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Abstract 

8-methoxypsoralen is a DNA-intercalating agent, which can photoreact with pyrimidine bases on 

opposing DNA strands, to form an interstrand crosslink. These lesions completely block 

replication and transcription, and are widely used in chemotherapies; yet how these lesions are 

processed in the cell remains poorly understood and insight into these processes could lead to 

better therapies that evade resistance. Previous studies isolated an Escherichia coli mutant 

demonstrating hyper-resistance to interstrand crosslink-inducing agents. The mutation was 

mapped to 57.2 minutes on the chromosome, and potentially encoded a 55-kDa protein induced 

as part of the SOS response. Although these genes remain unidentified, hscA and hscB map to 

this location, have a similar size, and are SOS-inducible. To determine if these or other genes 

might confer interstrand crosslink resistance in E. coli, we characterized how cells survived 8-

methoxypsoralen-UVA treatment in the absence of HscAB, and when these gene products were 

overexpressed. In a second approach, we developed a selection system to isolate hyper-resistant 

strains through the sequential growth and exposure of wild-type cultures to 8-methoxypsoralen-

UVA. We found no effect on cell survival in the hscAB mutant compared to its wild-type parent, 

suggesting that HscAB may not contribute to interstrand crosslink resistance as previously 

hypothesized. However, due to the significant cytotoxicity of plasmids containing hscAB even in 

the absence of 8-methoxypsoralen-UVA treatment, we could not determine whether 

overexpression of these gene products provided cellular protection. Using iteratively 8-

methoxypsoralen-UVA treated cells, we isolated strains that were >104-fold more resistant to this 

interstrand crosslink-inducing agent compared to the parent strain. This result suggests that E. 

coli possess mechanisms of interstrand crosslink repair or tolerance and could serve as a model 

system for understanding the development of drug resistance in human cells. 
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Introduction 

 Crosslinking agents are an important class of clinical compounds that have wide use as 

potent chemotherapeutics and in the treatment of psoriasis and various anemias (Bredberg, 

Lambert, Lindblad, Swanbeck, & Wennersten, 1983; Gupta & Anderson, 1987). Subsequent to 

cellular internalization, crosslinking agents first intercalate between DNA bases, and then form 

covalent bonds with cellular DNA through interactions mediated by the reactive functional 

groups found on these chemicals. Crosslinking agents may form one or multiple covalent 

interactions, including monoadduct covalent bonds on a single base; intrastrand crosslinks, 

forming covalent bonds on the same strand; or interstrand crosslinks, forming covalent bonds on 

opposing DNA strands (Schärer, 2005). The most damaging interaction, interstrand crosslinks, 

leads to significant cellular toxicity and cell death by preventing the separation of DNA strands 

during genome replication and transcription. Cisplatin and carboplatin, mitomycin C, and the 

psoralens are among the most commonly used crosslinking agents in clinics (Guainazzi & 

Schärer, 2010). In spite of the successful application of interstrand crosslinking agents in 

chemotherapy as evidenced by tumor regression, medical professionals have repeatedly 

documented the emergence of cancers that are resistant to these types of bifunctional drugs 

(O’Grady et al., 2014). Thus, the development of crosslink resistance in cancer cells represents a 

major limitation to this therapy and highlights the importance of understanding the cellular 

mechanisms underlying chemoresistance. 

Psoralen as an Interstrand Crosslinking Agents 

 Psoralen  and its derivatives, have been shown to be effective treatments against the 

integumentary disorders psoriasis, vitiligo, and cutaneous T-cell lymphoma (Arroyo & Tift, 

2003; Wackernagel, Hofer, Legat, Kerl, & Wolf, 2006). The three-ring, planar structure of 



 4 

psoralen allows the molecule to interact with DNA through intercalation (Cimino, Gamper, 

Isaacs, & Hearst, 1985). Thereafter, irradiation with long-wavelength ultraviolet light (UVA) can 

result in the formation of covalent psoralen-DNA adducts (Cole, 1970; Dall’Acqua, 1977). 

