
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

7-2023

Distributed Deep Learning Optimization of Heat Distributed Deep Learning Optimization of Heat

Equation Inverse Problem Solvers Equation Inverse Problem Solvers

Zhuowei Wang
Guangdong University of Technology

Le Yang
Guangdong University of Technology

Haoran Lin
Guangdong University of Technology

Genping Zhao
Guangdong University of Technology

Zixuan Liu
Inner Mongolia University

See next page for additional authors

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Wang, Z., Yang, L., Lin, H., Zhao, G., Liu, Z., & Song, X. (2023). Distributed Deep Learning Optimization of
Heat Equation Inverse Problem Solvers. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems.

This Pre-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/748
mailto:pdxscholar@pdx.edu

Authors Authors
Zhuowei Wang, Le Yang, Haoran Lin, Genping Zhao, Zixuan Liu, and Xiaoyu Song

This pre-print is available at PDXScholar: https://pdxscholar.library.pdx.edu/ece_fac/748

https://pdxscholar.library.pdx.edu/ece_fac/748

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Distributed Deep Learning Optimization of Heat
Equation Inverse Problem Solvers

Zhuowei Wang, Le Yang, Haoran Lin, Genping Zhao, Zixuan Liu, Xiaoyu Song

Abstract—The inversion problem of partial differential equa-
tion plays a crucial role in cyber-physical systems applications.
This paper presents a novel deep learning optimization approach
to constructing a solver of heat equation inversion. To improve
the computational efficiency in large-scale industrial applications,
data and model parallelisms are incorporated on a platform
of multiple GPUs. The advanced Ring-AllReduce architecture
is harnessed to achieve an acceleration ratio of 3.46. Then a
new multi-GPUs distributed optimization method GradReduce
is proposed based on Ring-AllReduce architecture. This method
optimizes the original data communication mechanism based
on mechanical time and frequency by introducing the gradient
transmission scheme solved by linear programming. The exper-
imental results show that the proposed method can achieve an
acceleration ratio of 3.84 on a heterogeneous system platform
with two CPUs and four GPUs.

Index Terms—Distributed deep learning, concurrent computa-
tion, heat equation, gradient optimization.

I. INTRODUCTION

THE acquisition of data is a challenge task in the field of
cyber-physical computing. . Before the development of

data-driven deep learning, many types of industrial software
and physical computing are driven by physical models. The
physical models used to calculate predictions often contain
some prior knowledge, such as Navier-stokes equations in
electromagnetic field theory [1], Maxwell [2], Schrodinger
equation in quantum mechanics [3]. However, the efficiency
of these calculation methods is low in terms of physical
calculation burden required.

Some researchers began to use deep learning methods to
solve ordinary differential equations and partial differential
equations [4]. Isaac Elias Lagaris et al. [5] employed intelli-
gent neural networks to solve partial differential equations and
studied the use of neural network methods to solve differential
equations with complex boundary conditions [6]; however,

This work was sponsored in part by the Key-Area Research
and Development Program of Guangdong Province under Grant
2021B0101190003, 2021B0101190004, 2021B0101190002, in part by
the Innovation Fund for Industry-University-Research in Chinese Universities
under Grant2021FNA02010. (Corresponding author: Genping Zhao)

Z. Wang is with the School of Computers, Guangdong University of Tech-
nology, Guangzhou 510006, China (e-mail: wangzhuowei0710@163.com).

L. Yang is with the School of Computers, Guangdong University of Tech-
nology, Guangzhou 510006, China (e-mail: 2112105002@mail2.gdut.edu.cn).

H. Lin is with the School of Computers, Guangdong University of Tech-
nology, Guangzhou 510006, China (e-mail: linhorizon@163.com).

G. Zhao is with the School of Computers, Guangdong University of
Technology, Guangzhou 510006, China (e-mail: genping.zhao@gdut.edu.cn).

Z. Liu is with the College of Computer Science, Inner Mongolia University,
Hohhot, Inner Mongolia 010021, China (e-mail: liu zixuan163@163.com).

X. Song is with the Department of Electrical and Computer Engineering,
Portland State University, Portland, OR 97207 USA (e-mail: songx@pdx.edu).

due to the limitations of computing methods and hardware at
that time, the research in this field does not gain sufficient
attention. In recent years, with the development of deep
learning and computing hardware technology, more and more
researchers begin to pay attention to the research in this field.
Regazzoni et al [7]. solve ordinary differential equations or
time-varying partial differential equations based on data-driven
neural network models. Maziar Raissi et al. [8]–[10] began
to pay attention to the research in this field and proposed a
new deep learning framework named Physics-informed Neural
Networks(PINN) that can be applied to the solution of physical
model of fluid mechanics and quantum mechanics. Then Mao
et al. [11] used PINN to solve the Euler equation. Chen H et
al. used an improved Cuckoo search algorithm (CSA) to solve
the inverse problem of the heat conduction equation, which
improved the accuracy of its solution calculation [12].

But its calculation efficiency is low, so it is difficult to apply
to the industrial software applications that need largescale
calculation. In order to meet the efficiency requirements of
large-scale computing for industrial applications, more and
more studies have applied distributed computing technology to
large-scale computing for industrial applications. Priya Goyal
[13] used multi-GPU distributed computing technology to train
the deep learning model, makes full use of GPU computing
resources, expands from 8 GPUs to 256 GPUs, and obtains a
near-90% improvement in efficiency.

The main contributions of this article are as follows. 1)
Our first contribution involves the development of HEInex,
an image regression network specifically designed for iden-
tifying high transient heat flux density distributions in pool
boiling problems. HEInex utilizes a multi-layer convolutional-
deconvolutional network architecture as a dynamic solver for
the inverse problem of heat conduction partial differential
equations. By observing high-resolution temperature distribu-
tions on the heated surface, we are able to accurately estimate
the local high transient heat flux density on the boiling surface,
thus allowing for precise capture and reconstruction of real
pool boiling phenomena. We performed an image quality com-
parison between the heat maps predicted by our deep learning
model and the heat maps computed by using COMSOL, and
the structural similarity index measure (SSIM). The SSIM
value obtained was above 94%, indicating an excellent simi-
larity between the two sets of images. This experimental result
demonstrates the high accuracy of our deep learning model,
which meets the requirements for industrial applications. 2)
In the context of deep learning-based pool boiling problem
solving, our second contribution is the pioneering use of
the distributed training framework Horovod. This framework

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

offers significant advantages, notably the adoption of the
Ring-Allreduce algorithm. By connecting the communication
patterns of GPUs in a circular manner, it effectively reduces re-
source consumption associated with increasing GPU numbers,
leading to decreased training time and enhanced efficiency of
distributed devices. Experimental results on a heterogeneous
system with two CPUs and four GPUs demonstrate a speedup
ratio of 3.46 achieved by the Ring-Allreduce algorithm. 3) To
address the limitation of fixed clock frequency in the gradient
data communication of the Ring-Allreduce parallel method,
our third contribution introduces the GradReduce method.
This method optimizes the mechanical gradient transmission
scheme in Ring-Allreduce with a linear programming-based
gradient transmission approach, which is better suited for effi-
cient communication and execution of gradients with varying
volume sizes for solvers. The GradReduce method optimizes
the gradient transmission process of Ring-Allreduce method.
Experimental results on a heterogeneous system with two
CPUs and four GPUs show that the new implementation of
Ring-Allreduce with GradReduce leads to a speedup ratio of
3.84 and an approximately 11% improvement in training time
compared to original implementation of Ring-Allreduce.

This article is organized as follows. Section II summarizes
the related research work of distributed algorithm. Section III
introduces the distributed algorithm of the design and research
of object solver models. Section IV summarizes and analyzes
the experimental results. The conclusion of this research is
presented in Section V.

