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Abstract

The current research effort is focused on improving the effective use of the multiple dispa-

rate sources of data available by proposing a novel maximum likelihood based probabilistic

data fusion approach for modeling residential energy consumption. To demonstrate our

data fusion algorithm, we consider energy usage by fuel type variables (for electricity and

natural gas) in residential dwellings as our dependent variable of interest, drawn from resi-

dential energy consumption survey (RECS) data. The national household travel survey

(NHTS) dataset was considered to incorporate additional variables that are not available in

the RECS data. With a focus on improving the model for the residential energy use by fuel

type, our proposed research provides a probabilistic mechanism for appropriately fusing

records from the NHTS data with the RECS data. Specifically, instead of strictly matching

records with only common attributes, we propose a flexible differential weighting method

(probabilistic) based on attribute similarity (or dissimilarity) across the common attributes for

the two datasets. The fused dataset is employed to develop an updated model of residential

energy use with additional independent variables contributed from the NHTS dataset. The

newly estimated energy use model is compared with models estimated RECS data exclu-

sively to see if there is any improvement offered by the newly fused variables. In our analy-

sis, the model fit measures provide strong evidence for model improvement via fusion as

well as weighted contribution estimation, thus highlighting the applicability of our proposed

fusion algorithm. The analysis is further augmented through a validation exercise that pro-

vides evidence that the proposed algorithm offers enhanced explanatory power and predic-

tive capability for the modeling energy use. Our proposed data fusion approach can be

widely applied in various sectors including the use of location-based smartphone data to

analyze mobility and ridehailing patterns that are likely to influence energy consumption with

increasing electric vehicle (EV) adoption.
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1 Introduction

1.1 Background

The United States of America is the second largest consumer of energy with only 4.3% of the

world population [1,2]. The energy consumption in the US can be mainly attributed to follow-

ing sectors: residential use (21%), commercial use (18%), transportation use (29%) and indus-

trial use (32%) [3,4]. Given how individual mobility and activity participation influences

energy use, it is not surprising that energy consumption in residential, commercial and trans-

port sectors is intertwined. For instance, households that pursue longer commutes are likely to

expend larger energy for transportation and are likely to expend lesser energy at their resi-

dence. Similarly, individuals working longer hours at office would contribute to increased

energy consumption at commercial buildings and reduced energy use (at least from one indi-

vidual) in the residence. The intricate relationship among these three sectors became promi-

nent with the ongoing COVID-19 pandemic. Residential energy use increased by 8% during

COVID-19 lockdown and/or mobility restrictions (between April to August 2020), while com-

mercial and transportation related energy usage decreased 8% and 21%, respectively [5,6].

With the growing adoption of electric vehicles (EVs), the intricate relationship between

energy consumption across sectors will be further strengthened [7,8]. The uptake of EVs and

the potential energy source diversification (such as solar and wind energy) would result in a

transformation of energy consumption and distribution patterns across the world [8]. The

demand for charging the electrical vehicles at home, work and other potential locations is also

likely to influence the spatio-temporal nature of the existing electricity demand. It is possible

that the current demand on the grid could be rapidly altered with higher residential and com-

mercial demand. There is a growing need for the development of modeling frameworks that

provide insights on energy use and potential future energy demand evolution. A major bottle-

neck for model framework development is the unavailability of “perfect” data.

Recent technological advances and their adoption including sensing technology, smart

energy sensors, connected and autonomous vehicles, shared mobility (bike sharing, scooter

sharing and transportation network companies), naturalistic driving studies, and location-

based smartphone data have resulted in large volumes of data being collected. This data explo-

sion has shifted research challenges in multiple fields from modeling with limited data to

developing modeling approaches that support effective utilization of the abundant data. The

current research effort is focused on improving effective use of the multiple disparate sources

of data available for energy use modeling by proposing a novel maximum likelihood based

probabilistic data fusion approach.

Data fusion algorithms refers to the techniques of integrating two or more distinct data

sources into a fused data that offers enriched information (additional explanatory variables)

compared to the individual data sources [9]. The algorithms can be simple merging efforts

across multiple datasets. Let us consider the compilation of a typical residential energy demand

dataset. Utility companies compile energy use data using a smart energy sensor system with

detailed information on energy demand in continuous time while also compiling residential

unit characteristics (such as floor area and the number of bedrooms). The data also has unique

information in terms of the residential unit location. Employing the location information, the

dataset can be augmented with a Weather and Geographic Information System (GIS) file that

provides location specific characteristics such as temperature and precipitation. The merging

of data described here is a simple, deterministic fusion. Given the location, using GIS and

appropriate weather data, the analyst can query or cross-reference for weather characteristics

and append them to the energy demand record. The data fusion described is typically devoid

of uncertainty (as long as the appropriate data processing steps are employed) and well defined
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as there are attributes that can be used to match data across these multiple datasets. Any data

analysis in recent years includes such simple data fusion procedures.

The proposed research is geared towards fusing databases that are not relatable because of

the inherent differences across these datasets. For these uniquely unmatched datasets, there is a

significant need for a behavioral data fusion approach across various domains including

energy demand analysis [10–14], mobility pattern analysis [15–17], freight movement model-

ing [18–20]; disaster evacuation planning [21] and traffic safety [22]. With increasing share of

energy use for mobility (with EVs), it is important to examine how transportation mobility

needs can influence energy use. The current research recognizes the potential relationship

between energy and transportation datasets and provides an algorithm to enhance energy data

modeling using information from transportation datasets. The proposed approach is general

and can be applied across domains. With emerging advances in information technology and

communication devices data from smartphone location data or cell phone OD data are ideal

complements to traditional data by offering improved spatiotemporal coverage [23,24]. At the

same time, these data are not usually available with person or household level characteristics.

Thus, adoption of these data at a decision maker level would require an effective algorithm

that can fuse this information with travel survey data.

1.2 Research approach

The data fusion algorithm developed in the current research is targeted toward datasets that

contain information that is not uniquely matchable. Consider data from a Residential Energy

Consumption Survey (RECS) data compiled by US Energy Information Administration (EIA)

that provides energy use information by fuel type (such as electricity and natural gas) at a resi-

dential unit resolution along with household level information. To understand the determi-

nants of energy use by fuel type, a linear regression model can be estimated using the set of

independent variables available in the RECS dataset including household level characteristics:

housing type, housing characteristics such as number of stories and bedrooms [25,26]; location

characteristics: census region, division, located in urban/rural area [27,28]; and climatic char-

acteristics: number of cooling and heating days [29–31]. However, the RECS data—source
dataset—does not have any information on the number of employed individuals and house-

hold vehicle ownership. It is possible that these two variables are contributing factors for

energy use. Employment status and vehicle ownership are indicative of the mobility needs of

the household influencing energy consumption at the residence and for transportation needs.