While psoralens can photo-react with all pyrimidines, these compounds show a preference for 

thymine particularly in the 5’TpA sequence context (Dall’Acqua, 1977; Kanne, Straub, 

Rapoport, & Hearst, 1982). Psoralen-DNA monoadducts are formed through cycloaddition of 

either the pyrone or furan ring to an adjacent thymine following absorption of one photon of light 

(Cimino et al., 1985; Kanne et al., 1982). A subset of these monoadducts, furan-side 

monoadducts, can then be converted to form an interstrand crosslink with a thymine on the 

opposite DNA strand after absorption of a second photon of UVA light (Sastry, Ross, & 

P’arraga, 1997). 

DNA Interstrand Crosslink Resistance 

 Previous research has implicated multiple mechanisms to explain the observed interstrand 

crosslink resistance characteristically seen in recurrent post-chemotherapy cancer cells. Many 

cancers owe their increased survival to the presence of an upregulated ATP-dependent drug 

pump that may employ reduced cytoplasmic uptake of the crosslinking drugs, increased efflux 

from the cell, or both (Gottesman, 2002). Downregulation of drug-specific receptors has been 

observed as well (Cheung-Ong, Giaever, & Nislow, 2013). Other mechanisms proposed to 

reduce crosslink formation or increase resistance to crosslinks include increased expression of 

detoxification genes, and prevention of apoptosis (Huang, Mohanty, & Basu, 2004; D. Wang & 

Lippard, 2005). In addition, enhanced activity of nucleotide excision repair, base excision repair 

and translesion DNA synthesis enzymes have also been proposed to be involved in resistance to 

interstrand crosslinks in human cells through either the removal of these replication-blocking 
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lesions or their bypass (Ho & Schärer, 2010; Kaina & Christmann, 2002; Wilson & Seidman, 

2010). 

 Previous work by Holland and colleagues suggested that E. coli cells could acquire 

resistance to interstrand crosslinking agents (Ahmad & Holland, 1985; Holland, Holland, & 

Ahmad, 1991), similar to what has been observed in human cells. This group isolated a mutant 

strain that displayed increased cell survival to 8-methoxypsoralen-UVA, mitomycin C, and 

nitrogen mustard treatment compared to a wild-type strain. Resistance to DNA crosslinks was 

associated with the presence of an overexpressed 55-kDa protein in extracts of this strain, which 

was inducible by cellular stress. The function of this protein – whether decreased cell 

permeability, increased crosslink repair, or increased drug pump activity – was not determined, 

but the gene location was demonstrated to be 57.2 minutes on the E. coli linkage map (Holland et 

al., 1991). 

 Given the observed similarities in DNA damage processing between E. coli and 

eukaryotic cells, we proposed to develop E. coli as a model system for understanding crosslink 

resistance in cancer cells (Deans & C West, 2011; Kim & Wilson, 2012). Here we sought to 

provide conclusive evidence for the genetic capacity of E. coli to acquire resistance to the 

interstrand crosslinking treatment 8-methoxypsoralen-UVA. Using an analysis of E. coli gene 

expression following UV exposure (J. Courcelle, Khodursky, Peter, Brown, & Hanawalt, 2001), 

we found two candidate SOS-inducible genes – hscA and hscB – located at 57.2 minutes on the 

E. coli map that could represent the resistance proteins described by Holland and workers 

(Holland et al., 1991) and examined their role in resistance to 8-methoxypsoralen-UVA. As a 

second approach to identify novel genes contributing to interstrand crosslink resistance, we also 
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developed a selection system to generate E. coli that were resistant to 8-methoxypsoralen and 

UVA exposure. 

 

Materials and Methods 

Bacterial Strains and Plasmids. 

 SR108, a thyA36 deoC2 derivative of W3110 (Mellon & Hanawalt, 1989), was used as 

the parent for all strains in this study. SR108 recA::Tn10 (HL921) has been previously described 

(J. Courcelle, Carswell-Crumpton, & Hanawalt, 1997). SR108 hscAB::cat was constructed in a 

two-step process. First, the cat cassette was amplified from CL646 (SR108 polB::Ω Sm-Spc 

dinG::kanR umuDC595::cat, C. T. Courcelle, Belle, & Courcelle, 2005) using the hscB-catF 

primer 

5’GGATCGCAGCCCTGAGAATGTTATGGATTACTTCACCCTCATGAGACGTTGATCGG

CAC and hscA-catR primer 5’ 

AATAACAATCTTTGGCATATTAAACCTCGTCCACGGAATGCTTTCGAATTTCTGCCAT

TC. The PCR product was transformed into DY378 (Yu et al., 2000) to generate CL3644, 

selecting for chloramphenicol resistance. The gene replacement was then moved into SR108 by 

standard P1 transduction, generating strain CL3679 and CL3680 (SR108 hscAB::cat isolates 1 

and 2). 