II. RELATED WORK

Data parallelism [14] is the most commonly used distributed
method. For example, Alex Krizhevsky et al. [15], Dean et
al. [16], Simonyan et al. [17], all adopted data parallelism in
their research and experimental methods in the field of image
recognition, which is the application for processing, analyzing,
and understanding images to identify objects and objects with
various patterns. There is a complete deep learning training
model on each worker node which is a computing device
node, such as GPU. Worker node can independently calculate
forward and reverse gradients, and then the worker node
sends these gradients to the parameter server.Many major
deep learning frameworks, such as TensorFlow and PyTorch,
support data parallelism. The parameter server calculates and
updates all gradient parameters and resends the updated model
parameters to each working node.

Model parallelism [18] is less common than data paral-
lelism. This method divides the model into each working node
and computes with batches of the same size. It is usually
suitable for training of large model, which is neural network
models with deep layers or a large number of parameters.For
example, the parallelism of the models of Wu et al. [19] and
Szegedy et al. [20] are limited on the premise of ensuring
accuracy. Therefore, in the training of large-scale deep learning
models, Saptadeep Pal et al. used the combination of model
parallelism and data parallelism to overcome the communi-
cation overhead of data parallelism and optimize the com-
putational efficiency of model parallelism . But all working

nodes in a centralized architecture need to send gradients to
the parameter server. Therefore, as the complexity of the deep
learning model increases and the number of GPUs increases,
the communication overhead of sending gradient data also
increases. The combination of model and data parallelisms
is adopted to improve efficiency in some research [21].

In order to speed up the training efficiency, some re-
searchers optimized the gradient communication mechanism
and proposed a decentralized Ring-AllReduce architecture
with parameterless servers [22]. All working nodes form a ring
structure. During data communication, all working nodes only
receive data from one working node and send data to the other
working node. Compared with the centralized architecture,
the gradient communication and parameter updating speed
are improved during model training. Tensorflow platform also
optimizes gradient communication between layers through
graph optimization. For deeper networks such as ResNet,
each communication incurs additional communication over-
head. Horovod proposes a gradient fusion approach to reduce
the additional communication overhead [23]. A gradient fu-
sion method is proposed to reduce the extra communication
overhead. Although Ring-AllReduce architecture solves the
communication overhead problem of centralized architecture,
there is still room for optimization of gradient data fusion
communication mechanism based on fixed time and frequency
for large parameter network model.

This paper introduces the development of HEInex, an im-
age regression network specifically designed for identifying
high transient heat flux density distributions in pool boiling.
The network utilizes a multi-layer convolution-deconvolution
architecture as a dynamic solver for solving the inverse
problem of thermal conduction partial differential equations.
The use of solver conducted on the distributed platform with
multiple GPUs under various distributed algorithms, including
data parallelism and model parallelism, are also explored for
efficient implementation of this solver. Notably, this study
incorporates the Horovod distributed training framework for
the first time and leverages the Ring-Allreduce algorithm
to mitigate resource consumption as the number of GPU
cards increases, thereby reducing training time. Additionally,
to address the limitations brought by fixed-clock frequency
in Ring-Allreduce’s parallel gradient data communication,
the paper also proposes the GradReduce approach for better
communication of gradient data. This works for adaption
to different gradient data sizes and solver operations and,
further reduces training time costs and enhances computational
efficiency on distributed devices.

III. METHODS

A. The Inverse Problem of Heat Conduction Partial Differen-
tial Equation Based on Deep Learning

Based on the pool boiling problem, this paper is attempted
to solving the inverse problem of the partial differential
equation of heat conduction, that is, to inverse calculate
the high transient local heat flux on the boiling surface by
observing the high-resolution temperature distribution on the
heating surface. From a mathematical point of view, this is

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

Fig. 1. Flow diagram of modelling of inverse problem solvers for partial differential equation of heat conduction. (1) Step1: Flow diagram of establishing
the temperature field data set. (2) Step2: Structure diagram of the deep learning model of heat equation solvers. (3) Step3: Comparison of inverse predictions:
real data and predicted data.

equivalent to a three-dimensional inverse problem of transient
heat conduction identified by unknown Neumann boundary
conditions [24]. In general, the inverse problem of Neumann
boundary identification heat conduction is solved by using
the method of finite element analysis combined with iterative
optimization [25]. However, this method requires calculation
of the optimization problem constrained by partial differential
equations, and the amount of calculation data is large, resulting
in high computational cost. In this paper, a proxy model
of the abstract operator of the heat conduction equation is
constructed by using the deep learning method, and the multi-
layer convolution deconvolution network is established as the
dynamic solver of the inverse problem calculation of the heat
conduction partial differential equation. The overall process of
using this method is shown in Fig. 1, and is divided into three
steps: establishing a training set, constructing a deep learning
model, and predicting the unknown flow of the inverse heat
transfer problem.

F (Θ) =

ρcP
∂Θ
∂t = ∇ · (k∇Θ), in Ω× (0, tf),

Θ(·, 0) = Θ0(·), on Ω,

−k ∂Θ
∂n = qi, on ΓI × (0, tf),

−k ∂Θ
∂n = qr, on ΓR × (0, tf),

−k ∂Θ
∂n = qs, on ΓS × (0, tf),

(1)

Step 1: Establishing the training set: since the deep learning
method needs enough training data to obtain more accurate
solutions, we first establish an accurate forward heat transfer
model. The model is solved through the open source software
COMSOL [26], to acquire sufficient training data. The forward

heat transfer mathematical model can be expressed as Equation
(1).
ρ, cp, and k are expressed as material density, specific heat

capacity and thermal conductivity respectively. t represents
the unit time, (0, tf) denotes time threshold, and Ω is space
threshold. ΓI , ΓR, and ΓS denote the temperature field of
the lower surface, the side surface and the upper surface
respectively. n represents the length of the time series. Θ refers
to the temperature field of the heating surface, which is a
three-dimensional tensor. It can be described as a function
Θ(t, x, y) that varies with time and space (t indicates the
temporal threshold component, and x and y stand for the
spatial threshold components, respectively).
qi denotes the heat flow on the lower surface, which is a

constant; qs is the hear flow on the upper surface; qr represents
the side heat flow, and it is assumed to be 0. Similarly, qi, qs,
and qr are all three-dimensional tensors, which can also be
described as function qi(t, x, y), qs(t, x, y), qr(t, x, y) varying
with time and space. The heat flux in different directions
finally constitutes the heat flux parameter q(t, x, y).

Therefore, many temperature field images and heat flux dis-
tribution images composed of Θ and q can be obtained in the
process of solving the forward heat conduction mathematical
model. These images can be used as training data for our deep
learning.

Step 2: Deep learning model: the abstract operator F is
defined as the implicit representation function of formula (1),
so F is described as the mapping from the temperature file
on the heating surface (Θ) to the heat flux distribution on the
boiling surface (q), which can be expressed as

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

,✓✓- 3. Inverse prediction ',\
I I

pep~~ = "i1 · (k"ilG) ,
0 (-, 0) = Go(·),

-ki: = q;,

-ki: = Qr ,

-ki: = q.,

in

on
on

on
on

fl x(O, t1),

n,
f1 x(O,t1) ,

fn x(O,t1),
r 5 x (O, t1), qn:

Unft: hutRu:,, w /.,.z ...
""'

I I
\ I

\ / ,, ___ ,,

D

Reality Prediction

\ I , ______________________________ ,,/

0 ,,.,,- ------ --------- ,,
/ 2. Construct the deep learning model \

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I
/ 0 :Heating surface temperature field Data q : Heat flux density distributions 1

1 ~rure 1

I
I

r,,

The structure of the heating surface
temperature field

Feature ,-..1.-, 11
~ Feature 1

,.......L--, I
I

Deconvolut1on

Convolut ion kernel
Deconvolution kernel

\ Three-channel input image Single channel input image /
\.., (Unit: temperature K) (Unit: Heat Flux W /m2) ,/

''---~✓

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

F (Θ(t, x, y)) = q(t, x, y) (2)

Three dimensional tensors Θ(t, x, y) and q(t, x, y) have the
components of the spatial threshold Ω in the x and y spatial
directions and the components of the temporal threshold
(0, tf). In a broad sense, tensor Θ, q can be regarded as the
temperature field image and the heat flux distribution image
which have changed dynamically on the time axis. Therefore,
an image regression network HEInex is established based
on convolutional neural network, which is suitable for pool-
boiling, high transient heat-flux distribution recognition.

