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Multi-tasking Memcapacitive Networks
Dat Tran, Electrical and Computer Engineering, Santa Clara University, Member, IEEE *

Christof Teuscher, Electrical and Computer Engineering, Portland State University, Senior Member, IEEE

Abstract—Recent studies have shown that networks of mem-
capacitive devices provide an ideal computing platform of low
power consumption for reservoir computing systems. Random,
crossbar, or small-world power-law (SWPL) structures are com-
mon topologies for reservoir substrates to compute single tasks.
However, neurological studies have shown that the interconnec-
tions of cortical brain regions associated with different functions
form a rich-club structure. This structure allows human brains to
perform multiple activities simultaneously. So far, memcapacitive
reservoirs can perform only single tasks. Here, we propose, for
the first time, cluster networks functioning as memcapacitive
reservoirs to perform multiple tasks simultaneously. Our results
illustrate that cluster networks surpassed crossbar and SWPL
networks by factors of 4.1×, 5.2×, and 1.7× on three tasks:
Isolated Spoken Digits, MNIST, and CIFAR-10. Compared to
single-task networks in our previous and published results, mul-
titasking cluster networks could accomplish similar accuracies of
86%, 94.4%, and 27.9% for MNIST, Isolated Spoken Digits, and
CIFAR-10. Our extended simulations reveal that both the input
signal amplitudes and the inter-cluster connections contribute
to the accuracy of cluster networks. Selecting optimal values
for signal amplitudes and inter-cluster links is key to obtaining
high classification accuracy and low power consumption. Our
results illustrate the promise of memcapacitive brain-inspired
cluster networks and their capability to solve multiple tasks
simultaneously. Such novel computing architectures have the
potential to make edge applications more efficient and allow
systems that cannot be reconfigured to solve multiple tasks.

Index Terms—memcapacitor, multi-tasking, network, topology,
brain-inspired

I. INTRODUCTION

THE emergence of new nano-devices has enabled the
development of brain-inspired computing substrates with

unique and promising properties. For example, memory de-
vices, such as memristors and memcapacitors, allow for the
direct implementation of synaptic connections, which are an
essential part of artificial neural networks (ANNs) to mimic
the function of a biological brain. Recent studies have shown
that memcapacitive networks can solve neuromorphic tasks
with high energy efficiency [1], [2]. The nonlinear character-
istics of memcapacitive networks are ideal for neuromorphic
computing, particularly in reservoir computing (RC) [1], [3],
[4]. Reservoir computing is an alternative machine learning
approach for brain-inspired computing systems that describes
the higher-order cognitive functions and the short-term mem-
ory processes [5]. Results from different studies illustrate that
random networks [6], regular as crossbar topologies [7], or
small-world power-law (SWPL) topologies [4] have enough
dynamics to function as reservoirs to perform simple tasks.
In our previous work, we have demonstrated that the SWPL
topologies provide a suitable structure for memcapacitive

* This is the corresponding author: dtran3@scu.edu.

networks to perform tasks with high energy efficiency and
low hardware cost [4].

Neurological studies have revealed that the human brain
is organized in a rich-club structure, in which cortical brain
regions (clusters) contain highly dense and inter-region con-
nections [8]. Each brain region connects to a specific activity
and has a small-world feature to minimize the cost of informa-
tion processing while maximizing its capacity for growth and
adaptation [9]. With the rich-club structure, the human brain
can perform multiple tasks simultaneously.

So far, memcapacitive reservoirs with different topologies
could only perform single tasks. Here, we propose, for the first
time, cluster networks functioning as memcapacitive reservoirs
to perform multiple tasks simultaneously. Even though our
simulation results are lower than those of the state-of-art
systems due to subsets of data in training and testing to avoid
long simulation times, they illustrate a potential physical im-
plementation of multitasking memcapacitive reservoirs beyond
a theoretical concept.

