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Abstract

Covering problems find applications in many areas of computer science and
engineering, such that numerous combinatorial problems can be formulated as
covering problems. Combinatorial optimization problems are generally NP-
hard problems that require an extensive search to find the optimal solution.
Exploiting the benefits of quantum computing, we present a quantum oracle
design for covering problems, taking advantage of Grover’s search algorithm to
achieve quadratic speedup. This paper also discusses applications of the quan-
tum counter in unate covering problems and binate covering problems with some
important practical applications, such as finding prime implicants of a Boolean
function, implication graphs, and minimization of incompletely specified Finite
State Machines.

1 Introduction
Many optimization problems can be formulated as the selection of a subset from
a larger set. One familiar form is the covering problems [8, 20, 26]. Covering
problems are minimization problems for combinatorial optimization problems in
which a certain combinatorial structure covers another. For instance, in logic design,
the covering problems can be formulated as a set of minterms to be covered by a set of
subsets of minterms (such as the prime implicants for a specific example). Minterms
for a Boolean function of n variables are products of literals for all variables of this
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function. A literal is a variable or the negation of a variable. True minterms are
those for which the value of the function is 1. The prime implicant is the product of
literals that cannot be extended by removing some of the literals and which covers
some subset of true minterms. Covering problems are generally given as a table with
rows corresponding to the set elements and columns corresponding to the subsets.

Covering problems include two main types: unate covering problem (UCP) and
binate covering problem (BCP) [28, 12, 18]. The unate covering problem is the
problem of finding a minimum cost assignment to variables to which a given Boolean
function f is equal to 1. The literals are all in positive form (uncomplemented).
The Binate covering problem has the extra constraint that negative literals may
be present. The covering problem can be generalized by assuming that the choice
of a subset implies the choice of another subset. This additional constraint can
be represented by an implication clause. For example, if the selection of group a
implies the choice of b (a ⇒ b), then the clause a + b is added. Note that the
implication clause makes the product of sums form binate in variable a, because
a (uncomplemented) is also part of some covering clauses. Therefore, this class of
problems is called binate covering or covering with closure. There are two main ways
to express the covering problems: constraints in the form of a matrix or a product of
sum (POS) form of a Boolean equation f = 1. This formulation of POS is known as
Petrick’s method [33]. If the covering problems are expressed in the form of a matrix,
then the corresponding matrix (covering matrix) of the UCP is filled with elements
from the set {1, 0} while the BCP is filled with elements from the set {1, −1, 0}. A -1
entry corresponds to a complemented variable, and a 1 entry to an uncomplemented
one. In the covering matrix, the rows correspond to each term of the expression, and
the columns correspond to each variable. Covering problems can also be expressed
in the form of a POS formula, such that f(x1, x2, x3, x4) = (x1 + x2)(x2 + x3)(x1 +
x4)x3x4 = 1 then this is called an unate covering, which always has a solution. If
some of the variables in the function appear both positive and negative (complement)
such that f(x1, x2, x3, x4) = (x1 + x3 + x4)(x1 + x2 + x4)(x2 + x3 + x4)(x2 + x3 + x4)
then it is called binate covering, which may or may not have a solution. In this
paper, we will express the covering problems in POS form.

2 Related Work

The fundamental covering problem known from computer science has many practical
applications in electronic design automation (EDA) and digital systems.
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2.1 Applications of Covering Problems

There are many combinatorial optimization problems for covering problems in var-
ious areas, such as logic minimization [35], scheduling [27], parallel computation on
a GPU [30], and allocation, encoding, and routing [7] for unate covering problem.
Binate covering problem is used in finite state machine minimization [12, 17], tech-
nology mapping [28], Boolean relations [15], and Directed Acyclic Graphs (DAG)
covering problems [35, 24, 25]. Logic minimization is the process of finding the
optimal implementation of a logic function. The minimum-cost implementation is
achieved when the cover of a given function consists of the minimum number of
prime implicants to represent the function. In another variant, the solution should
have the total minimum cost of selected prime implicants. The Unate covering can
be used to achieve exact logic minimization [35]. Scheduling problems can be for-
mulated as UCP, such as vehicle and crew scheduling problems in [27], to minimize
the combined vehicle and crew cost. Parallel computation on a GPU [30, 40, 39, 38]
was explored using the Unate covering problem. The classical task of the GPU is
matrix multiplication, which can be mapped to the UCP implementation. Also,
UCP has many other applications in logistic problems such as allocation, encoding,
and routing [7]. Finite state machine minimization [12, 17] can be formulated as a
binate covering problem such that the number of internal states in the finite state
machine can be reduced. A standard-cell library must first comply with the avail-
able library primitives in VLSI, a process known as technology mapping. Finding
the optimal mapping of logic gates to VLSI library cells can be accomplished via bi-
nate covering [28]. Boolean relations such as two-level logic minimization under the
Sum-of-Product (SOP) representation can be solved based on the binate covering
problem formulation [15]. Finding the minimum set of nodes or paths covering every
node in a directed acyclic graph is called DAG covering. This can be formulated as
a binate covering problem [35, 24, 25] by constructing the closure condition of the
graph.