The network structure of HEInex is shown in Fig. 1 (2). It
can be divided into output layer, convolution layer, activation
layer deconvolution layer, and output layer. The input is
the temperature field Θ(tn−2, x, y),Θ(tn−1, x, y),Θ(tn, x, y)
when the time frame is tn−2,tn−1,tn. The output is set as
the heat flux distribution q(tn, x, y) when the time frame is
tn.

Convolution and image sampling in convolution layer and
deconvolution layer can be implemented realize the mapping
of Θ → q. So that the heat conduction abstract operator F
can be replaced.

Here, we use the mean square loss function as shown in
formula (3). By selecting appropriate gradient descent tech-
niques, this convolutional neural network can be effectively
trained and the desired solution is obtained as.

MSE(q, q̃) =

∑n
i=1 (qi − q̃i)

2

n
(3)

n is the number of samples. q represents the real heat flux
distribution value calculated by the abstract operator F of
heat conduction. q̃ is the predicted heat flux distribution value
obtained by the convolutional neural network.

Step 3: Inverse prediction: finally, the actual test data q of
heat flux distribution are compared with the predicted data q̃
through the structural similarity index measure (SSIM) [27],
as shown in Equation (4).

SSIM(q, q̃) =
(2µqµq̃ + c1)(2σqq̃ + c2)

(µ2
q + µ2

q̃ + c1)(σ2
q + σ2

q̃ + c2)
(4)

µq and µq̃ represent the average of q and q̃, respectively. σq

and σq̃ denote the standard deviation of q and q̃, respectively.
σqq̃ refers to the covariance of q and q̃. c1 = (k1L)

2,
c2 = (k2L)

2 are constants used to maintain stability. L is
the dynamic range of the pixel value. k1 = 0.01, k2 = 0.03.
The value of SSIM ranges from −1 to 1.

In real-world industrial applications, a higher level of preci-
sion is often demanded compared to other domains. However,
there is no established standard for SSIM values within the
context of industrial applications. As a result, we have adopted
an SSIM of 90% as the benchmark for satisfactory perfor-
mance in industrial settings, based on the references [28]–
[32]. Hence, for the time being, this study posits that if the
SSIM > 0.9, the similarity between the predicted heat flux
image and the actual heat flux image is sufficient to meet the
demands of industrial computing applications. Nonetheless,
the suitable SSIM value should be determined according to
the specific requirements of individual applications.

B. Model parallelism and data parallelism

Model parallelism and data parallelism are used in this
research to improve the efficiency of the solvers of the
heat equation. These methods are based on a centralized
architecture. The parameter server function of the centralized
architecture is performed with the CPU, and the computing
function of the working node is implemented with the GPU.

Model parallelism [18] assigns the model and its associated
solvers to each GPU for computation. This is often used
to train large network models. If the neural network model
involved in the deep learning task has deep layers and many
parameters, exceeding the upper limit of the local memory
storage of a single GPU, the model needs to be decomposed.
Different GPUs store different parts of a neural network model,
and each GPU is only responsible for updating the parameters
of the local storage part of the network and computing this part
of the network. This distributed machine learning approach is
called model parallelism. In a multi-GPU distributed scenario,
model parallelism requires manual model partitioning of GPU
resources. Artificial model partitioning may fail to achieve
optimal partitioning, leading to the invalid utilization of GPU
hardware resources and load-balancing problems on different
GPUs. It will lead to a high time-cost of solver operation and
poor optimization effect.

When the solvers use data parallelism [14] to solve the heat
equation, the dataset of heating surface temperature field Θ
which size is Data is divided into subsets. Then it distributes
the subsets of Θ to different GPUs. Each GPU has a complete
neural network model, which independently performs forward
and reverse calculations according to the distributed data
subset to obtain the local gradient subset of Θ. These gradients
are driven by the GPU to the parameter server CPU, which
then aggregates and updates them. Finally, the updated model
weight parameters are returned to each GPU to complete an
iteration.

C. Ring-AllReduce

The Ring-AllReduce architecture [22] was originally pro-
posed by Andrew Gibiansky for the Baidu Research Technol-
ogy blog. We assume that there are N GPUs in our system. B
denotes the bandwidth of GPU communication. Data stands
for the amount of the data to calculate. Dcal describes the
amount of the data to calculate in single GPU, and Dcom

describes the amount of the data to communicate in single
GPU. T is the theoretical time required for data communicate.

When the solvers apply the Ring-AllReduce, the computing
device will receive data of Data size. Each GPU in the Ring-
AllReduce architecture will send and receive values N − 1
times for Scatter-Reduce and N − 1 times for all-Gather.
Each GPU will send gradient data with size of Data/N .
The amount of data to communicate in single GPU and
the theoretical time of data communication is expressed as
follows:

Dcal = Data/N

Dcom = 2(N − 1)/Dcal

T = Dcom/B

(5)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

The communication overhead of ring-AllReduce communi-
cation eliminates most of the influence of the number of GPUs
of working nodes and does not increase with the increasing
number of GPUs. Overall communication speed is limited only
to adjacent GPUs in the slowest connected ring and this can
average the gradient in neural network, ensure convergence
and accuracy as far as possible, and reduce communication
overhead.

D. GradReduce

The GradReduce method proposed in this article is based
on the Ring-AllReduce method. It uses the ring architecture of
multi-GPU distributed computing, and optimizes the original
gradient data communication mode of Ring-AllReduce. Each
gradient data communication of Ring-AllReduce is based on
a fixed clock frequency. The total communication time of this
gradient data communication mode is limited by the time-
consuming gradient data calculation.

The GradReduce method gradient sending scheme is based
on the combination of the environmental parameters of a
distributed computing platform and iterative neural network
parameters. GradReduce method can obtain the optimal data
communication scheme through linear programming to mini-
mize the total time. The specific variable parameters are listed
in Table I.

TABLE I
PARAMETERS OF THE LINEAR PROGRAMMING

Parameters Definition

Layer Network layer

i Network layer rank

B The bandwidth constrained by GPU hardware parameters

start The first layer rank

end The last layer rank

ν GPU computing power

Dcal(i) The amount of gradient data of layer i to calculate

Dcom(i) The amount of gradient data of layer i to communicate

Ex
The delay caused by insufficient device bandwidth
during GPU communication

Cost The fixed cost time of communication

State(i) Gradient data communication state at layer i

T scal(i) The start time of gradient data calculation for layer i

T ecal(i) The end time of gradient data calculation for layer i

T (i)
The theoretical time of gradient data communication
at layer i

Ttal(i) The total time of gradient data communication at layer i

T scom(i) The start time of gradient data communication at layer i

T ecom(i) The end time of gradient data communication at layer i

Bf(i)
The time for gradient data communication buffering
in layer i

Buffer
The time allocated for gradient data communication
buffering in GPU communication

Given that the gradient data of each layer are the data of
the temperature field of the heating surface, so the summation
equations are shown in Equations (6) and (7). The GradReduce
method gradient data calculation and communication process
run independently. It does not affect the execution of other
routines in the calculation process.