II. MULTITASKING RESERVOIR COMPUTING
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Fig. 1. Multi-tasking reservoir computing. Temporal and spatial informa-
tion (I1, I2, . . . , IN ) from input data is transformed into temporal signals
[u1(t), u2(t), . . . , uN (t)] as input streams to the reservoir. The input vector
W ini limits the input signals Ii to prevent overstimulated reservoirs. The
reservoir, composed of memcapacitive devices, translates the input signals
[u1(t), u2(t), . . . , uN (t)] into a high-dimensional space. Separate readout
nodes [y1(t), y2(t), . . . , yN (t)] are trained and tested for corresponding
target functions. Readout nodes are trained by adjusting the output weight
vectors

(
W out1,W out2, . . . ,W outN

)
using the ridge regression algorithm.

Feed-forward networks are a typical ANN architecture.
However, the networks cannot retain information about pre-
vious timesteps from input streams. One of the solutions is to
add recurrent connections to form recurrent neural networks
(RNNs) so that the networks can retain information from
the past. The recurrent connections, however, significantly
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increase the training complexity of the networks. Reservoir
computing (RC) is an alternative to avoid the training complex-
ity of large recurrent networks. In an RC system, a reservoir
(or, in our case, a memcapacitive network) remains untrained
and maps input streams into high-dimensional internal states.
A single readout layer extracts information from the reservoir
and is trained with a simple gradient-descent algorithm.

Figure 1 shows a general architecture of multi-tasking
memcapacitive reservoir systems. Temporal and spatial infor-
mation of different tasks (I1, I2, . . . , IN ) is transformed into
time signals as input streams [u1(t), u2(t), . . . , uN (t)] to the
memcapacitive reservoir. The scaling vector W inm, whose
values wim are randomly selected from the set of {−ν,+ν},
limits input signal um(t) to prevent overstimulated conditions
in the reservoirs. The state matrix W res(t) represents the
internal capacitance of memcapacitive devices as:

W res(t) = [mc1(t),mc2(t), ...,mcM (t)],

where mci(t) is the capacitance of a memcapacitive device
within the reservoir at time t. The time-dependent state x(t)
of the reservoir is defined as:

x(t+ 1) =f
[
W res(t)x(t) +W in1u1(t)+

W in2u2(t) + . . .+W inNuN (t)
]
,

where f() is the transforming function of a reservoir node,
ui(t) is the time signal of temporal and spatial input Ii, and
W ini is the scaling input vector. The inner product of the
reservoir state x(t) and the output weight vector W outi form
a separate readout node yi(t) for each task:

yi(t) = x(t)W outi,

where the output weight vector W outi is trained with a
simple technique such as the ridge regression algorithm. The
description of the transforming function f() is in Section II
of the Supplementary Materials.

III. NETWORK STRUCTURE FOR MULTITASKING
RESERVOIRS

Our work considers three network structures for multi-
tasking reservoirs: crossbar networks, SWPL networks, and
our newly proposed SWPL cluster networks. Section III in
the Supplementary Materials explains the formation of three
network types in detail.

A. Fully Connected Networks using Crossbar Structure

Crossbars are typical networks for emergent nanodevices
(memristors and memcapacitors). In crossbar networks, nan-
odevices are fabricated at the cross junctions of nanowires.
Crossbar arrays can emulate the synaptic behavior of deep
neural networks and perform pattern recognition tasks [2],
[10].

Figure 2 illustrates an example of a 2-layer crossbar network
that serves as a multi-tasking reservoir. The converted input
streams from different tasks [u1(t), u2(t), . . . , uN (t)] provide
input signals to the reservoir through the input nodes I . The
readout nodes [y1(t), y2(t), . . . , yN (t)] extract information
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Fig. 2. A fully connected network for a multi-tasking reservoir. The input
streams [u1(t), u2(t), . . . , uN (t)] provide stimulus signals to the reservoir
through the input nodes I . The readout nodes [y1(t), y2(t), . . . , yN (t)]
extract information from the reservoir through the output nodes O.

from the reservoir through the output nodes O for training and
testing. Each readout node is trained with a ridge regression
algorithm.
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Fig. 3. The structure of 2-layer crossbar network. Memcapacitive devices are
located at the cross junctions of nanowires. The input nodes (I) connect to
the middle nodes (M ) through memcapacitive devices at the cross junctions
of nanowires. Similarly, the central nodes (M ) attach to the output nodes (O)
through nanowires.