2.2 Classical Algorithms for Covering Problems

The covering problem is considered NP-hard [34, 16], and much effort has been spent
on it because of its wide applications. Several classical algorithms are proposed for
covering problems based on exact and heuristic algorithms. Several exact algorithms
are proposed for covering problems, such as the most widely known approach, the
branch and bound algorithm [41, 15, 36, 22], with many techniques suggested for
lower bound and upper bound improvement using pruning techniques. In the branch
and bound technique, the covering table is expressed as the POS of the constraints,
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and the problem solution explores, in the worst case, all possible solution instances.
Branch and bound employs the upper bound and lower bound methods. For each
solution to the constraints, upper bounds on the value of the cost function are iden-
tified, and lower bounds are estimated using the current set of variable assignments.
The upper bound value is updated each time a new lower-cost solution is discov-
ered. When the lower bound estimation is greater than or equal to the most recently
computed upper bound, the search can be pruned. As a result, a better solution
will not be found using the current variable assignments, allowing us to prune the
search. Branch and bound used reduction and bounding techniques of search space
for solutions to avoid the generation of some of the suboptimal solutions. The upper
bound is the cost of the cheapest solution seen so far. Eventually, it will be the cost
of the optimal solution. While the lower bound is an estimate of the minimum cost
of a solution for the problem. The lower bound is the most important factor for
runtime.

A Binary Decision Diagrams (BDDs) based algorithm [41] was proposed to solve
the covering problem such that finding the solution only requires computing the
shortest path in the BDD. The number of variables in the BDD is equal to the
number of columns in the binate table. However, the BDD tree is too large to be built
when there are many variables. A mixed technique of both branch-bound and BDD-
based algorithms was proposed in [15], such that the constraints are represented as
a conjunction of BDDs. This method leads to an effective method to compute a
lower bound on the cost of the solution. Exact algorithms are computationally
expensive for large problems because of exhaustive searches. Although there are
several improvements using pruning and reduction techniques for exact algorithms,
in general, the computational time can be exponential. Thus, a heuristic approach
[16, 37] has been proposed for covering problems that provide suboptimal solutions.
The heuristic approach in [37] has time complexity O(n2m) where n is the number of
variables and m the number of terms in the covering problem. While the literature
proposes both exact and heuristic approaches for classical algorithms, there is still
a need for efficient algorithms that may take advantage of quantum algorithms to
solve covering problems efficiently.

3 Quantum Algorithm for Covering Problem

Since classical optimization techniques are inefficient for solving NP-hard problems
in terms of computational complexity, we present a quantum algorithm for solving
the covering problems. To the best of our knowledge, this is the first quantum
algorithm for solving covering problems. Algorithms with quantum oracles are bet-
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ter than the corresponding classical search algorithms because they operate using
quantum parallelism and quantum superposition, with all vectors being potential
solutions simultaneously (all minterms). Thus, a quantum oracle that iterates suf-
ficiently many times highly increases the probability of finding one of the solutions
in a single measurement of all input qubits. Grover’s algorithm implemented in
quantum circuits gives a quadratic speedup when compared to an exhaustive clas-
sical algorithm for the same problem. Our paper reduces all covering problems to
Grover’s algorithm with an innovative way of building the quantum oracle that al-
lows the number of qubits to be reduced logarithmically and at the same time solves
both the decision and optimization problems in various variants.

A hybrid algorithm (a combination of classical and quantum) can be used to
solve the covering problems, which assumes an arbitrary number of terms and vari-
ables. This algorithm would be a direct generalization of the algorithm presented
in this paper. A classical computer can use any type of heuristic or algorithmic
search method to expand a search tree. The upper part of the tree is created on
a classical computer using all kinds of general search strategies, heuristic functions,
cost functions, parameters, and constraints such as those discussed in [32, 18, 22].
This way, the sizes of the macro-leaves of the tree are reduced step by step such that
the number of terms in them is less than m and the number of variables is less than
n. For each macro-leaf, a quantum computer is called and executes a full search
based on Grover’s algorithm. Suppose the problem in the macro-leaves with less
than m terms and less than n variables is recognized as a special type of problem.
In that case, a special algorithm on a classical computer is executed for this reduced
tree. This is a standard method used recently by several authors because Grover’s
algorithm gives a quadratic speedup only for problems for which a more efficient
algorithm than a complete search does not exist. Also, this method allows for ex-
cellent scalability by sharing subtasks between the classical and quantum processors
based on the availability of the quantum computer size (parameters of m and n).

3.1 Grover’s Search Algorithm

Grover’s algorithm [29, 42], searches an unordered array of N elements to find a
particular element with a given property. In classical computations, in the worst
case, this search takes N queries (tests and evaluations of the classical oracle). In
the average case, a particular element will be found in N

2 queries. Grover’s algorithm
can find elements in

√
N queries. Thus, Grover’s algorithm can be used to find all

possible solutions for covering problems. Grover’s algorithm is a quantum search
algorithm that speeds up a classical search algorithm of complexity O(N) to O(

√
N)

in the space of N objects. Hence, Grover’s algorithm gives a quadratic speedup. To
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solve all optimal solutions of the covering problem, Grover’s algorithm has to be
repeated.

