
Portland State University Portland State University 

PDXScholar PDXScholar 

Electrical and Computer Engineering Faculty 
Publications and Presentations Electrical and Computer Engineering 

4-7-2024 

Meso-Scale Seabed Quantification with Geoacoustic Meso-Scale Seabed Quantification with Geoacoustic 

Inversion Inversion 

Tim Sonnemann 
Department of Geoscience, University of Calgary 

Jan Dettmer 
Department of Geoscience, University of Calgary 

Charles W. Holland 
Portland State University, hollan7@pdx.edu 

Stan E. Dosso 
School of Earth and Ocean Sciences, University of Victoria 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac 

 Part of the Electrical and Computer Engineering Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Sonnemann, T., Dettmer, J., Holland, C. W., & Dosso, S. E. (2024). Meso-scale seabed quantification with 
geoacoustic inversion. Communications Engineering, 3(1). 

This Article is brought to you for free and open access. It has been accepted for inclusion in Electrical and 
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. 
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/797
mailto:pdxscholar@pdx.edu


communications engineering Article

https://doi.org/10.1038/s44172-024-00204-5

Meso-scale seabed quantification with
geoacoustic inversion

Check for updates

Tim Sonnemann 1,2 , Jan Dettmer 1, Charles W. Holland 2 & Stan E. Dosso 3

Knowledge of sub-seabed geoacoustic properties, for example depth dependent sound speed and
porosity, is of importance for a variety of applications. Here, we present a semi-automated
geoacoustic inversionmethod for autonomous underwater vehicle data that objectively adaptsmodel
inference to seabed structure. Through parallelized trans-dimensional Bayesian inference, we infer
seabed properties along a 12 km survey track on the scale of about 10 cm and 50m in the vertical and
horizontal, respectively. The inferred seabed properties include sound speed, attenuation, density,
and porosity as a function of depth from acoustic reflection coefficient data. Parameter uncertainties
are quantified, and the seabedproperties agree closelywith core samples at twocontrol points and the
layering structure with an independent sub-bottom seismic survey. Recovering high resolution
seabed properties over large areas is shown to be feasible, which could become an important tool for
marine industries, navies and oceanic research organizations.

Knowledge about the composition of the seabed below the water-sediment
interface is of critical importance for the well-being of many nations. For
example, populations increasingly rely on infrastructure on continental
shelves for renewable energy generation1–3 and trans-oceanic communica-
tion links4 that require seabed geohazard evaluations5 and environmental
assessments6. Navies require seabed knowledge formany sonar applications
such as anti-submarine warfare7, sonar performance modeling, and mine
burial detection8. The study ofmarine animal populations and behavior also
benefits from such knowledge9. These applications will benefit from
improved lateral and vertical seabed resolution. Instruments and methods
that survey the seabed as a function of depth are limited to direct sampling
(e.g., coring10) or employing underwater sound waves as in high-resolution
chirp sonar, marine seismic reflection, and refraction surveys11. None of
these approaches have provided to date both sufficient resolution and
material properties required fornext-generation survey applications. Seabed
studies remain a research frontier due to the high cost of operating research
vessels and due to the vast areas with little existing knowledge.

Remote sensing with autonomous platforms such as satellites and
drones has profoundly changed our ability to estimate topography and
surface properties on land. In the oceans, autonomous underwater vehi-
cles (AUVs) are utilized increasingly due to their efficiency and broad
applicability to many scientific, commercial andmilitary areas12–14. AUVs
are used in oceanography to acquire data15,16; in the oil and gas industry as
well as off-shore wind energy projects to survey the seabed and monitor
seafloor installations17,18; for port and harbor security tasks such as

undersea surveillance19, search and rescue efforts20, and detecting
undersea mines21.

Seabed properties of interest, such as porosity, density, and
compressional-wave (sound) speed and attenuation, can be estimated by
exploiting acoustic waves that interact with the seabed. We term these
properties, geoacoustic properties in the remainder of this paper. Since
geoacoustic properties are influenced by a wide variety of geological and
biological processes that operate on a vast range of temporal and spatial
scales, high spatial variability is common but largely unmapped. Over the
past six decades, the principal observations used to estimate geoacoustic
seabed properties have involved acoustic propagation over horizontal spa-
tial scales of O(103) to O(104) m. Most often, the seabed is assumed as
laterally invariant, or range independent, over such scales. However, it is
clear frommodeling that ignoring this dependence can lead to biases in the
property estimates22–24. Atmuch finer scales, direct samplingmethods, such
as cores and in situ probes, provide understanding of vertical variability at
O(10−2) to O(100) m. But direct sampling is costly due to the need of ship
time, has limited penetration depth, and the sampling process can disturb
the sample.Comparatively little is understood abouthorizontal variability at
O(100) to O(103) m, which we term geoacoustic meso-scale variability 25.
Studying meso-scale geoacoustic properties with existing methods is cost
prohibitive over large areas.