Figure 3 shows an implementation of fully connected net-
works using a crossbar structure. The first group of horizontal
nanowires (blue nanowires) functions as the input nodes (I).
Each input node (ii) links to all the nodes (vertical green
nanowires) of the middle layer through memcapacitive devices
located at the cross junctions of nanowires. The second group
of horizontal nanowires (magenta nanowires) is output nodes
(O) that provide output signals to readout nodes. Similar to a
memristive crossbar structure, each node (mi) in the middle
layer (M ) can connect to all output nodes.
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B. Small-world Power-law Networks

Memcapacitive Reservoir
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Fig. 4. Small-world power-law (SWPL) network for a multi-tasking reservoir.
The dynamic response of SWPL reservoirs depends on locality α and
randomness β [4]. Input stream Ii provides stimulus signals to the reservoir
through a set of random input nodes. A readout node connects to the reservoir
through another set of random output nodes.

Small-world (SW) networks enable a biological brain to
improve the communication between different regions [11], its
resilience against neural disease [12], and balances resources
for growth and adaptation [9].

Real physical or biological SW networks tend to have more
local connections than global links due to limited resources
[9]. In our previous work, we showed that small-world power-
law (SWPL) networks, the subset of SW networks, describe
the true nature of biological and neural networks [4], [13]. The
characteristics of SWPL networks depend on the locality α and
the randomness β. Different combinations of α and β generate
different responses from SWPL networks. The effect of α and
β on the dynamic nature of SWPL networks is described in
our previous study [4]. Although SW or SWPL topologies are
a typical structure for reservoir computing [13], such as Echo
State Networks [14], [15], memcapacitive SWPL networks
offer a probable implementation of physical networks. Further
explanations are in Section III of the Supplementary Materials.

As shown in Fig. 4, the time signal ui(t) from an input
stream Ii stimulates the reservoir through a set of random input
nodes. Another set of random nodes provides input signals to
readout node yi(t) for a specific task. Similar to the crossbar
multi-tasking reservoirs, the training stage of SWPL reservoirs
utilizes a ridge regression algorithm.

C. Small-world Power-law Cluster Networks

fMRI scans revealed an internal structure of the human
brain with segregation and integration where multiple activities
are associated with different regions [16]. Such multitasking
activities are possible due to the clustered structure of the
brain. Here, we propose SWPL cluster networks as a structure
for memcapacitive reservoirs to mimic the multiple activities
in the human brain.

Figure 5 illustrates SWPL cluster networks for a multi-
tasking memcapacitive reservoir. In this network, each cluster
is responsible for a particular task. The input stream ui(t)
from task Ii connects solely to a Clusteri. The outputs of
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Fig. 5. Small-world power-law cluster network for a multi-tasking reservoir.
Each cluster is responsible for a particular task. The input stream ui(t) from
a particular task Ii connects to a separate cluster Clusteri. This cluster
provides the input signals for the readout node yi(t) of the task Ii. k-
degree illustrates the interconnections between clusters within memcapacitive
reservoirs.

the Clusteri become the input signals of a readout node
yi(t) to train and test for the task Ii. The in/out-degree
(k − degree) describes the interconnections between clusters
where information can travel from one cluster to another with
the network.