The covering problem contains n variables from the given Boolean function that
are used to represent the search space of N = 2n elements. To solve the cover-
ing problem in Grover’s algorithm, these N elements are applied in a superposition
state, which is the input to the oracle. If the oracle recognizes an element as the
solution, then the phase of the desired state is inverted. This is called the phase
inversion of the marked element. The marked element is a true minterm of function
f from the oracle. The true minterm is a product of all variables of function f that
evaluates to f = 1. Grover’s search algorithm uses another trick called inversion
about the mean (average), also known as diffusion operation or amplitude amplifi-
cation. Inversion about the mean amplifies the amplitude of the marked states and
shrinks the amplitudes of other items. The amplitude amplification increases the
probability of measuring the marked states, so that measuring the final states will
return the target solution with a high probability near to 1.

An oracle is a black box operation that takes an input and gives an output, a
yes/no decision. A quantum oracle is realized as a binary reversible circuit that is
used in quantum algorithms for the estimation of the value of the Boolean function
realized in it. The quantum oracle also has to replicate all input variables on the
respective output qubits. If the function of the oracle is not reversible, we use ancilla
qubits to make the function reversible. If the oracle uses ancilla qubits initialized to
|0⟩, it has to return also a |0⟩ for every ancilla qubit. The classical oracle function is
defined as a Boolean function f(x) which takes a proposed solution x of the search
problem. If x is the solution, then f(x) = 1; If x is not a solution, then f(x) = 0.
The quantum oracle is a unitary operator O such that:

|x⟩|y⟩ → |x⟩|q ⊕ f(x)⟩
where x is the value in search space, q is a single qubit, the oracle qubit, and ⊕ is
the EXOR operator (also called the addition modulo 2). A simplified formula of the
quantum oracle can be written as:

|x⟩ → (−1)f(x)|x⟩
As shown in Figure 1a, the n qubits in the superposition state result from applying

a vector of Hadamard gates to the initial state |0⟩n . Next, we applied a repeated
operator G which is called the Grover’s Loop. After the iteration of the Grover’s
Loop operator O(

√
N) times the output is measured for all input qubits. Oracle can

use an arbitrary number of ancilla qubits, but all these qubits must be returned to
value |0⟩ inside the oracle. The Grover’s Loop G is a quantum subroutine that can
be broken into four steps, as shown in Figure 1b:
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Figure 1: (a) Schematic circuit for Grover’s algorithm [29]. (b) Grover’s Loop
Operator

1. Apply the Oracle O. This step is phase inversion.

2. Apply the Hadamard transform H⊗n, where H = 1√
2

[
1 1
1 −1

]

3. Perform the condition phase shift also known as a zero state phase shift, in
which all states receive a phase shift of -1 except for the zero state |0⟩. This
step is also known as the diffusion operator.

4. Apply the Hadamard transform H⊗n

The number of required iterations for Grover’s operator is: R ≤
⌈

π
4

√
N
M

⌉
where M

is number of solutions and N is number of all search space elements. The literature
includes many methods for efficient and optimal design of circuits in quantum oracle
[6, 13, 19, 11].

3.2 Quantum Counter
Each term of the clause required one multi-input Toffoli gate that has n qubit for
the clause literals and one extra ancilla qubit to store the result of the clause. This
was the traditional design of the quantum oracle, where each clause would have one
ancilla qubit. For large problems, the number of ancilla qubits is very large, so even
future quantum computers could not handle this approach. We propose an advanced
quantum oracle design based on a quantum counter [3] that logarithmically reduces
the number of required qubits. The quantum counter block is built from multi-input
Toffoli and CNOT gates, where the first qubit of the quantum counter is applied as
a constant 1 with the other qubits together.

In Figure 2a z is the least significant qubit and x the most significant. The
outputs of CNOT and two of the Toffoli gates are 1 ⊕ z, 1 · z ⊕ y, and 1 · z · y ⊕ x
respectively. When xyz = 000, the first Toffoli gate outputs 1 ·z ·y⊕x = 1 ·0 ·0⊕0 =
0 ⊕ 0 = 0 and the second 1 · z ⊕ y = 1 · 0 ⊕ 0 = 0 ⊕ 0 = 0. The outputs of the qubits
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y and x are both zeros. The output of the qubit z is 1 ⊕ z = 1 ⊕ 0 = 1. Hence the
circuit incremented 000 by 1 to 001. Quantum counter circuit indeed outputs the
value input + 1.

If we connect the first control input of the quantum counter block to a circuit,
then the output of the connected circuit (a term of the POS) will either activate or
deactivate the counter. When the output of the connected circuit is equal to 1, the
output of the counter block is incremented by 1. When the output of the circuit is
equal to 0, the output of the counter block is unchanged. Below is a table in Figure
2b for all the input combinations of the 3-qubit quantum counter.

Figure 2: (a) Three-qubit quantum counter. (b) Analysis of a 3-qubit quantum
counter block from (a)

We assign a counter block for each OR term (clause) and individual terms in the
Boolean function for the covering problem, where the result of the clause is used as
one of the control qubits of the counter. When the clause evaluates to 0, the counter
forwards its input to the output without change. When it evaluates to 1, the counter
outputs the binary number value + 1 to the previously accumulated count value.
The use of a quantum counter allows us to send the result from the Toffoli gate
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representing one OR term to the counter circuit, hence eliminating the need for an
ancilla qubit. We can set the function qubit back to 1 by mirroring the Toffoli gate
used to compute the result and set the input qubits back to the original by applying
NOT gates when appropriate. Our design drastically reduces the number of qubits
needed for a function at the cost of replicating Toffoli gates in the POS expression
and the costs of the iterative counter.