 The plasmid pBAD/Myc-HisA was purchased from Invitrogen. To generate pBAD-

HscAB-Myc-HisA, the hscAB genes were first amplified from SR108 using the pBAD-hscB F 

primer 5’ 

CCATACCCGTTTTTTGGGCTAACAGGAGGAATTAACCATGGATTACTTCACCCTCTTT

GGC and pBAD-hscA R primer 5’ 
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CGGCGCTATTCAGATCCTCTTCTGAGATGAGTTTTTGTTCAACCTCGTCCACGGAATG

. The resulting PCR product contained hscAB genes with flanking sequences homologous to 

pBAD/Myc-HisA. The pBAD/Myc-HisA vector backbone was amplified from purified plasmid 

using the pBAD-F primer 5’ CATGGTTAATTCCTCCTGTTAGCCCAAAAAACGGGTATGG 

and pBAD-R primer 5’ GAACAAAAACTCATCTCAGAAGAGGATCTGAATAGCGCCG. 

pBAD-HscAB-Myc-HisA plasmid was generated using Gibson Assembly (NE Biolabs) of 

equimolar amounts of each PCR product. 

 SR108 was stably transformed with pBAD/Myc-HisA (pBAD) or pBAD-HscAB-Myc-

HisA (pBAD-HscAB) using standard electroporation procedures. 

Psoralen-UV-A survival assays. 

 Fresh overnight cultures were grown and diluted 1:100 in Davis media supplemented 

with 0.4% glucose, 0.2% casamino acids, and 10 µg/ml thymine (DGCthy) and grown at 37°C to 

an optical density at 600nm (OD600) of 0.3. At this time, 20 µg/ml 8-methoxypsoralen was added 

to the culture and incubated at 37°C for 10 minutes. Following incubation, 0.1-ml aliquots of 

each cultures were removed and serially diluted in 10-fold increments in DGCthy medium. 

Triplicate 10 µl aliquots of each dilution was then spotted on Luria-Bertani agar plates 

supplemented with 10 µg/ml thymine (LBthy) and 20 µg/ml 8-methoxypsoralen. The cells were 

then irradiated using two 32-W UV-A bulbs (Sylvania), with a peak emittance of 320 nm at an 

incident dose of 6.9 J/m2/s for the indicated doses. Viable colonies were counted following 37°C 

incubation overnight to determine the surviving fraction. 

For experiments using pBAD and pBAD-HscAB, fresh overnight cultures containing 

these plasmids were grown in DGCthy medium supplemented with 50 µg/ml ampicillin at 37°C. 

The following day, 0.2-ml aliquots of each culture were pelleted to remove ampicillin, diluted 
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1:100 in either DGCthy (uninduced) or Davis media supplemented with 0.4% arabinose, 0.2% 

casamino acids, and 10 µg/ml thymine (DACthy, induced) and grown without ampicillin 

selection at 37°C to OD600 of 0.3. At this time, cultures were treated with 20 µg/ml 8-

methoxypsoralen for 10 minutes, exposed to varying doses of UVA, and the surviving fraction of 

cells determined as described above. 

Interstrand Crosslink resistance selection. 

 A fresh overnight culture of SR108 was grown in LBthy medium at 37°C. The following 

day, cells were treated with 20 µg/ml 8-methoxypsoralen for 10 minutes, then 0.1-ml aliquots 

were plated on LBthy agar plates supplemented with 20 µg/ml 8-methoxypsoralen and 

subsequently irradiated with UV-A light for the indicated doses. All surviving colonies at a UVA 

dose producing incremental resistance to 8-methoxypsoralen-UVA treatment were collected the 

following day and grown in LBthy medium at 37°C overnight. Resistant populations were then 

re-exposed to 8-methoxypsoralen and increasing UVA doses. A portion of culture from each 

successive selection passage was stored for genome sequencing. 

 

Results 

HscAB does not affect cell survival following 8-methoxypsoralen-UVA-induced DNA damage. 