The proposed research develops methods that bring in this relevant information from another

dataset–a donor dataset. The National Household Travel Survey (NHTS) administered by Fed-

eral Highway Administration (FHWA) surveys travel behavior patterns. NHTS dataset pro-

vides information on employed individuals and vehicle ownership–information that might

assist in better understanding energy use and its prediction. With a focus on improving the

model for the dependent variable of interest from the RECS dataset (energy use by fuel type in

the example), our proposed research provides a probabilistic mechanism for appropriately fus-

ing records from the NHTS dataset with records in the RECS dataset. For each RECS record,

the algorithm considers a select set of records from the NHTS dataset with some common

attributes (such as census region or household size) as a starting point for matching consider-

ation. A weight function is defined that optimizes the weight for each RECS record while

improving dependent variable model fit (energy use by fuel type). As the weight is unobserved

to the analyst, the weight function proposed is analogous to the latent segmentation weight for

a discrete outcome variable. In our research, the weight function is scored based on the simi-

larity/dissimilarity of the source and donor records for common unmatched attributes (such
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as number of adults). The weight score is expected to be higher for source and donor records

with more similarity. Across the selected donor records for a single source record, the weight

sums to one. The donor records selected will provide additional useful variables missing for

the source record.

The proposed fusion approach is illustrated using RECS and NHTS datasets for energy use

by fuel type analysis. The model developed offers improved data fit for the dependent variables

of interest. The main motivation behind our matching approach is to augment RECS data

with NHTS data that contains detailed socio- demographics (gender, age), travel patterns

(what mode is used for daily travel) and location information that could significantly affect

energy usage. For instance, households situated in high population density locations typically

have reduced floor area per capita and hence are likely to use less electricity for heating and

cooling. Further, in recent years, energy consumption patterns are affected along two direc-

tions. First, the emergence of electric vehicles (EV) will transform the energy-transportation

relationship. In the future, in households with EVs the energy consumption will be directly

associated with vehicle ownership variables (how many electric cars) and vehicle usage dimen-

sions. Second, during the COVID pandemic, a large number of workers facilitated by advances

in information technology started to work from home influencing residential energy con-

sumption. Currently RECS data does not provide any information on these important vari-

ables. NHTS data on the other hand can fill this gap as information on the number of vehicles

in the HH, the corresponding vehicle types (fuel/electric) and the number of people working

from home are available. Thus, the proposed fusion algorithm enables us to merge these two

distinct datasets and create an enriched data source for analyzing energy consumption. Using

the fused data, the association between additional categories of exogenous variables with resi-

dential energy demand can be tested. Thus, the model developed with the fused database will

have additional explanatory power relative to the model developed solely using RECS data.

The rest of the paper is organized as follows: Section 2 provides a brief review of previous

research on the application of data fusion algorithms in transportation field and highlights the

contribution of the current study. Section 3 briefly outlines the methodological framework

used in the analysis while a detailed description about the experimental setup of the study is

presented in section 4. In section 5, we describe the model findings and finally, concluding

thoughts are presented in section 6.

2 Earlier research and current study

In our research, we are interested in developing advanced approaches for energy consumption

analysis drawing on novel approaches from data fusion literature. Hence, we focus our litera-

ture review along two directions. In the first direction, we provide a summary of studies exam-

ining residential energy usage. In the second direction we provide a summary of studies

adopting data fusion techniques in the energy domain.

2.1 Literature on energy usage

Residential energy demand has been extensively researched in the energy analysis literature.

However to conserve on space, we will provide a brief summary of these studies (see [31] for

details on these studies). From our literature review, it is observed that earlier research focused

on electricity and natural gas consumption [25,26,29–36] while very limited attention has been

devoted to other forms of energies including fuel oil and LPG [31,32,37]. Interestingly, RECS

is the most used database in United States for analyzing the usage of various energy sources

[29–34]. Within these studies, the most prevalent form of energy usage considered is the con-

tinuous representation of energy use including energy consumption in BTU, or natural
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logarithm of energy consumption [29,30,33,34] while a handful of research efforts focused on

the choice of energy source [30–32,34]. Given the continuous nature of the choice variable, it

is not surprising earlier research adopted the regression framework for examining the energy

usage. In particular, work in this area has ranged from simple linear regression [29,30,33,34]

or discrete continuous models [30,34] to more advanced models such as the Multiple Discrete

Continuous Extreme Value (MDCEV) model [31,32] for predicting the residential dwelling

energy usage. In terms of the predictors, previous studies identified the following factors sig-

nificantly affecting the residential energy usage: household level characteristics (HH income,

race, household size, education) [25,31,36]; location characteristics (census region, type of

location) [26,32], housing characteristics (such as year of construction, housing type, type of

unit, square footage, and number of stories) [31,35,37], appliance use (such as appliances used

in the housing unit) [31,38] and climatic characteristics (such as heating degree days and cool-

ing degree days) [29–33,35].

2.2 Literature on data fusion techniques in energy

Data fusion algorithms have been widely researched and applied in various fields including

statistics, business analysis, chemical engineering, energy demand, navigation industry and

transportation [9,11,19,22,39,40]. For the current research effort, we have confined our atten-

tion to the studies adopting data fusion techniques in energy demand sector.

Energy efficiency (in building) is a heavily researched area where data fusion is applied at

various resolutions. However, unlike transportation field, data fusion algorithms in energy

demand literature mainly focused on appliance, sensor and semantic level fusion as opposed

to data level fusion [14]. Example includes system identification combined with Kalman filter-

ing [41], and deep learning-based techniques [11,42] that integrate data from multiple sources.

These techniques have been applied to various types of data, including weather, occupancy,

and equipment usage patterns. Multi-information fusion models, such as those using convolu-

tional neural network (CNN) and long short-term memory (LSTM) networks, have also been

used to enhance the accuracy of energy forecasting [43,44]. Based on the dimension of crucial

interest, these studies can be broadly classified into two groups: 1) examine the occupancy sta-

tus of the building and 2) understand the energy consumption pattern. The reader would note

that data fusing algorithms have also been developed to minimize the variance of the fused

data, which is beyond the scope of the current study (see [45,46] for details).

The first group of studies mainly adopted different data fusion algorithms for analyzing the

occupancy status of a building, a crucial component in energy efficiency and energy consump-

tion analysis [10,11,47–49]. For instance, Wang and his colleagues [47] considered K-Nearest

Neighbour (KNN), Support Vector Machine (SVM) and Artificial Neural Network (ANN) algo-

rithms to fuse the environmental data with WI-FI data for predicting the building occupancy.