Our proposed concept of using a quantum counter can be used to design a quan-
tum oracle for both decision and optimization problems, such as SAT-like, MAX-
SAT problems, and many other problems in machine learning, such as mining fre-
quent pattern generation [4]. In traditional quantum oracle design for SAT-like,
MAX-SAT, and covering problems, every clause is built as a multi-input Toffoli
gate. The number of qubits in the multi-input Toffoli gate is equal to the number of
variables in the clause plus one extra ancilla qubit to save the result of the clause.
In our design, there is no need for extra ancilla qubits for each clause, but several
clauses have a quantum counter which shares ancilla qubits. For instance, if there
are 30 clauses, our design requires only 5 ancilla qubits for all 30 clauses, rather than
the 30 ancilla qubits required in the traditional quantum oracle. Thus, our design
reduces the number of qubits logarithmically.

4 Grover Algorithm for Unate Covering Problem
The unate covering problem (also called the set covering problem [21]) is to find
the minimum cost assignment of variables that satisfy a Boolean equation f = 1.
The literals in the POS function f are all in the positive form (uncomplemented
variables).

4.1 Finding All Prime Implicants for the Exact Minimum Covering
of a SOP Circuit

Minterms for a Boolean function of n variables are products of literals for all variables
of the function. A literal is a variable or the negation of a variable. True minterms
are those for which the value of the function is 1. The prime implicant in a sum-
of-product (SOP) structure is a product of literals that cannot be extended by
removing some of the literals and which covers some subset of true minterms. For
instance, given a function from Figure 3a, all its prime implicants are marked as ovals
(loops). Using the minterm compatibility graph G, all prime implicants are found
as maximum cliques. Prime implicants can also be found as maximum independent
sets of graphs (G complement). Based on the truth table (or a Karnaugh Map) and
the prime implicants, the covering table from Figure 3b is created. In this table,
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every row represents a prime implicant as a product of Boolean literals, and each
column represents a true minterm. The covering table is filled with symbol X for
every minterm included in a prime implicant.

Figure 3: (a) Truth table for all prime implicants of a SOP circuit. (b) Covering
table for SOP function from (a)

From the table in Figure 3b, denoting rows A, B, C, D, E we compile the Petrick
function in a standard way such that each column is created as one term by adding
the variables in the row corresponding with symbol X. For instance, column 0101
has two cells filled with X. Adding the two rows A+E as one term that corresponds
to the symbols X in column 0101. In such a way, equation (1) is created:

A(A + E)(B + E)BD(D + E)(C + E)C = 1 (1)

Equation (1) can be simplified using the Boolean law: A(A + E) = A · A +
A · E = A(1 + E) = A to the following equation: 1 = A · B · C · D. Therefore,
f = A + B + C + D = acd + abc + acd + abc is the minimum sum of products of
expression of function f . In the case of many variables and clauses, solving this
problem exactly is very difficult.

The main goal of this example is to show how SOP minimization can be solved
using the UCP. Then the quantum oracle is built from UCP to apply Grover’s
algorithm. The quantum oracle is built from UCP (1). First, we need to convert each
OR term into a product using De Morgan’s Law A+E = A + E = AE = 1⊕AE; B+
E = B + E = BE = 1 ⊕ BE; C + E = C + E = CE = 1 ⊕ CE; D + E = D + E =
DE = 1⊕DE. From (1) we can rearrange A·B ·C ·D(A+E)(B+E)(D+E)(C +E).
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To simplify the oracle design, we consider A · B · C · D as one term, which needs
one quantum circuit. Then we connect one block of the iterative quantum counter
after each Toffoli gate representing the OR term of the function POS formula. We
put the ancilla qubit back to its original state by mirroring each Toffoli gate after
each counter. In this case, we need five quantum counter circuits, as can be seen
in Figure 4. Also, we need to add the NOT gate in the output circuit block, which
makes the last qubit out0 to produce 1 if the variable xyz in counter circuit is 101
such that the Boolean function in equation (1) is equal to 1.

Figure 4: Quantum oracle for A · B · C · D(A + E)(B + E)(D + E)(C + E)

In Figure 5, we applied the oracle circuit in Figure 4 in the Grover’s search algo-
rithm for iterations R = 4 from this formula: R ≤

⌈
π
4

√
N
M

⌉
where N = 25 = 32 is

the number of all search space elements since there are 5 variables for A, B, C, D, E.
M = 2 is the number of solutions. M = 2 because in equation (1) is equal to 1 either
ABCDE = 11110 or ABCDE = 11111. We run the circuit on the ‘qasm_simulator’
from QISKIT for 1024 shots (independent runs to get high precision probability)
which the circuit produces the correct answers. We measured a0, a1, a2, a3 and a4 in
Figure 5 where a0, a1, a2, a3, a4 correspond to the Boolean variables A, B, C, D, E re-
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Figure 5: Grover’s algorithm with 4 iterations using the oracle circuit from Figure 4

Figure 6: Measurement of the Boolean variables from A · B · C · D(A + E)(B +
E)(D + E)(C + E)

1004



Quantum Algorithms for Unate and Binate Covering Problems

spectively. As can be seen in Figure 6, the diagram illustrates the QISKIT [5] output
graphics for the simulated circuit. The measured values a4a3a2a1a0 with high prob-
ability are 11111, 01111. The values 11111 and 01111 correspond to E, D, C, B, A
respectively which are two solutions to equation (1): A, B, C, D and A, B, C, D, E.

