diversity and Distribution 

Site ‘A’ exhibited the greatest diversity of the samples studied, with ‘minority-type’ OTUs (OTUs 

besides the three most abundant OTUs, see Figure 3) contributing to approximately 46.0% of OTU 

representation. In contrast, sites C, D, and E exhibited the least diversity, with minority OTUs providing 

only 8.0-9.3% of overall OTU coverage. 

The top 3 OTUs identities (Figure 3) were determined to most closely resemble the organisms 

Synechococcus sp. CC9902 (BLAST accession number CP000097.1), Prochlorococcus marinus subsp. 

pastoris str. CCMP1986 (BLAST accession number BX548174.1), and Prochlorococcus sp. RS04 (BLAST 

accession number CP018346.1). Prochlorococcus marinus subsp. pastoris str. CCMP1986 is a HL-I 

ecotype of Prochlorococcus, and Prochlorococcus sp. RS04 is a HL-II ecotype of Prochlorococcus. 
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Figure 2. Site ‘A’ exhibits the greatest diversity of all the samples studied. Sites ‘C’, ‘D’, and ‘E’ exhibit the least 

diversity. 
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Figure 3. The top 3 most abundant OTUs were plotted with respect to distribution across the transect. The 

transect begins with an abundance of Prochlorococcus marinus subsp. pastoris str. CCMP1986 (HL-II) at site ‘A’, 

followed by a more diverse distribution at site ‘B’,  an abundance of Prochlorococcus sp. RS04 (HL-I)  at sites ‘C’-’E’, 

an abundance of Synechococcus sp. CC9902 (Syn.) at sites ‘F’ - ‘H’, and a final diverse distribution at site ‘I’. 
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Figure 3. Three trends become apparent when inspecting OTU abundance with respect to temperature. 1) HL-II 

ecotypes along the transect are more abundant at higher temperatures. 2) Synechococcus abundance becomes 

more abundant at cooler temperatures along the transect. 3) HL-I ecotypes occupy an intermediate temperature 

range compared to the other two. (Trendlines drawn by eye.) 
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Figure 4. The trends for salinity closely mirror the trends for temperature (see Figure 4). (Trendlines drawn by eye) 
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Discussion 

We explored the diversity of cyanobacteria types present along a transect of the North Pacific. 

Distinct patterns emerged with respect to temperature. For example, a majority abundance of 

Prochlorococcus was dramatically replaced with a majority abundance of Synechococcus as the sampling 

approached the Oregon coast. This transition occurred at the point in the transect where the surface 

temperature ranged from around 11-13° C (Figure 3). This is consistent with previous reports of 

Prochlorococcus thriving in oligotrophic conditions and declining in more nutrient-rich waters (Bouman 

et al. 2006). Most Prochlorococcus cyanobacteria are not known to use nitrate (Bouman et al. 2006), but 

most Synechococcus cyanobacteria are, suggesting that the availability of organic nitrate to organisms 

that graze on cyanobacterial might be increased in the colder, more nutrient-rich waters where 

Synechococcus dominate. 

Zwirglmaier et al. found that HL-II ecotypes tend to be more abundant at subtropical and 

tropical zones, while HL-I ecotypes tend to be more abundant at temperate zones. This trend was also 

described in Johnson et al. 2006, where eMED4 (a HL-I ecotype) abundance was found to dominate 

cooler, high latitude waters. Similarly, our data showed an abundance of HL-II ecotypes present at ‘Site 

A’, corresponding to a subtropical latitude of 26.1° N (Table 1), and a clear abundance of HL-I ecotypes 

emerging at ‘Site C’, corresponding to a more temperate latitude of 35.2° N. The ecological impacts of 

an abundance of HL-I or HL-II ecotypes is being examined presently with respect to differences in carbon 

fixation and nutrient cycling. For example, it has been demonstrated that there are novel HL-I strain-

specific genes that confer a stress response to phosphate starvation (Martiny et al. 2006), and other 

high-light ecotypes with increased iron-scavenging abilities (Malmstrom et. al 2013), already suggesting 

that different high-light ecotypes interact with trace nutrients in the ecosystem differently. 
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Our study is limited by an unequal distribution of reads across the transect. For example, we 

were able to get a tenfold increase in the number of reads at ‘Site A’ compared to the number of reads 

we were able to get at ‘Site E’. Although all data presented was normalized with respect to the number 

of reads per site, the diversity trends at the sites with the least coverage (D E, J, and H) may not be as 

representative of the area sampled as the remaining sites that received a higher degree of coverage. 

Because there were distinct trends with respect to the ecotypes and the gradients examined, 

temperature and salinity may help explain the ecotypical changes observed in the North Pacific. Future 

study of this transect should also examine the relationship of day length, silicate, oxygen, phosphate, 

and chlorophyll conditions with observed ecotypes, as these were demonstrated to be significant drivers 

of cyanobacterial community composition change (Larkin et al. 2016). It should also be noted that 

salinity was not found to be a significant driver of ecotype shifts in the Larkin et al. study, and was 

“merely correlated with large-scale oceanographic trends” (Larkin et al. 2016). As such, it is possible that 

our observed trends with respect to salinity are simply correlated to, and not a causative agent of 

cyanobacteria ecotype change. Additional future work might consist of conducting a phylogenetic 

analysis of the OTUs observed along the transect and comparing the resulting cladogram to similar 

analysis conducted in other studies, as in Larkin et al. 2016.  

Overall, the data presented in our study suggest that temperature is an important ecological 

driver of cyanobacteria OTU diversification. We observed an abundance of HL-II Prochlorococcus in 

subtropical regions, an abundance of HL-I Prochlorococcus in temperate regions, and an abundance of 

Synechococcus in cooler, coastal regions. Other oceanic conditions might be explored along this transect 

to gain a better understand of the factors that drive the evolutionary partitioning of this globally 

important and very abundant organism. 
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Supplementary Information 

QIIME Scripts Work-Flow for Bioinformatic Analysis 

#validate mapping files 
validate_mapping_file.py -o vmf-map/ -m miseq122017_FWD_barcodes_R01.txt 
 
Trim the forward reads to remove the variable ‘4 N’ nucleotides. 
 
# get barcodes from the forward reads (R1) of all samples (that were already separated by RVS barcodes at 
sequencing facility) 
extract_barcodes.py -f /path.fastq -o path -c barcode_single_end -l 5 
 
# split raw R2s based on fwd barcodes and quality filter (default errors in barcode) 
split_libraries_fastq.py -o path -i path.fastq -b path/barcodes.fastq -m miSeq122017_FWD_barcodes_R01.txt 
--barcode_type 5 --rev_comp_mapping_barcodes --rev_comp_barcode -q 30 -n 0  
 
# take fasta files from split library and check for "barcode on reverse reads", write only sequences that contain 
perfect match to RVS primer 
## files names will now have Unique Sample ID from split_libraries_fastq preceded by "RVSYes" from 
split_libraries... 
split_libraries.py -m Rprimer_map.txt -f /path/seqs.fna -o /path/ --barcode_type 20 -e 0 --disable_primers 
 
Remove "RVSYes" from fasta sequence names. 
 
Concatenate all sequences and rename with .fna. 
 
# OTU picking 
#pick OTUs denovo, best for when no reference database then summarize output 
pick_de_novo_otus.py  
biom convert  
biom summarize-table  
 
# filter OTU table to remove all OTUs that do not contain at least 100 sequences then convert from biom format 
to summary and text file.  
filter_otus_from_otu_table.py 
biom convert  
biom summarize-table  
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