We present amethod formeso-scale geoacoustic seabed quantification
(MGSQ) through automated analysis of survey data that adapts a seabed
model to the structure resolved by the data. The method greatly simplifies
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seabed surveys by reducing time, cost, and subjective operator choices in
producing seabed images.We collected acoustic data along a 12 km track on
theMalta Plateau in theMediterranean Sea (Fig. 1) using anAUV towing an
impulsive acoustic source and a linear array of 32 hydrophones (Fig. 2a).
Even though an AUVwas employed here, the method is equally applicable
to towed sources and arrays that can record direct and bottom-reflected
arrivals for a large number of source transmissions (pings) along the survey
track. Caremust be takenwith respect to position of source and array in the
water column to ensure that direct and bottom-reflected paths can be
separated. This is done by keeping the source and receiver sufficiently far
from the seafloor. The recorded pings are arranged to correspond to
common-depth-point (CDP) gathers. The specific experiment we employ
permits processing of seabed reflection-coefficient data between 32 and 67
degrees and between 900 and 3400Hz.Wewill demonstrate that these data
can provide detailed knowledge about geoacoustic properties which is
contained in the Bragg interference pattern of the reflection coefficient as a
function of angle and frequency. The data inverted for the seabed model
consist of reflection coefficient (RC) spectra as a function of seabed grazing
angle (hereafter referred to as angle), averaged over 11 consecutive CDP
gathers to reduce noise, resulting in 1711 distinct RC data sets. These RC
data sets are inverted independently for geophysical parameters using a
sediment acoustic model. The model used here is based on the grain
shearing (GS) model26, which considers unconsolidated sediments as an
assemblage of mineral grains with their surfaces in contact and seawater
filling interstices. Note that the GS model satisfies causality which leads to
frequency dependence of attenuation and compressional wave velocity. GS
model parameters include porosity, grain-to-grain compressionalmodulus,
and material index (defines strain hardening). The GS parameters can be
transformed to sediment parameters of bulk density, sound speed, and
sound attenuation (the latter two are frequency dependent)26, which are
needed for the RC model. For each RC data set, a local 1D horizontally
layered model is assumed (Fig. 2b), and model geoacoustic parameters and
uncertainties are estimated which fit the observed data through trans-
dimensional (trans-D) inference. The reversible jumpMarkov chainMonte
Carlo algorithm is implemented for parallel execution on central and gra-
phical processing units (CPUs and GPUs, respectively) using an efficient
parallel tempering scheme and principal-component parameter space
perturbations. Finally, the 1D inversion results are concatenated to a sub-
sequently smoothed 2D geoacoustic model.

The result of the Bayesian inference are posterior probability densities
(PPDs) of geoacoustic parameters at ten centimeter resolution in the vertical
direction and tens of meters resolution in the horizontal. This previously
unavailable resolution is important for applications such as identifying and
mapping geohazards, quantifying benthic habitats, and understanding
propagation of acoustic signals in the ocean. Standard acoustical methods

suitable for large areas (e.g., vertical-incidence seismic surveys) infer sound
speed and a distorted depth estimate (based on two-way travel time), but
rarely provide density, attenuation or porosity. We use the frequency-
domain spherical-wave RC27 and improved data processing methods to
estimate those geoacoustic properties at high resolution for a large dataset
within a reasonable time. That means MGSQ at scale is becoming com-
putationally feasible.

Results
Meso-scale features can be resolved
The estimated depth- and range-dependent seabed properties are shown in
Fig. 3a–d in terms of median values of the PPD for porosity, sound speed,
density, and attenuation from inversion of each of the 1711 RC data sets
along the track. These results show that we can resolve meso-scale lateral
(range-dependent) features using reflectivity data obtained with an AUV,
which is themainachievementof this study.Another important observation
is that while the layering structure changes along the track, we are able to
resolve this variation sufficiently well with the 1D assumption inherent in
eachof the individual inversions. The geoacoustic structure is inferred down
to 6.8 m below the seafloor (defined by time-windowing of the acoustic
data). The inversion also provided quantitative uncertainty estimation:
Supplementary Fig. 2 shows 95% credibility interval widths for these results.
The trans-D inversion is an appropriate tool to estimate such cases where
both the number of layers and their parameter values are uncertain and
change along the track. Due to variability between consecutive 1D inver-
sions, which is considered to stem from less-well converged parameter
chains, a horizontal 5-CDP-average median filter was applied to the along-
track medium parameter estimates for visual clarity. The CDP averaging
and subsequent smoothing results in a horizontal resolution of ~ 50 m, as
the seafloor footprint of eachCDP is 12m, thedistance betweeneachCDP is
3.5 m, and we averaged 11 adjacent CDPs for each RC data set that was
inverted.

Porosity reveals mud and sand structure
The results include both the estimated GS parameters (discussed first) and
the derived geoacoustic properties. The porosity and interface depth esti-
mates allowdetailed identification of sediment structure and type. The track
results in Fig. 3a show estimated porosity values ranging from 0.3 to nearly
0.9, which likely correspond to sediments such as compacted sand and very
softmud, respectively. From top to bottom, the track shows a roughly 15 cm
thick layer of about ~ 0.8 porositywhich is interpreted as amud.A relatively
large decrease in porosity to about ~ 0.65 is observed next. This second layer
decreases in thickness from north to south (left to right in Fig. 3) with an
initial thickness of 1.2 m that reduces to less than 0.2 m and possibly even
disappears. These upper two layers are muddy sediments, as indicated by
their properties (and confirmed by core data, see Fig. 10 in28) and will be
referred to as the mud wedge. Below that, a 1.6 and 3.2m thick formation
with ~ 0.55 porosity is observed. Core data indicate this to be mud mixed
with considerable amounts of sand, shells and shell fragments with volume
fractions that vary with depth. The inversion captures this asmultiple layers
with very similar parameter values. Small differences are resolved as weakly
banded appearance. This is followed by an erosional unconformity which is
characterized by large-scale interface roughness above a denser sediment
layer of ~ 0.5 porosity, which is interpreted as moderately-compacted sand.