This example explains that the above method can be applied to an arbitrary
POS formula with x variables and y clauses. Therefore, our method is scalable to
an arbitrary size of unate covering problem, assuming a sufficiently large number of
qubits in a quantum computer or in a quantum component of a hybrid computer.

5 Grover’s Algorithm for Binate Covering Problem
Binate covering problem is the same as unate covering problem with the additional
constraint that BCP can contain negative literals. There are some cases that have
no solution, and therefore, the BCP should reliably notify the user about this fact.
We presented three examples of BCP problems: (1) Finding the minimum covering
for an implication graph. (2) Finding a minimum cost constraint. (3) Minimization
of incompletely specified Finite State Machines.

5.1 Finding the Minimum Covering for an Implication Graph
An implication graph is a directed acyclic graph (DAG) where each node repre-
sents a variable assignment. An implication graph represents the implication rela-
tions between pairs of variable assignments. Given a set S and a family of subsets
F = {s1, s2, · · · , sn}, a closure conditions are represented as an implication graph.
For instance, assuming given a family of subsets of the set {1, 2, 3, 4, 5, 6} and the
implication graph from in Figure 7, the optimization task is to select a subset of
nodes from the set A, B, C, D, E that satisfies all three conditions:

• Covering condition: all items from the set {1, 2, 3, 4, 5, 6} must be covered by
the selected nodes.

• All closure conditions must be satisfied.

• The set of selected nodes must have the minimum number of elements.

The general optimization can be solved by constructing a covering and closure
table. For a particular problem, as specified above, the table is shown in Figure 8.
Here, the rows correspond to the nodes (subsets) of the implication graph in Figure
7, while the columns correspond to the individual elements of the set {1, 2, 3, 4, 5, 6}
for covering table and the columns for the closure table correspond to the nodes in
the implication graph which are the same subsets as the rows of the table.
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Figure 7: Implication graph for the set {1, 2, 3, 4, 5, 6}

Figure 8: Covering-closure table based on the implication graph from Figure 7

The closure conditions are illustrated in Figure 7. Assuming that we select set
A = {1, 2, 3, 5} on top of the implication graph, it is implied that the set B = {4, 6}
and the set C = {2, 3} must be also selected. Set {2, 3} implies set {1, 5} and set
{2, 3, 5} implies set {4, 6} (see Figure 7 above). This way, the table from Figure 8
is created. For instance, the black dots in the row A mean that set A = {1, 2, 3, 5}
implies sets B = {4, 6} and C = {2, 3}. Set C = {2, 3} implies sets D = {1, 5}. Set
E = {2, 3, 5} implies sets B = {4, 6}. Based on the covering and closure table from
Figure 8, Petrick’s method creates a Boolean formula in equation (2). Next, this
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formula is transformed into the general POS formula from equation (3)

(A + D)(A + C + E)B(A + D + E)(A ⇒ BC)(C ⇒ D)(E ⇒ B) = 1 (2)

In equation (2), the first four terms describe the covering conditions, and the last
three terms correspond to closure conditions (closure constraints). Equation (2) can
be converted to equation (3) by using the logic transformation rule (A ⇒ B) ⇔
(A + B)

(A + D)(A + C + E)B(A + D + E)(A + BC)(C + D)(E + B) (3)

Next , we build a quantum oracle for the general POS formula from equation (3) by
converting each OR term into Products using De Morgan’s law A + D = A + D =
AD = 1 ⊕ AD; A + C + E = A + C + E = ACE = 1 ⊕ ACE; A + D + E =
A + D + E = ADE = 1 ⊕ ADE; A + BC = A + BC = ABC = 1 ⊕ ABC =
1⊕A(1⊕BC); C +D = C + D = CD = 1⊕CD; E +B = E + B = EB = 1⊕EB.
Then we connect one block of the iterative quantum counter after each Toffoli gate,
representing the OR term of the function POS formula. We put the ancilla qubit
back to its original state by mirroring each Toffoli gate after each counter. In this
case, we need seven quantum counter circuits (one for B term and six for each POS
term), as can be seen in Figure 9. The oracle circuit in Figure 9 is inserted into
Grover’s Oracle. This is similar to previous examples that demonstrate one more
time how inefficient using the global AND is, even for very small practical binate
covering problems. Rather than using AND, we use a quantum counter.

This example illustrates that an arbitrary size problem of solving an implication
graph can be reduced to algorithmically creating Grover’s oracle with x variable
qubits and y terms. Therefore, the implication graph problem can be solved by
Grover’s algorithm with a quadratic speedup.