IV. METHODOLOGY

A. Device Models

To establish a solid comparison, we selected four mem-
capacitive models for our multitasking networks: the Biolek
behavior model, the Mohamed metal-oxide junction, the Na-
jem biomimetic membranes, and the MRMC device that has
both memristive and memcapacitive responses. We modified
all models, except theNajem model, to express state volatility,
which is an essential attribute of reservoir computing.

TABLE I
MEMCAPACITIVE DEVICES

Model † Type Values at w ⋄ Phy.
wmax wmin Dev.

Biolek [17] ⋆ NA 100pF 1pF NA
Mohamed [18] Metal-oxide 6.5nF 1nF yes
Najem [19] Biomimetic 272pF 0.3pF yes

MRMC [1] ‡ NdNiO3
223.1MΩ 14.3MΩ yes
370pF 16pF

† These models were modified to exhibit state volatility, the essential
property in reservoir computing, except the Najem model, which is the
model of a volatile device.
⋄ w represent a symbolic and internal state of a device between wmin and
wmax. Different models have different variables to represent their internal
state: C for the Biolek model, x and m for the Mohamed model, R and W
for the Najem model, and x and m for the MRMC model (see Section I in
Supplementary Materials for more detailed information).
* This model is not based on a physical device.
‡ This device has both memristive and memcapacitive behaviors.

Table I provides general characteristics of all memcapacitive
models. Since experimental data for the Mohamed and Najem
models are not available, we used the mathematical model
equations published in studies [18], [19]. The MRMC model
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was from the experimental data of a physical device. The
device modifications and descriptions are in Section I of the
Supplementary Materials.

B. Power Calculation
Using the law of power conservation, we calculated the

power consumption from the supplied power as follows:

ps(t) = vs(t)is(t),

Pavg =

∫ T

0

m∑
i

pk(τ)dτ,

where vs(t) and is(t) are the voltage and the current of the
supplied sources at a timestep t, ps(t) is the supplied power, T
is the total simulation time, and Pavg is the average supplied
power of the sources to networks.

C. Benchmark Tasks
We used three standard benchmarks to evaluate the clas-

sified accuracy of our multitasking memcapacitive reservoirs:
MNIST, Isolated Spoken Digits, and CIFAR-10. Section IV
in Supplementary Materials explains in detail the converting
process of spatial and temporal information to input vectors
for each dataset. The input vectors, through a set of random
input nodes, provide signals to the reservoirs.

We performed a small experiment of collecting simulation
times of training and testing SWPL cluster networks with
a subset of data and the entire dataset. The results are in
Section IV-D of Supplementary Materials. From the results,
we observe that using the whole dataset for training and testing
is an impractical option for finding optimal hyperparameters
of networks. As a result, we used a subset of data as a feasible
option for training and testing networks. We expect that using a
subset of data for training and testing will impact the accuracy
of networks.

The MNIST dataset is a collection of handwritten digit
images (28×28) that includes 60,000 training and 10,000
testing images. The digit images extend into 784-pixel vectors
as reservoir inputs for training and testing. Due to long
simulation times, we only used a subset of data (1,000 images
for training and 500 images for testing).

The spoken digit dataset contains the recordings of spoken
digits in wave file format at 8 kHz [20]. The digit dataset holds
1,500 recordings of digits 0 to 9 from different English speak-
ers. We divide the dataset into two non-overlapping sets: 1,000
digits for training and 500 digits for testing. Unlike the MNIST
dataset, which contains only spatial information, the spoken
digit dataset is more complex with spatial and temporal data.
Through a preprocessing process of Mel-frequency cepstral
coefficients, the spoken digits transform into 117-coefficient
vectors as training and testing data [21].

CIFAR-10 is a collection of 60,000 color images (32×32) of
ten object classes. Since CIFAR-10 images are highly dimen-
sional due to the color representation of image features, we
reduced the image dimension through a grayscale technique
[22]. Since simulation times for CIFAR-10 images were quite
long, we only used a subset of training and testing CIFAR-10
datasets (5000 training and 500 testing images).