Structures deeper than the erosional unconformity have higher
uncertainties. TheGSparameters of thehalf-space (deepest layer) are poorly
resolved and exhibit high porosity and high lateral variability. The high
lateral variability (and possibly other characteristics) is not interpreted to be
representative of the actual seabed, but rather is an artifact of limited
information content of the data for the half-space. The principal informa-
tion content in RC data comes from Bragg interference within a layer. A
half-space, by definition, produces no Bragg interference, hence the only
information is a weakly-varying angular dependence of reflections off the
half-space boundary.
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Depth-dependent physical properties revealed
As shown above, the physical properties of the sub-bottom can be obtained
with high vertical resolution. This knowledge can be used to identify sedi-
ment types and model the mechanical response of the sediments. Given
uncertainties and potential artifacts, there appear to be no major lateral
changes of the geoacoustic properties within the same layer despite varying
layer thicknesses. This is an important observation that could inform
geoacoustic scenario modeling efforts. Overall, sound speed (Fig. 3b) varies
from 1450 to 1650m/s and density (Fig. 3c) varies from 1.25 to 2.0 g/cm3,
which are consistent with unconsolidated sediments. Sound speed and
density consistently increase with decreasing porosity. The uppermost layer
sound speed is about 1470m/s, or a sediment-to-water sound speed ratio of
0.972 (given that thewater sound speedwas 1512.3m/s), which iswithin the
range of observed sound speed ratio measurements on fine-grained sedi-
ment cores29. Attenuation (Fig. 3d) is less well constrained, but the top two
layers (the mud wedge) consistently exhibit a lower attenuation than the
rest, each with a median of about 0.03 dB/m/kHz. The thick third and
erosional fourth layers both have similar values about 0.1 dB/m/kHz. The
compressional grain-to-grainmodulus γp is relatively low in themudwedge
and higher in the sediments below (Supplementary Fig. 3). This trend is
expected inasmuch as cohesive sediments (mud) are expected to exhibit
lower moduli than granular sediments26. The material index is smallest in
the mud wedge, and somewhat poorly defined in the layers below it (Sup-
plementary Fig. 3).

Verification of sediment properties
Confidence in the sediment parameter estimates is established through
comparisons to coring measurements, independent sub-bottom profiling,
and data fit evaluations.

Independentmeasurements of sound speed and density weremade on
piston and gravity cores near the beginning and end of the track (at what are
referred to as sites 2 and 13, respectively). A comparison of the inversion
results (which were not informed by the cores) with the cores is shown in
Fig. 4a, b. Core data have their own uncertainties in the sampling, recovery,
and measurement phases, which unfortunately are difficult to quantify.
Somediscussion on the core data is given in28. Here, the individual inversion
results closest to the core sites are shown as marginal probability profiles
which indicate parameter uncertainty distribution as a function of depth.
Both the layered model structure and the corresponding sound speed and
density values are clearly different between the two sites, which is also
indicatedby the core data. The inversion results for sound speed anddensity
agree well with the core measurements at both sites.

The observed RCdata near sites 2 and 13 arewell reproduced using the
estimatedmodel parameter values, as shown in Fig. 4c, d. It should be noted
that the angle-to-angle variability of the observed data seems to be less than
that expected due to random errors of the indicated standard deviations,
which suggests overestimation of the variance.

In Fig. 5, the layer boundaries from the inversion (Fig. 5a) are com-
pared to an independently acquired high-resolution seismic section

Fig. 2 | Data acquisition setup with an autono-
mous underwater vehicle (AUV). a AUV, source
and hydrophone array on the surface. Photo cour-
tesy of Christopher H. Harrison. b Schematic of
autonomous data acquisition system (components
not to scale). The AUV tows an acoustic source and
array of hydrophones close to the seabed and
records direct arrivals and bottom and sub-bottom
reflections illustrated by ray paths.

Fig. 3 | Median of posterior probability densities
of estimated geoacoustic parameters. a Porosity,
(b) sound speed cp, (c) density ρ, and (d) attenuation
αp. The track bathymetry is shown with depth
relative to the sea surface. The layered structure is
clearly visible.
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(Fig. 5b). These seismic data were collected close to the survey track using a
surface towed boomer source27 and short towed array. The seismic depth
axis is distorted and is basedon the assumption that sound speed is 1500m/s
in all sediment layers, while our RC inversion results indicate true depth
estimates. The towed boomer exhibited some ringing which yields artificial
(duplicate) parallel lines in the seismic section. Accounting for these dif-
ferences, the porosity inversion results agree well with the seismic section,
with all layer boundaries being represented and their shapes largely
matching.

Distribution estimates of important statistics along the track are shown
in Supplementary Figs. 1, 2, and are explained in Supplementary Note 1.
Root-mean-square residuals, number of inferred layers (Supplementary
Fig. 1), and credibility interval widths (Supplementary Fig. 2) are presented
to support statements concerning spatial resolution and parameter estimate
verification.

Discussion
High information content in frequency-angle space
It may seem surprising that such detailed geoacoustic information
(vertically and laterally) could be inferred from such angle-limited
data, ~ 32− 65 °. This is explained by the fact that substantial geoacoustic

information content is contained in the Bragg interference structure, i.e.,
the interference pattern between the up- and down-going waves within
each layer. This interference structure can be observed over a relatively
modest angular/frequency range, and a broad frequency range can par-
tially compensate for the modest angle range. An example of this is given
in the Methods section. Angular diversity is required to break the
ambiguity between thickness and sound speed in a given layer. The
angular range in this data set is clearly sufficient to do so – note the small
uncertainties in layer thickness (layer horizons) and sound speeds as
indicated in Fig. 4 a and b. The steepest angle, 65 °, and the total
bandwidth, Δf = 2700 Hz, define the thinnest resolvable layer, which is
∼ ci=ð4Δf maxðsin θiÞÞ where ci and θi are the sound speed and grazing
angle of the i-th layer, respectively. For example, for a layer sound speed
of 1500m/s, the thinnest resolvable layer is ~ 0.15 m.