Another research effort by Nesa and Banerjee [48] presented Internet of Things (IoT) based real

time sensor data fusion using the data collected from various sensors within office space to pre-

dict the occupancy status of the office spaces. Varlamis and his colleagues [10] fused sensor-

based energy data with the historical data and user feedback to generate recommendations for

smart homes and offices. Wang et al.,[11] used Long Short-Term Memory (LSTM) networks to

fuse data from various utilities to predict internal heat gains for office buildings—a major com-

ponent in heating, ventilation, and air conditioning (HVAC) operations. He et al. [49] proposed

the fusion of LSTM and Back Propagation Neural Network (BPNN) algorithms to predict air

conditioning load in buildings. Tan and his colleagues [43] employed rule-based decision-mak-

ing algorithms to combine data from multiple sensors, such as motion, door, and light sensors

to improve occupancy detection accuracy in residential buildings.
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The second line of inquiry is focused on analyzing the energy consumption patterns of

buildings by applying data fusion techniques [12,13,50,51]. Gouveia [13] fused the electricity

consumption data from smart meters with door-to-door surveys to understand the energy pat-

terns of the households. Wijayasekara and Manic [51] used ANN based data fusion method to

increase the temporal resolution of building energy consumption data. Similar approach was

also used by De Silva and his colleagues [50] to understand the energy consumption patterns

in buildings. Gurino et al.,[12] compared the existing climatic databases with the simulated

historical weather data aimed to generate a fused dataset by using various climate change mod-

els. This fused database was used to predict the consumption of energy requirements for office

buildings.

2.3 Current study in context

The literature review clearly highlights the prevalence of data fusion algorithm across various

energy sectors. However, all these studies focused on combining two/more datasets based on a

common identifier (such as fusing information to a house based on its ID) or by employing

black box approaches to data fusion. Furthermore, the data fusion approaches are geared

towards compiling dependent variables of interest not available in one of the datasets. In our

research, the focus is on providing additional independent variables for accurately represent-

ing the dependent variable of interest. The preceding discussion also makes it clear that data

fusion algorithms in energy demand literature are primarily focused on semantic, sensor, and

appliance level fusion, as opposed to observation level probabilistic fusion approach proposed

in our study [14]. To the best of the authors’ knowledge, this is the first attempt (in both trans-

portation and energy demand literature) to develop a behavioral fusion algorithm to combine

two different datasets without any common identifier. A recent paper by Zhang and his col-

leagues (60) adopted a fusion approach to predict credit risks for small and medium-sized

businesses (SMEs) in supply chain financing by merging behavioral and demographic data.

However, the work also focused on deterministic fusion as both these data were matched

based on the common entity of SMEs in supply chain finance.

The current approach is focused on a data fusion approach that augments RECS data

(source) with additional variables from NHTS dataset (donor) with a focus on improving the

data fit of the dependent variable of interest (energy use by fuel type) in the source dataset. The

source and donor dataset can have common attributes such as census region, household size,

household ownership, number of adults, and area (urban/rural). Ideally, selecting all or the

majority of the common attributes for matching would provide the most precise fusion. How-

ever, the reader would recognize that selecting all or a large number of common attributes as

matching variables can potentially reduce viable matching candidates or result in zero candi-

dates. This would have resulted in the loss of records and potentially introduced bias, as signif-

icant portions of the dataset might be excluded from the analysis. Hence, we employ an

approach where we choose a subset of common attributes for matching. As the matching

between source and donor sets are being considered across different datasets, we hypothesize

that fusing multiple candidates (as opposed to one record) would allow for a more useful and

representative fused dataset. At the same time, as we fuse multiple records (say K) from the

donor dataset (NHTS) with the source dataset (RECS), the source record will need to be dupli-

cated K times to generate fused records. To address this duplication, a simple deterministic
weight (1/K) is applied to ensure for each source record, the multiple matched rows of data

represent only one new record. The proposed fusion approach makes several variables that are

not available in the original dataset accessible for modeling. The benefit from these additional

variables can be evaluated in a straightforward manner. If these additional variables contribute
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to improving the data fit of the dependent variable, then the fused dataset offers improved

analysis of the dependent variable of interest. The improvement in data fit is compared using

the log-likelihood and Bayesian Inference Criteria metrics that are well established in the

literature.

The deterministic matching approach will work effectively with a small set of matching var-

iables. As the number of potential matching variables increases, the number of exact matches

could reduce very quickly. Therefore, we propose a matching approach with a probabilistic
weight that penalizes differences between the source record and the donor record. So, in this

approach, we allow for some variable mismatch and evaluate its impact on matching process

by estimating a weight for each donor record that is fused with a source record. Specifically,

the weight is parameterized as a function of the discrepancy for variables in both datasets. The

contribution is influenced by similarity (or dissimilarity) across the common attributes

between source and donor datasets. This weighting process effectively translates to estimating

the weight contribution of the donor record to improve data fit of the dependent variable of

interest (as opposed to using a uniform 1/K weight). The records with smaller mismatch are

likely to have a weight higher than the deterministic weight (1/K) and records with higher mis-

match are likely to have a weight lower than the deterministic weight. The parameters esti-

mated as part of the weight function will inform us about the ranking of the various matching

factors on their impact on the dependent variable of interest. For instance, household owner-

ship status might not be as important as number of children in explaining household energy

consumption patterns. In this case, the weight function coefficient for difference in the num-

ber of children variable will be larger in magnitude.

To better illustrate the data fusion process, an example is presented in Fig 1. The RECS Sur-

vey has four HHs with information on household size, household ownership status, number of

adults in the HHs, number of rooms in the HH and the dependent variable: consumption of

electricity (in millions of Btu). The NHTS data, in addition to household size, ownership status

and number of adults, provides information on vehicle ownership and number of workers in

the HH. The common variables across these two datasets are household size, ownership status,

and the number of adults. Initially, we begin the fusion using all three matching attributes. In

this process, we are able to find matches for all households except the third household. If we

proceed with this fusion, then the third household would need to be excluded from the analy-

sis, thereby compromising 25% of the records (1 household out of 4 households in RECS). To

address this issue, we relax the matching assumption by considering two variables (household

size, and household ownership status) as our matching attributes while use the remaining vari-

able (number of adults) in the weight function. Based on this, we find three matches for the

first HH, two matches for the second household, one match for the third household, and three

matches for the fourth household. Now, using the matched records, a fused dataset is created

with three repetitions of HH 1, two repetitions of HH2, 1 HH3 and three repetitions of HH4

with NHTS data columns including number of adults, vehicle ownership and number of work-

ers in the HH (see Fig 1). As mentioned earlier, a weight function is used in the data to ensure

that all the repetitions together represent one household in the RECS data. For the determin-

istic weight method, we assign an equal weight, that is 1/K for K repetitions. For example, for

HH 1, which has three repetitions, each repetition would be assigned a weight of 1/3 (approxi-

mately 0.33). For the probabilistic weight method, we will calculate the difference in the num-

ber of adults variable (available in source and donor datasets but not matched) across the two

datasets and use these differences to parameterize the weight function (details on this process

is discussed in the methodology section). The probabilistic weight variable provides a higher

weight when the difference is lower (or 0. For example, for HH 2 (see Fig 1), the first matched

record has the same number of adults as the RECS dataset, resulting in a higher weight of 0.7.
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In contrast, the second matched record does not have the same number of adults, resulting in

a lower weight of 0.3. Please note that the numbers provided in Fig 1 are for illustration pur-

poses and will be estimated in our model within a maximum likelihood setting.