D. Parallel and Sequential Mode for Training and Testing

We trained and tested SWPL cluster networks in sequential
and parallel modes. For the sequential method, we trained each
cluster with associated inputs successively. Unused inputs were
connected to a grounding reference with high-value resistors.
The description of the grounding resistors is in Section IV
- F of the supplementary materials. In the parallel mode,
all network clusters were simultaneously trained and tested.
Since we only selected a subset of random training data due
to simulation times, as mentioned in Section IV-C, the training
subset could be an uneven combination of inputs from multiple
datasets. For example, a random subset of data for the multiple
tasks of Isolated Spoken Digits (task one) and MNIST (task
2) could have 200 data for digit one from task one and digit
six from task 2, whereas only 10 data for digit zero and digit
nine. The unbalanced input data could lead to a limitation in
the learning stage where networks were trained many times
with one target while only a few times for other targets. To
avoid unbalanced data in a training process, we recombined
input data using the technique in Fig. 6.

Class 0

Class 1

Class 2

Class 3

Class n

Class 0

Class 1

Class 2

Class 3

Class m

Dataset 1 Dataset 2

Fig. 6. Combining input data for parallel training and testing net-
works. Each targeti or (Classi) in Dataset 1 combines all classes
(Class0, Class1, Class2, . . . , Classm) in Dataset 2 to form input streams.
The result is a balanced dataset for training and testing.

Figure 6 describes the logical procedure of generating
training and testing input streams from two datasets. Each
targeti (or Classi) in Dataset 1 combines with all classes
(Class0, Class1, Class2, . . . , Classm) in Dataset 2 to form
input data. The final input streams contain balanced input
data of all classes from both datasets for training and testing
networks in parallel. However, this technique has a drawback
because a cluster is trained multiple times with a similar
target. Finding a better approach for combining data will
be the extension of our current study. Section IV - E in
Supplementary Materials describes how to generate training
and testing data for the parallel mode.
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E. Simulation Environment

We built a software framework with Python and Ray. Ray is
a comprehensive computing framework for distributed systems
in machine learning and artificial intelligence applications
[23]. Ray provides a friendly ecosystem that integrates easily
with many state-of-the-art optimization algorithms, particu-
larly Optuna, which is used for hyperparameter optimizations
in data mining [24].

V. SIMULATION RESULTS

A. Crossbar, SWPL, and SWPL Cluster Networks

In the first experiment, we simulated three memcapaci-
tive reservoir networks (crossbar, SWPL, and SWPL cluster
networks) for two multiple tasks: multiple tasks of MNIST
and Spoken Digits, and multiple tasks of Spoken Digits
and CIFAR-10. Due to the stochastic nature of reservoir
networks, we ran simulations on five samples of each reservoir
type to obtain average results. From our previous work, we
learned that the dynamic response of networks depended on
the nonlinear characteristics of memcapacitive devices [4].
Furthermore, according to Jaeger, the network performance (or
accuracy) relies on how well the network translates input data
into its internal and high-dimensional states [25]. Thus, some
networks need more devices while others use fewer to achieve
similar performance accuracy. With the Optuna algorithm, we
derived the possible sets of network hyperparameters matching
the nonlinear behaviors of devices for optimal classification
accuracy. The optimal hyperparameters are in Section V of
the Supplementary Materials. All classification accuracy is
from the results of the testing dataset, and we independently
simulated networks with multiple tasks.


� ���  ����� ����� ��
�

��

��

��

	�

���

��
!� 

!�
��
��
���

�

�! ""��! ���� ��$"#�!

Fig. 7. Accuracy of the crossbar, SWPL, and SWPL cluster networks on
MNIST task. All reservoir networks of a particular device type had similar
nodes. The optimizing hyperparameters were from the Optuna algorithm. Due
to the stochastic nature of networks, five samples of each reservoir type were
simulated with the same hyperparameters to obtain average results.