In Figure 10, we applied the oracle circuit from Figure 9 in Grover’s search
algorithm for iterations R = 2 from this formula: R ≤

⌈
π
4

√
N
M

⌉
where N = 25 =

32 and M = 5 (this can be verified by a truth table). We run the circuit on
the ‘qasm_simulator’ from QISKIT for 1024 shots, and the circuit produces the
correct answers. We measured a0, a1, a2, a3 and a4 in Figure 10 where a0, a1, a2, a3, a4
corresponds to the Boolean variables A, B, C, D, E respectively. As can be seen
in the histogram in Figure 11, this illustrates the QISKIT [5] output graphics for
the simulated circuit. The measured values a4a3a2a1a0 with high probability are
01110, 01111, 11010, 11110, and 11111 corresponding to variables E, D, C, B, A
respectively. For instance, the vector 01110 corresponds to the solution of DCB.
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Figure 9: Quantum oracle for (A + D)(A + C + E)B(A + D + E)(A + BC)(C +
D)(E + B)

In the measurement, the solutions have much higher probabilities than the non-
solutions. These solutions are verified outside of Grover’s algorithm, just by using
the oracle with function (A+D)(A+C +E)B(A+D +E)(A+BC)(C +D)(E +B).

5.2 Finding Minimum Cost Constraint
Minimum cost constraint minimizes the cost of satisfying the assignment for the
given problem. Given m constraints on n Boolean variables, the goal is to find an
assignment that satisfies all constraints such that:

minimizing
n−1∑

i=0
wixi

subject to f = y0 ∧ y1 ∧ · · · ∧ ym−1 = 1.
Where wi ≥ 0 is the weight of variable xi and ym is a clause which means a sum

of xi. This is called a weighted binate covering. The practical application of finding
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Figure 10: Grover’s algorithm with 2 iterations using the oracle circuit

the minimum cost constraint can be found in [21], which can be formulated as a
binate covering problem. However, we present in this paper a general example of a
Boolean function that can be solved using Grover’s algorithm. For instance, given
is the following set of clauses Y :

y0 = x0 + x3

y1 = x2 + x3

y2 = x1 + x2

y3 = x1 + x2 + x3

and let the weight wi for each value of xi as follow: w0 = 4, w1 = 2, w2 = 1, and
w3 = 1. The optimization task is to find the minimum cost assignment based on the
given weight. First, we construct the POS function, and then we design a quantum
oracle for the Grover’s algorithm to find the exact minimum solution. Based on the
solution, we apply the weight for each clause to find the minimum cost constraint.
Here the Y clauses are represented by a POS Boolean formula:

(x0 + x3)(x2 + x3)(x1 + x2)(x1 + x2 + x3) (4)
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Figure 11: Measurement of the Boolean variables from Figure 10 based on ABCDE

The solution found in Grover’s algorithm is subject to the equation (5) for the
minimum cost function:

4x0 + 2x1 + x2 + x3 (5)

Equation (5) is an arithmetic function that is computed in a classical processor of
a hybrid computer, while equation (4) is computed in Grover’s algorithm. First, we
build a quantum oracle from equation (4), similar to the previous examples, after
applying De Morgan’s low: x0 + x3 = x0x3 ⊕ 1; x2 + x3 = x2x3 ⊕ 1; x1 + x2 =
x1x2 ⊕ 1; x1 + x2 + x3 = x1x2x3 ⊕ 1

We need to add the two NOT gates in the output circuit block, which makes the
last qubit out0 to produce one if the variable xyz in counter circuit is 100, such that
the Boolean function in equation (4) is equal to 1.

In Figure 13, we applied the oracle circuit in Figure 12 in Grover’s search algo-
rithm for iterations R=2 from this formula: R ≤

⌈
π
4

√
N
M

⌉
where N = 24 = 16 is the

number of all search space elements. M = 4 is the number of solutions that can be
verified by creating a truth table. We run the circuit on the ‘qasm_simulator’ from
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Figure 12: Quantum oracle for (x0 + x3)(x2 + x3)(x1 + x2)(x1 + x2 + x3)

Figure 13: Grover’s algorithm with 2 iterations using the oracle circuit from Figure
12
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Figure 14: Measurement of the Boolean variables from Figure 13 based on x0x1x2x3

QISKIT for 1024 shots, and the circuit produces the correct answers. We measured
x3x2x1x0 in Figure 13. As can be seen in Figure 14, the measured values x3x2x1x0
with high probability are {1111,1110,0111,0011}. Applying these values to equation
(4), we found 1110, which gives the minimum cost of 4.

1110 : 4x0 + 2x1 + x2 + x3 = 4 ∗ 0 + 2 ∗ 1 + 1 ∗ 1 + 1 ∗ 1 = 4

Based on this value, we choose 1110 from the answer {1111,1110,0111,0011},
which corresponds to the solution of x3x2x1 respectively with the minimum cost
of 4. In another variant of our method, the arithmetic calculation is built into a
quantum counter inside the oracle, such that for clause i instead of value 1, the value
of wi is added. This general method, however, is not practical for current quantum
simulators. Concluding, the presented method is scalable to arbitrary size problem of
minimizing the minimum cost constraint can be reduced to algorithmically creating
Grover’s oracle with x variable qubits and y terms. Therefore, finding the minimum
cost constraint can be solved by Grover’s algorithm with a quadratic speedup.