In summary, the current study contributes to the energy and data science literature both

empirically and methodologically. Empirically, the proposed fusion algorithm enables us to

merge these two distinct datasets and create an enriched data source for analyzing energy con-

sumption. Using the fused data, the association between additional categories of exogenous

variables with residential energy demand can be tested. Thus, the model developed with the

fused database will have enhanced explanatory and predictive power relative to the model

developed solely using RECS data. Further, this enriched dataset, and the resulting model can

significantly inform policy decisions. For example, understanding the impact of EV ownership

and working-from-home trends on residential energy consumption can guide policymakers in

designing targeted incentives for energy-efficient technologies and infrastructure. Methodo-

logically, the study presents an innovative behavioral data fusion technique to combine two

Fig 1. RECS and NHTS data fusion illustration.

https://doi.org/10.1371/journal.pone.0309509.g001
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datasets without a common identifier. Further, our approach strategically selects variables for

initial matching and incorporates the remaining ones into a weight function, ensuring an opti-

mal balance between sample size and important variables. This type of behavioral fusion is

introduced for the first time in this paper (to the best of the authors’ knowledge) and can be

widely applied to various fields.

3 Experimental design

The objective of the current research effort is to illustrate how we can fuse two disparate data-

sets to enhance the model development for a dependent variable present in the RECS dataset

using variables from the NHTS dataset. In the presence of a set of common variables, the

fusion process will be affected by several aspects: (1) how many deterministic matching vari-

ables will be used and how many probabilistic matching variables will be used, (2) how many

records from the donor dataset will be fused with each source record and (3) how will we assess

the impact of randomness of fusion process on parameter stability.

In this section, we present an experimental setup documenting the structure of how the

fusion process will be tested (see Fig 2). The overall process consists of four stages: Data Source

and Variable Identification, Data Fusion, Optimization, and Reliability Check. The initial

stage involves identifying the two datasets for fusion: the source dataset that serves as the pri-

mary dataset for analysis and the donor dataset from which additional information will be

incorporated. After identifying the two datasets, we will determine the common variables

between them: these are the variables that form the basis of matching the source and donor

dataset. The next stage is the Data Fusion, where the process begins by checking if it is possible

to fuse the two datasets based on all common matching variables. If substantial matching rec-

ords can be found for each record in the source dataset, the datasets are fused, and the model

is developed. However, if matching records are insufficient, then a subset of those common

variables is selected for the matching process, and the remaining variables are used in the

weight function to allow for probabilistic matching. When selecting the subset of variables, dif-

ferent combinations can be used for fusion, including a single variable (e.g., matching by HH

size) or variable groups comprising multiple variables (e.g., matching by HH size and loca-

tion). Based on the matching variables, we can identify potential candidates from donor data-

set that can be appended to each source record. The matching process can result in a several

records for each source record (say M). Hence, selecting a single record or selecting a set of

records randomly might introduce bias. We select a fixed number of records (say K) and

repeat the sampling process several times (say N = 15). For example, let’s say we match RECS

and NHTS based on HHsize and number of adults. By doing so, we find 100 potential matches

(M = 100) for each RECS HH from the NHTS dataset. However, estimating models with all

these fused records increases the model estimation burden. Hence, we start our fusion process

by fixing the number of matching records to be 5 (K = 5) and generate 15 mutually exclusive

samples (N = 15). Now, with these samples established, we run N number of models for all the

samples with new variables from the NHTS dataset (donor dataset) and evaluate if the average

model fit in terms of log-likelihood has improved relative to the model estimated on the RECS

dataset only (source dataset).

The process then proceeds to the Optimization stage. During this stage, the data fusion pro-

cess is repeated multiple times with varying matching variable combinations to determine

which variables offer the best improvement over the non-fused model. The variable (or vari-

able combination) that offers the most significant improvement is identified as the optimal

matching variable (or variable combination). The next step is to determine the optimal num-

ber of records to be matched between the source and donor datasets. For the selected X
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matching variable (or matching combination), the process tests if changing K (3, 5, 10, 15, 20,

40, 50) affects the average log-likelihood improvement. The examination ensuring that the

improvement is not a random occurrence and is consistent for different numbers of matched

records. The K providing the highest improvement is selected, representing the optimal num-

ber of matched records for the fusion process. Once the optimal X and K values are identified,

the next step is to check the robustness of the fusion process, which is conducted in the final

stage of the experimental setup named Reliability Check (see Fig 2). It is possible that the

model developed from the fused dataset based on X and K can differ from the model devel-

oped on a different sample with the same X and K, due to the random selection of K records.

For instance, if 10 records are identified as the optimal match out of 100 possible matches, the

first sample might include a randomly selected set of 10 records, while a different set of 10

Fig 2. Flow chart showing research framework for the fusion algorithm.

https://doi.org/10.1371/journal.pone.0309509.g002
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records might be selected for the second sample. Consequently, the models developed from

these two samples could vary significantly. If substantial differences are observed between the

models, it indicates that the results are highly dependent on the randomness of the selection

process. Therefore, ensuring the reliability of the fusion process is crucial to validate the stabil-

ity and robustness of the model outcomes. To check this, we generate S number of samples

(S = 25) considering the selected X and K and develop the same model for all S samples. After

that, we evaluate the consistency of the models at a parameter level i.e., we check if the parame-

ters remain stable across all S samples of the data for that K. To be specific, we compare the

models across the S samples using an approximate t-test to see if these parameters vary across

the samples. If we find any variation across the samples, then it lends evidence to instability in

parameter magnitudes and signs. Therefore, that corresponding X is excluded from the fusion

process, and we proceed to test the next best combination of X and K. This process is repeated

until all criteria are satisfied, ensuring that the identified X and K values lead to consistent and

reliable improvements, as confirmed through the reliability check.

4 Data description

The dependent variable of interest in our research is energy usage by fuel type (electricity and

natural gas) in residential dwellings. The energy use data is drawn from the 2015 Residential

Energy Consumption Survey (RECS) administered by US EIA. The RECS data, for 5,686

households, provides detailed information on energy usage, housing characteristics (such as

construction period, number of rooms, bedrooms), appliances used (such as internet, mobile

phone, number of refrigerators, desktop, use of ac and heater); location related variables (such

as census division, area of the household: rural/urban); and climatic variables (such as number

of cooling and heating degree days). Out of these 5,686 households, we randomly selected

4,000 households as our estimation sample and the remaining 1,686 households were set aside

for validation exercise. Several relevant variables are missing in RECS data such as the number

of employed individuals, number of female household members, number of drivers and work-

ers in the household, household vehicle ownership, population density, and daily travel pattern

(like use of car, bike, transit, walk on a daily basis). To evaluate the potential value of this infor-

mation, we employ the NHTS survey data that provides information on the missing variables

as a potential donor dataset. The RECS and NHTS datasets share seven variables along two

dimensions: HH related factors (such as household size, no. of adults in HH, race and home

ownership status) and location related variables (HH region, HH division, HH location classi-

fied as rural/urban). Table 1 presents detailed summary statistics for both dependent and inde-

pendent variables from both RECS and NHTS dataset respectively. Further, before proceeding

with the fusion, we checked the distribution of households across the two datasets based on all

common variables. The comparison is presented in Fig 3, and as can be seen, the distributions

of the households from both datasets are quite comparable, thereby validating the alignment of

the datasets for meaningful fusion. This step is crucial as it ensures that the two datasets repre-

sent similar populations, minimizing potential discrepancies.