In an ideal survey geometry, the seabed reflection angles would extend
from below to above the critical angle. In the present data set, the angles are
nearly all above the critical angle. Measuring more angles below the critical
angle requires either a longer receive array or receivers closer to the seafloor.
Small receiver heights, however, risk bottom entanglement and also degrade
the data quality. That is, as the receiver height decreases, the Fresnel zone
size decreases and hence the reflection data have larger errors from small-
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Fig. 4 | Comparing estimated parameters to coring data and reflection coefficient
data fit. Inversion results for reflection coefficient data sets 82 (site 2: a, c) and 3338
(site 13: b, d). a, bMarginal probability profiles of estimated geoacoustic parameters.
The compressional-wave speed and density have been measured at sites 2 and 13 by
gravity and piston cores (dashed black-white lines), which agree well with the

estimated values both in magnitude and depth. Prior probability bounds are indi-
cated by dotted lines, profile densities are colored blue to yellow for high to low
values, respectively, andwhite for zero density. c, dExamples of observed data (black
diamonds with one standard error) and 95% credibility interval of predicted data
(gray bands) which indicate a good model-to-data fit.
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scale seabed curvature. The geometry design here attempted to balance the
angular range with these other factors.

Erosional layer related to last Ice age
The erosional unconformity which is shown between 3 and 4m below the
seabottominFigs. 3, 5 ismost likelydue to the sea level regressionduring the
last glacial maximum (LGM), between 19 and 23 ka BP30. The relative sea
level in theMediterranean Seawas up to about 145m lowerduring the LGM
and the Malta Plateau was partially above sea level or barely submerged in
the shallow surf zone and affected by eroding wave activity31. Radiometric
dating of deeper cores obtained about 40 to 60 km north-west of our study
area off the southern Sicilian coast indicates the unconformity’s relationship
to the LGM32. The resolved layers of this study likely correspond to unit 1
and the upper unit 2 identified in a seismic survey conducted in our area33.
Unit 1 has been characterized as Holocene highstand shelf sediment con-
sisting of shallow water calcareous muds with shells, shell fragments and
coarse terrigenous material. Unit 1 is bounded by an erosional horizon
previously detected with a thickness of 5–10 ms two way travel time
(3.75–7.5m at 1500m/s). The upper boundary of unit 2 has carbonate
buildup structures typical for a shallowwater environment which suggests a
very low sea level during its formation33.

Typically, sub-bottom structure studies rely on two-way travel time of
seismic reflection surveys without precise depth estimates. Here, the RC
inversionmethod offers survey-wide absolute depth values for all structure.
Another advantage is that knowing the physical material properties can aid
considerably in geological interpretation. The present study has revealed
high sound speed and density in isolated pockets in the swales of the ero-
sional layer. These could be occurrences of coarse lag sediments that would
tend to be deposited there; alternatively, theymaybe artifacts due to acoustic
focussing effects (discussed later).

Implications for ocean acoustic propagation and reverberation
Long-range acoustic propagation and reverberation are important for a
wide variety of scientific and military purposes. Geoacoustic properties can
profoundly affect both quantities. For example, it was shown theoretically
(and confirmed numerically) that a mud wedge leads to surprisingly large
transmission losses24. This is a general result, i.e., holds for arbitrary mud
thickness profiles. The mud thickness profile in this environment would
most dramatically increase transmission losses at mid-frequencies of 1-10
kHz. Long-range acoustic reverberation is governed by steeper angles than
transmission loss (since scattering strength increases with increasing angle)
and the geoacoustic properties here indicate that mid-frequency rever-
berationwouldnot be controlled by thewater-sediment interface,whichhas
no critical angle and a relativelyweak density contrast. Rather, reverberation
would be controlled by either sediment volume heterogeneities and/or
interface roughness of the erosional unconformity. Clutter, i.e., sharp peaks
in the reverberation, is generally thought of as arising fromdiscrete features.
However, it was shown that clutter can arise from a slowly-varying seabed
environment, where there is a surficial mud layer with varying thickness34.
The variable mud thickness leads to specific points in the seabed where a
resonant condition is met resulting in a high incident field at the base of the
mudwhich in turn leads tohigh reverberationpeaksor clutter returns at that
location. It was also shown that clutter can arise from lateral sound speed
gradients in the mud as weak as 0.07 s−1 even when the mud thickness is
constant. In this environment, these clutter mechanisms are most likely to
occur at mid-frequencies.

Limitations regarding local 1D model assumption
There are a few ostensibly strong lateral heterogeneities in the top 1mof the
transect, observed as very high porosity zones in themudwedge, e.g., at 1.8,
2.0, 3.2, 7.9 km in Fig. 3a. While it is possible that some local sediment

Fig. 5 | Comparing estimated sub-bottom struc-
ture to seismic reflection profile. a Posterior
probability density median of porosity with trans-
parency scaled by 95% credibility interval width and
core measurement sites 2 and 13 annotated.
b Seismic reflection profile along autonomous
underwater vehicle track. In the inversion result, the
sediment layers are well resolved, especially themud
wedge along track which pinches out towards the
center, and the erosional layer that is between 3 and
4 m below the sea bottom. Deeper layers are less
certain, although still discernible.
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volumes might be variably compacted or cemented, we believe that these
anomalies are more likely due to the breakdown of our local 1D model
assumptions. There can be focussing and defocussing effects due to the
roughness of both the seafloor and interfaces of strong reflectors while
lateral heterogeneities can cause scattering. The low porosity zone in the
lower half-space at about 500–600m along-track position in Fig. 3a may
have been caused by the abrupt step in the overlaying unconformity. The
high porosity zone in the top 1 m at about 7.8 to 8.0 km along-track could
have been caused bywave focussing due to the concave shape of the strongly
reflective unconformitybelow.These2Deffects havenot beenaccounted for
due to our 1D assumptions. 3D effects from unknown structure perpen-
dicular to the survey line could also affect the reflectivity values. Further, the
errormodel assumptions could distort some of the parameter estimates and
uncertainties. However, we are confident that this pragmatic approach
yields useful results overall.