5.3 Minimization of Incompletely Specified Finite State Machines
A Finite State Machine (FSM) is an abstract model used in design to model prob-
lems in various fields of science and engineering. A finite state machine consists
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of input states, output states, and internal states that can change from one state
to another state based on input. The change of the internal state is described by
a transition function. For various reasons, finite state machines can have incom-
pletely specified output functions and transition functions. The minimization of
incompletely specified finite state machines is considered an NP-hard problem [17].
We present the complete oracle design for Grover’s algorithm for the well-known
classical problem of minimization of the number of states of incompletely specified
finite state machines. For a given incompletely specified finite state machine, the
solution is achieved by the following steps:

1. Classical computers create a triangular table to obtain compatible states.

2. Based on the triangular table, the classical computer creates a compatibility
graph.

3. Quantum computer finds all maximum cliques in the compatibility graph.

4. The classical computers create the covering table component of the covering-
closure based on the maximum cliques.

5. The classical computer creates a closure table component of the covering-
closure table only for compatible states.

6. The classical computer creates a Boolean function for the oracle from the
covering-closure table.

7. A quantum oracle is designed by a classical computer.

8. Grover’s algorithm is called on a quantum computer with the oracle found in
point 7.

Below we will illustrate the above general hybrid algorithm on a particular ex-
ample. Given is an incompletely specified Mealy finite state machine described as
a transition/output table from Figure 15a. Dashes represent don’t care in internal
states or output states. This table has internal states A, B, C, D, E, F , two input
signals for columns, and one binary output under a slash symbol in cells of the map.
A triangular table in Figure 15b was generated based on the table from Figure 15a.
The table from Figure 15b covers all possible cases to minimize the number of states
in the finite state machine. The ‘X’ symbol in the table indicates no possibility for
grouping the corresponding states. Symbol ‘V ’ in the table indicates that the states
can be combined without any problem. A pair of state variables in a cell of the
triangular map V indicates that states can be grouped only if the states mentioned
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in the block can be combined without any problem. For instance, states B and
F can be combined under the condition that states C, F are compatible (can be
combined). The method of creating the triangular table is well-known from [20].

Figure 15: (a) Truth table of FSM (b) FSM triangular table generated based on the
truth table from (a)

Based on the triangular table, a compatibility graph for the state machine is
generated, as shown in Figure 16a. Every cell in the triangular map that has no
symbol X corresponds to a compatible pair of states. For instance, the cell at the
intersection of row C and column A is compatible. The cell at the intersection of
row B and column A is not compatible as it has a symbol X in it. Similarly, states
A and D are not compatible. In Figure 15b, states A and D are compatible under
the condition that states A and B are compatible. But we found earlier that states
A and B are not compatible; thus, states A and D are not compatible. The cell at
the intersection of row D and column A is crossed-out as symbol X. In the same
way, the cell at the intersection of column A and row E is replaced with X because
states A and D are not compatible. A simple recursive classical algorithm creates
symbols X for every incompatible pair of internal states.

From Figure 16a, the maximum cliques of the graph are identified as {A, C, F},
{B, F}, {C, D, F}, {C, E, F}. Finding of all cliques in a graph is done by a SAT-
based algorithm similar to those discussed earlier in this paper. The compatibility
graph from Figure 16a is a complement of the incompatibility graph from Figure
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Figure 16: (a) Compatibility graph (b) Incompatibility graph.

16b. As we see, the maximum cliques in the compatibility graph are the same
as the maximum independent sets in the incompatibility graph from Figure 16b.
These maximum independent sets can be found from the graph coloring [14] of
the incompatibility graph. The graph coloring can be solved by a special Grover’s
oracle. It can be solved by finding the Maximum Independent Sets and then solving
the unate covering problem with them. These problems are reducible to SAT-like
oracles for Grover’s algorithm. This example explains the relation between the
graph coloring of the incompatibility graph, finding the maximum cliques of the
compatibility graph, and covering problems. These partial quantum algorithms are
also useful in a quantum algorithm for solving the Ashenhurst-Curtis Decomposition
[23].

To minimize the finite state machine, a covering-closure table, shown in Figure
17, is created by considering the maximum cliques and all their subsets as rows of the
table. All of the states {A, B, C, D, E, F} in the machine correspond to columns of
the covering table, and the implications {A, C}, {C, F}, {C, D} in the compatibility
graph from the cell of the triangular table correspond to columns of the closure
table. From the table in Figure 17, a binate covering problem can be specified using
the equation:

(X + V + P )Y (X + Z + U + V + Q + R + T )(Z + R + S)(U + T + W )(X + Y +
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Figure 17: Covering-Closure table for the FSM

Z + U + P + Q + S + W )(X ⇒ V Q)
(Y ⇒ Q)(Z ⇒ Q)(U ⇒ QR)(V ⇒ V )(P ⇒ Q)(Q ⇒ Q)(T ⇒ R) = 1

The function can be simplified using the Boolean laws A ⇒ B ⇔ (A + B).




(X + V + P )Y (X + Z + U + V + Q + R + T )(Z + R + S)(U + T +
W )(X +Y +Z +U +P +Q+S +W )(X +V Q)(Y +Q)(Z +Q)(U +
QR)(V + V )(P + Q)(Q + Q)(T + R) = 1

(6)

The number of search space N = 211 = 2048 where 11 is the number of variables
in the rows of covering-closure table. There are 155 solutions that the Boolean
equation (6) is equal to 1. The presented method is not yet practical as contemporary
quantum computers have not enough qubits. However, with a sufficient number of
qubits, the presented algorithm will allow to minimize large machines with quadratic
speedup. To visualize all these solutions in a histogram is difficult such that we use a
more general case in Figure 18, we repeat the Grover’s algorithm for iterations R = 3
with tuning values of thresholds until equal to counter value. The comparator G = H
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compares the output from the counter with the threshold value given as constant
values n1, n2, n3 and n4. (Using the threshold with a comparator has many other
applications such as finding the minimum set of support [31]).