4.1 Selecting variables fusion

In the current analysis, we tried several combinations of these factors for linking the two data-

sets and for each combination, we calculate the improvement in average (we consider N = 15

samples) log-likelihood (LL) relative to the simple linear regression model that is estimated

using the RECS data only. Finally, we select the corresponding combination that provides the

superior improvement. The average LL improvement measures across each variable/variable

groups are plotted in Fig 4. From this plot, we can clearly see the relatively higher average LL
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improvement when household from both datasets are fused based on census division and loca-

tion classified as urban or rural. We select this variable group for linking the two datasets and

proceed to the next step.

4.2 Selecting number of matching records for fusion

Based on the result obtained in the first step, we linked the two datasets based on similar HH

location and created N = 15 fused databases using multiple matching records of K including

Table 1. Dependent and independent variables summary from RECS and NHTS data.

Variable Minimum Maximum Average

Dependent Variables form RECS

Electricity usage (in 10^6 BTU) 0.200 215.69 37.73

Natural gas usage (in 10^6 BTU) 0.000 306.59 33.54

Independent Variables from RECS

HH Characteristics
Total square footage 221.000 8501.00 2081.44

Number of bedrooms 0.00 10.00 2.83

Total number of rooms 1.000 19.00 6.19

Housing type—Mobile home 0.00 1.00 0.05

Housing type—Apartment 0.00 1.00 0.66

Construction year 1981–2000 0.00 1.00 0.29

Construction year 2001–2010 0.00 1.00 0.16

Construction year after 2010 0.00 1.00 0.04

High income HH (>120k) 0.00 1.00 0.15

Appliance Use
AC Used – – 0.87

Number of refrigerators used 0.00 8.00 1.40

Number of desktop computers 0.00 10.00 0.52

Space heating used 0.00 1.00 0.95

Number of smart phones 0.00 8.00 1.60

Humidifier used 0.00 1.00 0.20

Climatic Variables
Total cooling degree days, base temperature 65F 0.00 6607.00 1719.21

Total heating degree days, base temperature 65F 0.00 9843.00 3707.85

Independent Variables from NHTS

Population Density

Medium 0.00 1.00 0.21

High 0.00 1.00 0.06

Number of females in HH 0.00 8.00 1.09

Number of vehicles in HH 1.00 12.00 2.11

Number of drivers in HH 0.00 9.00 1.77

Number of workers in HH 0.00 7.00 1.08

Mean age of HH members 11.00 92.00 52.87

HH average annual miles 2.83 254,309 20,994

People use car daily 0.00 1.00 0.16

People use bicycle daily 0.00 1.00 0.01

People walk daily 0.00 1.00 0.16

People use transit daily 0.00 1.00 0.01

https://doi.org/10.1371/journal.pone.0309509.t001
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Fig 3. Comparison of household distributions across NHTS and RECS datasets based on common variables.

https://doi.org/10.1371/journal.pone.0309509.g003

Fig 4. Model fit summary across different variable group used for fusion.

https://doi.org/10.1371/journal.pone.0309509.g004
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3,5, 10, 15, 20, 30, 40 and 50 (see Fig 5). We compute the improvement in average LL measures

for different values of K. From the Fig 5, we can clearly see there is significant improvement in

average LL as K increases in the initial stages. After a K value of 15, only marginal changes to

average LL improvement are noticed. However, with increased K value, the model estimation

times will continue to increase as the number of effective records increase with K. Thus, from

the perspective of model improvement and run times, we select K = 15 as the optimal value.

Thus, for each sample, 15 records from NHTS will be added to the RECS sample.

4.3 Check parameter estimates stability

After selecting the variables and the number of records to be used for fusion, the next step is to

evaluate the stability of the parameters of the energy demand model estimated using the fused

data. As described, multiple samples were generated for the fused dataset, and it is important

to confirm that the parameter estimates from all these samples offer consistent results. To

undertake this evaluation, we propose an approximate t-statistic measure for each sample

parameter estimate as follows:

ts ¼ Abs
ðBm � BsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD2

m þ SD2
s

p

 !

ð1Þ

Where Bm is the average estimate value across all N samples (Bm ¼
1

N ∗
PN

s¼1
Bs); Bs is the

estimate for the sth sample; SDm is the average standard error for all N samples

(SDm ¼
1

N ∗
PN

s¼1
SDs) and SDs is the standard error for the sth sample. If the computed t-

Fig 5. Model fit summary across different number of fusion.

https://doi.org/10.1371/journal.pone.0309509.g005
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statistic value is greater than 1.65 it indicates that the parameter estimate is quite different

from the average parameter across the samples. The t-statistic across all parameters and sam-

ples can be computed and used to measure the number of outliers. The presence of outliers

will indicate that significant parameter variability across the samples and hence the results are

less likely to be stable in this case. In our study context, we computed the approximate t-statis-

tic for fused model parameters in the energy use component and parameters in the weight

component. The results are plotted in Fig 6. The boxplots clearly illustrate significant stability

in the parameters estimated. In fact, the computed approximate t-statistic does not reach 1.65

for even one parameter across all samples. The highest single value obtained is under 0.3, while

the mean values range around 0.1. The results clearly indicate that for the fused dataset, we

have obtained a reasonably stable estimate for all parameters.

5 Methodology

In this section, we will present the methodological framework adopted in the study for analyz-

ing the residential energy usage.

The model structure estimated in the current research effort has a choice model component

(energy usage) and a weight component. In the choice model component, we consider the nat-

ural logarithm of the energy usage (separately for electricity and natural gas) as our dependent

variable and employ linear regression model for analyzing the continuous outcome variable.

Let us assume that there are i (1.2,. . .N, N = 4,000) HHs in RECS survey data and K possible

matches from the NHTS dataset. d be an index to represent the residential energy usage by dif-

ferent sources (electricity and natural gas). Let yd,i and Qd,ik is the observed and predicted log-

normal of the energy usage in HH i for the Kth fused records by energy source d respectively

(the yd,i will be same across all the K fused records for HH i). In the current study context,

Fig 6. Test statistics (t-statistics) for parameter estimates across samples for each variables and models.

https://doi.org/10.1371/journal.pone.0309509.g006
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separate linear regression models are estimated for electricity and natural gas consumption

and hence d is omitted in the following equations for simplicity. Following this, the formula-

tion of the linear regression model can be written as:

Qik ¼ b
0Xik þ g

0Sik þ εik ð2Þ

where, Xik is a vector of attributes from the source dataset that influence energy demand and β0

is the corresponding coefficients to be estimated (including a scalar constant). Sik is the vector

of attributes from the donor dataset that affect energy demand and γ0 is the corresponding vec-

tor of coefficients to be estimated. The reader would note that to estimate the unfused model

using source data only, we restrict Sik to be empty. εik is independently and identically distrib-

uted error term with zero mean and variance σ2. Based on this, the probability for HH i for the

Kth fused records to have yi energy demand is given by:

P Qikð Þjb
0
; g0 ¼

�
yi � Qik
s

� �

s
ð3Þ

where ϕ(.) is the standard normal probability density function.