Figures 7, 8, and 9 show the simulation results of three
multitasking reservoir networks. We observe that the SWPL
cluster networks in parallel mode accomplished higher accu-
racy than the crossbar and SWPL networks. As expected, the
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Fig. 8. Accuracy of the crossbar, SWPL, and SWPL cluster networks
on Spoken Digit task. All reservoir networks of a particular device type
had similar nodes. The optimizing hyperparameters were from the Optuna
algorithm. Due to the stochastic nature of networks, five samples of each
reservoir type were simulated with the same hyperparameters to obtain average
results.
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Fig. 9. Accuracy of the crossbar, SWPL, and SWPL cluster networks on
CIFAR-10 task. All reservoir networks of a particular device type had similar
nodes. The optimizing hyperparameters were from the Optuna algorithm. Due
to the stochastic nature of networks, five samples of each reservoir type were
simulated with the same hyperparameters to obtain average results.

causal effect of input signals from different tasks within the
crossbar and SWPL networks reduced the dynamic responses
and, therefore, affected the performance accuracy of the sys-
tems. On the other hand, this effect was less severe with the
cluster structure. The SWPL cluster networks could maintain
distinctive internal states for different inputs and preserve
their performance accuracy. The separation measurements of
network states in Section VII of the Supplementary Materials
confirmed our observations on the causal effect of input
signals. On average, the SWPL cluster networks outperformed
the crossbar and SWPL networks by factors of 4.1×, 5.2×,
and 1.7× on MNIST, Spoken Digit, and CIFAR-10 tasks.
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B. Single-task SWPL, and multitasking SWPL Cluster Net-
works

In the second experiment, we investigated how SWPL
cluster networks of different memcapacitive devices perform
on three tasks (MNIST, Spoken Digits, and CIFAR-10) in
parallel and sequential modes, compared to single-task SWPL
networks. Since there was a stochastic factor in the forma-
tion of networks, we simulated three instances of reservoirs
with similar hyperparameters to obtain average results. The
accuracy only included the results of testing data.
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Fig. 10. Accuracy of single-task SWPL and SWPL cluster networks on
MNIST. In general, both single SWPL and SWPL cluster networks with two
training and testing modes accomplished similar classification accuracy.
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Fig. 11. Accuracy of single-task SWPL and SWPL cluster networks on
Spoken Digits.

Fig. 10 shows the simulation results of networks on the
MNIST task. In general, the SWPL cluster networks accom-
plished comparable accuracy in parallel (Paral.) and sequen-
tial (Seq.) modes compared to single-task SWPL networks.
However, the Biolek SWPL cluster networks did not achieve
comparative accuracy. From our previous study [4], we noticed
that the internal state of the Biolek model was significantly

sensitive to applied voltages (changes in mV). Finding the
most optimal setting for the Biolek networks requires an
extensive simulation time during optimization. In our current
simulations, the hyperparameters for the Biolek networks were
not optimal due to limited simulation times. Therefore, the
performance accuracy of Biolek SWPL cluster networks was
lower than others.
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Fig. 12. Accuracy of single-task SWPL and SWPL cluster networks on
CIFAR-10.

For a complex task such as clarifying spoken digits in
Fig. 11, the SWPL cluster networks with the sequential
mode consistently failed in their accuracy compared to single-
task SWPL reservoirs on similar jobs. In the parallel mode,
however, the SWPL cluster reservoirs could maintain compa-
rable accuracy. We believe that the inter-cluster links created
causal effects between clusters within reservoirs. A disturbance
within one cluster triggered a dynamic change in other clusters
through interconnections. In the sequential mode, during the
training phase of reservoirs, the input data to readout nodes
from clusters did not account for this causal effect, and
reservoirs achieved low accuracy during the testing phase.
However, in the parallel mode, the causal impact was part
of the input data, so training readout nodes could account
for this effect. As a result, the reservoirs could retain their
classification accuracy. In Section VIII of the Supplementary
Materials, we performed additional experiments to measure
the Euclidean distance of network states. The results affirmed
what we saw in the performance accuracy of the SWPL cluster
networks for parallel and sequential modes.