Dcal =

L∑
i=1

Dcal(i) (6)

Dcom =

L∑
i=1

Dcom(i) (7)

Layer i gradient data calculation end time is obtained from
the computing amount of gradient data of this layer and the
computing capacity of hardware parameter GPU; the start
time of gradient data calculation is obtained based on the
end time of upper gradient data calculation. The calculation
in Equations (8) and (9) can be expressed as follows:

Tecal(i) = Tscal(i) +
Dcal(i)

ν
(8)

Tscal(i) ≥ Tecal(i− 1) (9)

Theoretical time of gradient data communication at layer
i is determined from the gradient data traffic of this layer
and hardware parameter GPU communication, as calculated
by Equation (10).

T (i) =
Dcom(i)

B
(10)

Layer i network communication starts at Tscom(i). It needs
to wait for the end of the communication of the upper layer
network. In addition, communication can be conducted only
after the gradient calculation of the layer i is completed, and
the time when the gradient calculation ends is Tecal(i), so
Equation (11) can be acquired as follows:

Tscom(i) ≥ max(Tecal(i), T ecom(i− 1)) (11)

The end time of data communication at layer i should
be calculated according to the start time of communication
plus the communication cost. The communication cost is
usually composed of the total time and the fixed cost time
of communication. Data communication incurs a time-cost,
multiplied by its extra cost coefficient, and Equation (12) can
be obtained as follows:

Tecom(i) ≥ (Tscom(i) + Ttal(i) · (1 + Ex) + Cost) (12)

When the data communication of layer i does not start,
the theoretical sending time of the data that has not been
communicated is T (i). It can be calculated and added to
the data buffer of layer i. Whether or not to join the cache
is determined by the input parameter State(i), which is a
Boolean array representing the initial way in which the data
are sent. This indicates that if the data of the layer i are sent
immediately, then State(i) = 1. If the data of this layer are
not sent and stored in the buffer area, then State(i) = 0.
Since the last data must be sent, the layer i corresponds to
State(i) = 1.

If the data pertaining to the layer i are not sent, the buffer
area Bf(i) of this layer is at least composed of the value of
the buffer area of the previous layer Bf(i− 1) plus the data

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

communication duration of this layer. If State(i) = 1 of the
layer i, it means that the gradient data calculated by this layer
and the accumulated data in the buffer area Bf(i) will be sent.
Therefore, Equation (13) can be obtained as follows:

{
Bf(i) ≥ (Bf(i− 1) + T (i)) State(i) = 0,

Bf(i) ≥ 0 State(i) = 1,
(13)

Combining Equation (13), the value of gradient data cache
can be calculated as per Equation (14).

Bf(i) ≥ (Bf(i− 1) + T (i)) · (1− State(i)) (14)

Since the theoretical total duration of data communication
Ttal(i) denotes the sum of the theoretical communication
duration after the fusion of all gradient data of the layer i.
When State(i) = 0, the data of this layer are not sent and
stored in the buffer area. Ttal(i) is recorded as 0.

If State(i) = 1 of the layer i, it means that the gradient
data calculated by this layer and the accumulated gradient
data in the buffer area will be blended, that is, the gradient
data will be sent together after gradient fusion. The total time
of communication of this layer, Ttal(i), is composed of the
theoretical data communication duration T (i) of this layer
and the accumulated value Bf(i − 1) in the buffer area of
the previous layer. Equation (15) is derived as follows:

{
Ttal(i) ≥ 0 State(i) = 0,

Ttal(i) ≥ (Bf(i− 1) + T (i)) State(i) = 1,
(15)

Combining Equation (15), the total theoretical duration of
gradient data communication can be calculated as per Equation
(16)

Ttal(i) ≥ (Bf(i− 1) + T (i)) · State(i) (16)

According to the Equation (17), State(i) is decided by
Buffer, T (i) and Bf(i).

State(i) =

{
0, Buffer > T (i) +Bf(i)

1, Buffer ≤ T (i) +Bf(i)
(17)

The process of obtaining State(i) with the above equation
constraints is one of linear programming; this is a way to solve
the optimal solution of the objective function in the feasible
region, which can be implemented using the CPLEX technique
[33].

There are two cases about the solvers with GradReduce
using the linear programming to optimize data communication
of Ring-AllReduce (Fig. 2).

To better understand the communication mode advantages
of the GradReduce distributed algorithm, we combined the
Theoretical time and extra cost into communication cost.

Communication cost encompasses both the time required
for theoretical data transmission (Theoretical time) and the
delay caused by insufficient device bandwidth during GPU
communication (Ex). Theoretical time can be calculated as
a mathematical function of the gradient data traffic of a

(a)

(b)
Fig. 2. Communication-calculating pipeline and the spatio-temporal dia-
gram of the solvers using GradReduce and Ring-AllReduce. (a) Case 1:
Multiple small-sized gradient data communication-calculating pipeline spatio-
temporal diagram.(b) Case 2: Single large-sized gradient data communication-
calculating pipeline spatio-temporal diagram.

layer and the GPU communication hardware parameters, as
shown in Equation (10). Extra cost specifically refers to
the delay caused by insufficient device bandwidth in GPU
communication, which is generally proportional to the size of
data transmission. On the other hand, fixed cost (Cost) is inde-
pendent of data size and is typically related to communication
preparation between GPUs. This includes data transmission,
memory allocation, thread synchronization, and other costs
that do not change with data size but increase with an increase
in communication frequency. In distributed training, fixed cost
is a crucial factor that must be considered.

Case 1: The spatio-temporal diagram of Case 1 is shown
in Fig. 2(a). The solvers will send three small-sized calculated
data for communication. If the solvers use GradReduce, the
three calculated data will merge in Buffer and be sent
simultaneously, which generates one fixed cost. If the solvers
using Ring-AllReduce send the same three calculated data,
they will generate one fixed cost for each item of data
sent. In this case, the solvers calculate and communicate
with some small-sized gradient data items. The solvers using
GradReduce or Ring-AllReduce have a same start time of
data communication Tscom(i). According to Equation (9),
if a calculated data is communicated to another GPU, the
time cost of this data communication is composed of the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

Grad Reduce

Ring-All Reduce

Grad Reduce

D Communication cost (Theoretical time + Extra cost) D Fixed cost

Tscom (i) : Linear programming decides whether to send

State(i) = {~:
Buffer> T(i)+Bf(i)
BufferS:T(i)+Bf(i)

Tscom (l) ;State(i) = 1,Datacommunica!ion

Buffer

,~----~~----~ i

!
' '
'

T(i) T(i+I) T(i+2)

Time of Data communication

D Communication cost (Theoretical time+ Extra cost) D Fixed cost

D Calculating time elk : Clock frequncy

Begin E,d

Tscom (i) :State(I) = 1,Data communication

'
Ring-AIIReduce Q,J~I---------~□

elk elk

Time of Data communication

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

Communication cost, and the fixed cost. Therefore, each data
communication of the solvers consumes the fixed cost Cost.
According to Equation (14), if the solvers use GradReduce,
the small-sized gradient data can be deposited in the buffer
area when State(i) = 0. In addition, State(i) = 1 means
that the size of buffer area Buffer is too small to deposit
the calculated data of this layer. The data in buffer area and
the calculated data are merged for data communication. The
solvers using GradReduce communicate with some small data
to further generate less fixed cost. If the solvers use Ring-
AllReduce, it will generate more time consumption cost from
the fixed cost.