On the other hand, the weight component takes the form of a latent multinomial logit

structure (MNL) allocating the probability for each RECS HH being paired with an NHTS

HH. The matched weightage propensity is determined based on a latent probability value esti-

mated using a multinomial logit model as follows:

Pik ¼
expð/ ZikÞ

PK
k¼1

expð/ ZikÞ
ð4Þ

where Zik is a vector of attributes considered for matching,/ is a corresponding vector to be

estimated. Based on this notation, let’s assume Qi is the weighted probability that HH i has yi
energy demand which can be written as:

Qi ¼
XK

k¼1

PðQikÞxPik ð5Þ

This matching, when executed, will provide us a relationship between the RECS and NHTS

datasets. Specifically, employing Eq 5, several additional variables from the NHTS dataset will

be employed to generate the missing dimension for the RECS dataset. Finally, the log-likeli-

hood function for the fused dataset energy demand is defined as:

LL ¼
XN

i¼1

logðQiÞ ð6Þ

6 Empirical analysis

6.1 Model fit

The experimental set up and the corresponding results establish the best model estimated

using the fused dataset. We estimate multiple models to serve as a benchmark for the proposed

models. First, we estimate a simple linear regression model (SLR) employing the RECS survey

(with 4,000 HHs) data without fusing any record from the NHTS database. Second, we employ

the fused dataset with K = 15 and N = 15 and estimate a linear regression model with equal

weights (EWLR) allocation i.e. each fused record is weighted at (1/15). Finally, these two mod-

els are compared with the fused latent weight linear regression (LWLR) model. The models are

estimated for two use cases: electricity energy use and natural gas energy use.
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The performance of these models is compared based on the log-likelihood (LL) at conver-

gence, the number of parameters estimated, and Bayesian Information Criterion (BIC). For

the electricity demand model, the BIC (LL) values at convergence are: 1) SLR model (with 16

parameters)– 6,126.73 (-2997.01); 2) EWLR model (with 21 parameters)– 5,859.04 (-2814.00);

and 3) LWLR model (with 23 parameters)– 5,806.38 (-2776.67). For the natural gas demand

model, the values are: 1) SLR model (with 9 parameters)– 9,882.92 (-4891.95); 2) EWLR model

(with 12 parameters)– 9,685.34 (-4,776.60); and 3) LWLR model (with 14 parameters)–

9,635.35 (-4740.66). Two important observations can be made from the model fit measures.

First, models incorporating additional variable information from the NHTS dataset always

provide improved performance irrespective of the dependent variable (electricity and natural

gas usage). Second, within the models using fused dataset, the LWLR model outperforms the

EWLR model as indicated by the lower BIC value associated with the LWLR model. This result

clearly supports our proposed approach that a donor record’s contribution can be optimized

using the weight function based on the similarity/dissimilarity of the common attributes.

Overall, the model fit measures provide strong evidence for model improvement via fusion as

well as weighted contribution estimation.

6.2 Estimation results

This section offers a discussion of the exogenous variable effects on energy usage for electricity

and natural gas. Results obtained from the final model are presented in Table 2. It should be

noted that the final specification of the model development was based on removing the statisti-

cally insignificant (90% significance level) variables from the model. A positive (negative) sign

in the Table 2 indicates the increased (decreased) energy usage for the corresponding source

(electricity/natural gas). The results are presented by variable groups.

6.2.1 RECS variables. From our analysis, we find significant impacts of several RECS vari-

ables on energy consumption, as indicated in Table 1. To better illustrate these impacts for the

readers, we present our findings graphically in Fig 7.

Constant: The constant parameter does not have any interpretation after incorporating

other variables.

HH Characteristics: In terms of household characteristics, several attributes influence the

usage of electricity and natural gas in residential dwellings. For instance, housing unit size

(total square footage) reveals a positive impact on energy mix indicating a higher usage of elec-

tricity and natural gas in larger houses. This is intuitive as capital costs for installation for non-

electricity sources might be high for smaller houses. On the other hand, in bigger houses, a

mix of energy sources might be economical in the long run (see [30,32] for similar results).

Further, higher number of bedrooms contribute to increased energy usage (both electricity

and natural gas) as indicated by the positive coefficient in Table 2. In addition to the bed-

rooms, we also explored the impact of total number of rooms in a household on energy

demand. Interestingly, we find that the variable has a significant positive impact on electricity

consumption only. The reader would note that though all these variable seem to be influenced

by each other, we did not find any significant correlation across them and thus are simulta-

neously considered in the model.

The results associated with housing type show significant impact on energy usage. Electric-

ity consumption is likely to be higher in mobile homes while a lower usage of natural gas usage

is observed in apartments. The results perhaps indicate inefficient cooling and heating in

mobile homes resulting in increased electricity usage [52]. Further, building construction

period is also found to have a significant impact on energy consumption. Specifically, we find

an increased electricity usage in houses constructed after 1980 relative to the older houses
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(before 1980) while the natural gas usage is gradually declining in newer houses (after year

2000) as indicated by the negative sign in Table 2. The result is consistent with the overall

trend of natural gas consumption in US. Newer buildings are associated with improved insula-

tion, building materials and efficient heating systems contributing to lower benefits from

employing natural gas consumption compared to the benefits of natural gas in to older build-

ings [32,53]. The growing adoption of all-electric homes in recent years is another important

factor affecting natural gas consumption [54]. Finally, the income variable highlights a higher

natural gas consumption in high-income households (greater than 120k).

Table 2. Latent Weight Linear Regression (LWLR) model estimation results.

Variable Electricity Consumption Natural Gas Consumption

Estimates t-statistics Estimates t-statistics
RECS Data

Constant 0.642 3.564 -5.109 -22.914

HH Characteristics
Ln (Total square footage) 0.336 7.269 0.638 9.309

Number of bedrooms 0.060 4.794 0.081 5.133

Total number of rooms 0.028 4.481 – –

Housing type—Mobile home 0.217 6.065 – –

Housing type—Apartment – – -0.372 -8.582

Construction year 1981–2000 0.040 1.793 – –

Construction year 2001–2010 0.049 2.232 -0.097 -2.684

Construction year after 2010 0.012 2.297 -0.392 -5.652

High income HH (>120k) – – 0.177 5.149

Appliance Use
AC Used 0.249 10.043 – –

Number of refrigerators used 0.137 10.776 – –

Number of desktop computers 0.049 4.228 – –

Space heating used 0.158 4.148 – –

Number of smart phones 0.029 4.116 – –

Humidifier used -0.107 -5.364 – –

Climatic Variables
Ln (Total cooled square footage) 0.329 12.997 – –

Ln (Total heating square footage) – – 0.873 20.934

Variables form NHTS

Population Density

Medium -0.385 -12.197 – –

High -0.631 -16.792 – –

Number of females in HH 0.069 2.588 0.079 2.842

Number of vehicles in HH 0.041 2.795 – –

Number of drivers in HH – – -0.047 -1.807

Mean age of HH members -0.005 -5.176 – –

HH average annual miles – – 0.401 92.361

scale 0.430 51.838 0.553 61.640

Weight Component

HH member difference -0.636 -5.196 – –

No. of adult differences -0.543 -2.785 -0.180 -2.137

HH race match – – 0.397 3.164

https://doi.org/10.1371/journal.pone.0309509.t002
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Appliance Use: The intensity of appliance use in residential buildings potentially contrib-