We observe a similar tendency of SWPL cluster networks
on high-dimensional tasks such as CIFAR-10, as shown in
Fig. 12. In the parallel mode, training readout nodes could
accommodate the correlation effects due to inter-cluster links.
Therefore, the networks could maintain their equivalent ac-
curacy compared to single-task networks. In the sequential
mode, on the other hand, the training phase did not consider
the correlated effect, resulting in low accuracy.

Table II contains the percentage accuracies of SWPL cluster
networks in a parallel mode for two multiple tasks: Isolated
Spoken Digits and MNIST, and Isolated Spoken Digits and
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(a) Biolek Network


�������

���
���

���
���

���

k−
de
gr
ee

�
��

��
��

��

f(
p
f 1
, p
f 2
, P

)

���
���
���
���
���
��	

(b) Mohamed Network
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(c) Najem Network
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(d) MRMC Network

Fig. 13. Trade-off function f (pf1, pf2, P ) of cluster networks with different values of amplitudes (Ampl) and inter-cluster connections (k-degree) on
classifying spoken digits and MNIST images. The interpolating values were from the two functions bisplrep() and bisplev(). Compared to the inter-cluster
connections, the amplitudes contributed significantly to the maximum values of the trade-off functions. The maximum values of the trade-off function f()
occurred at different values of Ampl: [a] for Biolek network Ampl ∈ [0.1, 0.15], [b] for Mohamed network Ampl ∈ [0.45, 0.6], [c] for Najem networks
Ampl ∈ [0.7, 0.8], and [d] for MRMC network Ampl ∈ [0.8, 0.86].

CIFAR-10. In general, the percentage accuracy of SWPL
cluster networks was not as high as the state-of-the-art systems
due to limited simulation times. However, our results (Cr.)
were similar to the previous results (Pr.) in our published work
for single-tasks SWPL memcapacitive networks [4].

C. Trade-off for Overall Performance

The simulation results show that both the signal amplitudes
of input streams (Amplitude) and the inter-cluster connections
(k − degree) contribute to the overall classification accuracy

of SWPL cluster networks. In the third experiment, we want
to analyze how these factors affect the overall performance
of the cluster networks in various settings of the input signal
amplitudes and inter-cluster links on the two tasks: Spoken
Digits and MNIST. We simulated five instances of each clus-
ter network with similar hyperparameters to acquire average
results.

We see that the classification accuracy of SWPL cluster
networks improved with high settings of signal amplitude and
k − degree. However, with the high settings, SWPL cluster
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TABLE II
PERCENTAGE ACCURACY

Model
Percentage Accuracy †

MNIST Digits CIFAR-10 ‡
Cr. Pr. Cr. Pr. Cr. Pr.

Biolek [17] 83.1 85.7 90.5 91.7 25.6 25.8
Mohamed [18] 84.4 85.4 94.0 94.1 26.0 25.4
Najem [19] 85.3 86.4 87.8 88.7 27.9 28.1
MRMC [1] 86.0 86.4 94.4 94.2 25.6 25.5

† ”Cr.” represents the results in our current work (bold values). ”Pr.” refers
to the results in our previous work [4]. The performance accuracy of SWPL
cluster networks was lower than the state-of-the-art systems due to the
subset data in training and testing to avoid long simulation times in
optimizing processes.
‡ To reduce simulation time for CIFAR-10, we decreased image dimensions
with grayscale images and only used a subset of data for training and
testing. As a result, the accuracy was even lower than the state-of-the-art
systems.

networks also consumed more power than those with low set-
tings. We defined function f() as a trade-off function of SWPL
cluster networks: f(pf1, pf2, P ) = pf1 + pf2 − P . In this
trade-off function, pf1 and pf2 were the classification accuracy
of SWPL cluster networks on two tasks(Spoken Digits and
MNIST), and P was the overall power consumption of SWPL
networks. The missing points (or the interpolated values) were
from the bivariate B-spline interpolation functions bisplrep()
and bisplev(), the two common functions for finding spreading
points across a surface [26]. With the positive effect of pf1
and pf2 and the negative influence of P , the maximum values
of f(pf1, pf2, P ) were where the networks achieved their
optimal accuracy of high classification accuracy (pf1 and pf2)
and low power consumption (P ). The simulation results of the
trade-off function are in Fig 13.