Bayesian MGSQ is becoming computationally feasible
Large data volumes and computationally-intensive forwardmodelingmean
that computational costs need to be carefully considered. Inverting each RC
data set separately, we were able to use multiple high performance clusters
and fully utilized GPU nodes due to the efficient implementation35,36. Each
inversion took 12 hours using one node of 32 or 40 CPUs with 4 Nvidia
V100 GPUs, or 24 h using 32 CPUs with 2 Nvidia P100 GPUs. As the 1711
RC data sets were inverted in batches of 100 on multiple Compute Canada
clusters without specially assigned project resources, the wait times to bal-
ance fair usage added to the overall processing duration. The full inversion
therefore took about 2 months after the final setup and configuration were
determined. However, if resources were expressly dedicated it could take a
week or less. While this represents a relatively large computational effort in
an academic environment, other fields such as hydrocarbon industry
applications routinely use far greater resources. Without the massively
parallel implementation and the Levin integration of the Sommerfeld
integral for spherical RC modeling35,36, this study would not have been
feasible.

Conclusions
Our results demonstrate the ability to survey sediment geoacoustic prop-
erties including porosity, sound speed, attenuation and density in a complex
multi-layered seabed over scales of 10 km, with a resolution of about 10 cm
in the vertical and 10s of meters in the horizontal dimension. In this study,
the focus was on the upper 6m of the seabed. This kind of quantitative sub-
bottom survey capability has the potential to substantively advance a wide
variety of marine scientific and commercial endeavors. Examples include
geohazard assessments—needed for wind farms and other offshore struc-
tures, siting and burial of undersea communication and power cables. It is
also expected to advance understanding of sound propagation in bottom-
limited areas, such as continental shelves, which is important to marine
research and policy development. Quantitative sub-seabed mapping, as
opposed to current qualitative mapping is expected to help transform our
understanding, and better use, of the ocean.

Methods
Processing of data recorded by autonomous vehicle
Acoustic data were collected along a 12 km track on the outer shelf of the
Malta Plateau, south of Sicily in theMediterranean Sea (Fig. 1), as part of the
Clutter 09 Experiment in May, 200925. The water depth decreased
approximately monotonically along the survey track from 152m (site 2) to
145m (site 13). The experiment is illustrated in Fig. 2b. TheAUV traveled at
a speed of 1.17m/s and a height of about 12 m above the seabed. The AUV
towed an acoustic source (an Ultra Electronics 2-100 MPS cylindrical
projectormounted in a spheroidal-shaped tow body) and a horizontal array
of 32 hydrophones. The distance between the AUV and the source was
2.6m and the first hydrophone was 10.38m from the source; the hydro-
phones were spaced at 1.05m with a total array length of 32.55m. The
source consisted of two piezo-electric transducers generating linear

frequency modulated (LFM) pulses (pings) from 800 to 1400 Hz and
1600–3500Hz. TheLFMpulses have goodnoise rejection characteristics; by
match-filtering the data, all noise is reduced that exhibits different spectral
or temporal characteristics than the LFM37. At one ping every 3 s, the spatial
ping interval is 3.5 m. The source-receiver data were arranged into CDP
gathers, described in25, resulting in a CDP width of 5m, i.e. the seafloor
reflectionpoints of all source-receiver combinationsof oneCDPgather span
5m. The Fresnel zone diameter on the seafloor at a frequency of 1000 Hz is
7.4 m, which means the seafloor footprint of a CDP combining the Fresnel
zone and CDP width is about 12m.

The acoustic data inverted here consist of seabed RCs over multiple
grazing angles and multiple frequencies, computed as the ratio of spectral
power of bottom-reflected to direct-path wave arrivals. The RC data pro-
cessing, including correction for beam pattern and transmission path, and
the CDP processing are as in25. However, the removal of an AUV-scattered
acoustic return as described in that work is corrected and updated here.

There are several challenges in RC processing with a towed horizontal
linear array. One is that, given the geometry (the receivers are all at endfire
with respect to the source), an ‘in-stride’ source calibration is impossible
except at endfire. The source beam pattern characteristics (as a function of
frequency and vertical angle) were measured by towing the source over a
vertical line array (VLA) of hydrophones. A more difficult problem was
scattering from inside theAUVhousing, which affected only the 1600–3500
Hz signal due to the source geometry. This AUV scattered return (ASR)
arrives 4.8 ms after the direct path on each of the 32 receivers (source and
receivers are essentially in a straight line). Furthermore, the ASR is tem-
porally separable from the bottom reflected return for somebut not all of the
receivers. This part of the problemwas addressed previously using coherent
subtraction25 to obtain the pressure time series with the ASR removed, p̂,
from the raw time series p. However, it was discovered that there was an
error in the reflection data processing, which is clarified and rectified below.
The data processing for the spherical wave reflection coefficient ∣Rs∣ as a
function of specular angle at the seabed θwas given in Eqs. (4) and (5) of 25,
and is written here with a slight modification in notation as

jRsðθ; f ;T; ztÞj ¼
jP̂rðθ; f ;T; ztÞj
jPdðθe; f ;TeÞj

γdðθe; f Þ
γrðθ; f Þ

jPdvðθe; f ;TeÞj
jPdvðθ; f ;TaÞj

γdvðθ; f Þ
γdvðθe; f Þ

;

ð1Þ

where P and P̂ are the Fourier transforms of p and p̂, respectively; f is
frequency; zt is the sum of the source and receiver heights; γ is the trans-
mission factor from source to receiver which includes spreading and
absorption loss calculated via ray theory; subscripts d and r identify the path
type: direct path and seabed reflected, respectively; θe is the grazing angle for
the direct path to a receiver that is at endfire from the source; T is the
integration time with specific time windows Te and Ta for the direct endfire
path excluding the ASR and including the ASR, respectively; and subscript
dv indicates a separate direct-path source beampattern measurement using
the VLA. While there are several ways to process the time series data to
compute ∣Rs∣, this approach has the advantage of normalizing each term so
that uncertainties in source, receiver, and data acquisition system
calibrations play a negligible role. Also, although source depth and
amplitude variabilities are modest, they are also removed through this
approach.