utes to the overall energy usage. As expected, all of the appliance related attributes (use of ac

and space heating; number of refrigerators, computers and smart phones in HH) positively

impacted the electricity usage in a house [31] except the variable that corresponds to the use of

humidifier. This result (humidifier) while counterintuitive at first glance, is presumably cap-

turing the indirect relationship with the cooling and heating behaviour in a household. For

instance, humidifier helps in creating a soothing environment by adding moisture in the air

appropriately both in summer and winter season, thus minimizing the need of raising/lower-

ing the temperature in a household [52] and hence possibly reducing electricity consumption.

Fig 7. Graphical representation of RECS variables’ impact on energy consumption.

https://doi.org/10.1371/journal.pone.0309509.g007
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Climatic Variables: The results related to climatic variables highlight the important role of

weather in household energy usage. For representing the climatic variables, we considered

heating and cooling degree days (please see [31] for detail) in a household that quantifies the

demand for energy needed for heating and cooling requirements of a building respectively.

Higher heating and cooling degree days directly refer to the cold and hot weather respectively.

As expected, we find electricity usage to be positively associated with cooling degree days

revealing an increased electricity consumption during hot days, perhaps alluding to the higher

usage of AC during those times [55]. Contrastingly, natural gas consumption is higher during

cold weather as evidenced by the positive sign specific to the heating degree days variable.

Households in colder regions usually have higher space heating needs and natural gas is one of

the predominant sources of fuel for space heaters. Similar findings are also observed in earlier

research [31,32].

6.2.2 NHTS variables. In the fused dataset, several variables fused from NHTS are tested

in our analysis. Fig 8 provides a quick mechanism for the reader to understand the impact of

different NHTS related variables on energy consumptions.

The findings clearly highlight the reduced electricity usage in densely populated areas, per-

haps indicative of the lower exposed floor area per capita [55]. In general, it appears that

household with more females tend to use more electricity and natural gas relative to other

households. This effect is perhaps the manifestation of the link between female and different

activities in home including cooking, water heating, nurturing and cleaning [55]. Further, the

estimated results show that the number of vehicles in a household is positively associated with

household electricity consumption while a negative relationship is observed between the usage

of natural gas and number of drivers in the household. The negative effect of the number of

drivers in the household on its natural gas consumption may be attributed to the lesser time

spent in houses as the ability to drive might encourage activities outside the home [56]. Inter-

estingly, average age of a household (considering all members) reveals a negative effect on

overall electricity consumption suggesting a reduced electricity use in a unit with older indi-

viduals. While this might seem counter intuitive on first glance as you would expect senior

individuals to spend more time at home. However, the use of certain appliances such as deep

freezer, dishwasher, tumble dryer and computers (and other devices) are relatively lower in

houses with senior individuals and thus contribute to reduced electricity use [57,58]. Finally,

average annual miles driven variable is found to be positively associated with natural gas con-

sumption. This result is quite interesting and warrants further research. Overall, the findings

are consistent with expectations and speak to the important role played by different factors in

affecting residential energy demand.

6.2.3 Weight component. As discussed earlier, variables used in the weight component

are common variables present in both datasets that are not considered for matching. In

terms of the electricity demand model, we find two variables: difference in household size

and number of adults to exert significant impact on the weight component. The reader

would note that a 0 difference means household from RECS and the fused household from

NHTS has similar characteristics with respect to household size and number of adults. As

expected, we find a negative impact for both of these variables on the electricity consump-

tion model. The results indicates that the records having higher differences in household

size and no. of adults will have lower weight contributions to the electricity consumption

model. In the natural gas model, we observe a similar finding for “number of adults” vari-

able difference. In the natural gas model, we also observe that contribution of a record is

substantially higher when the ethnicity of the household matches with the fused household

ethnicity.
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6.3 Validation analysis

The model estimation results clearly illustrate the improved performance of the proposed

model. In this section, we conduct a validation exercise, to evaluate the performance of the

proposed LWLR model on the records not used for model estimation (hold-out sample). In

the validation exercise, the performance of the fused LWLR model (with additional variables

from NHTS and latent weight) is compared with the simple SLR model (employed with data

form RECS only without fusing any record from the NHTS database) and equal weight EWLR

Fig 8. Graphical representation of NHTS variables’ impact on energy consumption.

https://doi.org/10.1371/journal.pone.0309509.g008
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model (with additional variables from NHTS and equal weight). The comparison exercise

across the three models is conducted based on the predictive log-likelihood (LL) and BIC

values.

The validation exercise is initially conducted with the 4000 record RECS estimation sample

and 1686 record RECS validation sample. However, we realize that sample size in estimation

could play a critical role in model performances [59] and hence we considered the influence of

different sample sizes in model estimation by estimating the two model systems for different

samples. Subsequently, to account for the impact of RECS sample size, we also conduct the val-

idation exercise for different estimation and validation samples. In particular, from the RECS

data, we randomly draw samples with 1,000; 2,000; 3,000; 4,000 and 5,000 households for esti-

mation and for each estimation sample, the remaining households are considered as the hold-

out samples. For example, RECS survey data provides information on 5,686 households. Out

of these, for the first scenario, we considered 1,000 households as our estimation sample and

the remaining 4,686 households are used for our validation exercise. For all these estimation

and hold-out samples, we fused 15 records (K-15) from the NHTS dataset to the RECS dataset

based on similar census division and location of the household. For the fused dataset, SLR,

EWLR and LWLR models are estimated, and their performances based on predictive LL is

compared. Further, as discussed earlier, for each record in the RECS data, there could be sev-

eral potential matching records from the NHTS database and selecting 15 randomly out of

these might introduce bias. Therefore, within each estimation and hold-out samples, we create

15 fused datasets (N), estimate (for estimation sample)/predict (for validation sample) the LL

for each dataset across each model and finally compare the two models based on the average

LL measures. The validation results are presented in Table 3.

Table 3. Model validation results.