Previous work by Holland and colleagues identified a 55-kDa that was SOS-inducible, 

associated with increased resistance to 8-methoxypsoralen-UVA treatment, and mapped to 57.2 

minutes on the E. coli genome (Ahmad & Holland, 1985; Holland et al., 1991). When we 

examined this region of the genome for genes that encoded proteins of the correct size and whose 

expression has been reported to be induced by DNA damage (J. Courcelle et al., 2001), we found 

that hscA and hscB fit the criteria. To determine whether HscAB contributes to cell survival 
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following 8-methoxypsoralen-UVA treatment, we compared the survival of a hscAB mutant to 

that of its wild-type parent. recA mutants, which are known to be sensitive to many forms of 

DNA damage (Krasin & Hutchinson, 1977), were also examined as a control. Wild-type cells 

exhibited decreasing viability when exposed to increasing doses of UVA light in the presence of 

8-methoxypsoralen, with approximately 0.1% of cells surviving UVA doses of greater than 5 

kJ/m2 (Figure 1). recA cells were hypersensitive to UVA exposure in the presence of 8-

methoxypsoralen, and a UVA dose of 0.5 kJ/m2 was sufficient to reduce survival by greater than 

99.9%. In contrast, both hscAB mutant isolates were as sensitive to 8-methoxypsoralen-UVA 

treatment as the wild-type parent, suggesting that the absence of HscA and HscB does not affect 

the ability of cells to survive interstrand crosslinks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The absence of HscAB does not affect survival following 8-methoxypsoralen-UVA-

induced DNA damage. The survival of wild-type (upside-down triangles), recA (triangles), 

hscAB isolate 1 (open circles) and hscAB isolate 2 (filled circles) cells after exposure to 20 µg/ml 

8-methoxypsoralen and the indicated doses of UV-A is plotted. Graphs represent an average of 

two independent experiments. Error bars represent one standard error of the mean. 
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While our results suggested HscA and HscB do not play a role in cell survival following 

UVA irradiation in the presence of 8-methoxypsoralen, Holland and colleagues previously 

hypothesized that interstrand crosslink-resistance might arise from a mutation upregulating 

expression of a repair protein in the region of hscAB (Holland et al., 1991). To determine 

whether overexpression of hscAB products affects cell survival following 8-methoxypsoralen-

UVA treatment, we constructed an arabinose-inducible HscAB overexpression plasmid (pBAD-

HscAB), and stably transformed it into wild-type cells. Cells containing pBAD-HscAB were 

cultured in minimal medium supplemented with arabinose, to induce expression of HscAB, or in 

minimal medium supplemented with glucose, which silences expression of HscAB from the 

plasmid, and then exposed to increasing doses of UVA irradiation in the presence of 8-

methoxypsoralen. Cells containing the parent vector, pBAD, from which pBAD-HscAB was 

derived, were similarly cultured and exposed to 8-methoxypsoralen with UVA in the same 

experiment to ensure that any differences we observed were due to HscAB expression. 

Cells containing pBAD-HscAB were approximately 100-fold less viable compared to 

cells transformed with pBAD, even in the absence of arabinose induction and 8-

methoxypsoralen-UVA treatment (Figure 2A). This result indicated that HscAB expression from 

pBAD-HscAB might be leaky and that these proteins could be toxic to cells under normal 

growth conditions. Unsurprisingly, given this loss in viability in the absence of damage, pBAD-

HscAB containing cells grown in either arabinose- or glucose-supplemented medium were also 

more sensitive to UVA irradiation in the presence of 8-methoxypsoralen compared to cells 

containing pBAD (Figure 2B). This observation further supports the idea that expression of 

hscAB products at times outside of the SOS response lowers the viability of cells. From these 
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results, we were unable to determine whether upregulation of HscAB expression might enhance 

resistance to 8-methoxypsoralen-UVA treatment and contribute to interstrand crosslink-repair. 

 

 

 

A.        B. 

 

Figure 2. Plasmids containing hscAB are toxic to cells even in the absence of 8-

methoxypsoralen-UVA treatment. A) Viability of untreated wild-type cells containing either 

pBAD-HscAB or pBAD following growth in glucose- or arabinose-supplemented medium. B) 

The survival of wild-type cells containing pBAD grown in glucose- (filled circles), pBAD grown 

in grown in arabinose-supplemented medium (open circles), pBAD-HscAB grown in glucose- 

(filled triangles) and pBAD-HscAB grown in arabinose-supplemented medium (open triangles) 

after exposure to 20 µg/ml 8-methoxypsoralen and the indicated doses of UVA is plotted. The 

graph represents the results from one independent experiment. 