Case 2: The spatio-temporal diagram of Case 2 is shown
in Fig. 2(b). In this case, the solvers calculate, and prepare to
communicate with, a large-sized gradient dataset. The solvers
using GradReduce or Ring-AllReduce have a same end-time
for their data calculation Tecal(i). In layer i, State(i) = 1
refers to that the solvers using GradReduce will communicate.
In addition, the solvers using Ring-AllReduce calculate and
communicate with large-sized gradient data, which have a
fixed clock frequency. The clock frequency is the frequency
of the request calculated data for GPU communication. If the
clock frequency of the solvers is set to some large value, it
generates excessive waiting time after the calculated data are
prepared. If the clock frequency of the solvers using Ring-
AllReduce is set to some small value, the problem of Case
2 which has an excessive waiting time will not be obvious,
but the problem of Case 1 happens, which generates more
fixed costs. Since GradReduce uses a linear programming
method to optimize communication, the waiting time problem
arising in Case 2 will not occur in GradReduce. The linear
programming model can be constructed through the above
equation constraints, in which the decision dependent variable
is set to Tecom(end), that is the time at which the gradient
data of the end layer are sent to the end. The decision objective
of the linear programming is to minimize the dependent
variable Tecom(end). If the value of Tecom(end) is smaller,
the communication scheme of GradReduce is also better, that
is, the training efficiency of the model is higher. The execution
of GradReduce is shown in Algorithm 1.

In the GradReduce algorithm, FluxPara refers to the
parameters of the neural network. EnvPara denote the pa-
rameters of training environment. These parameter sets are all
used to construct and solve the linear programming model,
and then obtain the optimal gradient data sending scheme of
this layer, from which the gradient sending start and end times
follow.

GradReduce not only follows the Ring-Allreduce communi-
cation architecture to solve the problem of high cost of cross-
machine implementation of data and model parallelisms, but
also uses the linear programming to achieve greater effect than
Ring-AllReduce.

IV. EXPERIMENTS

A. Experiment Setup

Since this research uses a deep learning method to estab-
lish a multi-layer convolution-deconvolution neural network,

Algorithm 1: GradReduce
Input: Number of training network layers:Layer

Training environment parameters: EnvPara;
Flux network Parameters: F luxPara.

Output: End time of gradient data calculation for the
last layer: Tecom(end).

1 EnvPara is determined by the training environment,
including: ν, B, Ex, Cost

2 FluxPara is generated by the torchstat tool, including:
Dcal, Dcom, Tscal.

3 for i = start; i ≤ end; i+ = 1 do
4 if i ≤ Layer then
5 Executing torchstat →
6 Dcal(i), Dcom(i), State(i), Tscal(i).
7 end
8 Executing linear programming model:
9 while Tecom(i) is the minimum value do

10 State from equation(14)
11 T (i) from equation(7)
12 Bf(i) from equation(10)
13 Ttal(i) from equation(12)
14 Tecom(i) from equation(9)
15 end
16 Update Tecom(i) in GPU memory;
17 end
18 return Tecom(end);

sufficient training data are required by the COMSOL tool.
These data are all derived from the model for solving the
heat conduction problem in the single-bubble boiling process
in plate-type scenarios. The parameters of the model in Case
1 are shown in Table II. The specific calculation of the data
features is displayed as follows:

cP = 462+ 023 ∗ (Θ− 273.15)+ 0.24 ∗ (Θ− 273.15)2 (18)

k = 62+0.0378 ∗ (Θ− 273.15)− 0.01 ∗ (Θ− 273.15)2 (19)

In this case, the initial temperature is set to 1550 ◦C. Lower
surface heat flow: qi = 5000W/m2. Side heat flow: qr =
0. According to the heat flow [34], upper surface heat flow
calculation is governed by Equations (20) to (22).

qs(t, x, y) = a(t) · b(x, y) (20)

a(t) =

{
0.1 sin(100π(t− 0.02)) + 0.1 0.015 ≤ t ≤ 0.035,

0 otherwise,
(21)

b(x, y) =

{
1 (x, y) ∈ ΓS1

,

0 (x, y) ∈ ΓS \ ΓS1
,

(22)

The upper surface space domain boundary conditions are
shown in Equation (23).

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

TABLE II
PARAMETERS OF THE MODEL IN CASE 1

Parameter Values

Geometric properties
Length,L(m) 10−3

Width,W (m) 10−3

thickness,d(m) 2.5× 10−5

Physical properties
Density,ρ(kg/m3) 7850
Specific heat capacity,cP (J/(kg ·K)) Equation(18)
Heat conductivity coefficient,k(W/(m ·K)) Equation(19)

Grid discretization

Grid type hexahedron (Structured network)
Number of grids 50000
Size(x.y−Direction,m) 10−5

Size(z−Direction,m) 5× 10−6

Time discreteDt(s) 0.001(50 step)

Amount of computation
Degrees of freedom 624276
Calculating time(s) 714

ΓS1 : r − 0.1 ≤
√

(x−m)2 + (y − n)2 ≤ rmm;

z = 0.025mm;m,n ∈ [0.5, 0.7]mm
(23)

The running memory of this data case is 2-3 G, the
calculation precision is set to 1 × 10−4, and the size of the
entire model after the calculation is completed is 531 MB.

The experimental platform used was a heterogeneous system
consisting of an Intel i9-10850K CPU with 10 CPU cores
and multiple NVIDIA GeForce RTX 3090 GPUs. The dataset
used for this study included 1040 training samples, 130
testing samples, and 130 validation samples. The model’s
hyperparameters included using the Adam optimizer with a
learning rate of 10−4, training for 50 epochs, and using a
batch size of 32. The neural network model was trained on up
to 4 GPUs and 2 CPUs, using the Deep Learning of PyTorch.
The solver model’s parameters and computational information
can be found in Table III.

TABLE III
PARAMETERS AND TRAINING INFORMATION OF HEINEX

Parameters Values

Data size
Training 1040
Validation 130
Test 130

Model Parameters

Optimization
Adaptive Moment
Estimation (Adam)

Learning rate 10−4

Epochs 50
Batch size 32

Traning modes with multiple GPUs
(NIVIDA GeForce RTX 3090 GPU)

Single CPU
(Intel i9-10850K CPU 10 cores)
Multiple CPUs
(Intel i9-10850K CPU 10 cores)

B. Impact of spatio temporal resolution on results

In this experiment, the settings of the learning rate and batch
can be adjusted according to the specific experimental platform

and data characteristics. For the experimental platform with
strong multi-GPU distributed cluster computing capability, the
batch of training data can be appropriately increased the better
to estimate the computing performance of the solvers under
different distributed methods.

A data case of the constructed heat conduction partial
differential equation inverse problem solvers trained on a
single-machine single-GPU platform is displayed in Fig.3. It
is found that the SSIM of the image exceeds 90% which meets
the requirements of industrial calculating applications.

In the previous section, we presented our experimental setup
and results. Building on our earlier analysis of the impact of
temporal resolution on image quality, we then examined the
impact of four major hyperparameters (learning rate, epochs,
batch size, optimizer) on SSIM. To complement our earlier
findings on the impact of temporal resolution, we analyzed
the changes in SSIM with respect to temporal resolution for
different hyperparameter values, and provided a figure (Fig.4)
to illustrate the results.

We were able to identify the following patterns through our
analysis using Fig.4:

Batch size has a significant impact on training time. Firstly,
reducing the batch size will result in longer training time for
the deep learning model. Secondly, as shown in Figure 4(a),
increasing the batch size can lead to increased fluctuations in
SSIM. Therefore, in our testing of six different batch sizes
(512, 256, 128, 64, 32, 16), we found that a batch size of 32
is the most stable and achieved the best results.

The number of epochs is positively correlated with the
training time of the deep learning model, but increasing the
number of epochs can also improve the SSIM performance.
As shown in Figure 4(b), increasing the epochs will lead to
longer training time, but we found that achieving good results
is possible with 200 epochs.

A learning rate that is too small can lead to poor perfor-
mance of the deep learning model, while a larger learning
rate may achieve better SSIM performance (as shown in
Figure 4(c)). Although the Adam optimizer has the function
of adapting to adjust the learning rate, too large a learning rate
can increase instability, while too small a learning rate may

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

Fig. 3. Deep learning-based prediction of heat flux density distribution im-
ages (left figure). COMSOL simulation of actual heat flux density distribution
(right figure).

result in poor optimization of SSIM. Therefore, when using
the Adam optimizer, we selected a relatively stable learning
rate of 0.001.