Figure 18: FSM Oracle Design with counter circuit and threshold with comparator

The solution with the minimum number of positive literals is {V, Q, R, Y, U}
which simplifies to {V, R, Y, U} because group Q = {C, F} is included in U =
{C, E, F}, thus Q ⇒ U . Symbol V requires combining states A and C, symbol Y
requires combining states B and F , symbol R combines states C and D and symbol
U combines states C, E, F together. As the result, we obtain the minimized state
machine from Figure 19a. We combine states from the respective states of Figure
15. Thus, combining in column 00 for row V we obtain symbols A and C and
output 0. This way, combining states from groups V, Y, R and U the entire table
from Figure 19a is created. Now for every subset of initial states A, B, C, D, E, F
corresponding to each symbol from set of sets {V, Y, R, U} we check to which set
this subset belongs. For instance state C is included in sets V, R and U . Therefore
symbol C in the table from Figure 19a is replaced with symbols V, R and U in the
transition cells. This way, the non-deterministic machine from Figure 19b is created.
Now select any state among V, R and U to create one of the deterministic machines
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described by the non-deterministic machine. Choose every row U in column 11 in
order to improve the logic realization of the machine. Similarly, for the purpose of
good encoding (encoding not explained here), select state R in column 00 to have
two transitions to V and two transitions to R in this column. One final finite state
machine minimized in this way is shown in Figure 19c.

Figure 19: Steps to create an exactly minimized deterministic FSM using binate
covering problem. (a) the table created directly from the solution to the covering-
closure problem; (b) a non-deterministic automaton created from the table in (a);
(c) one deterministic automaton created from the non-deterministic automaton in
(b)

There are not yet benchmarks for quantum algorithms. However, there exist
benchmarks for classical algorithms, such as those in [18, 22, 1, 9]. The current
quantum computers are too small to run the classical benchmarks on them. One
can, however, speculate on the speedup of future quantum and hybrid computers
based on these classical benchmarks. Suppose a benchmark takes m terms and n
variables, using our method, this benchmark would require n qubits for variables
and

⌈
log2 m

⌉
ancilla qubits for terms to represent the problem in a quantum algo-

rithm design. In contrast, the traditional quantum oracle design would require n
qubits for variables and m + 1 ancilla qubits for terms [2]. Thus, when compared to
the traditional Grover, our proposed design requires fewer qubits with a quadratic
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speedup of Grover’s algorithm. As can be seen from Figure 20, for instance, if a
given covering problem consists of 100,000 clauses, then our quantum oracle design
requires only 18 ancilla qubits, while the traditional quantum oracle would require
100,000 ancilla qubits, which is the same as the clause number in the given prob-
lem. Assuming a complete search, the complexity of the classical algorithm would
be N = 2n. The complexity of our quantum algorithm would be O(

√
N). When

the quantum computers have enough qubits, comparing practical benchmarks will
be possible. Because IBM aims to build a quantum computer with 100,000 qubits
in 10 years [10], we hope that in this time frame, our quantum algorithm for EDA
problems will become practical.

Figure 20: Comparison of the required numbers of ancilla qubits for our quantum
oracle design (left) and the traditional quantum oracle design (right) [2]

6 Conclusion
We presented new quantum algorithms to solve with quadratic speedup several fun-
damental problems of classical logic circuits and finite state machine design. All
these algorithms either use Grover, repeated Grover, or hybrid algorithms that use
Grover’s algorithm. Optimization problems are reduced to a repetition of constraint
satisfaction problems solved by Grover’ algorithm. Our approach is based on cre-
ating various oracles, which are, however, based on the same basic principle. We
presented quantum oracle designs for various well-known EDA applications of the
Unate and Binate covering problems. Innovative quantum algorithms for exact
an incompletely specified FSM minimization have been presented here for the first
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time. Each of these problems is converted to a general quantum oracle. Our quan-
tum oracle design uses an iterative quantum counter block used inside the oracles
for the Grover-like algorithms. The concept of introducing this quantum counter
can be applied to all these algorithms, allowing them to solve in a uniform way both
SAT-like and MAX-SAT-like problems. Most importantly, this approach reduces
the number of qubits logarithmically [3]. The introduction of the iterative quantum
counter circuit replaces the ancilla qubits of the global large AND gate for tradi-
tional quantum oracle design for SAT-like problems. This is important because it
reduces not only the number of required qubits but also avoids designing a quantum
AND gate with many inputs, which is known to be a very complicated gate. We
presented experimental results from the QISKIT simulator that showed the circuit
works correctly.

Our future research will investigate using quantum counting based on combining
Grover’s algorithm with quantum phase estimation [29] to more specifically estimate
the number of Grover’s Loop repetitions for larger problems, which are difficult to
calculate manually. Further improvement is to extend the quantum oracle design to
add an arithmetic circuit for the weighted covering problems.
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