 

 

E. coli have the genetic capacity for interstrand crosslink resistance. 

 While we were unable to confirm a role for HscAB in resistance to 8-methoxypsoralen 

and UVA treatment, it remained possible that E. coli encodes alternative genes that confer 

resistance to interstrand crosslinks. To examine this possibility, we developed a random 

mutagenesis and functional selection scheme to generate E. coli that were resistant to 8-
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methoxypsoralen and UVA exposure. Beginning with wild-type cells, we iteratively exposed 

cultures to UVA irradiation in the presence of 8-methoxypsoralen, each time selecting for 

increasingly resistant cells to treat in subsequent generations. For each round of selection, 

cultures were exposed to incremental doses of UVA irradiation in the presence of 8-

methoxypsoralen and surviving colonies were then collected in bulk from plates exposed to a 

UVA dose that produced lethality in most, but not all of the growing cells (Figure 3A). Using 

nine rounds of this selection protocol, we were able to generate a population of cells that were 

resistant to and produced a lawn at a UVA dose of 28.32 kJ/m2 compared to a lawn growth at 

3.54 kJ/m2 UVA light for the parent strain. 

 

A.        B. 

 

 

Figure 3. Wild-type cells exposed to successive rounds of 8-methoxypsoralen-UVA treatment 

develop resistance to this agent. A) Survival of cells exposed to 8-methoxypsoralen-UVA over 

several rounds of selection. Top row shows viability of parental strain; subsequent rows below 

show viability over successive generations. Red box denotes the population that was collected, 



 13 

propagated and used for selection in the next round. B) The survival of parent (filled triangles), 

Gen 6 isolate 1 (filled upside-down triangles), Gen 6 isolate 2 (filled circles), Gen 6 isolate 3 

(open circles) and Gen 6 isolate 4 (open squares) cells after exposure to 20 µg/ml 8-

methoxypsoralen and the indicated doses of UVA is plotted. The graph represents the results 

from one independent experiment. 

 

 To directly quantify the resistance of these selected mutants to 8-methoxypsoralen and 

UVA treatment, we isolated four individuals at random from selection round 6 and examined 

their ability to survive exposure to this agent. All four individuals from this sixth selection round 

were hyper-resistant to UVA irradiation in the presence of 8-methoxypsoralen and their viability 

was unaffected by any of the UVA doses we used in this experiment (Figure 3B). At the highest 

UVA doses applied (6 kJ/m2 and higher), all four isolates displayed >104-fold increased viability 

compared to the parent strain. We interpret this result to indicate that E. coli cells have the 

genetic capacity to develop resistance to crosslink-inducing agents and by extension to 

interstrand crosslinks.  

 

Discussion 

The purpose of this study was to determine whether E. coli are capable of acquiring 

resistance to DNA interstrand crosslinks. Using iterative rounds of 8-methoxypsoralen-UVA 

treatment and selection, I generated cell populations capable of surviving a UVA dose that was 

~10-fold higher than that tolerated by the parent strain. These cells exhibited >104-fold increased 

resistance by UVA dose compared to their progenitor, suggesting that E. coli do indeed contain 

the genetic capacity to acquire interstrand crosslink resistance. 

I was unable to confirm or refute the role of one set of candidate genes implicated in 

interstrand crosslink resistance by Holland and colleagues (Ahmad & Holland, 1985; Holland et 

al., 1991). hscAB mutant cells exhibited no difference in survival to 8-methoxypsoralen-UVA 
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treatment compared to wild-type cells, which could be interpreted to mean that these genes have 

no role in DNA interstrand crosslink resistance or that resistance is dependent on the 

upregulation of HscAB expression. In the latter case, treating hscAB-deficient cells with UVA 

irradiation in the presence of 8-methoxypsoralen would be expected to produce a wild-type 

phenotype such as I observed. I found that cells containing a HscAB-expressing plasmid 

displayed significant loss in viability even in the absence of treatment, such that the role of 