Among the four optimizers that were tested, the Adam
optimizer yielded the best performance (as shown in Figure
4(d)). We compared the SGD, Adam, Adagrad, and RMSprop
optimizers. While SGD could steadily reduce the model’s loss,
its improvement in SSIM was relatively slow, requiring a large
number of iterations to achieve better results. Adagrad adapts
the learning rate according to different parameter gradients, but
its performance showed significant fluctuations despite finding
a relatively good SSIM value. RMSprop is similar to Adagrad,
but it introduces exponential weighted averages to smooth the
gradient’s historical information and adapt to different gradient
changes. On the other hand, Adam combines the advantages
of momentum and the RMSprop algorithm. It can adaptively
adjust the learning rate and momentum coefficient and can
adapt to different gradient changes, which ultimately results
in the best performance.

C. Training Time for Each Experiment

In this research, the solvers are trialed by applying the tradi-
tional data parallelism on a single computer. The experimental
results are summarized in Table IV.

In the control experiments of heterogeneous systems with
single computer with multiple GPUs, the data parallelism
improves the speedup ratio of the solver model training by
1.61. Data parallelism has a centralized architecture that uses
a single CPU as a parameter server to schedule gradient
data. Data parallelism requires assigning solver models of
the same structure to different GPUs, sending gradient data
to different GPUs to update the gradient data. The updated
gradient data are merged in a single CPU that is transferred
to the parameter server. Therefore, the data parallelism cannot
be applied on multiple CPU heterogeneous system, rendering
data parallelism unsuitable for solvers required to run on a
multiple-CPU, multiple-GPU distributed platform.

Model parallelism is applied in the same experimental en-
vironment. The model parallelism improves the computational
efficiency of the solvers by a factor of 1.37, and the increase
in efficiency is not as good as the effects of data parallelism.
The solvers of the model parallelism can be executed in
the systems with multiple computers with multiple GPUs,
but only achieves the desired accelerating factor of 1.42,
the model training efficiency is improved very little, and the
computing performance of multiple GPUs is not fully utilized.
The experimental results show that the training efficiency is
very small. So, model parallelism is not the best distributed
strategy for the solvers in the course of the execution.

The results show that the solver models use the Ring-
Allreduce method to obtain accelerations of 1.94 and 3.46
times on a system running on a single computer with multiple
GPUs as well as those using multiple computers with multiple
GPUs. This indicates that the solvers are distributed on the
platform for which the accelerating effect is significantly better
than that arising from data and model parallelisms.

In addition, the solvers using the GradReduce method obtain
an acceleration ratio of 2.03 and 3.84 over the system with
a single computer with multiple GPUs as well as multiple
computers running with multiple GPUs. The performance im-
provement effect is better than the Ring-AllReduce. It indicates
that the GradReduce method is a distributed strategy that is
suitable for the solvers of heat conduction partial differential
equation inverse problems. It can be applied on heterogeneous
systems with multiple CPUs and GPUs. The GradReduce
technique invokes a linear programming routine, which can
determine the optimal data communication scheme according
to the prior data communication time-cost and is more suited
to handling the training features associated with the large
amount of data calculation needed in problems involving heat
conduction and partial differential equation inverse problem
solvers.

V. CONCLUSION

In this paper, a solver for the inverse problem of heat
conduction partial differential equation is constructed based on
the distributed deep learning method. The experiments show

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

Prediction

Prediction

Prediction

Prediction

N0.1 : The SSIM is 0.96749

COMSOL

N0.3: The SSIM is 0.9671

COMSOL

N0.5: The SSIM is 0.97813

COMSOL

N0.7: The SSIM is 0.95296

COMSOL

Prediction

Predict ion

Prediction

N0.2 : The SSIM is 0.95998

COMSOL

N0.4: The SSIM is 0.948

COMSOL

N0.6: The SSIM is 0.97558

COMSOL

N0.8: The SSIM is 0.96358

COMSOL

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

(a)The spatio-temporal variation of SSIM under different batch sizes.

(b)The spatio-temporal variation of SSIM under different Epochs.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

~

.
~

l.O ~ -----S_S_IM_ Ti_m_e_C_ha_n~ge_ Pl_ot _____ _

0.8

0.6

0.4

0.2

Batchsize=512 Best SSIM=0.9205

SSIM Time Change Plot
1.0----------------~

0.6

0.4

0.2

o.o.L.,------~-~-~------,---,
50 100 150 200 250 300 350 400

Time

Batchsize=64 Best SSIM=0.9305

l.O
SSIM Time Change Plot

0.8 ~
0.6

0.4

0.2

0.0
10 20 30 40 50 60 70 80

Time

Epochs=50 Best SSIM=0.876

l.O
SSIM Time Change Plot

0.8 ~
0.6

0.4

0.2

0.0
50 100 150 200 250 300 350 400

Time

Epochs =300 Best SSIM=0.9386

~

.
~

l .o _ _____ s_s_1M_T_im_ e_ Ch_a_ng~•- P_lo_t ____ ~

0.8

0.6

0.4

0.2

50

Batchsize=256

150
Time

200 250

Best SSIM=0.9274

SSIM Time Change Plot
1.0----------------~

0.8

0.6

0.4

0.2

0.0"-c--~----~-----------,,

l.O

0.8

0.6

0.4

0.2

0.0

LO

0.8

0.6

0.4

0.2

0.0

100 200 300
Time

400 500 600

Batchsize=32 Best SSIM=0.9554

SSIM Time Change Plot

~

200 400 600 800
Time

Epochs =100 Best SSIM=0.9047

SSIM Time Change Plot

~

100 200 300 400 500
Time

Epochs =400 Best SSIM=0.9466

~

.
~

0.4

0.2

50 100 150 200 250 300 350
Time

Batchsize= 128 Best SSIM=0.9356

SSIM Time Change Plot
1.0------------------

0.6

0.4

0.2

o.o.L.,.---~---~--------J

l.O

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

200

Batchsize= 16

400
Time

600 800

Best SSIM=0.945

SSIM Time Change Plot

~

50 100 150 200 250
Time

Epochs =200 Best SSIM=0.9274

SSIM Time Change Plot

~

200 400 600 800 1000
Time

Epochs =800 Best SSIM=0.9576

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

(c)The spatio-temporal variation of SSIM under different Learning Rate.

(d)The spatio-temporal variation of SSIM under different optimizer.

Fig. 4. Visualization of the impact of hyperparameter settings on SSIM with respect to spatiotemporal resolution.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

SSIM Time Change Plot 1.0~---------~-----~ SSIM Time Change Plot
1.0----------~-------

0.8 0.8

06 0.6

0.4

0.2 0.2

o.o.L-,--- - - --- - - - - ---~
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

Time Time

Learning Rate =0.1 Best SSIM=0.9245 Learning Rate =0.01 Best SSIM=0.9119

SSIM Time Change Plot
1.0~---------~-----~

SSIM Time Change Plot
1.0----------~-------

0.8 ~ 0.8

~
0.6 0.6

0.4 0.4

0.2

o.o .L-,-- - - - --- - - - - ---~ 0.0-'-.---- --- --- ---- ---~
500 1000 1500 2000 2500 3000 so 100 150 200 250