In25, the time window for all source to receiver direct paths was iden-
tical,Te = Ta. This unintentionally assumed that the effect of the ASR on the
bottom-reflectedpathwas negligible.However, this effectwas not negligible
and led to artifacts in the reflection data. The processing used in this work
corrects this by normalizing the bottom reflected path P̂r (which inevitably
contains contributions from the bottom reflected ASR) with the direct path
calibration that also contains the ASR, Pdv(Ta). This clearly reduced the
artifacts in the data, which is important for themethod generally. However,
the specific impact of this processing on inversion results is not quantified in
this study. Small artifacts remainbecause thenormalization is at the specular
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angle (the angle at the water-sediment interface) but paths that reflect from
sub-bottom layers are steeper than specular.

Despite the data processing described above, an angle-dependent
sawtoothpattern in computedRCs as a functionof angle persisted at various
frequencies throughout all CDPs along the entire track. An example is given
in Supplementary Fig. 4a, which shows RC as a function of angle computed
for an 11-CDP average centered on the 12th CDP gather, combining two
frequencybands centered on 1100 and 1125Hz.Note the oscillatory pattern
above angles of 48 °— similar patterns occurred across thousands of CDPs
so were clearly not related to the environment. Excluding all angles and
frequencieswith this pattern causes toomuchdata loss to resolve the seabed.
Averaging RCs across angles smooths them out; however, that lowers
resolution and conceals errors. As the artifact had only minor variability
across all CDPs, a fifth-order polynomial was fit at each frequency to the
mean of the RC data over all CDPs along the track (Supplementary Fig. 4c).
The mean RC of the entire track included only very broad signal char-
acteristics which were fit by the polynomials that otherwise passed through
the finer sawtooth pattern. To obtain the corrected signal (Supplementary
Fig. 4b), the difference between fitted polynomial values and the mean RCs
of all CDPs (Supplementary Fig. 4d) was subtracted from the dataset.
Removing the artifact in this way yields much clearer Bragg patterns in the
data, produced by sediment layering.

After initial inversion trials for individual RC data sets failed to con-
verge well (i.e, parameter values kept changing after many iterations) when
using 4 frequency bands and all 32 grazing angles, simulations to estimate
the required frequency content were carried out. Limited bandwidth and
aperture were found to cause convergence issues with such data and geo-
metries. Even a simple simulated model consisting of one layer over a half-
space was found to pose difficulties when the angular rangewas too narrow.
With a wider aperture that included the critical angle of reflection in the
data, reliable inversions were obtained for simple models even with a small
number of frequency bands. While extending aperture for the existing data
is not possible, including additional frequencies was found to notably
improve convergence, such that using eight frequency bands (centered at
988, 1113, 1263, 1913, 2288, 2513, 3013, 3313 Hz) was found to provide a
well-determined model, despite the narrow aperture.

To reduce noise in the data, RCs for groups of 11 consecutive CDPs
were averaged,which leads to an acoustic seafloor footprint of roughly 50m.
This lateral resolution corresponds well to our goal of investigating meso-
scale variability without over-emphasizing smaller details. Inversion results
presented here are obtained for data which averaged neighboring pairs of
frequency bands for each CDP gather, the bandwidth for the inverted data
was 50 Hz. No averaging across angles was carried out. To reduce the
number of inversions, we used only every second of the 3431 available
CDPs, which results in 1711 CDPs; considering the 11 CDP averaging
means that the first and last CDP gathers are number 6 and 3426,
respectively.

Modelingresponseofunconsolidatedsediments tosoundwaves
In any geoacoustic inverse problem, a sediment acoustics model must be
chosen. However, in many works this choice is not discussed and most
commonly a Hamiltonmodel38 is assumed with parameters of sound speed
(without dispersion), attenuation (usually assumed to be a linear function of
frequency), and density. Here, the sediment acoustics model employed is
based on Buckingham’s viscous grain shearing (VGS) model which, unlike
theHamiltonmodel, obeys causality26,39,40. Causality is a useful constraint on
parameter combinations; thus, one of the motivations of using the model is
that it provides a fundamental limit on the search space. Further, it properly
provides correlations between geoacoustic properties that should be cor-
related, e.g., bulk density and sound speed.

The specific implementation of themodel is that described in28, except
that the viscoelastic time constant τ is set to infinity so that effects due to
classical viscosity are ignored and the theory simplifies to the grain shearing
(GS) model. We included τ in the initial stages of our investigation. How-
ever,multiple inversions indicated that τ, material index, and γp are strongly

correlated which caused problems with convergence of the inversion
algorithm. To resolve τ, a clear observation of classical viscosity in the sound
speed dispersion and/or frequency-dependent attenuation is required. For
example, classical viscosity leads to an attenuation that increases with fre-
quency, f, as f 2 at low frequencies and f