As shown in Fig. 13, the trade-off functions of different
device cluster networks reached maximum values at the differ-
ent values of amplitudes (Ampl) and inter-cluster connections
(k-degree). Each memcapacitive device responded differently
to input signals due to its physical property. We expect that
the optimal values of signal amplitudes would be different
for memcapacitive cluster networks. Furthermore, we observe
that the change in signal amplitudes had a significant impact
on the trade-off functions compared to inter-cluster links. The
maximum values of the trade-off functions happened at dif-
ferent values of Ampl: for Biolek network Ampl ∈ [0.1, 0.15]
(Fig. 13a), for Mohamed network Ampl ∈ [0.45, 0.6] (Fig.
13b), for Najem networks Ampl ∈ [0.7, 0.8] (Fig. 13c), and
for MRMC network Ampl ∈ [0.8, 0.86] (Fig. 13d). The results
suggest that selecting appropriate values of signal amplitudes
matching the physical property of memcapacitive devices will
further improve the overall performance of cluster networks
in maintaining high classification accuracy and low power
consumption.

Optimizing hyperparameters, including network nodes, was
based on the Optuna algorithm to find possible network
settings matching the characteristics of memcapacitive devices.
Since networks with a higher number of network nodes (or
devices) improved the classification accuracy but consumed
more power, we define another trade-off function f to compare
the overall performance of SWPL cluster networks between
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Fig. 14. Power-accuracy trade-off between memcapacitive models for SWPL
cluster networks in parallel mode. The SWPL cluster networks were trained
and tested in a parallel mode for two multiple tasks: Isolated Spoken Digits
and MNIST, and Isolated Spoken Digits and CIFAR-10.

different device types: fp = Perf1+Perf2−Power. In this
function, Perf1 and Perf2 are normalized accuracy perfor-
mances of task1 and task2, and Power is the overall and
normalized power consumption of networks during training
and testing processes. As shown in Fig. 14, both the BiolekC4
and Najem SWPL cluster networks offered higher trade-off
values than other cluster networks. As a result, selecting
a suitable device for SWPL cluster networks, such as the
BiolekC4 and Najem devices, will further improve the potential
of multitasking networks.

VI. CONCLUSION

We have shown for the first time that memcapacitive rich-
club cluster networks can solve multiple tasks simultaneously
with high accuracy and low power. On average, the cluster
networks surpassed crossbar and SWPL networks by factors
of 4.1×, 5.2×, and 1.7× on the three benchmark tasks we
used (Isolated Spoken Digits, MNIST, and CIFAR-10). Even
though the performance accuracy of SWPL cluster networks in
parallel mode was lower than the state-of-the-art systems for
the three benchmarks, the accuracy results were similar to our
previous results in the published work for single-task mem-
capacitive networks [4]. Further experiments might increase
the accuracy using the whole datasets for training cluster
networks instead of subsets to avoid long simulation times in
optimizing processes. The trade-off results also revealed that
selecting suitable devices for tasks could further improve the
potential benefit of SWPL cluster networks. Our simulation
data can be used for future hardware implementations. Our
results illustrate the promise of memcapacitive brain-inspired
cluster networks and their capability to solve multiple tasks
simultaneously. Such novel computing architectures have the
potential to make edge applications more efficient and would
allow systems that cannot reconfigure to solve concurrent
tasks.
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