Time Time

Learning Rate =0.0001 Best SSIM=0.8762 Learning Rate =0.00001 Best SSIM=0.8492

SSIM Time Change Plot
1.0----------~-------

0.8

0.6

0.2

~

so 100 150
Time

200 250

Learning Rate =0.001 Best SSIM=0.9274

SSIM Time Change Plot
1.0~---------~-------

0.8

0.6

0.4

0.2

0.0-'-.---- --- --- --- --- - ~
so 100 150

Time
200 250

Learning Rate =0.000001 Best SSIM=0.8417

l .0 ~-----S_S_IM_Ti_om_e_C_h_a_ng~e_P_lo_t ____ ~ l .0 ~-----S_S_IM_Ti_om_e_C_h_a_ng~e_P_lo_t ____ ~

0.8

0.4

0.2

so 100 150
Time

200 250

Optimize=SGD Best SSIM=0. 8612

SSIM Time Change Plot
1.0----------------~

~
0.6

0.2

0.0-'-.----------------~
so 100

Optimize= Ada grad

150
Time

200 250

Best SSIM=0. 8479

0.8

0.6 .
~

0.4

0.2

0.0

1.0

0.8

0.6

~
0.4

0.2

0.0

~

so 100 150 20-0 250
Time

Optimize=Adam Best SSIM=0.9274

SSIM Time Change Plot

~

so 100 150
Time

200 250

Optimize=RMSprop Best SSIM=0. 8804

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

TABLE IV
COMPARISON OF SSIM AND TRAINING TIME ON DIFFERENT HETEROGENEOUS SYSTEMS

Heterogeneous system Model parallelism Data parallelism Ring-Allreduce GradReduce
SSIM Time(s) SSIM Time(s) SSIM Time(s) SSIM Time(s)

Single computer with single GPU 0.938 532.849 0.9426 521.500 0.9417 532.917 0.9551 531.849

Single computer with multi-GPUs 0.9455 389.110 0.9374 323.198 0.9488 274.073 0.9519 261.350

Multi-computers with multi-GPUs 0.9424 373.048 0.9413 292.389 0.9416 153.9103 0.9583 138.328

that the SSIM of the image predicted is more than 94%,
which can meet the needs of industrial application. Then,
data parallelism and model parallelism methods are used to
optimize the performance of the solver. The data parallelism
and model parallelism can achieve an acceleration ratio of
1.61 and 1.36 in a single computer with multiple GPUs,
respectively. Due to updated gradient data being merged in
a single parameter server, the data parallelism cannot be
invoked on multiple computers. The performance optimization
of the model parallelism running on multiple computers with
multiple GPUs is insignificant. Furthermore, we propose a
GradReduce method that follows its ring data communication
architecture, which optimizes its gradient transmission method
and replaces the mechanical clock-frequency gradient trans-
mission scheme with a linear programming gradient transmis-
sion scheme. The experimental results show that GradReduce
method achieves an acceleration ratio of 3.84 on a heteroge-
neous system platform with two CPUs and four GPUs.

REFERENCES

[1] Z. Brzeniak, G. Dhariwal, and Q. T. L. Gia, “Stochastic navier-
stokes equations on a thin spherical domain,” Applied Mathematics
Optimization, vol. 84, DOI 10.1007/s00245-020-09702-2, no. 2, pp.
1971–2035, Jul. 2020. [Online]. Available: https://doi.org/10.1007%
2Fs00245-020-09702-2

[2] S. Deng, Z. Li, and K. Pan, “An adi-yee’s scheme for maxwell’s
equations with discontinuous coefficients,” J. Comput. Phys., vol. 438,
DOI 10.1016/j.jcp.2021.110356, no. C, Aug. 2021. [Online]. Available:
https://doi.org/10.1016/j.jcp.2021.110356

[3] I. J. Njoku, C. P. Onyenegecha, C. J. Okereke, E. Omugbe, and
E. Onyeocha, “Solutions of schrodinger equation and thermodynamic
properties of iodine and scandium fluoride molecules based on
formula method,” Physica Scripta, vol. 97, DOI 10.1088/1402-
4896/ac4717, no. 1, p. 015201, Jan. 2022. [Online]. Available:
https://dx.doi.org/10.1088/1402-4896/ac4717

[4] J. H. Gu, M. Hong, Q. Q. Yang, and Y. Heng, “A fast inversion approach
for the identification of highly transient surface heat flux based on the
generative adversarial network,” Applied Thermal Engineering, vol. 220,
p. 119765, 2023.

[5] I. E. Lagaris and A. Likas, “Artificial neural networks for solving
ordinary and partial differential equations,” IEEE Transactions on Neural
Networks, vol. 9, no. 5, pp. 987–1000, 1998.

[6] I. E. Lagaris, A. C. Likas, and D. G. Papageorgiou, “Neural-network
methods for boundary value problems with irregular boundaries,” IEEE
Transactions on Neural Networks, vol. 11, no. 5, pp. 1041–9, 2000.

[7] F. Regazzoni, L. DedÃ¨, and A. Quarteroni, “Machine
learning for fast and reliable solution of time-dependent
differential equations,” Journal of Computational Physics, vol.
397, DOI https://doi.org/10.1016/j.jcp.2019.07.050, p. 108852, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0021999119305364

[8] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics informed deep
learning (part I): data-driven solutions of nonlinear partial differential
equations,” CoRR, vol. abs/1711.10561, 2017. [Online]. Available:
http://arxiv.org/abs/1711.10561

[9] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics informed deep
learning (part II): data-driven discovery of nonlinear partial differential
equations,” CoRR, vol. abs/1711.10566, 2017. [Online]. Available:
http://arxiv.org/abs/1711.10566

[10] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, 2018.

[11] A. D. Jagtap, Z. Mao, N. Adams, and G. E. Karniadakis,
“Physics-informed neural networks for inverse problems in
supersonic flows,” Journal of Computational Physics, vol. 466,
DOI 10.1016/j.jcp.2022.111402, p. 111402, Oct. 2022. [Online].
Available: https://doi.org/10.1016%2Fj.jcp.2022.111402

[12] H. Z. Z. M. Haolong Chen, Bo Yu, “Improved cuckoo search algorithm
for solving inverse geometry heat conduction problems,” Heat Transfer
Engineering, vol. 40(3-4), pp. 362–374, 2019.

[13] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: training imagenet in 1 hour,” CoRR, vol. abs/1706.02677, 2017.
[Online]. Available: http://arxiv.org/abs/1706.02677

[14] H. Su and H. Chen, “Experiments on parallel training of deep neural
network using model averaging,” CoRR, vol. abs/1507.01239, 2015.
[Online]. Available: http://arxiv.org/abs/1507.01239

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60,
DOI 10.1145/3065386, no. 6, May. 2017. [Online]. Available:
https://doi.org/10.1145/3065386

[16] J. Dean, G. S. Corrado, R. Monga, K. Chen, and A. Y. Ng, “Large scale
distributed deep networks,” Advances in neural information processing
systems(NIPS), 2012.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv, 2014.

[18] C. Kai and H. Qiang, “Scalable training of deep learning machines
by incremental block training with intra-block parallel optimization
and blockwise model-update filtering,” in 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016.

[19] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,
J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and
J. Dean, “Google’s neural machine translation system: Bridging the gap
between human and machine translation,” CoRR, vol. abs/1609.08144,
2016. [Online]. Available: http://arxiv.org/abs/1609.08144

[20] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), DOI
10.1109/CVPR.2016.308, pp. 2818–2826, 2016.

[21] S. Pal, E. Ebrahimi, A. Zulfiqar, Y. Fu, V. Zhang, S. Migacz, D. Nellans,
and P. Gupta, “Optimizing multi-gpu parallelization strategies for deep
learning training,” IEEE Micro, vol. 39, no. 5, pp. 91–101, 2019.

[22] A. Gibiansky, “Bringing hpc techniques to deep learning,”
https://pytorch.org/https://andrew.gibiansky.com/blog/machine-
learning/baidu-allreduce/, 2017.