1
2 at high frequencies. However, the

data do not show such behavior. This could be either because classical
viscosity plays a negligible role in these sediments over this frequency range,
or there is an insufficient frequency and angular range to observe it. For
either case, the inversion is best served by using the GS model. After
applying the GS model to the inversion, reliable convergence was achieved.
Also, as in28, the grain-to-grain shear modulus γs is not estimated directly
from the data. The justification for this is that the conversion from com-
pressional to shear waves is expected to be small since for unconsolidated
sediments the shear speeds are low. Thus, the data appear to have insuffi-
cient information content to reasonably estimate the shear grain-to-grain
modulus. Instead, γs is inferred from the porosity β, which is highly sensitive
to reflection data, via Eqs. (11), (12), (18) of Ref. 26 with constants γpo=γso ¼
10; βo ¼ 0:377; βmin ¼ 0:37 and Δ = 10−6. The bulk moduli and densities
of grains and pore fluid have been fixed to these values:
Ks = 3.6 ⋅ 1010 Pa,Kf = 2.353 ⋅ 1010 Pa, ρs = 2.7 g/cm3, and ρf = 1.029 g/cm3.
In our implementation, three of the four GS parameters are inferred from
the measured data, porosity β, the compressional grain-grain modulus γp
and the material index.

Modeling reflection coefficient data
For each RC data set, we assume a 1D horizontally layered sediment model
with an arbitrary number of homogeneous layers above a lower half space as
shown inFig. 2b.Due to theproximityof source and receiver to the seabed in
the survey considered here, the plane-wave assumption is invalid andwould
lead to significant errors inmodeling the observed RC values. Therefore, the
spherical-wave RC is used instead, which is calculated by integrating plane-
waves over all angles as expressed by the Sommerfeld integral

Rsðθ;ωÞ ¼ Gω

Z 1

0

Rpðkz ;ωÞkz
kr

eikrzt J0ðrkzÞ dkz ; ð2Þ

where θ is the seabed grazing angle, ω is the angular frequency, Rp is the
plane-waveRC,kr ¼ k cos θ and kz ¼ k sin θ are thehorizontal andvertical
wavenumbers, respectively, k =ω/cw is the wavenumber for water sound
speed cw, zt = 2H− (z− zs),H is the water depth, zs is the source depth, z is
the receiverdepth, J0( ⋅ ) is the zeroth-orderBessel functionof thefirst kind, r
is the horizontal range between source and receiver,
Gω ¼ iDe�ikD;D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2t
p

, and i is the imaginary unit41,42. The
integrand in Eq. (2) depends on the seabed geoacoustic parameters only
through the plane-wave reflection coefficientRp, which can be computed by
standard recursive algorithms43. TheBessel functions are known tobehighly
oscillatory, so the numerical evaluation of Rs can be computationally
expensive. In this work we use the efficient algorithm based on Levin
integration and the hybrid CPU and GPU parallel implementation
developed35,36 to predict spherical RCs. The predicted RCdata are frequency
averaged similarly to the measured data.

Bayesian inference
To obtain information on themodel parameters including their uncertainty
expressed by a potentially non-Gaussian posterior probability density
(PPD), nonlinearBayesian inference is used.This implementation considers
the number of unknown parameters itself to be unknown, that is, the
number of sediment layers is an unknown random variable in addition to
each layer’s physical parameters, which results in a trans-D Bayesian
inversion44–46.

According to Bayes’ theorem

PðmjdÞ ¼ PðmÞ PðdjmÞ
PðdÞ ¼ PðmÞLðmÞR

MPðmÞLðmÞ dm ; ð3Þ
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whereP(m∣d) is thePPDof avectormofMmodel parameters givena vector
d of N data, P(m) is the prior density representing probabilistic a priori
model parameter information; P(d∣m) is the conditional probability of d
givenm, which can be interpreted as the likelihood ofm given d once d is
observed, written as LðmÞ; and P(d) is a normalization term known as
Bayesian evidence, which is an integral over the state spaceM.

The trans-D approach includes the number of parameters as an
unknown, in this case the number of sediment layers k. The resulting
posterior spans multiple spaces of different dimensions and includes the
uncertainty due to limited knowledge of the model parameterization. For-
mulating equation (3) as aBayesianhierarchicalmodel includingk as shown
by44, the trans-D joint posterior is

Pðk;mkjdÞ ¼
PðkÞPðmkjkÞPðdjk;mkÞP

k02K
R
MPðk0ÞPðdjk0;m0

k0 ÞPðm0
k0 jk0Þdm0

k0
; ð4Þ

where k 2 K (K being a countable set) indexes possible model choices and
P(k) is the prior over the K models considered.

Fixed-dimensional PPDs are typically sampledusing theMarkov chain
Monte Carlo algorithm (MCMC) which is a numerical approximation
technique to conveniently sample from complex and high-dimensional
functions inBayesian statistics47.Givena current set ofmodelparametersm,
a new setm0 is drawn from a proposal densityQðm0jmÞ and either accepted
to the Markov chain or rejected based on comparing an acceptance prob-
ability Aðm0jmÞ to a uniform random number on [0,1]. If m0 is rejected,
another copy ofm is added to the Markov chain.

Extending this for trans-D parameter spaces, the reversible jump
MCMC (rjMCMC) with the Metropolis-Hastings-Green acceptance cri-
terion is used here44. The acceptance probability is

Aðk0;m0
k0 jk;mkÞ ¼ min 1;

Qðk;mkjk0;m0
k0 Þ

Qðk0;m0
k0 jk;mkÞ

Pðk0Þ
PðkÞ

Pðm0
k0 jk0Þ

PðmkjkÞ
Lðk0;m0

k0 Þ
Lðk;mkÞ

jJj
� �

;

ð5Þ

where P(k) P(mk∣k) and Lðk;mkÞ represent the prior and likelihood,
respectively, formodel choice k and corresponding parametersmk, and ∣J∣ is
the determinant of the Jacobian matrix for the transformation from state
(k,mk) to ðk0;m0

k0 Þ, which is equal to one in this implementation.
As is common in geophysical inverse problems, a nonlinear system

response and a potentially multi-modal solution space can strongly reduce
the efficiency of the basic MCMCmethod. To improve sampling posterior
modes and achieve efficient proposals for the dimension-jump steps of the
rjMCMC algorithm, we employ the population sampling approach known
as parallel tempering by drawing samples from additional intermediate
distributions using parallel interacting chains with successively relaxed
likelihoods48. This utilizes the parallel computing capabilities of clustered
CPUs and allows fast and efficient convergence within the multi-
dimensional nonlinear space. In our implementation, each CPU manages
one Markov chain, while the GPUs carry out the forward model
calculations.