Energy

Source

Sample size Avg. LL* comparison for Estimation Sample Avg. LL comparison for Validation Sample

SLR EWLR LWLR Improvement
(EWLR~SLR)

Improvement
(LWLR~EWLR)

SLR EWLR LWLR. Improvement
(EWLR~SLR)

Improvement
(LWLR~EWLR)

Electricity Est.* 1000

Val** 4686

-766.69 -717.79 -708.68 97.80 18.22 -3566.73 -3398.23 -3351.86 337.00 92.73

Est. 2000

Val. 3686

-1543.77 -1471.97 -1451.86 143.61 40.21 -2784.64 -2643.57 -2607.82 282.16 71.49

Est. 3000

Val. 2686

-2274.54 -2147.40 -2120.08 254.29 54.62 -2048.79 -1954.14 -1921.53 189.31 65.22

Est. 4000

Val. 1686

-2997.01 -2814.00 -2776.67 366.02 74.66 -1288.75 -1245.62 -1233.79 86.26 23.67

Est. 5000

Val. 686

-3805.91 -3609.82 -3557.94 392.19 103.76 -511.79 -481.86 -472.56 59.86 18.61

Natural Gas Est. 1000

Val. 4686

-1232.66 -1203.77 -1202.05 57.78 3.45 -5716.43 -5534.19 -5527.69 364.48 13.01

Est. 2000

Val. 3686

-2358.39 -2305.03 -2300.19 106.72 9.69 -4584.61 -4407.48 -4402.18 354.26 10.59

Est. 3000

Val. 2686

-3557.13 -3444.75 -3437.98 224.78 13.53 -3381.99 -3283.52 -3280.42 196.95 6.19

Est. 4000

Val. 1686

-4891.95 -4722.44 -4712.96 339.01 18.98 -2035.04 -1945.81 -1943.74 178.48 4.14

Est. 5000

Val. 686

-6086.97 -5881.82 -5871.24 410.30 21.16 -837.01 -829.00 -827.29 16.03 3.41

Note: Est* = Estimation sample size.

Val** = Validation sample size.

https://doi.org/10.1371/journal.pone.0309509.t003
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Table 3 presents the validation results for two energy use for electricity and natural gas. For

each sample size, the average log-likelihood over N = 15 samples for SLR, EWLR, LWLR

model and the improvement (computed as 2*(LL EWLR- LLSLR) and 2*(LL LWLR- LLEWLR) are

presented. In all cases, the LWLR model shows clear improvement. The improvement is con-

sistent i.e. the improvement is higher as the dataset size increases for estimation and validation

samples. We compare these improvements to the critical chi-square values for the models. For

electricity EWLR model, we have 5 additional variables compared to SLR model providing a

critical 95% chi-square value of 11.070. The improvements values presented are clearly higher

than the critical value. Further, the LWLR model with 2 additional variables outperformed the

EWLR model as indicated by the higher log-likelihood ratio value relative to the correspond-

ing critical chi-square value (5.991 for 2 variables). Similar findings are also observed in the

natural gas model. The EWLR model (3 additional variables from SLR model for natural gas)

improvement for all the samples are also well over the critical chi-square value. The LWLR

model provides superior performance for majority of the samples (7 out of 10 samples) com-

pared to the EWLR model in predicting the natural gas consumption. So, from the results, we

can conclude that model improvement via fusion and latent weight is consistent across estima-

tion and validation samples. The validation results clearly highlight how new variables from

the NHTS dataset contribute to improvement in predicting energy consumption. In summary,

the results clearly provide evidence that the proposed algorithm offers enhanced explanatory

power and predictive capability. The reader would note the adoption of other metrics such as

BIC offer similar results and are not included for the sake of brevity.

7 Conclusion

The current research is geared towards proposing and testing the efficacy of a simple yet statis-

tically valid fusion approach to link the information from two disparate datasets into a unified

database. In particular, the current approach augments RECS (source) data with additional

variables from NHTS (donor) dataset with a focus on improving the quality of the energy

model (two energy sources are considered: electricity and natural gas). The NHTS dataset was

considered to incorporate additional variables such as socio-demographics, vehicle ownership,

household location and travel patterns that are not available in the RECS data. The effective-

ness of the proposed fusion method is rigorously tested with a well-crafted experimental

design evaluating the influence of multiple independent variables for matching and fusing,

fusion sample sizes and weight functions.

The analysis involves a series of model estimations, starting with a model focusing solely on

RECS data (unfused model, SLR) and extending to models considering fused datasets with

equal (EWLR model) and probabilistic weight allocations (LWLR model). The model fit com-

parison exercise demonstrates a clear improvement in the performance of the fused models,

thereby supporting our hypothesis that the fusion of RECS and NHTS datasets enhances the

performance of the energy model. Notably, within the fused models, the probabilistic weight-

ing approach outperforms the equal weight approach, underscoring the critical role of the

weight function in further improving the energy model’s accuracy. To further illustrate the

applicability of the proposed fusion algorithm, we conduct a validation exercise comparing the

fused model with probabilistic weight allocation to its counterparts across different estimation

and validation samples. The results consistently show that the LWLR model with probabilistic

weighting approach maintains its superior performance regardless of sample size and variable

of interest, reinforcing the robustness of the fusion methodology. In terms of findings, we

found several variables from the NHTS dataset to significantly impact residential energy

demand, which are absent in the RECS data. Specifically, energy consumption is likely to be
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higher in houses with higher number of female and vehicles while factors like population den-

sity, number of drivers in the house and average age of household members reveals a negative

relationship with the overall energy consumption.

In summary, the behavioral fusion algorithm proposed in the paper is simple to implement

and relies on federally compiled NHTS and RECS data. The findings of the study clearly high-

light the significant benefits of fusing two distinct datasets, as it results in better model fit,

improved prediction accuracy, and enhanced explanatory power. For instance, the shift

towards electric vehicles and the increasing trend of working from home significantly impact

energy consumption patterns. The NHTS dataset, with its information on vehicle ownership

and time spent at home, allows the proposed approach to address these evolving trends effec-

tively. Further, the proposed fusion algorithm can be applied across various sectors, such as

energy use and transportation planning. One possible application could be to integrate house-

hold travel survey data with location-based smartphone data to enhance spatiotemporal cover-

age and improve demand analysis. Additionally, the algorithm can be used to develop short-

term forecasting methods for energy use by combining smart energy sensor data with RECS

and NHTS data, offering a more dynamic and continuous prediction framework.

The reader will note that the data fusion process can be time-intensive for large datasets.

The overall fusion process relies on two important steps: what variables to use for matching

and how many matches to consider. Now, for any two datasets, if we have p number of match-

ing variables, the potential combinations of variables that need to be explored in the analysis is

2p � 1ðpC1 þ pC2 þ � � � pCp� 1Þ. After determining the best set of matching variables, the next

step is to find the optimal number of fused records as including all possible matching records

could result in an excessively large dataset, making the model computationally demanding to

run. The reader would note that a higher number of matching records does not always con-

tribute to an improvement in the model (as shown in our analysis). Therefore, it is essential to

optimize both the matching variables and the number of fused records to achieve a balance

between model accuracy and computational efficiency. While this process can be time-con-

suming, it is not computationally complex, especially with the advanced computational power

available today. The same considerations apply to large datasets, where the methodology

remains feasible due to the scalability of modern computational resources. Thus, the computa-

tional cost, although significant, is manageable and does not pose a major limitation to apply-

ing the proposed method to very large datasets.
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