[23] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” CoRR, vol. abs/1802.05799, 2018. [Online].
Available: http://arxiv.org/abs/1802.05799

[24] K. N. Habib, “Convergence analysis for wave equation by explicit finite
difference equation with drichlet and neumann boundary condition,”
Science Publishing Group, vol. 7, pp. 19–24, 2021.

[25] B. MacNeal and R. MacNeal, “Minimum constraints for finite element
vector potential problems with neumann boundary conditions,” IEEE
Transactions on Magnetics, vol. 27, DOI 10.1109/20.105006, no. 5, pp.
4114–4117, 1991.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/s00245-020-09702-2
https://doi.org/10.1007%2Fs00245-020-09702-2
https://doi.org/10.1007%2Fs00245-020-09702-2
http://dx.doi.org/10.1016/j.jcp.2021.110356
https://doi.org/10.1016/j.jcp.2021.110356
http://dx.doi.org/10.1088/1402-4896/ac4717
http://dx.doi.org/10.1088/1402-4896/ac4717
https://dx.doi.org/10.1088/1402-4896/ac4717
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.07.050
https://www.sciencedirect.com/science/article/pii/S0021999119305364
https://www.sciencedirect.com/science/article/pii/S0021999119305364
http://arxiv.org/abs/1711.10561
http://arxiv.org/abs/1711.10566
http://dx.doi.org/10.1016/j.jcp.2022.111402
https://doi.org/10.1016%2Fj.jcp.2022.111402
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1507.01239
http://dx.doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
http://arxiv.org/abs/1609.08144
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308
http://arxiv.org/abs/1802.05799
http://dx.doi.org/10.1109/20.105006

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

[26] R. W. Pryor, Multiphysics Modeling Using COMSOL: A First Principles
Approach, 1st ed. USA: Jones and Bartlett Publishers, Inc., 2009.

[27] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Trans-
actions on Image Processing, vol. 13, DOI 10.1109/TIP.2003.819861,
no. 4, pp. 600–612, 2004.

[28] Z. Zhang, Q. Chen, J. Shen, X. Liao, and J. Zhou, “A sparse-view
ct reconstruction method based on combination of densenet and de-
convolution,” IEEE Transactions on Medical Imaging, vol. 38, DOI
10.1109/TMI.2019.2898287, no. 7, pp. 1580–1591, 2019.

[29] Y. Chen, W. Yang, and W. Wang, “Deep convolutional neural net-
works for accelerated magnetic resonance imaging: Reconstruction
and synthesis,” IEEE Transactions on Medical Imaging, vol. 35, DOI
10.1109/TMI.2015.2466992, no. 1, pp. 207–219, 2016.

[30] S. Nah, T. H. Kim, and K. M. Lee, “Deep multi-scale convolutional
neural network for dynamic scene deblurring,” IEEE Transactions on
Image Processing, vol. 26, DOI 10.1109/TIP.2017.2723870, no. 9, pp.
4509–4522, 2017.

[31] C. Wang, C. Xu, C. Wang, and D. Tao, “Perceptual adversarial networks
for image-to-image transformation,” in IEEE Conference on Computer
Vision and Pattern Recognition, DOI 10.1109/CVPR.2018.00109, pp.
979–987, 2018.

[32] W. Wang, X. Wu, X. Yuan, and Z. Gao, “An experiment-based review
of low-light image enhancement methods,” IEEE Access, vol. 8, DOI
10.1109/ACCESS.2020.2992749, pp. 87 884–87 917, 2020.

[33] M. Barros and M. Casquilho, “Linear programming with cplex: An
illustrative application over the internet cplex in fortran 90,” in 2019 14th
Iberian Conference on Information Systems and Technologies (CISTI),
DOI 10.23919/CISTI.2019.8760632, pp. 1–6, 2019.

[34] S. T. H. H. W. T. S. Y. Rokoni A., Zhang L., “Learning new physical
descriptors from reduced-order analysis of bubble dynamics in boiling
heat transfer,” International Journal of Heat and Mass Transfer, vol.

Zhuowei Wang received the B.S. degree in com-
puter science and technology from the China Uni-
versity of Geosciences, Wuhan, China, in 2007, and
the M.S. and Ph.D. degrees in computer architecture
from Wuhan University, Wuhan, in 2009 and 2012,
respectively.

From 2019 to 2020, she worked as a Visit-
ing Scholar with the Norwegian University of Sci-
ence and Technology, Gjøvik, Norway. She is cur-
rently an Associate Professor with the School of
Computers, Guangdong University of Technology,

Guangzhou,China. Her research interests focus on high-performance comput-
ing, low-power optimization, and distributed systems.

Le Yang received the B.S. degree in network engi-
neering from Guangdong University of Technology,
Guangzhou, China in 2021. He is currently pursu-
ing a Master’s degree in Computer Technology at
Guangdong University of Technology in Guangzhou,
China. His research interests include parallel com-
puting.

186, 2022.

Haoran Lin received the B.S. degree in network
engineering from Guangdong University of Technol-
ogy, Guangzhou, China in 2020. He is currently pur-
suing the M.S degree in computer Technology with
Guangdong University of technology, Guangzhou,
China. His research interests include the parallel
computing.

Genping Zhao received the Ph.D. degrees in Infor-
mation and Telecommunications Engineering from
Harbin Engineering University, Harbin, China, in
2017. From Dec. 2013 to Jan. 2015, she worked as
a visiting PhD student in the University of Western
Australia, Perth, Australia. From Nov. 2018 to Nov.
2019, she worked as a Post Doc in the University
of Alberta, Edmonton, Canada. She is currently a
lecturer with the Institute of Computers, Guangdong
University of Technology, Guangzhou, China. Her
research interests focus on multi-source remote sens-

ing data analysis and machine learning.

Zixuan Liu received the B.E. Degree in computer
science and technology from the university of Dalian
Nationalities University, Dalian, China in 2015. She
received the M.S. degree in computer science and
technology from the university of Inner Mongolia
University, Hohhot, China in 2019. She is currently
pursuing the Ph.D. degree in computer science and
technology with Inner Mongolia University, Hohhot,
China. Her research interests include the theory and
design of the SRT division.

Xiaoyu Song received the Ph.D. degree from the
University of Pisa, Italy, in 1991. From 1992 to
1998, he was on the faculty at the University of
Montreal, Canada. He joined the Department of
Electrical and Computer Engineering at Portland
State University in 1998, where he is now a Pro-
fessor. He was an editor of IEEE Transactions on
VLSI Systems and IEEE Transactions on Circuits
and Systems. He was awarded an Intel Faculty
Fellowship from 2000 to 2005. His research interests
include formal methods, design automation, embed-

ded systems and emerging technologies.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3296370

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on July 24,2023 at 23:17:08 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TMI.2019.2898287
http://dx.doi.org/10.1109/TMI.2019.2898287
http://dx.doi.org/10.1109/TMI.2015.2466992
http://dx.doi.org/10.1109/TMI.2015.2466992
http://dx.doi.org/10.1109/TIP.2017.2723870
http://dx.doi.org/10.1109/CVPR.2018.00109
http://dx.doi.org/10.1109/ACCESS.2020.2992749
http://dx.doi.org/10.1109/ACCESS.2020.2992749
http://dx.doi.org/10.23919/CISTI.2019.8760632

	Distributed Deep Learning Optimization of Heat Equation Inverse Problem Solvers
	Let us know how access to this document benefits you.
	Citation Details
	Authors

	Introduction
	Related work
	Methods
	The Inverse Problem of Heat Conduction Partial Differential Equation Based on Deep Learning
	Model parallelism and data parallelism
	Ring-AllReduce
	GradReduce

	Experiments
	Experiment Setup
	Impact of spatio temporal resolution on results
	Training Time for Each Experiment

	Conclusion
	References
	Biographies
	Zhuowei Wang
	Le Yang
	Haoran Lin
	Genping Zhao
	Zixuan Liu
	Xiaoyu Song