HscAB overexpression in interstrand crosslink resistance and repair could not be assessed. It 

remains possible that HscAB expression under normal growth conditions confers interstrand 

crosslink resistance, but assessing these proteins’ roles may require more physiologically 

relevant amounts of protein expression than can be achieved using a plasmid overexpression 

system. Consistent with this, Holland et al., (1991) proposed that constitutive expression of the 

55-kDa product might be dependent on the absence of a repressor protein thus allowing the 

optimal conditions for DNA interstrand crosslink resistance (Holland et al., 1991). The iron-

sulfur cluster repressor, IscR, located just downstream of hscAB may be responsible for 

providing optimal HscAB concentrations under cellular stress, and could be tested by 

constructing a iscR-deficient mutant and exposing it to 8-methoxypsoralen-UVA conditions 

compared to the wild-type strain. Alternatively, HscAB may be involved in multiple cellular 

pathways beyond interstrand crosslink survival and dysregulation of these genes could lead to 

cytotoxicity under normal conditions. 

Due to the significant cellular toxicity resulting from the inhibition of replication and 

transcription by interstrand crosslinks in all cells, agents that induce these lesions have been 

widely adopted as chemotherapeutics and  resistance to these covalent linkages have become an 

important area of study (Deans & C West, 2011). Our observation that E. coli can acquire 



 15 

interstrand crosslink resistance following repeated exposure demonstrates that this bacteria may 

be a good model system for understanding the development of interstrand crosslink resistance or 

tolerance over time. If this is the case, the functional homology between metabolic processes in 

E. coli and mammalian cells would suggest that similar pathways may be exploited by cancer 

cells to accumulate resistance to crosslinking chemotherapeutic agents over the course of cancer 

treatment, ultimately leading to cancer recurrence (Guainazzi & Schärer, 2010). 

The exact cellular mechanism responsible for increased cell survival to crosslinking 

agents remains unknown, but recent studies have implicated enzymes such as Cho endonuclease, 

along with the UvrAB complex, to be involved in interstrand crosslink repair mechanisms, 

independent from DNA monoadducts (Perera, Mendenhall, Courcelle, & Courcelle, 2016). Two 

alternatively proposed repair mechanisms involve the nucleotide excision repair/lesion bypass 

(X. Wang et al., 2001); and the nucleotide excision repair/translesion DNA synthesis pathway 

(Berardini, Foster, & Loechler, 1999; Kumari et al., 2008). Construction of recA-, uvrA-, polB- 

(DNA Pol II), and dinB (translesion DNA Pol IV)-deficient mutants in the hyper-resistant 

genetic background may allow for the identification of DNA repair complexes involved in 

crosslink-lesion processing. If increased repair of 8-methoxypsoralen-bound DNA is responsible 

for the crosslink-resistant phenotype, then inhibition of the involved complex should cause a 

reversion in survival towards that seen in repair-deficient mutants. 

 Another plausible mechanism of the DNA interstrand crosslink resistance observed in 

this study is transmembrane pump activity, which could remove 8-methoxypsoralen from E. coli 

cells prior to DNA intercalation and UVA exposure. The multiple drug resistance protein in 

cancer stem cells has been frequently documented to remove toxic agents from cells prior to 

DNA alterations, thus contributing to chemotherapy resistance and reduced crosslink formation 
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(reviewed in DI & ZHAO, 2015). In human hepatocytes, induction of crosslinks by 8-

methoxypsoralen has been shown to potently induce the oxidative and hydrolytic drug-clearance 

enzymes cytochrome P450 3A4 and carboxylesterase 2 (Yang & Yan, 2007). One method to 

determine whether decreased uptake or increased efflux of 8-methoxypsoralen is responsible for 

all or some of the hyper-resistance I observed is to monitor the accumulation of DNA interstrand 

crosslinks over increasing UVA doses. The absence or reduction in accumulation of interstrand 

crosslinks in the hyper-resistant strain, but not the wild-type cells, would suggest an active 

transport mechanism as the mode of interstrand crosslink resistance. 

This study confirmed that E. coli do possess the capacity for interstrand crosslink 

resistance within their genomes. Given the functional conservation between cellular processes in 

E. coli and mammals, identifying which genes are affected in the hyper-resistant strain may 

provide insights into the cellular pathways involved in DNA interstrand crosslink processing and 

development of drug resistance. 
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