Applying single-parameter perturbations to the parameters in a
Markov-chain move using the common choice of multi-variate Gaussian
proposal densities can become inefficient at high dimensions. It has been
shown in fixed-D and trans-D inversions that applying perturbations in a
principal-component (PC) space, where PC parameters are uncorrelated,
can improve sampling efficiency by an order of magnitude and more for
some problems. We apply perturbations to PC transformed parameters
based on decomposition of the unit-lag covariance matrix with a different
PC decomposition applied for each chain and number of interfaces k as
described in49.

Likelihood function
To evaluate equation (5) in a sampling algorithm, the likelihood functionL
must be specified. The likelihood is based on the residual error distribution
described by P(d∣m) for residuals r(m) = d - d(m) of observed data d and

predicted data d(m). Residuals are commonly assumed to be Gaussian
distributed due to the central limit theorem, and P(d∣m) is then formulated
as a multivariate Gaussian function. The conditional probability P(d∣m) is
interpreted as the likelihood functionLðmÞ ofm for fixed d, and is given by

LðmÞ ¼ 1

ð2πÞN=2QND
i¼1

QNi
j¼1 σ ij

exp � 1
2

XND

i¼1

XNi

j¼1

rijðmÞ
σ ij

 !2" #
; ð6Þ

whereN is the number of data consisting ofND frequency-grouped subsets
indexed by i, with data dij and standard deviations σij for j = 1, . . . ,Ni angles
in the ith subset. Generally, a covariance matrix C is required in the
multivariate Gaussian density function, but in this work, we assume
uncorrelated errors such that C is a diagonal matrix with variances on the
main diagonal. We consider the data spacings in frequency and angle to be
sufficient that error correlations are negligible, and acknowledge the large
challenges in estimating error covariances in strongly nonlinear inversion—
particularly when such a large number of inversions ( ~ 1700) are carried
out. For these reasons, we fixed all σij to match the standard error about the
mean of 11 neighboring CDPs for each angle and frequency with a
multiplicative factor determined by trial and error: 2.5 for the lower 4
frequency bands and 1.5 for the upper 4 bands. These error assumptions
resulted in test inversions that produced geoacoustic models with well-
constrained structure and about 8-10 layers on average, which we consider
reasonable for this sedimentary environment. Without the error adjust-
ment, inversions gave poorly-constrainedmodels with more layers (>14 on
average), including multiple thin layers with parameter values that differed
significantly from surrounding layers – this appears to be spurious structure
introduced by over-fitting the data (i.e., setting standard deviations that are
too small). Increasing the fixed data variance values is a conservative choice
to reduce the chance of over-fitting the data, while inversions for C can be
unstable due to the highly non-linear model becoming too under-
determined. It is thus a pragmatic solution to an otherwise currently
intractable problem.

Prior distributions
Prior information constrains the posterior solution, which is important for
nonlinear problems that can err into unrealistic solution spaces. Both
independent and conditional prior distributions are used, with their para-
meter values listed in the tables of the supplementary document. The
independent prior distributions are uniform over a chosen interval (Sup-
plementary Table 1). The conditional priors are uniformover a defined area
and are used to constrain parameters that often correlate in nature—por-
osity β and compressional grain-grain modulus γp as P(β∣γp) (Supple-
mentaryTable 2) and compressional sound speed cp and density ρ asP(cp∣ρ)
(Supplementary Table 3). The conditional prior distribution of cp and ρ is
based on laboratory and in situ measurements38,50 and has been used in
previous studies with slightmodifications51,52. It consists of the area between
empirical lower and upper bound curves for cp as a function of ρ, with each
curve of the form

cp ¼ 1000ðg1 � g2ρþ g3ρ
g4 Þg5; ð7Þ

where g1 to g5 are fit parameters. In addition, the conditional prior dis-
tribution ofβ and γp has been chosen to suggest at least aweak correlation of
cp and ρ while avoiding highly unlikely parameter value combinations.

Model assumptions
In summary, our approach makes the following assumptions. The ASR
correction for the bottom-reflected path uses the specular angle although
sub-bottom returns contribute reflected energy at steeper angles. The 2D
track is considered to consist of local 1D models. Each 1D model is con-
structed by horizontal, homogeneous layeredmedia with a variable number
of layers above a lower half space. Scattering from interfaces or inhomo-
geneities are not modeled. The GS model is assumed to represent
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unconsolidated marine sediments while ignoring classical viscosity effects.
We do not infer shear wave parameters and assume compression to shear
conversion to be small. The bulk moduli and densities of grains and pore
fluid arefixed.TheRCdata aremodeled as independent variableswithfixed,
normally distributed standard deviations based on population subset sta-
tistics. The parameters’ PPDs are modeled with bounded, uniform prior
distributions and model residuals are assumed to be normally distributed.

Data availability
The reflection coefficient data are available at the following Figshare.com
repository: https://doi.org/10.6084/m9.figshare.23820105.

Code availability
The codes for carrying out Bayesian inversion are avialable upon request to
Jan Dettmer (jan.dettmer@ucalgary.ca). Figures were produced with
Matplotlib53, the Generic Mapping Tools54, and MATLAB.
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